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Preface

Preface

This document contains my lecture notes for the third semester of introductory physics.

What actually happens in the class room may be very different. I use an active approach

with a classroom response system. But if I were to lecture the whole time, this is what I

would plan to say. These notes also serve as a review of what we did in class and (and

likely more).
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0 Introduction: Motion and
Environment2

If you are taking PH220 you should have already taken PH121 or an equivalent class.

In PH121, you learned about how things move. You learned about forces and how force

relates to acceleration −→
F = −→a

The force,
−→
F  is how hard you push or pull. This push or pull changes the motion of

the object, represented by it’s mass,  The change in motion is represented by its

acceleration, −→a  Notice that both
−→
F and −→a are vectors. We will need all that you

learned about vectors in PH121.

Since physics is the study of how things move, we are going to study the motion of

objects again in this class. But in this class we will learn about new sources of force,

that is, new ways to push or pull something.

Really these new sources of force are not entirely new. You have heard of them and

probably experienced them. They are electrical charge and magnetism. You have

probably had a sock stick from you after pulling it out of a dryer, and you have probably

had a magnet that sticks to your refrigerator. So although these new sources of force are

new to our study of physics, they are somewhat familiar in every day lives.

To get us started this semester I want to review a particular force, the force due to

gravity. Think of most of our experience with gravity. We have an object moving near

the Earth. There is a force acting on the object, and that force is because of Earth’s

gravity.

We can think of the Earth as creating an environment in which the object moves, feeling

the gravitational force.

2 Note to editors: Yes this is a chapter number 0. I know this is not customary, but zero is a perfectly good
number. There is no requirement that a book start with chapter 0. So please don’t change this. I want the new
material for the course to start with chapter 1. So don’t undo hundreds of years of mathematical debate and
negate zero. It’s a nice number.
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Think of a ball falling, We considered this as an environment of constant acceleration.

In this environment, the ball feels a force proportional to their mass
−→
F = −→g

where  = 981 m
s

is the acceleration due to gravity. This is true anywhere near the

Earth’s surface. We could draw this situation as follows:

where the environment for constant acceleration is drawn as a series of arrows in the

acceleration direction (downward toward the center of the Earth). Anywhere the ball

goes the environment is the same. So we draw arrows all around the ball to show that

the whole environment around the ball is the same.

This environment is caused by the Earth being there. If the Earth suddenly disappeared,

then the acceleration would just as suddenly go to zero. So we can say that the Earth

creates this constant acceleration environment.

Notice that there are two objects involved, the ball and the Earth. Also notice that one

object creates an environment that the other object moves in. In our case, the Earth

created the environment and the ball moved through the environment. This situation

will recur many times in our course, so let’s give the objects these names, the Earth as

the “Environmental object”, and the ball as the “mover.”

Now you might object, because the force of gravity requires both objects, so how can

we be sure that we have chosen the right objects to be the environmental object and the

mover? Well, you remember that this depends on which reference frame we use to view

the situation. Since we are sitting on the Earth, it is most common to see the Earth as

sitting still and the ball going by. Then the Earth is the environmental object and the

ball is the mover. But if we were a �y sitting on the ball, we might see the ball as the

environmental object and the Earth as the mover!
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Both views are equally valid! It is easier to view the Earth as the environmental object,

though, and we will find that in our problems this semester it is important to look at our

problems to see which reference frame will let us get a solution easier.

The important thing here is to view the situation as an environment and it’s

environmental object with a mover object moving through the environment.





1 Charge

In the past two courses our goal was to learn now things move. We learned in PH121

and/or ME204 how objects move. We learned all about Newton’s laws which are our

description of how things move. If you have taken PH 123 you learned how groups

of things move, like water molecules in waves or air molecules in the room. We also

learned about how light moves, but there was a mystery there that we need to illuminate

this semester. That is, we really did not deal with the mechanics of how you make light.

By the time we are done this semester you will know how this works!

But most of the semester we will learn about the cause of a particular force, the force

created by electric charge. You have probably felt this force when you put on a sweater

that has a static charge. You may have found a stray sock sticking to your sweater.

(hopefully before you wore it to class). This semester we will learn about this force and

the magnetic force. Then, of course, we can apply these new forces to our dynamics

problems from PH121 to see things move in new ways. We start, then, with the source

of these new forces. Charge

Fundamental Concepts

• There is a property of matter called “charge.”

• There seem to be two types of charges, called “positive” and “negative.”

• We have a model for how charge acts. The model tells us there are two types of
charge, and that charges of similar type repel and charges of different type attract.

• We call the types of charge “positive” and “negative”

• In metals, the valence electrons are free to move around. We call materials where
the charges move “conductors.”

• Materials where the valence electrons cannot move are called “insulators.”

• In insulators, the atoms can “polarize.”
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What is Charge

But what is charge? How do we know there are such things as charged particles?

That is the subject we will take up next. Then we will study the motion and actions of

these charged particles. Finally we will show that the fields made by charged particles

can act as a medium for waves, and that there is good evidence that those waves exist.

Evidence of Charge

Let’s start with something we all know. Let’s rub a balloon in someone’s hair. If we do

this we will find that the balloon sticks to the wall. Why?Baloon and 2 by 4
demo

Balloon on wall
demo

Comb and bits of
paper demo

We say the balloon and comb have become charged. What does this mean? We will

have to investigate this more as we learn more about how matter is structured, but

for now let’s assume charge is some property that provides this phenomena we have

observed with the balloon (i.e. it sticks to the wall). Now lets try rubbing other things.

We could rub two rubber or plastic rods.Glass and Rubber
Rod Demo
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Two charged rubber rods are placed close together. The rods repel each other.

and we could also rub two glass rods
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Notice that in each case we have created a force between the two rods. The rods now

repel each other.

Now let’s try a glass and a rubber rod

Now the two different rods attract each other.

Notice that in our demo, rods that are the same repel and rods that are different attract.

We make the intellectual leap that the different rods have different charges. So we are

really saying:

1. There are two types of charge.

2. Charges that are the same repel one another and charges that are different

attract one another.

3. Friction seems to produce charge, but you have to rub the right materials

together.

We will call the rubber or plastic rod charges negative and the glass rod charges positive

but the choice is arbitrary. Ben Franklin is credited with making the choice of names.

He really did not know much about charge, so he just picked two names (we will see

that in some ways his choice was somewhat unfortunate, but hay, he was an early

researcher who helped us understand much about charge , so we will give him a break!).

Types of Charge

We now have reason to believe that there are at least two types of charge, one for rubber

and one for glass. But are there more?

Let’s start by introducing a new object, only this time we won’t rub it with anything.No-rubbing demo

Now this is strange. The new item is attracted to both rods! What is going on? Have we

discovered a new type of charge, one that attracts the other two types we have found?
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Maybe, but maybe the explanation of this phenomena is a little different. To understand

this, let’s consider how charge moves around.Question 223.19.4

Question 223.19.5

Movement of Charge

One of the strange things about charge is that it is quantized. We learned this word in

when we found that only certain standing waves could be formed between boundaries.

We are using this word in a similar way now. It means that charge has a smallest unit,

and that it only comes in whole number multiples of that unit. Charge comes in a

basic amount that can’t be divided into smaller amounts. So like our standing wave

frequencies, only certain amounts are possible As far as we know, the smallest amount

of charge possible is the electron charge.4 This charge we will call negative. We say

that the electron is the principle charge carrier for negative charge. This fundamental

unit of charge was found to be about

 = 160219× 10−19C (1.1)

where the C stands for Coulomb, the  unit of charge.

Any larger charge must be a multiple of this fundamental charge

 = ×  (1.2)

The proton is the principle charge carrier for positive charge. From chemistry, you

know protons are located in the nucleus of an atom, along with the neutron. In the Bohr

model of the atom, the nucleus is surrounded by a cloud of electrons. The proton has

the same amount charge as the electron (), but is opposite in sign.

In a gram of mater, there are many, many, units of charge. There are about 5

012 5×1022 carbon atoms in one gram of carbon. Each carbon atom has twelve protons

and about twelve electrons. That is a lot of charge! But notice that the net charge is zero

(or very close to it!). It is common for most mater to have zero net charge.

As far as we know, charge is always conserved. We can create charge, but only in plus

or minus pairs, so the net charge does not change. We can destroy charge, but we end

up destroying both a positive and a negative charge at the same time. The net charge in

the universe does not seem to change much. So when something becomes charged, we

expect to find that the charge has come from another object.

4 I am not counting quarks here, which have a charge of 1
3

or 2
3

of the basic electron charge. But still, 1
3

of
the basic electron charge seems to be a real fundamental unit.
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Lets go back to our rubber rod and glass rod demo. We rubbed the rod that was in our

hand, but where did the charge come from? We believe that we are moving charge

carriers (usually electrons) from one object to another, stripping them from their atoms.

This happens when we use friction (rubbing) to charge the rods.

But what about our object that we did not rub, or our paper (we did not rub the bits

of paper). We believe that charge can move, that is why scientists looked for and

found charge carriers. Even in an atom, if I bring a charged object near the atom then

the negative charge carriers (electrons) will experience a force directed away from

the charged object, and the positively charged nucleus will experience a force pulling

toward the charge object
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Notice that the electrons and the nucleus will attract each other, so the atom won’t split

apart. But it will become positively charged on one side because there are more positive

charge carriers on that side. It will become more negatively charged on the other side,

because there are more negative charge carriers on that side. We could draw the atom

like this (figure 1.1)The force due to charge depends on how far away the charges are

-+ -+

Figure 1.1.Polarized Atom

from each other. The attractive force between the positively charged side of the atom

and the negative rod will have a stronger force than the negatively charged side of the

atom and negatively charged rod will experience because the negative side if farther

away. We will say that the atom has become polarized.
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The positive side will experience an attractive force. The negative side will experience

a repelling force. The net force due to the charge will be an attractive force. The atom

will be accelerated toward the rod! We have seen something like this before. Remember

an object in a �uid experiences a downward pressure force on the top, and an upward
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pressure force on the bottom. The pressure force is larger on the bottom, so there is an

upward Buoyant force. The case with our polarized atom is very similar. We have a net

electrical attractive force.
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Now suppose we have lots of atoms (like our uncharged object or our bits of paper).

Will they be attracted to the rod? Yes!

How about if we use a glass rod?
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Everything is the same, only we switch the signs. The glass rod is positively charged. It

will attract the electrons, and repel the nucleus. The atom becomes charged. The net

force is attractive (positive rod and closer negative side of the atom)

We sometimes call the separation of charge in an insulator polarization.

Flow of Charge

Let’s start by introducing a new object, a salt shaker (my salt shaker is glass with a

metal top). We will rub the salt shaker and see if it gets charged by placing it next to

our charged rods.Salt Shaker Demo

Now this is strange. We rubbed the object, but it was attracted to both rods as if there

were no charge. We know glass can be charged. What is the problem?Question 223.19.6

It turns out that some materials allow charge carriers to �ow through them. Our

experience with the lighting in our house might suggest that metals will do this. Let’s

try some other metal objects and see what we find.Metal Demo

It seems that the atoms are not maintaining a charge separation in these metal atoms!

Some materials allow charge carriers to move through them. Usually these materials are

metals, but most materials will allow some charge to go through them-even you-which

is what is happening in this case. I charge the rod, but the charge leaves through my

body. Other materials resist the �ow of charge. Materials that allow charge to �ow are

called conductors. Materials that resist the �ow of charge are called insulators.
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Charging by Induction

Knowing that charge carriers can �ow though a material, we can think of a way to

charge a conductor. Lets suspend a conducting rod.
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It is not initially "charged" meaning that it has the same number of positive charges and

negative charges, and they are evenly mixed together. I will bring a charged rod next to

it.
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but let’s attach a wire to the other end of the rod to allow the charge to �ow away from

our conducting rod. We will connect the rod to the ground (in this case, to a water pipe)

because the ground seems to be able to accept large amounts of charge carriers. So the

charge carriers will �ow to the ground.
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Figure 1.2.

(The strange little triangular striped thing is the electronics sign for a connection to the

ground)

Now let’s disconnect the wire from the rod. Is there a net charge on the conducting rod?
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The answer is yes, because we now have more positive charges in the conducting rod

than we have negative charges, so the net charge is positive.
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Charging by Conduction

Suppose instead, I perform the same experiment, but I touch the rods. Now charge

carriers can �ow. Starting with and uncharged conductor,
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I again bring in a charged rod. Again the charges separate in our conducting rod.
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Then we touch the two rods. The excess charge on our charged rod �ows to the

conductor. Since in our drawing, the excess charge is negative, then some of the positive

charge on the conductor is neutralized.
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When we separate the rods, our conducting rod will have an excess of negative charge.Take home lab as-
signment (using
Scotch Brand Tape)
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Notice that there is something different in our study of this new force. In the past, it

was easy to tell which object was creating the environment and which was the mover.

The Earth, being so much larger than normal objects, was the environmental object

creating the gravitational acceleration that balls and cars and people move it. Then the

balls and cars and people were the movers. Generally the thing causing the force, the

environmental object, was much bigger than the mover. That is not true in our charge

experiments so far. The rods are about the same size. So which is the environmental

object and which is the mover? We will have to pick one to be our environmental

object, and the other to be our mover. Sometimes the context of the problem helps. If

the problem you are solving asks for the motion or the force on the rod on the right side

of the diagram, then it is the mover and the rod on the left is the environmental object.

If one charge is much larger than the other, we might be justified in calling this large

charge the environmental object and a smaller charge near the big charge would be the
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mover.

Model for Charge

A model is a mental explanation for something. We are looking for a model, or an

explanation of how charge acts.Question 223.20.1

Question 223.20.2

Question 223.20.3

Question 223.20.4

Let’s summarize what we tried to learn last time:

Model for Charge
Frictional forces can add or remove charge from an object

There are two, and only two kinds of charge
Two objects with the same kind of charge repel each other
To objects with different kinds of charge attract each other

The force between two charged objects is long ranged
The force between two charged objects decreases with distance
Uncharged objects have an equal mix of both kinds of charge

There are two types of materials, conductors (in which charges can move)
and insulators (in which charges are fixed in place)

Charge can be transferred from one object to another by contact between the two objects

A serious shortcoming of this model is that it does not tell us what charge is. This is a

shortcoming we will have to live with. We don’t know what charge is any more than we

can say exactly what mass or energy are. Charge is fundamental, as far as we can tell.

We can’t find a way to change charge into something else to change something else

into charge. For fundamental particles (like protons and electrons) either a particle has

charge, or it does not.

Conservation of charge

In some ways, this is really great! We have a new quantity that does not ever change.

We can say that charge is conserved in the universe. Like energy, we can move charge

around, but we don’t create or destroy it5. When we rubbed the plastic rods with rabbit

fur or wool, we were removing charge that was already there in the atoms of the fur. If

you take PH279 you might find that there are some caveats to this rule. We can make

positron and electron pairs from high energy gamma rays. But when we do this we

5 There is really a way to create charge, but you have to create both a positive and a negative charge
together, so the net charge in the universe never changes.
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must always make a pair; one positive, and one negative. So the net charge remains

unaffected.

Insulators and Conductors
Question 223.20.5

Let’s return to charges and atoms. We have an intuitive feeling for what is a conductor

and what is an insulator, but let’s see why conductors act the way they do.

Potential Diagrams for Molecules

Back in high school or in a collage chemistry class you learned that electrons move

around an atom.

In the figure there are two energy states represented. You may even remember the

names of these energy states. The orange-yellow lines show one “orbital distance” for

the electrons near the nucleus. The red line shows another electron at a larger orbital

distance. The inner orbital is a 1 state and the outer orbital is a 2 state. If these were

satellites orbiting the earth, you would recognize that the two orbits have different

amounts of potential energy. This is also true for electrons in orbitals. If we plot the

potential energy for each state we get something that looks like this

You can think of this as potential energy “shelves” where we can put electrons. If you
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were a advanced high school student, you learned that on the first two shelves you can

only fit two electrons each. The higher shelves can take six, and so forth. But that won’t

concern us in this class.

Building a solid

Note also that so far I have really only talked about single atoms. What happens when

we bind atoms together?

Let’s take two identical atoms. When they are far apart, they act as independent

systems. But when they get closer, they start acting like one quantum mechanical

system. What does that mean for the electrons in the atoms?

Electrons are funny things. They won’t occupy the exactly the same energy state. I can

only have two electrons in a 1 state, but as I bring two atoms near each other I will

have four! How does the compound solve this problem? The energy “shelves” split into

more shelves. As the atoms get closer, we see something like this
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At some distance,  the states split. So each electron is now in a different state.

Suppose we bring 5 atoms together.
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I get additional splitting of states. Now I have five different 1 states, enough for 5

atoms worth of 1 electrons. But solids have more than five atoms. Let’s bring many

atoms together.
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Now there are so many states that we just have a blue blur in between the original

two split states. We have created a nearly continuous set of states in two bands. Each

electron has a different energy, but those energy differences might be tiny fractions of a

Joule. The former two states have almost become continuous bands of allowed energy

states.

The atoms won’t allow themselves to be too close. They will reach an equilibrium

distance,  where they will want to stay.
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Since this is where the atoms usually are. We will not draw the whole diagram anymore.

We will instead just draw bands at (along the dotted line). Here is an example.

1s

2s

2p

3s

3p

1s

2s

2p

3s

3p

This means we have bands of energies that are allowed, that electrons can use, and gaps

of energy where no electron can exist.

Conduction in solids

Notice that in our last picture, the 3 and 3 bands have grown so much that they

overlap. The situation with solids is complicated. Notice also that the lower states are
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blue. We will let blue mean that they are filled with electrons taking up every available

energy state. The upper states are only partially filled. Yellow will mean the energy

states are empty. We will call the highest completely filled band the valance band and

the next higher empty band the conduction band.

We have three different conditions possible.

metals

In a metal, the highest occupied band is only partially filled

the electrons in this band require only very little energy to jump to the next state up

since they are in the same band and the allowed energies are very closely spaced.

Remember that movement requires energy. So if I connect a battery to provide energy,

the electrons must be allowed to gain the extra energy, kinetic energy in this case, or

they will not move. But in the case of a metal, there are easily accessible energy states,

and the electrons �ow through the metal.

We can say that the outer electrons are shared by all the atoms of the entire metal, so

the electrons are easy to move for metals.

Insulators

A second condition is to have a full valance band and an empty conduction band. The

bands are separated by an energy gap of energy 
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Conduction Band

Valance Band

Energy Gap, Eg

Conduction Band

Valance Band

Energy Gap, Eg

In this case, it would take a whopping big battery to make the electrons move. the

battery would have to supply all of the gap energy plus a little more to get the electron

to move. If we do connect a very large battery, say, 33000V then we can get electrons

to jump the gap to a higher energy “shelf.” But high voltages are not normal conditions,

so this is not usually the case. A material that has a large energy gap between it’s

valance band and an empty conduction band is called an insulator.

A mental picture for this might be as shown in the next figure.

The insulator atoms keep their valence electrons bound to the nuclei of the atoms. But

for a conductor, the valence electrons are free to travel from atom to atom.Question 223.20.6

Question 223.20.7
In an isolated conductor, normally the charge is balanced, so the electrons may move

but generally they stay near a nucleus. But if a conductor has extra electrons, the

electrons that can move will move because they repel each other. So any extra charge

will be on the surface of the conductor.
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This happens very quickly, generally we do find the extra charge distributed on the

outside of a conductor.

Semiconductors

The third choice is that there is a band gap, but the band gap is small. In this case, some

electrons will gain enough thermal energy to cross the gap. Then these electrons will

be in the conduction band. Devices that work this way are called semiconductors. We

won’t deal with semiconductors much in this class, but you probably used many of

them in ME210. Diodes, and transistors are made from semiconductors.

Charging and discharging conductors

Conductors can’t usually be charged by rubbing. The electrons in the conductor may

move when rubbed, but then they are free to move around in the conductor, so they

don’t leave. But if we rub an insulator, the electrons are not free to travel in the

insulator material, so we can break them free. Once this happens, we can take our

charged insulator and place it in contact with a conductor. The charge can �ow from

the insulator to the conductor (and arrange itself on the conductor surface). Once the

charge has moved to the exterior, it will reach what we call electrostatic equilibrium.

All of the repelling electrical forces are in balance, so the charges come to rest with

respect to the conductor.Question 223.20.8

We can remove the extra charge by creating a path for the charge to follow. Consider

charging a balloon by rubbing it on your hair. Then you connect a wire to the balloon

that is also connected to a metal water pipe. The charge can �ow through the metal

conducing wire. If there is a large body that can attract extra charge, the charge will

�ow. The Earth is such a large body that can attract the extra charge. The charge will

�ow through the wire and pipe and go into the ground.
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You may have heard of electrical grounds. This literally means tying your device to the

Earth through a wire. Since you are made mostly of water that contains positive ions,

you are also a conductor. So if we touch a charged object, we will most likely discharge

the object. This is also why we must be careful with charge. Large amounts of charge

�owing through us leads to death or injury.

If an object is grounded, it cannot build up extra charge. This is good for appliances

and houses, and people.

We talked last time about insulator atoms being polarized.

Remember that for each atom the electrons are displaced relative to the nucleus.

We can define a center of charge much like we defined a center of mass. In the case in

the figure, we can define a negative center of charge and a positive center of charge.
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Notice that the negative and positive center of charge are not in the same place when theQuestion 223.20.9

atom is polarized. We have a name for a pair of positive and negative charges that are

separated by a distance, but that are still bound together. We call it an electric dipole.

Often we just draw the centers of charge joined by a line.

Using this we can explain why humidity affects our last lecture experiments so much.

The water molecule has two hydrogen atoms and one oxygen atom. The covalent

bond between the oxygen and hydrogen atoms forms when the oxygen “shares” the

hydrogen’s electrons. The electrons from the hydrogen atoms spend their time with the

oxygen atom making one side of the molecule more positive and the other side more

negative.

Thus if you have a charged balloon on a humid day, one side of the water molecules in

the air will be attracted to the extra charge on the balloon. The extra charge will attach
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to the water molecules, and �oat away with them. This will discharge the balloon.

Note on drawing charge diagrams

We will have to draw diagrams in our problem solutions. Normally we won’t draw

atoms, so we will be drawing large objects with or without extra charge. We know that

all materials have positive nuclei and negative electrons. When these are balanced,

there is an electron for every proton, so if we add up the charges we get zero net charge.

These charges don’t contribute to net forces because for every attraction there is a

repulsion of equal magnitude.

So we won’t draw all of these charges, but we should remember they are there. We

usually draw a cross section, so here is the cross section of a round, conducting ball.

But if we have extra charge, we should draw it. We will just add plus signs or minus

signs. We won’t draw little circles to show the electrons (we can’t draw them to scale,

they are phenomenally small). Here is an example of two round objects, one positive

and one negative

If the objects are not conductors, the extra charge may be spread out. We draw the

charge throughout the cross section of the object.
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Note that if you transfer charge, from one object to another, you should try to keep the

same total number of “+”’ or “-” signs to show the charge is conserved.

Basic Equations



2 Coulomb’s Law and Lines of
Force

Fundamental Concepts

• Our “charge” force is called the Coulomb force, and is given by  = 
|1||2|
2

• A field is a quantity that has a value (magnitude and direction) at every point in
space

• The Coulomb force is caused by an electric field

• We use field lines to give ourselves a mental picture of a field

Coulomb’s Law
My experience so
far is that Statics
and Dynamics did
not teach Newton’s
law of gravitation
so teach it here.

Sometime ago in your Dynamics or PH121 class you learned about gravity. Let’s

review for a moment.

Question
223.21.0.1

Question
223.21.0.2

Question
223.21.0.3

Question
223.21.0.4

From our experience we know that more massive things exert a stronger gravitational

pull than less massive things. We also have some idea that the farther away an object is,

the less the gravitational pull. Newton expressed this as

 = 
12

212
where the two masses involved (say, the Earth and you) are 1 and 2 and the distance

between the two masses is 12 (e.g. the distance from the center of the Earth to the

center of you). The constant  is a constant that puts the force into nice units that are

convenient for us to use, like newtons (N)  It has a value of

 = 667428× 10−11 Nm
2

kg2

You might ask, how do we know this? The answer is that Newton and others performed

experiments. Newton’s law of gravitation is empirical, meaning that it came from

experiment. Lord Cavendish used a clever device to verify this law. He suspended two

masses from a wire. Then he placed two other masses near the suspended masses.
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He knew the torsion constant of the wire (how much it resists being twisted). Then by

observing how far the suspended masses moved, he could work out the strength of the

gravitational force. This is called a torsion balance.

Charles Coulomb thought he could use the same device to measure the strength of the

electric force. Here is his experimental design.

Coulomb’s Torsion Balance Apparatus

You can see this is really just a torsion balance. This time objects with equal mass and

equal charge are suspended on either end of a rod. The rod is hung on a wire. Two

other charges are brought an equal distance, 12 from the other charges. Knowing the

torsional properties of the wire, the force due to the charges can be found.
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Coulomb determined that the force due to a pair of charges has the following properties:

1. It is directed along a line connecting the two charged particles and is inversely
proportional to the distance between their centers

2. It is proportional to the product of the magnitudes of the charges |1| and |2| 
3. It is attractive (the charges accelerate towards each other) if the charges have

different signs, and is repulsive (the charges accelerate away from each other) if the
charges have the same signs.

We can write this in an equation

 = 
|1| |2|
212

(2.1)

Note how much this looks like gravitation! In the denominator, we have the distance,Question 223.21.2

Question 223.21.1 12, between the two charged particles’ centers. We have two things in the numerator.

But now we have |1| and |2| instead of 1 and 2 We have a constant  instead

of  but the equation is very much like Newton’s law of gravitation. That should be

comforting, because we know how to use Newton’s law of gravitation from PH121 or

Dynamics. There is a very big difference, though. Gravitation can only attract masses,

The Force due to charges can attract or repel.

Again there is a constant to fix up the units. Our constant is

 = 89875× 109 Nm
2

C2
(2.2)

which allows us to use more meaningful units (to us humans) in the force equation.Question 220.2.1

How about strength? Is gravity or is this force due to charge stronger?Comb and paper
bits demo

Force Varies with Distance Attracts Repels Acts without contact Strength
Gravity Yes Always Never Yes Weaker

Charge Force Yes Sometimes Sometimes Yes Stronger
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Lets try an example problem:

Example 2.1 Calculate the magnitude of the electric force between the proton and
electron in a hydrogen atom. Compare to their gravitational attraction. We expect the
electrical force to be larger. We need some facts about Hydrogen

Item Value
Proton Mass 167× 10−27 kg
Electron Mass 911× 10−31 kg
Proton Charge 16× 10−19C
Electron Charge −16× 10−19C
Proton-electron average separation 53× 10−11m

then,

 = 
|1| |2|
2

= 89875× 109 Nm
2

C2

¡−16× 10−19C¢ ¡16× 10−19C¢
(53× 10−11m)2

= −8 190 8× 10−8 m
s2
kg

and

 = 
12

2

= 667× 10−11N m2

kg2

¡
167× 10−27 kg¢ ¡911× 10−31 kg¢

(53× 10−11m)2

= 3 612 5× 10−47 m
s2
kg

which shows us what we expected, the gravitational force is very small compared to the
electric force.

Permittivity of free space

It is customary to define an additional constant

 =
1

4
= 885× 10−12 C2

Nm2
(2.3)

Using this constant

 =
1

4

|1| |2|
2

(2.4)

which really does not seem to be an improvement. But if you go on to take an advancedQuestion 223.21.3

Question 223.21.4

Question 223.21.5

class in electrodynamics you will find that this form is more convenient in other unit

systems. So we will adopt it even though it is an inconvenience now.



Direction of the force 29

Direction of the force
Question 220.2.2

What about direction? So far we have only calculated the magnitude of the force. But a

force is a vector, so it must have a direction. Notice that our equation has absolute value

signs in it. We will only get positive values from Coulomb’s law.

To find a strategy for getting the direction, let’s observe two charged objects

Experiments show that they seem to be pulled straight toward each other. The force

seems to be along the line that passes through the center of charge for each of the two

charged objects. We have to find this line from the geometry of our situation and our

choice of coordinate systems. To make matters worse, we could have two of the same

kind of charge.

The force will still be on the line connecting the centers of charge, but it will be in

the opposite direction compared to the last case where the charges were of different

sign. This seems complicated, and it is. We must observe the geometry of our situation

and note whether the charges are the same or different signs to find the direction. Our

equations can’t tell us the direction on their own. You can’t put the signs of the charges

into the formula and expect a direction to come out! You have to draw the picture. Here

is the process:

1. Define your coordinate system.

2. Find the line that connects the centers of charge. The force direction will be on that
line.

3. Determine the direction by observing the signs of the charges. If the charges have
the same sign, the force will be repulsive, if the charges have different signs, it will
be attractive.
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More than two charges

It is great that we know the force between two charges, but we have learned that there

are billions of charges in everything we see or touch. It would be nice to be able to use

our simple law of force on more than one or two charges. We did this with gravity.

Let’s review.Question 223.21.6

Suppose I have a satellite orbiting the Earth. That satellite feels a force given by

 = 


2

= 

µ


2

¶


but consider that on the Earth below the satellite, there is a rock on the surface of the

Earth.

Part of the force due to gravity on the satellite must be due to this rock. We could write

our force due to gravity as

 = 

µ


2
̂ +



2
̂

¶


where  is the mass of all the rest of the Earth, minus the rock. If we take the Earth

rock by rock, we would have

 = 

µ
Σ



2
r̂

¶


where  is the mass of the  piece of the Earth and r̂ is the direction from  to

. We would not really want to do this calculation, because it would take a long time.

Instead, back in PH121 or Dynamics we found we could add up all the mass and treat

the Earth as one big ball of mass and represent it as if the mass was all at it’s center of

mass (as long as there is no rotation so no torque). But let’s think about all this mass.

Does the force between a rock in China and our satellite get diminished because our
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rock in Rexburg is in the way?

No, the force due to gravity is really the sum of all the little forces between all the parts

of the Earth and our satellite. One bit of mass does not interfere with the force from

another bit of mass.

Now let’s look at the electric force. Suppose we have many charges in some

configuration (maybe a round ball of charge). We could call the total charge,  Then

our force magnitude on a mover charge  would be

 = 
|| ||
2

The collection of charge  would be the environmental charge. But we can picture this

as the individual parts of  all with little forces pairs acting on  summing up to get



 = Σ

µ ||
2
r̂

¶
||

where  is a piece of the total charge 

This is an amazingly simple idea. The force on a mover charge,  due to any number

of charges is just the sum of the forces due to each charge acting on  Sometimes the

mover charge is called a test charge, but we will call it a mover charge and we will call

the  environmental charges.

Suppose in our ball of charge, we have an element of charge on the opposite side of the

ball and another element of charge close to us. Would the near charge element “screen
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off” or some how reduce the force due to the far charge element?

Like with gravity, it would not. Note that because one charge is farther away, the

force from the far charge is not the same magnitude as that of the near charge. But we

calculate both using our formula, and add them up (a vector sum) with all the others.

While we are talking about it, it might seem that the rest of the matter in the ball will

screen off the electric force. But matter, itself, does not interfere with our electric force.

Only other charges will change the force, and then only following the idea of that their

forces add as vectors (remember that for electricity they can cancel, because we have

both positive and negative charges).

If you took PH123 you will recall that in our study of waves, when we had two waves

in a medium we found we could just added up displacements point for point. We called

this superposition. We will use the same word here, but it has a slightly different

meaning. We are not adding up wave displacements. We are adding up forces. But we

still do it point for point.

Now where there are forces, there will be Newton’s second law! Let’s consider a

problem. Suppose we have three charges, equally spaced apart as shown where each

has the charge of one electron () but the middle charge is positive and the other two

are negativeDraw picture on
board

r r

We identify the middle charge as the mover (since we are asked for the force on this

charge) and the left and right charges as the environmental charges. We can draw a free

body diagram for the mover charge.

FRFL

and find the net force on the mover charge, then
−→
F = −→a = −→F +−→F
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We only have -components so we can write this as

 =  =  − 

where the minus sign is used for  because it is pointing to the left and that is usually

the minus  direction.

We may ask, is this mover charge accelerating? We may suspect that the answer is

no, but here we have something new. We don’t know the magnitude of  or  We

now have to find the magnitudes to know. Back in PH121 you would have been given

the magnitude of the forces, but in a charge problem we know how to calculate the

magnitudes, so let’s do that. We can use the formula for the Coulomb force

 = 
|1| |2|
2

we can use  as the distance from the middle charge to each of the other charges since

in this special case they are both the same distance from the middle charge. Then

 = 
2
2

 = 
2
2

these are the magnitudes. We should notice that  points to the left. So we need to

include a minus sign in front of it’s magnitude.

 =  =  − 

 =  = 
2
2
− 

2
2

= 0

now we can say that the middle charge is definitely not accelerating.

Of course this is a pretty easy Newton’s 2nd law problem. It was all in the -direction.

But suppose that is not true. Then we need to take components of the forces vectors.

Let’s try one of those.Draw picture on
board

Here is a new configuration of our charges. There will be a Coulomb force between

each negative charge the positive charge. What is the net force on the positive charge?

Again we need Newton’s second law and the Coulomb force equation. We identify the

positive charge as our mover, and the negative charges as the environmental charges.
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Our basic equations are

 = 
|1| |2|
2−→

F = −→a
but this time we need an  and a  Newton’s second law equation. Let’s draw the free

body diagram. I have chosen the positive -direction to be upward and the positiveDraw picture on
board -direction to be to the right.

Fup
FL

The negative charge that is above our positive charge will cause an upward force.

The negative charge to the right will cause a force that pulls to the right. This is a

two-dimensional problem, so we need to split our Newton’s second law into two

one-dimensional problems.

 =  = 

 =  = 

so

 = 
2
2

 = 
2
2

We can see that there will be a force in both the  and the  direction. How do we

combine these to get the net force? We use our basic equations for combining vectors:

 =
q
 2 +  2

=

sµ

2
2

¶2
+

µ

2
2

¶2
=
√
2
1

2


2


but we are not done. We need a direction. Generally we use the angle with respect to

the positive -axis.

 = tan−1
µ




¶
= tan−1

Ã


2
2


2
2

!
=



4
rad

so we have a net force of  =
√
2 1
2


2
 at a 45 ◦ angle with respect to the -axis.
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Of course, this is still fairly simple, we should also review taking components of vectors

that are not directed along the  and the  axis. Suppose we move the top charge as

shown belowDraw picture on
board

Once again the positive charge is the mover and the negative charges are the

environment. Now our free body diagram looks like this:Draw picture on
board F2

FL

Once again we have a two-dimensional problem. We need to convert it into two

one-dimensional problems.

 =  =  + 2

 =  =  + 2

but we don’t know   2   and 2 But our basic equations should include

how to make vector components

 =  cos 

 =  sin 

where  is measured from the positive -axis. So

 =  =  cos  + 2 cos 2

 =  =  sin  + 2 sin 2

and we realize that

 = 0

and that

cos (0) = 1

sin (0) = 0

so

 =  + 2 cos 2

 = 0 + 2 sin 2

This gives the  and  components of the net force on the positive charge. Using our
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Coulomb force for the magnitudes, we have

 = 
2
2
+ 

2
2
cos 2

 = 
2
2
sin 2

I will tell you 2 =

4
rad (or 45 ◦). So we can find

 = 
2
2
+ 

2
2

Ã√
2

2

!
= 

2
2

Ã
1 +

√
2

2

!

 = 
2
2

Ã√
2

2

!
and

 =
q
 2 +  2

=

vuutÃ 2
2

Ã
1 +

√
2

2

!!2
+

Ã

2
2

Ã√
2

2

!!2

=


2


2

q
2 +
√
2

This is not so nice and easy. The angle for the net force is

 = tan−1

⎛⎝ 
2
2

³√
2
2

´


2
2

³
1 +

√
2
2

´
⎞⎠

= tan−1
Ã
1

2

√
2

1
2

√
2 + 1

!
= 0392 70 rad

= 22 5 ◦

Note that I am using symbols as long as I can. This will become important in this

course. The problems will become very complicated. It is easier to make mistakes if

you input numbers early.

Also notice that I carefully placed the charges the same distance,  from each other. Of

course that will not always be true. If the distances are different, we will use subscripts

(e.g. 1, 2) to distinguish the distances.

Fields

Let’s pause for a minute and think of our mover and environmental objects. We

think of the Earth as creating an environment in which the object moves, feeling the
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gravitational force. And this is a property of all non-contact forces.

Recall our falling ball. We considered this as an environment of constant acceleration.

In this environment, the ball feels a force proportional to their mass
−→
F = −→g

where  = 981 m
s

is the acceleration due to gravity. This is true anywhere near the

Earth’s surface. We could draw this situation as follows:

where the environment for constant acceleration is drawn as a series of arrows in the

acceleration direction (downward toward the center of the Earth). Anywhere the ball

goes the environment is the same. So we draw arrows all around the ball to show that

the whole environment around the ball is the same.

Notice that the environment is described by an acceleration,  given by

−→g =
−→
F


that is, the environment is described by the force per unit mass.

We know that this environment is caused by the Earth being there. If the Earth suddenly

disappeared, then the acceleration would just as suddenly go to zero. So we say that the

Earth creates this constant acceleration environment.

Recall that there are two objects involved, the ball and the Earth. Also notice that one

object creates an environment that the other object moves in. In our case, the Earth

created the environment and the ball moved through the environment. We called the

Earth the “Environmental object”, and the ball the “mover.”

We know now that something like this happen with our electrical force. The electric
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forces is also a non-contact force. So it makes sense to view one charge as creating

an environment in which the other charge moves. But if there is an environment, what

would that environment be. Would it be an acceleration, or something else?

Michael Faraday came up with answers to this questions. To gain insight into his

answers, let’s consider our force again.

 = 
|| ||

2

but let’s take  as a very small test charge that we can place near a larger distribution of

charge  This is like the Earth and our small ball. The large  is the environmental

charge and the small  is the mover charge.

 = 
|| ||

2

We want  to be so small that it can’t make any of the parts of  rearrange

themselves or any of the atoms forming the body that is charged with  to polarize.

Then we define a new quantity
−→
E =

−→
F


This is the force per unit charge. This is very like our gravitational acceleration which

is a force per unit mass. Then −→
F = 

−→
E (2.5)

This is really like −→
F = −→g

but with the mass replaced by  and the acceleration replaced by this new

force-per-unit-charge thing. For gravity it is the mass that made the gravitational pull.

With the electric force it is the charge that creates the pull. So replacing  with 

makes some sense. But what does it mean that the acceleration has been replaced by−→
E  Well, since −→g was the representation of the environment, can see that this new

quantity is taking the place of the environment, but it can’t be an acceleration. It does

not have the right units. Let’s investigate what it is.

Let’s write the magnitude of 

 =




=


||||
2



= 


2

But this is really not a quantity that we have seen before It depends on how far awayvan de Graff and
test charge we are from the environmental charge  It has a value at every point in space–the
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whole universe! (think of our acceleration environment being all around the moving

ball) though it’s values for large  are very small. The quantity is only large in the near

vicinity of the charge,  .

We can picture this quantity as being like a foot ball field with something (an

environmental charge) hidden out there on the grass. If we know where the object is,

we can tell a searcher how “warm” or “cold” they are as they wander around looking

for the object. For every location, there is a value of “warmness.” If we extend this

idea to three dimensions, we are close to a picture of
−→
E  The environment quantity

−→
E

has a value at every point in three dimensional space. Since this is a new quantity, we

need to give it a name. We will call it an electric field. But we have to add one moreA field is a quan-
tity that has a value
(magnitude and/or
direction) at every
point in space.

complication. It is a vector, so it also has a direction at each point in space as well. This

direction is the direction the force would be on  the mover, if we placed it at that

location.

But where does this field come from? We say that an environmental charge  creates

a field −→
E = 



2
r̂ (2.6)

centered at the charge location. The field is our environment for our mover.

Now we can understand more about how gravity works! Have you wondered how a

satellite knows that the Earth is there and that it should be pulled toward the Earth? The

Earth sets up a gravitational field because it has mass. The gravitational field shows up

as an acceleration field. The satellite (the mover) feels the gravitational field because

the field exists at the location of the satellite (it exists at all locations, so it exists at the
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satellite’s location). The satellite does not have to know that the Earth is there, becauseQuestion 223.21.7

it feels the field right where it is. The satellite reacts to the field, not the Earth that

created the field.6

Likewise, our charge  has the property of creating an electric field as the

environment around it. Other charges (movers) will feel the field at their locations, and

therefore will feel a force due to the field created by 

Field Lines

We need a way to draw the environment created by the environmental charge   We

could draw lots of arrows like in the previous pictures. and we will do this sometimes.

But there is another way to draw the environment that has become traditional. Have

you ever taken iron filings and placed a magnet near them? If you do, you will notice

that the filings seem to line up.Question 223.21.10

Magnet and Iron
Filings If you took PH121 you probably heard that there is a magnetic force. It is a non-contact

force, so we expect it has a magnetic field. The iron filings are aligning because they

are acted upon by the field. It is natural to represent this field as a series of lines like the

ones formed by the iron filings. We will do this in a few lectures!

But there is a similar experiment we can do with the electric force. This is harder, but

we can use small seeds or pieces of thread suspended in oil. These small things become

polarized in an electric field. They line up like the iron filings.

http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/elec_field_lines.jpg

We can represent the electric field by tracing out these lines. The last figure would look

6 Here I am taking a quantum mechanical view of gravity. In General Relativity, the “field” is space that is
warped by the mass of the Earth.
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like this

We can’t tell if the charge was negative or positive from oil suspension picture, but if

it was positive, by convention we draw the field lines as coming out of the charge. If

it were negative the field lines would be drawn as going in to the charge. Here is a

combination of a negative and a positive charge or dipole.

http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/elec_field_lines2.jpg

In this case both the positive and negative charges are working together to make the

environment or field that a third charge could move through. The field line drawing

would look like this.

This combination of positive and negative charges had equal charges, the only

difference was the sign change. Here is one where the positive charge has more charge
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than the negative charge.

Notice that the number of field lines is proportional to the field, but there is no set

proportionality. If the field from one charge is twice that of the other, we pick a number

of field lines for, say, the negative charge, and double the lines on the larger positive

charge.

This gives us a way to picture the electric field in our minds!

Some things to notice:

1. The lines begin on positive charges

2. The lines end on negative charges

3. If you don’t have matching charges, the lines end infinitely far away (like the single
charges in the first picture).

4. Larger charges have more lines coming from them

5. Field lines cannot cross each otherQuestion 223.21.11

6. The lines are only imaginary, they are a way to form a mental picture of the field.

We only draw the field lines for the environmental charges. Of course the mover charge

also makes a field, but this self-field can’t cause the mover charge to move. If it could

we could have perpetual motion and that violates the second law of thermodynamics.

Since the mover’s self-field is not participating in making the motion, we won’t take the

time to draw it!7

7 This picture will be a little more complicated when we allow for relativistic motion of charges and
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Remember, field lines are not real, but are a nice way to draw the field made by the

environmental charge. We will use field lines often in drawing pictures as part of our

problem solving process.

On-Line fun

An applet that demonstrates the electric field of point charges can be found here:

http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_en.html

If you prefer a video game, try Electric Field Hockey:

http://phet.colorado.edu/en/simulation/electric-hockey

As a wacky example of Coulomb forces, see this video of charged water droplets

orbiting charged knitting needles on the Space Shuttle:

http://www.nasa.gov/multimedia/videogallery/index.html?media_id=131554451

Basic Equations

other more difficult effects, but that can wait for more advanced physics courses. For most engineering
applications, this is a great approximation.





3 Electric Fields of Standard
Charge Configurations Part I

Fundamental Concepts

• Adding of vector fields for point charges

• Standard configurations of charge

Standard Charge Configurations

Actual engineering projects or experimental designs require detailed calculations of

fields using computers. These field simulations use powerful numerical techniques that

are beyond this sophomore class. But we can gain some great insight by using some

basic models of simple charged objects. We will often look at the following models:

Standard Configurations of Charge
Point charge

Several point charges
Line of Charge

Semi-infinite sheet of charge
Charged sphere

Charged spherical shell
Ring of Charge

Point Charges

We have already met one of these standard configurations, the point charge
−→
E =

1

4



2
r̂

The field of the point charge is represented below
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This picture requires a little explanation. The arrows are larger nearer the charge to

show that the field is stronger. But note that each arrow is the magnitude and direction

of the charge at one point. We really need a three dimensional picture to describe this,

and even then the fact that the arrows have length can be misleading. The long arrows

cover up other points, that should also have arrows. We can only draw the field at a

few points, and at those points the field has both magnitude and direction. But we must

remember that there is really a field magnitude and direction at every point.

The extension is a group of point charges
−→
E =

X


−→
E 

were we recognize that we are summing vectors. Let’s take a look at a few combinations

of charges and find their fields

Two charges

Let’s go back to our idea of an environmental charge,  and a mover charge, . The

mover charge is considered to be small enough that its effect on  is negligible. So

the field due to the large charge is unaffected by this small charge.

Of course, the total field is a superposition of both fields. But recall that the mover’s

self-field can’t move the mover. So we don’t draw the field due to . We we can

envision an environmental field that is just due to the environmental charge,   as if

there are no other charges any where in the whole universe. Of course this is not the

case, but this is how we think of the field due to charge Question 223.22.1

Question 223.22.2
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We can identify that a charge  placed in this field due to  will feel a force
−→
F  = 

−→
E

=
1

4



2
r̂

due to the field −→
E =

1

4



2
r̂

where this field is just due to  and does not contain the contribution from  So

the charge  only feels a force due to the field created by charge  A third charge,

 brought close to the other two would feel both
−→
E and

−→
E  Then both  and

our original  would be environmental charges and the new charge  would be the

mover. At this point, we would probably relabel  and  as 1 and 2 and relabel

 as  so we could tell that the original two charges are now the environment and

the new charge is the mover.

Vector nature of the field
Question 223.22.3

Question 223.22.4
Remember that the field is a force per unit charge. Forces add as vectors, so we should

expect fields to add as vectors too. Let’s do a problem.

Two charges are separated by a distance  What is the field a distance  from the
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center of the two charges?

We should recognize this as our old friend, the dipole.

Note that both of these charges are environmental charges. We are asked in this problem

to find the environment, the field. We don’t really have a mover charge. But we could

pretend we do have a mover,  at point  where we want to know the environment if

it helps us picture the situation. But really we are calculating what the environment

around the two charges will be.

We start by drawing the situation. I chose not to draw field lines. Instead I drew the

field vectors at the point,  where we want the field. The field lines would tell me

about the whole environment everywhere, and that might be useful. But this problem

only wants to know the field at one point,  So it was less work to draw the field using

vectors at our one point.

Note that I need a vector for each of the environmental charges. Each contributes to the

environment. The contribution to the field due to environmental charge 1 is labeled 1

and likewise the contribution to the field from environmental charge 2 is labeled 2
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The net environment is the superposition of the fields due to each of the environmental

charges. −→
E =

−→
E1 +

−→
E3

From the figure, we see that if we had a small mover charge,  on the axis a distance

at point  then we would get two forces, one from each of the environmental charges

1 and 2. We can use Newton’s second law to find the net force on our imaginary

 Of course, since this is a two-dimensional problem we will split it into two

one-dimensional problems.

 =  = −1 cos  + 2 cos 

 =  = 1 sin  + 2 sin 

we can see that the distance from each charge to point  is

 =

r
2

4
+ 2

so

sin  =


2

q
2

4
+ 2

we also know from Coulomb’s law that

1 = 2 =
1

4



2

but we want the field, so we need to divide all of this by 

1 = 2 =
1

4



2
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Our Newton’s second law becomes an equation for the components of the combined

electric field.



= −1

cos  +

2


cos 




=

1


sin  +

2


sin 

or just

 = −1 cos  +2 cos 

 = 1 sin  +2 sin 

We can see from the figure that in the -direction we will have no net field,

 = −1 cos () +1 cos  = 0

But in the -direction we have

 = 1 sin  +2 sin 

= 21 sin 

=
2

4



2
sin 

and since we found that

sin  =


2

q
2

4
+ 2

we can write our field as

 =
2

4


2

4
+ 2



2

q
2

4
+ 2

=
1

4

¡
2

4
+ 2

¢ 3
2

This is our total field at the distance  away on the axis. This is the environment that a

mover charge could move through.

Note that we pretended that we had a mover, , but in finding the field the  canceled

out, so indeed we are left with just the environment in our calculation, we just have the

field.

Now suppose our mover charge is very far away. That is, suppose we make  very

large. So large that À  then

lim
À

1¡
2

4
+ 2

¢ 3
2

=
1

3
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Then our field becomes

 =  =
2

4

¡
2

4
+ 2

¢ 3
2

=
1

4



3

Since many charged particles are small, like atoms or molecules, this limit is often

useful.

Now suppose we repeat the calculation, but this time we chose a point that is  away,

but that is on the -axis above the charges, we would find

 =  =
2

4



3

The result is similar, but the field is a little stronger in this direction.

Let’s look at one of these cases by graphing it.

0.0e+0 1.0e-6 2.0e-6 3.0e-6 4.0e-6 5.0e-6 6.0e-6 7.0e-6 8.0e-6 9.0e-6 1.0e-5
0

50

100

r (m)

E (N/C)

We can see that the dipole field (solid green line) falls off much faster than a point
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charge field (dashed red line). This makes sense because the farther away we get,

the more it looks like the two charges are right next to each other, and since they are

opposite in sign, they are essentially neutral when viewed together from far away. We

can see why atoms don’t exhibit a significant charge forces at normal distances.

This arrangement of charges we already know as a dipole. We are treating the two

charges as a unit making the environment that other charges might move in. Since we

are treating the two charges as one unit, it is customary to define a quantity

 = 

and to make this a vector by defining the direction of  to be from the negative to the

positive charge along the axis.

Then we can write the dipole field as
−→
E =

2

4

−→p
3

We could also treat this dipole as a complicated mover charge in some other

environmental field!. Then this quantity −→p will help us understand how a dipole will

move when placed in an environmental electric field. For example, we know that water

molecules are dipoles. A microwave oven creates a strong environmental electric field

that makes the water molecules rotate. When we studied rotational motion we found a

mass-like term that helped us to know how difficult something was to make rotate. That

was the moment of inertia. This dipole term, −→p  will tell us how likely a dipole is to

spin, so we will call −→p the dipole moment.

Three charges
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Question 223.22.5

We are working our way toward many charges that will require using integration to sum

up the contributions to the field. But let’s make this transition slowly. Next let’s add just

one more environmental charge, for a total of three.

Let’s just start with the fields this time. From our picture, we expect in this case to have

only -components. Since all the charges are the same sign,
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then

 = 1 cos (−) +2 +3 cos ()

We can guess from symmetry that

1 = 3 =
1

4



2

But this time, since we have redefined  the distance from 1 and 3 to the point 

where we want to know the field is

 =
p
2 + 2

so

1 = 3 =
1

4



2 + 2

and

2 =
1

4



2

and observing the triangles formed and remembering our trigonometry, we have

cos  =
√

2 + 2

so

 =
1

4



2 + 2
√

2 + 2

+
1

4



2

+
1

4



2 + 2
√

2 + 2



Combinations of many charges 55

or

 =


4

Ã
2

(2 + 2)
3
2

+
1

2

!
This is our answer.

Once again let’s consider the limit  À  If our answer is right, when we get very

far from the group of charges they should look like a single charge with the amount of

charge being the sum of all three environmental charges. In this limit

lim
À

1

(2 + 2)
3
2

=
1

3

so

 ≈ 

4

µ
2

3
+
1

2

¶
=

1

4

µ
3

2

¶
so on the central axis −→

E ≈ 1

4

µ
3

2

¶
k̂

And indeed, this is very like one charge that is three times as large as our actual charges

if we get far enough away.

This shows us a pattern we will often see. Far away, our field looks like what we would

expect if the net charge were all congregated in a point. Near the charges, we must

calculate the superposition of the fields. But far away we can treat the distribution as a

point charge. This is very like what we did with mass in PH121 or Dynamics. We could

often treat masses as point masses at the center of mass, if the distances involved were

larger than the mass sizes.Question 223.22.6

Combinations of many charges

We have found the field from a point charge.
−→
E =

1

4



2
r̂ (3.1)

where the field is in the same direction as ̂ if the charge is positive, and in the opposite

direction if the charge is negative (think of our field lines, they go toward the negative

charge). This will become one of a group of standard charge configurations that we will

use to gain a mental picture of complex configurations of charge. We have done this

already for combinations of point charges. We can combine the point charge fields to

get the total field.

The other standard models are combinations of many, many charges.
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Line of Charge

Another is an infinitely long line of charge, or a infinite charged wire. Since this long

line of charge is infinite, it must have an infinite amount of charge. But we can describe

“how much” charge it has with a linear charge density

 =




Semi-infinite sheet of charge

A sheet or plane of charge,usually a semi-infinite sheet of charge is also useful

We have the same problem of having infinite charge, but if we define an amount of

charge per unit area

 =



we can compare sheets that are more charge rich than others.

Sphere of charge

Finally, we have drawn a sphere of charge already
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We can define an amount of charge per unit volume to help describe this distribution

 =



The spherical shell of charge is related to a sheet of charge, so we will include it here

This configuration of charge is drawn in cross section like the others. From your

calculus experience you can guess that a spherical shell of charge with a certain volume

charge density might be useful in integration, but we also can easily produce such a

configuration of charge by charging a round balloon or a spherical conductor.

The ring of charge is similar to the spherical shell, but is also much like the line of

charge.
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In our next lecture, we will take on the job of finding the fields that result from these

last few charge configurations except the spherical shell, which will have to wait a few

lectures.

On-Line Fun

A point charge field at a distant point visualization applet can be found at following this

link:

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/03-

ChargeField3d/03-chargeField320.html

For a 2D visualization of the field try:

http://www.falstad.com/emstatic/index.html

And here is a 3D visualization:

http://www.falstad.com/vector3de/

Basic Equations



4 Electric Fields of Standard
Charge Configurations Part II

Fundamental Concepts

• Integrating vector fields for continuous distributions of charge

• Start with
−→
E = 1

4

R

2
r̂

• find an expression for 

• Use geometry to find expressions for  and to eliminate r̂

• Solve the integral

Fields from Continuous Charge Distributions
Question 223.23.1

Suppose we have a continuous distribution of charge with some mover charge  fairly

far away. You might ask, how do we get a continuous distribution of charge? After

all, charge seems to be quantized. Well, if we have a collection of charges where the

distances between the individual charge carriers are much smaller that the distance

from the whole collection of charges to some point where we want to measure the field

(where the mover charge might be), then in our field calculations at this distant point

we can model the charge distribution causing the field as continuous. As an analogy,

think of your computer screen. It is really a collection of dots of light. But if we are a

few feet away, we see a continuous picture. We can treat the dots as though there were

no space in between them. For our continuous charge model, it is the same. We are

supposing we are observing from far enough away that we won’t notice the effects of

the charges being separated by small distances.

We should remember, though, that this is a macroscopic view. At some point it must

break down, since charge is carried in discrete amounts. If we want the field very

close to a distribution of charges, we must treat our charge distribution as a collection

of individual charges like we did in the last lecture. Notice in our last lecture that we

found that the field infinitely far from the charges was always zero. That is too far away
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for our continuous charge model to be useful. But if we went far enough away–but not

too far, the three charge configuration looked like a point charge with a total charge that

was the sum of the individual charges. At such distances, the separation between the

charges become unimportant. This is the sort of large distance we are talking about in

our continuous charge distribution model.

To find the field due to a continuous charge distribution, we break up the charged object

into small pieces in a calculus sense. Each small piece is still a continuous distribution

of charge. It will have an amount of charge ∆ where here the ∆ means “a small

amount of.” Then we calculate the field due to this element of charge. We repeat the

process for each element using the superposition principle to sum up all the individual

field contributions. This is very like our method of finding the field from individual

charges, only instead of a sum we want to let ∆ becomes very small and use an

integral. The field due to this bit of charge is

∆
−→
E =

1

4

∆

2
r̂

Recall that here ∆ means “a small bit of” and is not a difference between two charge

values or two field values. We learned that we can sum up the fields from each piece
−→
E ≈

X


∆
−→
E 

≈ 1

4

X


∆

2
r̂

and now we use our M215 (or M113) tricks to convert this into an integral. We let

our small element of charge become very small (but not so small that we violate our

assumption that the charge distribution of∆ is continuous).
−→
E = lim

∆→0
1

4

X


∆

2
r̂

=
1

4

Z


2
r̂

The limits of the integration must include the entire distribution of charge if we want

the total field. This will be our basic equation for finding the field for continuous

distributions of charge.

Let’s do some examples.

Line of charge
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Question 223.23.2

Let’s try this for a line of charge. This may seem like a simple charge configuration, but

this problem is really quite challenging. Let’s say that the charge is evenly distributed

along the line. Then we can use the linear charge density

 = 

to find  The quantity  is the total amount of charge on the wire and  is the length

of the wire. Then

 = 

Of course, we may not always have a constant density, then we need to have and

element of charge that varies with position. For a line charge, we would have

 =  () 

but for now, let’s assume the linear charge density is constant. Our basic formula tells

us that we should add up all the  elements. But we have an obstacle. We need a

different r̂ for every  How do we deal with this?MIT Visualization:
integrating a line of
charge Just like with last lecture, we only need the component of the part of the field that does

not cancel. Here we need to have drawn a good picture. From our drawing we can tell

that, in this case, only the  component will survive (the -components cancel). So we

only need to find

 =
−→
E · k̂
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This is a good thing, because our basic equation has an r̂ in it
−→
E =

1

4

Z


2
r̂

and we don’t know how to do this integral including the r̂ As always we will take this

two-dimeinsional problem and split it into two one-dimensional problems before we

can proceed. We will split our problem into  and -components. But since we know

that only the the -component will survive, we can just calculate the -component,

 =
−→
E · k̂

=
1

4

Z 2

−2



2
r̂ · k̂

and we recognize

r̂ · k̂ = cos 
So we are left with just

 =
1

4

Z 2

−2



2
cos 

which is much more likely be be integrable with what we know from M113 or M215.

Like in our last lecture, we will want to express

 =
p
2 + 2

and it makes it easier if we write

cos  =
p

2 + 2

Then our integral can be written as

 =
1

4

Z 2

−2



2 + 2
p

2 + 2

=


4

Z 2

−2



(2 + 2)
3
2

This now looks like a M215 or M113 problem. We can find this integral in an integral

table or you can use your calculator, or a symbolic math package, or you can remember

your M215 or M113 and prove thatZ 2

−2



(2 ± 2)
3
2

=
±

2
√
2 ± 2
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so

 =


4

Z 2

−2



(2 + 2)
3
2

=


4

"


2
p
2 + 2

¯̄̄̄
¯
2

−2

=


4

⎡⎣ 2

2
q
(2)

2
+ 2

− −2
2
q
(−2)2 + 2

⎤⎦
=



4

q
(2)

2
+ 2

=
1

4





q¡

2

¢2
+ 2

This is the field due to a charged rod of length 

Note that there are only a few integrals that we can solve in closed form to find electric

fields. It might be a good idea to build your own integral table for our exams, including

the integrals from the problems and examples we work.

An infinitely long line of charge is one of our basic charge models. So far our line of

charge is not infinitely long. We can find the field due to an infinite line of charge by

letting  become large

 = lim
→∞

1

4





q¡

2

¢2
+ 2

=
1

4




¡

2

¢
=

1

4

2



=
1

4

2


or if we use  now in place of  to define the distance from the center of the line of

charge (so it is easier to compare to our point charge formula), we have
−→
E  =

1

4

2


k̂

We should get a mental picture of what this means.Question 223.23.3
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The field around a long line of charge only depends on the distance away from the

line, and on the linear charge density. As we would expect, the field gets weaker as

we get farther away. But it does not get weaker as fast as the point charge case. That

makes some sense, because our infinite line of charge is, well, really big. You are never

really too far away from something that is infinitely big. So we should not expect

such a charge configuration to look very like a point charge no matter how far away

we go. Of course and infinite line of charge is not something we can really build. So

this is a useful approximation near, say, a charged wire. But farther from the wire the

approximation would not be so good and we would have to go back to our finite line

solution.

Ring of charge
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Question 223.23.4

Using what we have learned from the line of charge, we can find the axial field of a ring

of charge. Again, our picture is critically important. We will need to solve the problem

of eliminating r̂ From the picture, we can see that we will only have an -component

again. So we can eliminate r̂ the same way as in the last problem. We model the ring asMIT Visualization:
Integrating a ring of
charge

a line of charge of length 2 that has been bent into a circle. Again we have the basic

equation
−→
E =

1

4

Z


2
r̂

Since the ring of charge is like a line of charge bent into a hoop. So we can plan to

work this problem very like the the line charge. Start again with

 = 

but now we know that for the hoop

 = 

where  is the arc length. Recall that

 = 

 = 

where  is the radius of the ring and  is an angle measured from the -axis. So our 

expression becomes

 = 

For the whole ring

 = 2

= 2

We also need to use geometry to find  the distance to our point were we want to know

the field.

 =

q
2 + 2

but since this is a ring, our  =  for all  So

 =
p
2 + 2

and using the same reasoning as in our last problem,

cos  =
√

2 + 2

We need to split our three-dimensional problem into three one-dimensional problems.

We will split our vector equation into   and  components. But once more, we know

from symmetry that only the -component will not be zero. Then we can set up our
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integral.

 =
−→
E · k̂

=
1

4

Z 2

−2



2
r̂ · k̂

Putting in all the parts we have found yields

 =
1

4

Z


2 + 2
√

2 + 2

=
1

4

Z


(2 + 2)
3
2

=


4 (2 + 2)
3
2

Z 2

0



This is an easy integral to do! and we see that the axial field is

 =
2

4 (2 + 2)
3
2

or, using our form for 
−→
E =

1

4



(2 + 2)
3
2

k̂

Once again we should check to see if this is a reasonable result. If we take the limit as

 goes to infinity, we get zero. That is comforting. But if we just let  be much larger

than  but not too big

lim
À

−→
E = lim

À

1

4



(2 + 2)
3
2

k̂

=
1

4



(2)
3
2

k̂

=
1

4



3
k̂

=
1

4



2
k̂

we again have a point charge field with total charge  Since a ring of charge should

look like a point charge if we get far enough away, this is reasonable.

We have worked two problems for continuous charge distributions. The pattern for

solving both problems was the same. And we will follow the same pattern for solving

for the field from continuous charge distributions in all our problems:

• Start with
−→
E = 1

4

R

2
r̂

• Find an expression for 

• Use geometry to find an expression for  the distance from  to the point, 
where we want to know the field.

• Eliminate r̂ in the usual way by turning a two or three-dimensional problem into
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two or three one-dimensional problems (using vector components, etc.)

• Solve the integral(s) (don’t forget to report the direction)

If you have a harder problem, one where you need the field from a continuous charge

distribution at a point that is not on an axis, or your problem has little symmetry, you

can go back to
−→
E ≈

X


∆
−→
E 

≈ 1

4

X


∆

2
r̂

and perform the sum numerically. We won’t do this in our class, but you might in

practice or in a higher level electrodynamics course.

Basic Equations

The basic equation from this chapter is the equation for finding the field from a

distribution of charge
−→
E =

1

4

Z


2
r̂

The process for using this equation is

• Start with
−→
E = 1

4

R

2
r̂

• Find an expression for 

• Use geometry to find an expressions for 

• Break the two or three-dimensional problem into two or three one-dimensional
problems.

• Solve the integral(s) (don’t forget to report the direction)





5 Motion of Charged Particles
in Electric Fields

Fundamental Concepts

• The capacitor

• Field of an ideal Capacitor

• Motion of particles in a constant electric field

Sheet of Charge
Question 223.23.5

Let’s try a two dimensional distribution of charge, a uniform �at sheet of charge. We

will assume that the sheet is infinitely large (so we don’t have to deal with what happens

at the edges). Let’s call the surface charge density  =  where  is the total charge

and  is the total area. Of course, we can’t calculate this surface charge density directly

from the totals, because they are infinite. But we could take a square meter of area and

find the amount of charge in that small area. The ratio should be the same for any area

so long as  is uniform. We will find the electric field to the right of the sheet at point  .
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Once again we start with
−→
E =

1

4

Z


2
r̂

We need to find  an expression for  and get rid of ̂

Since the disk is uniformly charged, then, knowing the surface charge density

 =



we can find the total amount of charge for an area

 = 

so

 = 

but what area, , should we use? Notice the green patch in the figure that is marked

. Think for a moment about arc length

 = 

This little area is about  =  long, and about  wide. If we let  be small

enough, this is exact. So

 = 

Then our  is just  times this

 = 

From geometry we identify

 =
p
2 +2

and, due to symmetry we expect only the -component of the field to survive. So to get

rid of ̂ we multiply (dot product) by ̂ There will be an angle,  between ̂ and ̂ So
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we expect the result of the dot product to be that we multiply by the cosine of 

cos  =
√

2 +2

We want to put all this into our basic equation. This time the radius  changes, so let’s

call it 0 so we recognize that it is a variable over which we must integrate. We s;lit our

integral equation into components, so
−→
E =

1

4

Z


2
r̂

becomes

 =
1

4

Z
0

(2 +02)
r̂ · ̂

 =
1

4

Z
0

(2 +02)
r̂ · ̂

and

 =
1

4

Z
0

(2 +02)
r̂ · k̂

=
1

4

Z
0

(2 +02)
cos 

and we will integrate from 0 = 0 to 0 = 

Note that from our symmatry we cab argue that  and  must be zero, so we only

need to calculate

 =
1

4

Z 2

0

Z 

0

00

(2 +02)
3
2

Performing the integration over  just gives us a factor of 2

 =


4

Z 

0

200

(2 +02)
3
2

where, for convenience, we have left the 2 inside the integral (it will be useful later).

We need to solve this integral. A -substitution is one way. Suppose we let

 = 2 +02

so

 = 200

We will need to adjust the limits of integration, for 0 = 0 we have

 = 2

and for 0 = 

 = 2 +2
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then our integral becomes

 =


4

Z 2+2

2



()
3
2

We get

 =


4

"
−2
()

1
2

¯̄̄̄
¯
2+2

2

=


4

Ã
−2

(2 +2)
1
2

− −2
(2)

1
2

!

=
−2
4

Ã
1

(2 +2)
1
2

− 1


!

=
−2
4

Ã


(2 +2)
1
2

− 1
!

=
−2
4

Ã
1

1

(2 +2)

1
2

− 1
!

The result is

 =
2

4

⎛⎝1− 1¡
1 + 2

2

¢ 1
2

⎞⎠
or

 =
2

4

Ã
1−

µ
1 +

2

2

¶− 1
2

!
This looks messy, but this is the answer.

But wait, this is really a disk of charge with radius  We wanted an infinite sheet of

charge. So. suppose we let  get very big. Then

→∞ = lim
→∞

2

4

Ã
1−

µ
1 +

2

2

¶− 1
2

!
=

2

4

=


2
This is the field for our semi-infinite sheet of charge.Question 223.23.6

We should take some time to figure out if this makes sense.

This sheet cuts the entire universe into to two parts. It is so big, that it is hard to say

anything is very far away from it. So we can understand this answer, The field from

such a sheet of charge is constant every where in all of space. No matter how far away
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we get, it will never look like a point charge, in fact, it never really looks any farther

away!

Note we did just one side of the sheet, there is a matching field on the other side. So

this sheet of charge fills all of space with a constant field.

of course this is not physically possible to build, but we will see that if we look at a large

sheet of charge, like the plate of a capacitor, that near the center, the field approaches

this limit, because the sides of the sheet are far away.Visualization
falstad 3D

Let’s go back and consider the disk of charge.

 =
2

4

Ã
1−

µ
1 +

2

2

¶− 1
2

!
Suppose we look at this distribution from vary far away for a finite disk. We expect that

it should look like a point charge with total charge  Let’s show that this is true. When

 gets very large  is very small.

À =
2

4

Ã
1−

µ
1 +

2

2

¶− 1
2

!
Let’s look at just the part µ

1 +
2

2

¶− 1
2

This is of the form (1 + )
 where  is a small number. We can use the binomial

expansion

(1 + )
 ≈ 1 +  ¿ 1



74 Chapter 5 Motion of Charged Particles in Electric Fields

to write this as µ
1 +

2

2

¶− 1
2

≈ 1− 1
2

2

2

so in the limit that  is large we have

À =
2

4

µ
1− 1 + 1

2

2

2

¶
=

1

4

 
2

2

2

=
1

4



2

Which looks like a point charge as we expected. We have just a small, disk of charge

very far away. That is looks like a point charge with total charge 

Spheres, shells, and other geometries.

I won’t do the problem for the field of a charged sphere or spherical shell. We could,

but we will save them for a new technique for finding fields from configurations of

charge that we will learn soon. This new technique will attempt to make the integration

much easier.

Constant electric fields

Let’s try to use what we know about electric fields to predict the motion of charged

particles that are placed in electric fields. We will start with the simplest case, a charged

particle moving in a constant electric field. Before we take on such a case, we should

think about how we could produce a constant electric field.

We know that a semi-infinite sheet of charge produces a constant electric field. But we

realize that a semi-infinite object is hard to build and hard to manage. But if the size of

the sheet of charge is very large compared to the charge size, using our solution for a

semi-infinite case might not be too bad if we are away from the edges of the real sheet.

We want to study just such a device. In fact we will use two finite sheets of charge.

Capacitors

From what we know about charge and conductors, we can charge a large metal plate by

touching it to something that is charged, like a rubber rod, or a glass rod that has been
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rubbed with the right material.

+Q

-Q

+Q

-Q

If we have two large metal plates and touch one with a rubber rod and one with a glass

rod, we get two oppositely charged sheets of charge.

What would the field look like for this oppositely charged set of plates? Here is one of

our thread-in-oil pictures of just such a situation. We are looking at the plates edge-on.

Figure 5.3.http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/charged_plates.jpg

Near the center, the field is close to constant. Near the sides it is not so much so. We

are probably justified in saying the field in the middle is nearly constant. A look at the

field lines shows us why
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Note that in between the plates, the electric field from the positive plate is downward.

But so is the electric field from the negative plate. The two fields will add together.

Outside the plates, the field from one plate is in the opposite direction from that of the

other plate. The two fields will nearly cancel. If our device is made of semi-infinite

sheets of charge, they will precisely cancel, because the field of a semi-infinite sheet of

charge is uniform everywhere.

We call this configuration of two charged plates a capacitor and, as you might guess,

this type of device proves to be more useful than just making nearly constant fields. It

is a major component in electronic devices. Before we can build and iPad or a laptop,

we will need to understand several different types of basic devices. This set of charged

plates is our first.

Of course, for real capacitors, the fields outside cancel completely only near the center

of the plates. Near the edges, the direction of the fields will change, and we get the sort

of behavior that we see in figure 5.3 near the edges.

It is probably worth noting that outside the capacitor the field has a magnitude of zero

(or nearly zero). It is not really correct to say that there is no field. In fact, there are two

superimposed fields, or alternately, a field from each of the charges on each plates, all

superimposed. The fields are there, but their magnitude is zero.
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In the middle, then, we will have

 = + +−

≈ 

2
+



2

=




=




Particle motion in a uniform field
Question 223.24.1

Now that we have a way to form a uniform electric field as our environment, we can

study charged particles moving in this field. And this is really something we are

familiar with. It is very much like a ball in a uniform gravitational field. But we have

the complication of having two different types of charge. The force on such a particle is

given by −→
F = 

−→
E

but we can combine this with Newton’s second law
−→
F = −→a

to find the particle’s acceleration

−→a = 
−→
E


Note, this is NOT true in general. It is only true for constant electric fields.CRT Demo

Millikan

Let’s try a problem. Perhaps you have wondered, “how do we know that charge comes

in packets of the size of the electron charge?” This is a good story, and uses many of

the laws we have learned.

Robert Millikan devised a clever device in the early 1900’s. A picture of his device is

given below.
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Millikan’s oil-drop apparatus: Diagram taken from orginal Millikan’s paper, 1913,

Image taken in 1906 (Both Images in the Public Domain)

Schematically we can draw the experiment like this.

Millikan made negatively charged oil drops with an atomizer (fine spray squirt bottle).

The drops are introduced between two charged plates into what we know is essentially

a constant electric field. A light shines off the oil drops, so you can see them through a

telescope (not shown). We can determine the motion of the oil drops just like we did in

PH121 or Dynamics. If the upper plate has the positive charge, then the electric field
−→
E

is downward. A free body diagram for a drop is shown in the figure to the left of the

apparatus. We can write out Newton’s second law for the drop (our mover charge).

 =  = − ±  + 



Particle motion in a uniform field 79

where  is a drag force because we have air resistance.

If the upper plate has the positive charge, then the electric field Ẽ is downward. So
−→
F  = −−→E

The field points down, the charge is negative, so the force is upward (positive in our

favorite coordinate system). We can write newtons’s second law as

 = − ±  + 

If  is large enough, we can make the oil drop �oat up! Then the drag force is

downward

 = − −  + 

and if we are very careful, we can balance these forces so we have the drop �oat upward

at a small constant velocity.

0 = − −  + 

The constant speed is really slow, hundredths of a centimeter per second. so we can

watch the drop move with no problem (except for patience). Once he achieved a

constant speed, by knowing the drop size and density Millikan could calculate the mass,

and therefore the charge.

 +  = 

we see that

 =
 + 


Which is where our problem ends. But Millikan went farther. He had actual data, so he

could compare charges on different droplets. He found that no matter what the value

for  it was a multiple of a value,  = 1602× 10−19C So

 =   = 0±1±2   
to within about 1%8. So the smallest charge the drops could have added to them was

1×  and any other larger charge would be a larger multiple of  The conclusion is

that charge comes in units of . We recognize  as the electron charge. You can’t add

half of an electron charge. This experiment showed that charge seems to only comes in

whole units!

Free moving particles

8 There is actually some controversy about this. Apparently Millikan and his students threw out much of
their data, keeping only data on drops that behaved like they thought they should. They were lucky that this
poor analysis technique did not lead to invalid results! (William Broad and Nicholas Wade, Betrayers of the
truth, Simon and Schuster, 1983)
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We may recall that for an object falling in a gravitational field, say, near the Earth’s

surface, the acceleration,  is nearly constant. If we have a charge moving in a constant

electric field, we have a constant acceleration. From Newtons’ second law,

 = 

we can see that this acceleration is

 =



From our Dynamics or PH121 experience, we have a set of equations to handle

problems that involve constant acceleration

 =  + +
1

2


2

 =  + 

2 = 2 + 2∆

and

 =  + +
1

2


2

 =  + 

2 = 2 + 2∆

These are know as the kinematic equations. You derived them if you took Dynamics (or

derived them and then memorized them if you took PH121). Let’s try a brief problem.

Suppose we have a positive charge in a uniform electric field as shown.
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+ EF

q

‐EF

q

d

Let  = 0 at the positive plate. How fast will the particle be going as it strikes the

negative plate?

We use the acceleration

 =



 = 0

For this problem we don’t have any -motion, So we can limit ourselves to.

 =  + +
1

2

µ




¶
2

 =  +

µ




¶


2 = 2 + 2

µ




¶
∆

We don’t have the time of �ight of the particle, but we can identify

∆ = 

The particle started from rest, so

 = 0

Therefore it makes sense to use the last of the three equations, because we know

everything that shows up in this equation but the final speed, and that is what we want

to find.

2 = 2 + 2

µ




¶
∆

2 = 0 + 2

µ




¶


 =

r
2



There is a complication, however. With gravity, we only have one kind of mass. But

with charge we have two kinds of charge. Suppose we have a negative particle.
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Of course the negative particle would not move if it was started from the positive side. It

would be attracted to the positive plate. But suppose we start the negative particle from

the negative plate. It would travel “up” to the positive plate. We defined the downward

direction as the positive -direction without really thinking about it. Now we realize

that the upward direction must be opposite, so upward is the negative -direction. Our

negative particle will experience a displacement∆ = −

Then

2 = 2 + 2

µ−


¶
∆

2 = 0 + 2

µ−


¶
(−)

 =

r
2


we get the same speed, but this illustrates that we will have to be careful to watch our

signs.

In this last problem we have had only an electric force, no gravitational force. This

is important to notice. If there were also a gravitational force, we would need to use

Newton’s second law to add up the forces like we did with the Millikan problem.

Let’s take another example. This time let’s send in a negatively charged particle

horizontally through the capacitor. The particle will move up due to the electric field

force. How far up will it go as it travels across the center of the capacitor?

Let’s define the starting position as

 = 0

 = 0

We can identify that

 = 0

 = 0
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And that

 =



 = 0

We can fill in these values in our kinematic equations

 = 0 + +
1

2
(0) 2

 =  + (0) 

2 = 2 + 2 (0)∆

and

 = 0 + (0) +
1

2

µ




¶
2

 = (0) +

µ




¶


2 = (0) + 2

µ




¶
( − 0)

From the first set we see that  =  that is, the -direction velocity does not change.

That makes sense because we have no force component in the -direction.

After  seconds we see that the charged particle has traveled a distance

 = 

If we measure  =  then we can see how long it took for the particle to travel

through the capacitor

 =



Now let’s look at the de�ection. We can use the first equation of the -set

 =
1

2

µ




¶
2

=
1

2

µ




¶µ




¶2
Let’s see if this makes sense. If the electric field gets larger, the particle will de�ect

more.
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This is right. The field causes the force, so more field gives more effect from the force.

If we increase the charge, the de�ection grows since the force depends on the charge

of the moving particle. This also seems reasonable. If the mass increases, it is harder

to move the particle, so it makes sense that a larger mass makes a smaller de�ection. If

the particle is in the field longer, the de�ection will increase, so the dependence on 

makes sense. Finally, if the initial speed is larger the particle spends less time in the

field, so the de�ection will be less.

Non uniform fields

Of course all of this depends on the field being uniform. For a non uniform field the

force is still −→
F = 

−→
E (  )

but now the field is a function of position. This makes for a more difficult problem. For

now we will stick to constant fields. If we had to take on a non-uniform field, we would

likely use a numerical technique.

Basic Equations

The magnitude of the electric field due to a disk of charge along the disk’s axis
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 =
2

4

Ã
1−

µ
1 +

2

2

¶− 1
2

!
The magnitude of the electric field due to a semi-infinite sheet of charge

 =


2

The magnitude of the electric field inside an ideal capacitor

 =




Motion of a charged particle in a constant electric field

−→a = 
−→
E


 =  + +

1
2


2  =  + +
1
2


2

 =  +   =  + 

2 = 2 + 2∆ 2 = 2 + 2∆





6 Dipole motion, Symmetry

Fundamental Concepts

• Force and torque on a dipole in a uniform field

• Force on a dipole in a non-uniform field

• Drawing the shape of a field using symmetry

This lecture combines two topics that might be better separated. The first relates to

forces on charges in uniform fields. This is what we discussed last lecture. The next is

the beginning of the ideas that will allow us to use symmetry and geometry to avoid

integration over charges. But because our lecture times are only an hour, and we

can only do so much at once, they are combined here together. But they form a nice

transition between the two topics this way. We will first study the motion of dipoles in

uniform, and not so uniform fields. We will find symmetry and geometry plays a part in

our solutions. Then we will study the fields of standard symmetric objects.

Dipole motion in an electromagnetic field

We remember dipoles, a pair of charges of equal magnitude but opposite in charge,

bound together at set separation distance. Let’s take our environment to be a constant

electric field, and our mover to be a dipole.

Question 223.25.1

Here is a diagram of the situation.
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Notice that as usually, just the environmental field is drawn. There is a field from the

dipole, too,

but this is the mover’s self-field and it cannot create a force on the dipole, so we will

not draw it. Of course, if we introduce yet another charge, , the environmental

field this new charge would feel would be a combination of both the dipole field and the

uniform field! We would have to draw the superposition of the two fields.

But that is a different problem!

Here is our case again. We only draw the environmental field that will cause the motion

of the mover object we are studying.

To understand these figures,we have to remember that the red field arrows are an

external field that is, the dipole is not making this field. something else must be. We did

not draw that something else. Since it is a uniform field, it is probably a capacitor. Here

is what it might look like
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The positive side must be to the left, because the red external field arrows come from

the left. The negative side must be to the right, because the field arrows are pointed that

direction. We can get away with not drawing the source of the external field because the

force on the dipole charges is just
−→
F = 

−→
E

If we know
−→
E , then we don’t need any information about it’s source to find the force.

Since the field is the environment that the mover charges feel, the field is enough. Let’s

find the net force on the dipole due to the environmental field.Question 223.25.2

We use Newton’s second law to find that

 = −− + + = 

and our definition of the electric field to find

− = −

+ = +

so since |−| = |+| = 

− +  = 

which tells us that there is no acceleration, no net force. The center of mass of a dipole

does not accelerate in a uniform field. But we remember from PH121 that we can make

things rotate.

If the dipole is not aligned with it’s axis in the field direction, then the forces will cause

a torque.Question 223.25.3
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We remember that torque is given by
−→τ = −→r ×−→F

substituting in our force and defining the distance between the charges to be  we can

write this out

The magnitude of the torque is given by

| | =  sin 

where  is the angle between r and F It is easier to find that angle if we redraw each

displacement vector from the pivot and each force with their tails together

Then for one charge, say, _

τ =


2
 sin 

We use the right-hand-rule that you learned in Dynamics or PH121 to find the direction.

We can see that the direction will be out of the page. But we have two charges, so we

have a torque from each charge. A quick check with the right-hand-rule for torques will

convince us that the direction for the torque due to + is also out of the page, and the

magnitude is the same, so our total torque is

 = + + −

=  sin 

which we can write asQuestion 223.25.4

 =  sin 

or the dipole moment,  multiplied by  sin  Recalling the form of a cross product
−→
A ×−→B =  sin n̂

where n̂ is perpendicular to both
−→
A and

−→
B  we have a hint that we could write our

torque as a cross product. We would have to make  a vector, though. So let’s define
−→p as a vector with magnitude  and make its direction along the line connecting the

charge centers, with the direction from negative to positive.
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Then we can write the torque as
−→τ = −→p ×−→E (6.1)

which is our form for the torque on a dipole.

Let’s try a problem. Let’s find the maximum angular acceleration for a dipole.

Recall that Newton’s second law for rotational motion is

Σ = 

where  is the moment of inertia and  is the angular acceleration. Then we can find

how the dipole will accelerate

 =



For a dipole,  is simple

 = −2− ++
2
+

= 
³
2

´2
+

³
2

´2
=

1

2
2

so our acceleration is

 =
 sin 
1
2
2

=
2 sin 

2

Suppose we look at this for a water molecule in a microwave oven. What is the

maximum angular acceleration experienced by the water molecule if the oven has a

field strength of  = 200Vm?

The dipole moment for a water molecule is something like

 = 62× 10−30Cm
and the separation between the charge centers is something like

 = 39× 10−12m
and the molecular mass of water is

 = 18
g

mol
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which is

 = 

so the mass of a water molecule is

 =




=
18 g

mol

6022× 1023 1
mol

= 2 989× 10−26 kg
then when sin  = 1 we will have a maximum

 =
2
¡
62× 10−30Cm¢ (200Vm)

(2 989× 10−26 kg) (39× 10−12m)2

= 5 455× 1021 rad
s2

Our numbers were kind of rough estimates, but still the result is amazing. Imagine if

this happened inside of you! which is why we really should be careful with microwave

ovens and microwave equipment.

Induced dipoles

Suppose that we place a large insulator in a uniform electric field.

The atoms tend to polarize and become dipoles. We say we have induced dipoles

within the material. Notice that in the middle of the conductor there is still no net

charge. But because we have made the atoms into dipoles, one side of the insulator

becomes negatively charged and the other side becomes positively charged. This does

not create a net force, but we will find that separating the charges like this can be useful

in building capacitors.
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Non-uniform fields and dipoles

Suppose we place our dipole in a non-uniform field? Of course the result will depend

on the field, so let’s take an example. Let’s place a dipole in the field due to a point

charge.

We can see that the field is much weaker at the location of the positive charge than it is

at the negative charge location. If we zoom in on the location near our dipole we can

see that now we will have an acceleration!

Σ = −− + + = 

so

−large + small = 

Let’s go back to our charged balloon from many lectures ago. We found that the charge

“leaked off” our balloon. We can see why now. The water molecules in the air are

attracted to the charges, and stick to them. When the water molecules �oat off, they

will take our charge with them. We can calculate the net force easily with our field from

a dipole that we found earlier,
−→
E =

2

4

−→p
3
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then the force on the electron on the balloon is

 = 

=
2

4



3

So if the dipole is about a 001 cm away

 =
2
¡
1602× 10−19¢

4
³
885× 10−12 C2

Nm2

´ 62× 10−30Cm
(001 cm)

3

= 1 786 2× 10−26N
But wait! we used the dipole as the environmental object and the single charge as the

mover. So this is the force on the single charge! But by Newton’s third law, the force on

the dipole due to the electron must have the same magnitude and opposite direction so

 = −1 786 2× 10−26N
We could also use Coulomb’s law for a point charge, since we know the field equation.

Taking the point charge as the environmental charge and the dipole charges as the

movers,

−large + small = 

−
µ

1

4



2−

¶
+ 

µ
1

4



2+

¶
= 

or


4

µ
1

2+
− 1

2−

¶
=  = 

this is the net force on a dipole due to the point charge.

From our estimations, the effective charge on one side of the water molecule is

 =



=
62× 10−30Cm
39× 10−12m

= 1 589 7× 10−18As
(how can this be true?) so if the dipole is abut a 001 cm away then

 =

¡
10× 10−19¢ ¡1 589 7× 10−18As¢

4
³
885× 10−12 C2

Nm2

´
×

⎛⎜⎝ 1³
001 cm + 39×10−12m

2

´2 − 1³
001 cm− 39×10−12m

2

´2
⎞⎟⎠

= −1 115 0× 10−26N
We expect the negative sign, both forces should be to the left. The answers are different,

but within one order of magnitude. This is pretty good since for our dipole field we

assumed that the distance from the dipole is very large and 001 cm is a somewhat

shorter version of very large!
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Symmetry

The symmetry of the uniform field figured strongly in the dipole problem. When the

shape of the field changed, so did the resulting motion. This suggests that we could

solve some problems just knowing the symmetry, or at least that symmetry might help

us do simple predictions to help get a problem started. We need to be able to predict the

field lines of a geometry to draw a picture to start solving a problem.

We have run into two geometries so far that have been helpful

The infinite line of charge and the semi-infinite sheet of charge. We have found for

the sheet that the field is constant everywhere. This is strongly symmetric. We could

envision translating the sheet within the plane right or left. The field would look the

same. We could envision re�ecting the sheet so the left side is now the right side.

That would also not change the field. We can say that the field of the sheet would be

symmetric about translation within the plane of the sheet and symmetric on re�ection.

Suppose we look at the sheet side-on. Suppose that we thought the field came off the

sheet at an angle as shown.
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Notice that if we shift the sheet right or left, the field would still look the same, but if

we re�ected the sheet about the -axis. Then we would have

But (and here is the important part) the shape of the charge distribution did not change

on re�ection. The sheet really looks just the same. It dose not make sense that we

should change the shape of the field if the shape of the charge distribution did not

change. So we can tell that this can’t be the right field shape.Question 223.25.5

We can do this with any symmetric distribution of charge. Think of the infinite line of

charge. If we move it left or right the field definitely changes. So it is not symmetric

about translation along, say, the -axis. But if we move the wire along it’s own axis,

(for my coordinate system, along the -axis) it should be symmetric because the charge

distribution won’t look different. We can guess from the last example that the field must

come straight out perpendicular to the line of charge. It must be perpendicular, but what

direction? Look at this end view. The field lines do come straight out, so this meets our

criteria for being perpendicular to the line.

We could rotate the line about the axis of the line. Then the charge distribution would
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look just the same. The field would also look just the same on rotation. But if we re�ect

the charge distribution across the axis shown, the charge distribution looks just the

same, but the field would change.

We can tell that this is not the right field. We can tell that the field should look more

like this.

Combinations of symmetric charge distributions
Question 223.25.6

We can combine sheets or lines of charge to build more complex systems. We did this

to form a capacitor
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The field lines follow our symmetry guidelines. Because of the symmetry of the sheet

of the field lines must be perpendicular to the sheets.

Again building from the line of charge, we can build more complex geometries

In the figure we have two positively charged concentric cylinders. The field is very

reminiscent of a line charge field, and we can see that it must be using the same

symmetry rules.

Of course the cylinders don’t have to have the same charge.
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If the interior cylinder is positively charged and the exterior cylinder is negatively

charged, we have a situation much like the capacitor. Each cylinder has a field outside

the system, but those fields cancel out if there are equal charges on each cylinder. This

situation is similar to a coaxial cable, and we will revisit it later in the course.

For the charge configurations we have drawn so far, we must keep in mind that they are

infinite in at least one dimension. Finite configurations of charge in lines or sheets will

have curved fields at the ends. The fields will be symmetric on re�ection about their

centers, but not on translation of any sort. Still, we will continue to use semi-infinite

approximations in this class, and these constructs are good mental images under many

circumstances.

Of course we can have a sphere. Spheres are very symmetrical, so we can guess using

our symmetry ideas that the field from a charged sphere should be perpendicular to the

surface of the sphere everywhere.

We can see that this is true for both the sphere and for concentric spheres or any
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configuration of charge that is spherical.

Basic Equations

−→τ = −→p ×−→E



7 Electric Flux

Fundamental Concepts

• Electric �ux is the amount of electric field that penetrates an area.

• An area vector is a vector normal to the area surface with a magnitude equal to the
area.

• For closed surfaces, �ux going in is negative and �ux going out is positive by
convention.

The Idea of Flux
Van de Graaff Gen-
erator Demo

Question 223.26.1 If you took PH123 or have had a class that deals with �uids, I can use an analogy (if

not, you will probably be OK, because you have probably used a garden hose). Let’s

recall some �uid dynamics for a moment. Remember what we called a �ow rate? This

was from the equation of continuity

11 = 22

A

B

A

B

We wanted to know how much liquid was going by a particular part of the pipe in a

given unit of time. We called  a �ow rate.
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The idea of electric �ux

I want to introduce an analogous concept. But this time I want to use the electric field

instead of water speed

Φ = 

This is just like our �ow rate in some ways. It is something multiplied by an area. In

fact, it is how much of something goes through an area. We could guess that it is the

amount of electric field that passes through the area,  Now the electric fields we have

dealt with so far don’t �ow. They just stay put (we will let them change later in the

course). So it is only like a �ow rate. But it is useful to think of this as “how much

of something passes by an area,” and the “something” is the electric field in this case.

Let’s consider a picture

E

Area = A

EE

Area = A

In this picture, we have a rectangular area,  and the red arrows represent the field

lines of the electric field. The arrows penetrate the area like a target. So there is a

number of arrows that go through the area. They don’t �ow through the area, but they

do penetrate it. We can picture the quantity, Φ as the number of field lines that pass

through  Remember that the number of field lines we draw is greater if the field

strength is higher, so this quantity, Φ tells us something about the strength of the field

over the area.Question 223.26.2

But, what if the area,  is not perpendicular to the field?
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E

Area = A



EE

Area = A



We define an angle,  (our favorite greek letter, but we could of course use  or 

or  or whatever) that is the angle between the field direction and the area. A more

mathematical way to do this is to define a vector that is perpendicular to (normal to) the

surface n̂. Then we can use this vector and one of the field lines to define  It will be

the angle between n̂ and the field lines.

E

Area = A



n̂

EE

Area = A



n̂n̂

Of course either way gives the same 

Now our definition of Φ can be made to work. We want the number of field lines

passing through  but of course, now there are fewer lines passing through the area

because it is tilted. We can find Φ using  as

Φ =  cos  (7.1)
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but let’s consider what

 cos 

means. We can start with our original area.Tip a �at object

Original Position

Side View Front view
Original Area

Original Position

Side View Front view
Original Area

If we tip the area, it looks smaller

Original Position

New Position



Original Area

Projected Area

Side View Front view

Original Position

New Position



Original Area

Projected Area

Side View Front view

The smaller area is called the projected area.

We can see that by tipping our area, we get fewer field lines that penetrate that area.

Really the number of field lines is just proportional to  so we won’t ever really count

field lines. But this is a good mental picture for what �ux means. Really we will

calculate

Φ =  cos 

The cos  with two magnitudes (field strength and area) multiplying it should remind

you of something. It looks like the result of a vector dot product. If  and  were both

vectors, then we could write the �ux as

Φ =
−→
E ·−→A (7.2)

Well, we can define a vector that has  as it’s magnitude and is in the right direction toDomenstrate with
a document with
writing on one side

make −→
E ·−→A =  cos 

We define the area vector −→
A = n̂ (7.3)

Notice that for an open surface (one that does not form a closed surface with a empty

space inside) we have to choose which side n̂ will point from. We can choose either

side. But once we have made the choice, we have to stick with it for the entire problem
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we are solving.

Flux and Curved Areas
Trifold paper

Suppose the area we have is not �at? Then what? Well let’s recall that if we take a

sphere the surface will be curved. But if we take a bigger sphere, and look at the same

amount of area on that sphere, it looks less curved.

Region of
Interest

Region of
Interest

This becomes more apparent if we remove the rest of the circle or sphere to take away

the visual cures our eyes and minds use to say something is curved

Suppose we take a curved surface but we just look at a very small part of that surface.

This would be very like magnifying our circle. We would see an increasingly �at

surface piece compared to our increased scale of our image.

This gives us the idea that for an element of area, ∆ we could find an element of �ux

∆Φ for this small part of the whole curved surface. Essentially∆ is �at (or we would
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just take a smaller∆)

∆Φ =
−→
E ·∆−→A (7.4)

This is just a small piece of the total �ux through the curved surface, the total �ux

through our whole curved surface is

Φ ≈
X
∆Φ (7.5)

Of course, to make this exact, we will take the limit as∆→ 0 resulting in an integral.

We find the �ux through a curved surface to be

Φ = lim
∆→0

X


−→
E ·∆−→A =

Z


−→
E · −→A (7.6)

Notice that this is a surface integral. It may be that you have not done surface integrals

for some time, but we will practice in the upcoming lectures.

Closed surfaces

Suppose we build a box with our areas.

Then we would have some lines going in and some going out. By convention we will

call the �ux formed by the ones going in negative and the �ux formed by the ones

going out positive. From these questions we see that if there is no charge inside of theQuestion 223.26.3
Required

Question 223.26.4
Required

Question 223.26.5

box, the net �ux must be zero. We could take any size or shape of closed surface and

this would be true! But if we do have charge inside of the box we expect there to be a

net �ux. If it is a negative net charge, it will be an negative �ux and if it is a positive

net charge it will be a positive net �ux. Next lecture we will formalize this as a new

law of physics, but for now we need to remember from M215 or M113 how to write an

integration over a closed surface. We use a special integral sign with a circle

Φ =

I −→
E · −→A (7.7)
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Flux example: a sphere

For each type of surface we choose, we need an area element,  with which we

perform the integration. This is a lot like finding  in our electric field integral. In our

integration of the electric field due to a distribution of charges, we have used elements

of area for �at surfaces. Remember our integration of over a disk of charge. We had a

small area element

 = 

and to find  we just multiplied by the surface charge density.
−→
E · −→A

is very similar. So we are familiar ground when we find elements of area.

But so far we have not found an area element for a sphere. Let’s tackle that now. We

can start by finding the coordinates of a point,  on the surface of the sphere.

P

z

x

y



P

z

x

y



We define the coordinates in terms of two angles,  and  Let’s look at them one at a

time. First 
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P



z

y

Side View

and now 

P



y

x

Top View

P



y

x

Top View

Let’s build an area by defining a sort of box shape on the surface by allowing a change

in  and  (∆ and∆). First∆
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

z

xr

Side View

l = r 



z

xr

Side View

l = r 

The angle  just defines a circle that passes through the “north pole” and “south pole”

of our sphere. By changing  we get a small bit of arc length. We remember that the

length of an arc is

 =  (7.8)

where  is in radians. So we expect that

∆ = ∆ (7.9)

We can check this by integratingZ 2

0

 = 

Z 2

0

 = 2 (7.10)

Just as we expect, the integral of arc length around the whole circle is the circumference

of the circle. Then∆ is one side of our small box-like area, the box height.

Now let’s look at 

P

z

x

y



rsin

P

z

x

y



rsin
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 also forms a circle on the sphere, but it’s size depends on  Near the north pole, the

radius of the -circle is very small. At  = 0, the -circle is in the  plane and has

radius  We can write the radius of the -circle as a projection over 90 ◦ −  which

gives us a radius of  sin  Then we use the arc length formula again to find

 = ( sin ) (7.11)

a change in arch length will be

∆ = ( sin )∆ (7.12)

x

y

Top View



rsin

l = rsin 

x

y

Top View



rsin

l = rsin 

This is the other side of our box, the box width.

Now let’s combine them. We multiply∆ ×∆ to obtain a roughly rectangular area.

z

x

y





A = rsinr

z

x

y





A = rsinr

∆ ≈ ∆ ×∆ = ∆ sin ∆ (7.13)

which is the area of our small box. We have found an element of area on the surface of



The Idea of Flux 111

the sphere! all we have to do is to let the∆’s become ’s.

 ≈  ×  =  sin  (7.14)

Let’s check our element of area by integration. After changing∆ to  and rearranging

 = 2 sin  (7.15)

then

 =

Z Z
2 sin  (7.16)

we have to be careful not to over count area. Let’s view this as first integrating around

the circle of radius  sin  over the variable  then an integration of all these circles as

 changes from 0 to 

 =

Z 

0

Z 2

0

2 sin  (7.17)

= 2
Z 

0

sin 

Z 2

0



= 22
Z 

0

sin 

= 42

as we expect.

We are now ready to do a simple problem.

Let’s calculate the �ux through a spherical surface if there is a point charge at the center

of the sphere. The field of the point charge is
−→
E =

1

4



2
r̂

then the �ux through the surface is

Φ =

I
Ẽ · dÃ

=

I
1

4



2
r̂ · dÃ

but r̂ is always in the same direction as dÃ for this case, so

r̂ · dÃ = (1) cos (0) = 
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which gives us just

Φ =


4

I
1

2


=


4

I
1

2
2 sin 

=


4

Z 

0

µZ 2

0



¶
sin 

=


4
4

=




Some comments are in order. Our surfaces that we are using to calculate �ux might

be a real object. You might calculate the electric �ux leaving a microwave oven, or a

computer case to make sure you are in keeping emissions within FCC rules. But more

likely the surface is purely imaginary–just something we make up.

Symmetry is going to be very important in doing problems with �ux. So we will often

make up very symmetrical surfaces to help us with our problems. In today’s problem,

the fact that r̂ and A were in the same direction made the integral much easier.

Until next lecture, it may not seem beneficial to invent some strange symmetrical

surface and then to calculate the �ux through that surface. But it is, and it will have the

effect of turning a long, difficult integral into a simple one, when we can pull it off.

Flux example: a long straight wire

Let’s take another example. A long straight wire.
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We remember that the field from a long straight wire is approximately

 =
1

4

2 ||


The symmetry of the field suggests an imaginary surface for measuring the �ux. A

cylinder matches the geometry well. Let’s find the �ux through an imaginary cylinder

that is  tall and has a radius  and is concentric with the line of charge. Note that we

are totally making up the cylindrical surface. There is not really any surface there at all.

The �ux will be

Φ =

I
Ẽ · dÃ

We can view this as three separate integrals

Φ =

I


Ẽ · dÃ+
I


Ẽ · dÃ+
I


Ẽ · dÃ
since our cylinder has end caps (the top and bottom) and a curved side.

Let’s consider the end caps first. For both the top and the bottom ends, Ẽ · dÃ = 0

everywhere. No field goes thorough the ends. So there is no �ux through the ends of

the cylinder.

There is �ux through the side of the cylinder. Note that the field is perpendicular to the

side surface everywhere. So Ẽ · dÃ =  We can write our �ux as

Φ =

I




=

I
1

4

2 ||




Integrated over the side surface. But we will need an element of surface area  for a

cylinder side. Cylindrical coordinates seem logical so let’s tryQuestion 223.26.6

 = 

then

Φ =

I I
1

4

2 ||




=
2 ||
4

Z 

0

Z 2

0



=
||
2

(2)

=
||




So far we have, indeed, made integrals that look hard but are really easy to do. But note

that this would be much harder if the wire were not at the center of the cylinder, or if in

the previous example the charge had been off to one side of the sphere.
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We would still like to remove such difficulties if we can. And often we can by choosing

our imaginary surface so that the symmetry is there. But sometimes that is harder. or

worse yet, we don’t know exactly where the charges are in a complicated configuration

of charge. We will take this on next lecture when we study a technique for finding the

electric field invented by Gauss.

Basic Equations

The electric �ux is defined as

Φ =
−→
E ·−→A =  cos 

where the area vector is given by −→
A = n̂

and for a curved area, we integrate

Φ =

I
Ẽ · dÃ



8 Gauss’ Law and its Applica-
tions

Fundamental Concepts

• Gauss’ Law tells us that the �ux through a closed surface is equal to the charge
inside the surface divided by :

Φ =




• Gauss’ Law combined with our basic �ux equation

Φ =

I −→
E · −→A =





Gauss’ Law

Last lecture we did two problems. We found the �ux from a point charge through a

spherical surface to be

Φ =



and the �ux from a line of charge through a cylinder to be

Φ =
||



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Let’s rewrite the last one using

 =




then

Φ =
||




=
||


which is just what we got for the point charge and sphere! That is amazing! Think

about how much work it was to find each �ux, and in the end we got the same result.

Wouldn’t it be great if the �ux through every closed surface was this simple? Then we

would not have to integrate at all!

To see if we can do this, first let’s think of our answer.

Φ =



It does not depend on the radius of the spherical surface. So any spherical surfaceQuestion 223.27.1

centered on the charge will do! This makes sense. No matter how big the sphere, all the

field lines must leave it. Since �ux gives the amount of field that penetrates an area, for

our charge at the center of a sphere we see that all of the field penetrates the spherical

surface no matter the size of the sphere. So the �ux is the same no matter 9

The key to making our last lecture problems easy was that the field was always

perpendicular to the surface so
−→
E · −→A =  was easy to find.

Using geometry we can arrange to make nearly all of our �ux problems like this. To

demonstrate, let’s take the case of a point charge that is off center.

9 If this still seems strange, remember that the area of a sphere is 42 and that the field of a point charge
is 1
4



2
. The �ux is like the product of these two quantities. The 2 terms must cancel. So the fact that the

�ux is the same for any sphere is due to the 2 dependence of the field.
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This would make for a difficult integration because
−→
E and 

−→
A have different directions

as we go around the sphere. But let’s consider, would there be less �ux through the

surface than there was when the charge was centered in the sphere? Every field line that

is generated will still leave the surface. Flux gives us the amount of field that penetrates

the surface.10 Since �ux is the amount of field penetrating our surface, it seems that the

�ux should be exactly the same as when the charge was in the center of the sphere. To

prove this, let’s take our surface and approximate it using area segments. But let’s have

the area segments be either along a radius of a sphere centered on the charge, or along

the surface of a sphere centered on the charge.

No �ux goes through the radial pieces. And the rest of the pieces are all parts of spheres

centered on the charge. But for the spherical segments, the field will be perpendicular

to the segment no matter what sphere the segment is a part of, because we chose only

spheres that were concentric with the charge. The  we have for the little spherical

pieces does not matter, so on all of these surfaces
−→
E · −→A =  Then the integration

for these pieces will be easy.

10 Think of water �ow rate again. We could place the end of a garden hose in a wire mesh container. The
water would �ow out the hose end and through the wire mesh sides of the container. The �ow rate tells us
how much water passes through the container surface. The �ow rate does not depend on the shape of the
container. The hose end is like a charge. The hose is the source of water, the charge is the source of electric
field.
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Of course this surface made of little segments from other spheres is a poor

approximation to the shape of the offset sphere. But we can make our small segments

smaller and smaller. In the limit that they are infinitely small, our shape becomes the

offset sphere. That means that once again our �ux is

Φ =



This is fantastic! We don’t have to do the integration at all. We just count up the charge

inside our surface and divide by 

What happens if the charge is on the outside of the surface?

Every field line that enters goes back out. We encountered this last time. The �ux going

in is negative, the �ux going out is positive, and they must be the same because every

line leaves that enters. So the net �ux must be zero. The means we should still write

our �ux as

Φ =



because outside charges won’t contribute to the �ux. So in a way, our expression works

for charges outside our closed surface.

We know that fields superimpose, that is, they add up, so we would expect that if we

have two charges inside a surface,
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we would add up their contributions to the total �ux

Φ = Φ1 +Φ2

which means that  is the sum of all the charges inside. We recognize that if

some charges are negative, they will cancel equal amounts of charge that are positive.

This leaves us with a fantastic time savings law

The electric �ux Φ through any closed surface is equal to the net charge inside the
surface multiplied by 4 The closed surface is often called a Gaussian Surface.

Φ =

I
 ·   = 


(8.1)

This was first expressed by Gauss, and therefore this expression is called Gauss’ law.

Examples of Gauss’ Law
Question 223.27.2

But why do we get so excited about �ux? The reason is that we can use the idea of

�ux combined with Gauss’ law gives us an easy way to calculate the electric field from

a distribution of charge if we can find a suitable symmetric surface! If we can find the

field, we can find forces, and we can predict motion.

Let’s show how to do this by working some examples.

Charged Spherical Shell

First let’s take a charged spherical shell and find the field inside.We need to be able to

guess the shape of the field. We use symmetry. We can guess that the field will be radial
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Spherical Closed Surface

Figure 8.4.

both inside and outside of the shell. If it were not so, then our symmetry tests would

fail.

The shell has a total charge of +. If we place a spherical surface inside the shell, then

we can use Gauss’s law.

Φ =



We can tell from the symmetry of the situation that

−→
E is everywhere colinear with (but

in the opposite direction as) 
−→
A so

Φ =

I −→
E · −→A = −

I


because the field is everywhere perpendicular to the surface. We can even make a guess

that the field must be constant on this surface, because all along the spherical Gaussian

surface there is extreme symmetry. No change in re�ection, or rotation etc. will change

the shape of the charge, so around the spherical surface the field must have the same

value. Then

Φ = −
I
 = −

Equating our �ux equations gives

− = 


or

 = −


but what is ? It is zero! so

 = − 0


= 0
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There is no net field inside!

This may seem surprising, but think of placing a test charge, , inside the sphere. The

next figure shows the forces acting on such a test charge. The force is stronger between

the charge and the near surface, but there is more of the surface tugging the other way.

The forces just balance. Since

 = 

if the net force is zero, then the field must be zero too.Question 223.27.3

Is there a field outside of the spherical shell? It is still true that

Φ =

I −→
E · −→A =

I


but this time we have a positive sign on the last integral because
−→
E and 

−→
A are in the

same direction. Then

 = +



We now choose our surface around the entire shellAll of our analysis is the same as in

+ +

+

+

+

++

+

++

+

+

+ +

+

+
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+

+

+ +

+

+

Spherical Closed Surface

Figure 8.5.
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our last problem, except now  is not zero

 =



The area is the area of our imaginary sphere

 =


(42) 
and since  = + then

 =
+

42

and we have found the field.

Note that this field looks very like a point charge at the center of the spherical shell (at

the center of charge), but by now that is not much of a surprise!

Strategy for Gauss’ law problems

Let’s review what we have done before we go on to our last example. For each Gauss’

law problem, we

1. draw the charge distribution

2. Draw the field lines using symmetry

3. Choose (make up, invent) a closed surface that makes
−→
E · −→A either just  or 0
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4. Find 

5. Solve
I
 = 


for the non, zero parts

The integral should be trivial now due to our use of symmetry.

An infinite sheet of charge.

Spherical cases were easy. Let’s try a harder one. Let’s try our infinite sheet of charge.

It is a little hard to draw. So we will draw it looking at it from the side from within the

sheet of charge (somewhere in it’s middle, if an infinite sheet can have a middle).

This completes step 1).

For step 2), let’s think about what the electric field will look like.

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

++ ++ ++

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

In the figure above I have blown up the view on three charge carriers and drawn some

field lines. Notice that in the −direction the fields will cancel.
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+ + +

Cancel Cancel

+ + +

Cancel Cancel

+ + +

Cancel Cancel

The −components add

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

So we have only a field in the  direction

+ + +

Remember that this only works if we have the rest of the sheet
to cancel the components on the end charges shown

+ + +

Remember that this only works if we have the rest of the sheet
to cancel the components on the end charges shown

Now if we had edges of our sheet of charge, not all the −components would cancel

and the problem would be harder, but we won’t do that problem now. Also note that

there is a field in the −-direction, I only drew some of the field lines in the figures.

This is step 2).

Now we need to choose an imaginary surface over which to integrate
I

 ·   We

want  ·   =  or  ·   = 0 over all parts of the surface. I suggest a cylinder.
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Note that along the top of the cylinder,  k  so  ·   =  cos  =  Along

the side of the cylinder  ⊥  so  ·   =  cos  = 0 We have a surface that

works! This completes step 3).

Now we need to solve the integral. The �ux is just

Φ =

I
 ·  

Φ =

I


 ·  +
I


 ·  

= 0 +

I


 = 2

where the factor of 2 comes because we have two caps and field in the + and −
directions and where  is the area of one end cap. If we know that the sheet of charge

has a surface charge density of  then we can write the charge enclosed by the cylinder

as

 = 

so

Φ =



by Gauss’ law. Equating the two expressions for the �ux gives

2 =



or

 =


2
(8.2)

which is what we found before for an infinite sheet of charge, but this way was much

easier. If we can find a suitable surface, Gauss’ law is very powerful!

Gauss’s law strategy

In each of our problems today, we found the electric field without a nasty integration.

Usually we want the electric field at a specific point. To make Gauss’ law work we need
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to do the following for each problem:

1. Draw the charge distribution

2. Draw the field using symmetry

3. Invent a Gaussian surface that takes advantage of the field symmetry and that
includes our point where we want the field. We will want

−→
E · −→A =  or−→

E · −→A = 0 for each part of the surface we invent.

4. Find the �ux by finding the enclosed charge, 

5. use
I −→
E · −→A = 


integrating over our carefully invented surface to find the

field. If our surface that we imagined was good, then
I −→
E · −→A will be very easy.Question 223.27.4

Derivation of Gauss’ Law

A formal derivation of Gauss’ Law is instructive, and it gives us the opportunity to in-

troduce the idea of solid angle.

z

x

y

A



r

z

x

y

A



r

∆Ω =
∆

2
(8.3)

This is like a two dimensional angle. And just like an angle, it really does not have

dimensions. Note that ∆ is a length squared, but so is 2 The (dimensionless) unit

for solid angle is the steradian. We can see that for a sphere we would have a total solid
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angle of

Ω =
42

2
= 4 sr (8.4)

Now let’s see why this is useful. Consider a point charge in an arbitrary closed surface.

If we look at a particular element of surface ∆ we can find the �ux through that

surface element. We can use our idea of solid angle to do this

∆Φ = Ẽ ·∆Ã
Since the field lines are symmetric about  and the surface is arbitrary, the element∆Ã

will be at some angle  from the field direction so

Ẽ ·∆Ã =∆ cos 

this is no surprise. But now notice that the projection of ∆ puts it onto a spherical
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surface of just about the same distance from  The projected area is

∆ = ∆ cos 

At this point we should remember that we know the field due to a point charge

 =
1

4



2

so our �ux through the area element is

∆Φ =
1

4



2
∆ cos 

=


4

∆ cos 

2

but
∆ cos 

2
= ∆Ω

is the solid angle subtended by the projected area. Then

∆Φ =


4
∆Ω

The total �ux though the oddly shaped closed surface is then

Φ =


4

I
Ω

where we integrate over the entire arbitrary surface, .

Φ =


4

I


Ω

but by definition I


Ω = 4 sr

so

Φ =


4

I


Ω

=


4
4 sr

=



which is just Gauss’ law.

So far we have used mostly charged insulators to find fields. But we know we will be

interested in conductors and their fields in building electronics. We will take up the

study of charged conductors and their fields next.

Basic Equations

Gauss’ law

Φ =



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Gauss’ law combined with our equation for �u

Φ =

I −→
E · −→A =









9 Conductors in Equilibrium,
Electric Potentials

Fundamental Concepts

• Conductors in Equilibrium

• Electric Potential Energy

Conductors in Equilibrium

Conductors have some special properties because they have movable charge. Here they

are

1. Any excess static charge (charge added to an uncharged conductor) will stay on the
surface of the conductor.

2. The electric field is zero everywhere inside a conductor.

3. The electric field just outside a charged conductor is perpendicular to the conductor
surface.

4. Charge tends to accumulate at sharp points where the radius of curvature of the
surface is smallest.

It is our job to convince ourselves that these are true. Lets take these one at a time.

In Equilibrium, excess charge is on the Surface
Question 223.28.1

Let’s think about what we know about conductors. Most good conductors are metals.

The reason they are good conductors is that the outer electrons in metals are in open

valence bands where there are many energy states available to the electrons. These

electrons are free to travel around. This means that if we place a charge near a metal

object, the free charges will experience an acceleration. Of course, the charge does not
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�y out of the conductor. It will have to stop when it reaches the end of the metal object.

Suppose we go back to our experiment from the first lecture. We took a charged rod,

and placed it near an uncharged conductor.
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The free electrons moved. We ended up with a bunch of electrons all on the right hand

side. They all repel each other. So at some point the force between a free electron and

the charged rod, and the force between a free electrons and the rest of the free electrons

will balance. At that point, there is zero net force (think of Newton’s second law). The

free electrons stop moving. We have a word from PH121 or Statics for when all the

forces balance. We say the charges are in equilibrium.

Now suppose we have a conductor just on it’s own and suppose we add charge to it.

Where would the extra charge go? We have considered this before. In the picture be-

low, I have a spherical conductor with two extra negative charges shown. The pair of

charges will repel each other. Now because of the 2 in our electric force equation, the

closer the extra charges are, the stronger the repulsive force. The result is that they will

try to go as far from each other as possible. So the extra charge on a spherical conduc-

tor will all end up on the surface.

- -- -

The Electric Field is Zero Inside a Conductor
Question 223.28.2

We can use Gauss’ law to find the field in a conductor. We know that the extra charge

will all be on the surface if there is no electric current.
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We can then draw a Gaussian surface, to match the symmetry of the conductor. What

is the charge inside? It is zero, since the reaming charge is all bound up in atoms and

balances out. Since there is no net charge, there is no net �ux. If there is no �ux, there

is no net field inside a conductor that is in static equilibrium.

Note that if we connected this conductor to both ends of a battery, we would have a

field in the conductor, so we must remember that static equilibrium is a special case.

If we don’t connect the conductor to the ground or a battery, we can say: The net

electric field is zero everywhere inside the conducting material.

Consider if this were not true! If there were an electric field inside the conductor, the

free charge there would accelerate and there would be a �ow of charge. If there were a

movement of charge, the conductor would not be in equilibrium. Suppose we place a

brick of conductor in a field. We expect that the charges will be accelerated. Negative

charges will move opposite the field direction. We end up with the situation shown in

the next figure.

Since the negative charges moved, the other side has a net positive charge. This

separation of the charges creates a new field in the opposite direction of the original
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field. In equilibrium, just enough charge is moved to create a field that cancels the

original field.

Return to charge being on the surface
Question 223.28.3

Suppose we have a conductor in equilibrium. We can now ask, what does it mean that

the charge is “on the surface?” Is there a small distance within the metal where we

would find extra charge? or is it all right at the edge of the metal?

Let’s look at this again now that we know Gauss’ law. Let’s envision a conducting

object with a matching Gaussian surface.

We know the field inside the conductor is zero. So no field lines can leave or enter the

Gaussian surface. So no charge can be inside or we would have a net �ux, and, therefor,

a field. We can move the Gaussian surface from the center of the conductor and grow it

until it is just barely smaller than the surface of the conductor, and there still must be no

field, so no charge inside.
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We can make this Gaussian surface as close to the actual surface as we like, and still

there must be no field inside. Thus all the excess charge must be on the surface. It is

not distributed at any depth in the material.

Field lines leave normal to the surface
Question 223.28.4

In the following picture, we can see that the field lines seem to leave the surface of

these charged conductors at right angles (remember that sometimes we call this normal

to the surface).

We have charges all along the surface, and neighboring charges cancel all but the

normal components of the field, so the field lines go straight out. Notice that farther

from the conductor the field lines may bend, but they start out leaving the surface

perpendicular to the surface. Let’s draw a conducting object.
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Consider what would happen if it were not true that the field lines left perpendicular to

a conductor surface when the conductor was in equilibrium.

There would be a horizontal component of the field in such a case. The component of

the field along the surface would cause the charge to move. In the figure there would be

a net force to the left. This force would rearrange the charge until there was no force.

But since  = , then when  is zero, so is  Suppose we place a conductor in

an external field. We would see that the charges within the conductor will rearrange

themselves until the field lines will leave perpendicular to the surface of the conductors.
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Notice the square box in the last figure. There is an opening inside the conductor, but

there is no net field inside. The conductor charges rearrange themselves so that the

external field is canceled out. This is part of what is known as a Faraday cage which

allows us to cancel out an external electric field. This is used to protect electronic

devices that must operate in strong electric fields. To complete the effect, we will also

need to show that magnetic fields are canceled by such a conducting box.

We should also consider what happens when we place a charge in a conductive

container. Does this charge get screened off?

In this case, the answer is no. The charges in the conductor will move because of the

charge contained inside the conducting container. The negative charge will move in

the case shown, and it will move to the outside of the container surface. This leaves

positive charges behind on the inner surface. We know that there will be no field inside

the conductor, but think of placing a Gaussian surface around all of the container and
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charge. There will be a net charge inside the Gaussian surface, so there will be a field.

The inner surface charge does cancel the charge from the charged sphere. But the

negative charge on the conductor surface creates a new field.

Charge tends to accumulate at sharp points

Let’s go back to our charged conductor. Notice that the field lines bunch up at the

corners! Where the field lines are closer together, there must be more charge and the

field strength must be higher.

Now that we have an idea of how charge and conductors act in equilibrium, we would

like to motivate charge to move. To see how this happens, let’s review energy.

Electrical Work and Energy

We remember studying energy back in PH121 or Statics and Dynamics.Question 223.28.5

Review of Work and Energy

Remember the Work-Energy theorem?Put this on the far
board

 = ∆ +∆ (9.1)
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We started with gravitational potential energy, and, as we found conservative forces, we

defined new potential energies to describe the work done by those forces. For example,

we added spring potential energy

 = ∆ +∆ +∆ (9.2)

I bet you can guess what we will do with our electrical or Coulomb force!

 = ∆ +∆ +∆ +∆ (9.3)

When we do this, we mean that the work done by the Coulomb force () is the

negative of the electrical potential energy change

 = −∆ (9.4)

and we are saying that the Coulomb force is conservative.

Remember that the equation for the force due to gravity and the equation for the

Coulomb force are very alike. So we might guess that the Coulomb force is conservative

like gravity–and we would be right!

Charge in a uniform field
Question 223.28.6

Question 223.28.7

Question 223.28.8

Let’s use our Coulomb force to calculate work. I would like a simple example, so let’s

assume we have a uniform electric field. We know that we can almost really make a

uniform electric field by building a large capacitor.

We draw some field lines (from the + charges to the - charges). The field lines will be

mostly straight lines in between the plates. Of course, outside the plates, they will not

be at all straight, but we will ignore this because we want to calculate work just in the

uniform part of the field.

I want to place a charge,  in this uniform field. The charge will accelerate. Work will

be done. I want to find out how much work is done on the charge.
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From our PH121 or Dynamics experience, we know that

 =

Z −→
F · d−→x (9.5)

= ∆ cos 

for constant forces. Because we have a constant field, we will have a constant force.

I will choose the  direction to be vertical and  = 0 to be near the positive plate. Then

we can write the force due to the electric field as

 = ∆ cos 

= ()∆ cos (0
◦)

= ∆

If there are no non-conservative forces, and we ignore gravity, then we can sayPut this on the far
board

 = ∆ +∆ +∆ +∆

0 = ∆ + 0 +∆

0 = ∆ + 0− ∆

so

∆ = ∆ (9.6)

This is very interesting! This means that for this simple geometry I could ask you

questions like, “after the charge travels∆ how fast is it going?”

Electric and Gravitational potential energy compared

We have found that the potential energy for the Coulomb force is given by

∆ = −∆
for a uniform electric field (it will change for non-uniform fields). Let’s compare this to

the gravitational potential energy

∆ = −

Let’s set up a situation where the electric field and gravitational field are almost uni-

form and we have a positively charged particle with charge  and mass  The height,

 we will call  to match our gravitational and electrical cases.
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The gravitational potential difference is

∆ = − (9.7)

and the electrical potential difference is

∆ = − (9.8)

These equations look a lot alike. We should expect that if we push the charge  “up,”

we will increase both potential energies. We will have to do positive work to do that

( = −∆)  This is just like doing work in a gravitational field, so we are familiar

with this behavior.

There is a difference, however. We have assumed that our charge  was positive.

Suppose it is negative? There is only one kind of mass, but we have two kinds of

charge. We will have to get used to negative charges “falling up” to make the analogy

continue.

This analogy helps us to understand how the electric potential energy will act, and we

will continue to use it. There is a difficulty, however, in that most engineering classes

only study gravitation in nearly uniform gravitational fields. But if we look at large

objects (like whole planets) that are separated from other objects by some distance, then

we have very non-uniform gravitational fields. Unless you are an aerospace engineer,

these cases are less common. So to help us understand electric potential energy, we

will study gravitational potential energy of large things first, then study the energy

associated with individual charges and their very non-uniform fields. We will take this

on next time.

Basic Equations





10 Electric potential Energy

Fundamental Concepts

• Gravitational potential energy of point masses and binding energy

• Electrical potential energy of point charges

• Electrical potential energy of dipoles

Point charge potential energy

As we said last lecture, we want to use gravitation as an analogy for the electric

potential energy. Gravitation is more intuitive. But chances are gravitation of whole

planets was not stressed in Dynamics (If you took PH121 you should be fine, and this

will be a review). So let’s take a few moments out of a PE101 class (introductory

planetary engineering11) and study non-uniform gravitational fields.

Gravitational analog
Question 223.29.1

Question 223.29.2 Long, long ago you studied the potential energy of objects in what we can now call the

Earth’s gravitational field.

The presentation of the idea of potential energy likely started with

 = 

where  is the mass of the object,  is the acceleration due to gravity, and  is how high

the object is compared to a  = 0 point. If you recall, we got to pick that  = 0 point. It

could be any height.

Notice as well that this contains the properties of the mover object,  and the

properties of the environment or gravitational field, 

11 Slartibartfast, Introduction to Planetary Engineering, Magrath Techical College, 1978
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This all works fairly well so long as we take fairly small objects near the much larger

Earth. But hopefully you also considered objects farther away from the Earth’s surface,

or larger objects like the moon. For these objects,  is not enough to describe the

potential energy. The reason is that if we are far away from the center of the Earth we

will notice that the Earth’s gravitational field is not uniform. It curves and diminishes

with distance. So, if an object is large, it will feel the change in the gravitational field

over its (the object’s) large volume.

We have the tools to find the potential energy of this situation. We know that a change

in potential energy is just an amount of work

∆ = − = −
Z −→
F  · −→r

The magnitude of the gravitational force is

 = 


2
where  is the mass of the Earth,  is the mass of the mover object, and  is the

distance between the two. The constant,  is the gravitational constant.

The field is radial, so
−→
F  · −→r = − for the configuration we have shown, and we

can perform the integration. Say we move the object a distance∆ away were

∆ = 2 −1

and∆ is large, comparable to the size of the Earth or larger. Then

∆ = −
Z 2

1

µ
−

2

¶


= 

Z 2

1



2
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where  is the distance from the center of the Earth to the center of our object.

∆ = 

Z 2

1



2

= 

∙
−1


¯̄̄̄2

1

= 

∙
− 1

2
−
µ
− 1

1

¶¸
= −

∙
1

2
− 1

1

¸
= −

2
+



1

We recall that we need to set a zero point for the potential energy. Before, when we

used the approximation  we could choose  = 0 anywhere we wanted. But now

we see an obvious choice for the zero point of the potential energy. If we let 2 →∞
and then the first term in our expression will be zero. Likewise, of we let 1 →∞ the

second term will be zero. It looks like as we get infinitely far away from the Earth, the

potential energy naturally goes to zero! Mathematically this makes sense. But we will

have to interpret what this choice of zero-point means.

But first, let’s see how much work it would take to move the moon out of obit and

move it farther away. Say, from 1 the present orbit radius, to 2 = 21 or twice the

original orbit distance. Then

∆ = 2 − 1 = −

21
+



1

= 


1

µ
−1
2
+ 1

¶
=

µ
1

2

¶



1
The change is positive. We gained potential energy as we went farther from the Earth’s

surface. That makes sense! That is analogous to increasing  in  The potential

energy also gets larger if the mass of our object (like the moon or a satellite) gets larger.

Again that makes sense because in our more familiar approximation the potential

energy increases with mass. So this new form for our equation for potential energy

seems to work.

But what does it mean that the potential energy is zero infinitely far away? Recall that a

change in potential energy is an amount of work

 = −∆



146 Chapter 10 Electric potential Energy

Usually we will consider the potential energy to be the amount of work it takes to bring

the test mass  from infinitely far away (our zero point!) to the location where we

want it. It is how much energy is stored by having the object in that position. Like how

much energy is stored by putting a mass high on a shelf. For example we could bring

the moon in from infinitely far away. Then

∆ = 2 − 1 = −

2
+



∞
2 = −

2
This is how much potential energy the moon has as it orbits the Earth because it is high,

above the Earth. But notice, this is a negative number! What can it mean to have a

negative potential energy?Question 223.29.3

We use this convention to indicate that the test mass,  is bound to the Earth. It

would take an input of energy to get the moon free from the gravitational pull of the

Earth. Here is the Moon potential energy plotted as a function of distance.
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We can see that you have to go an infinite distance to overcome the Earth’s gravity

completely. That makes sense from our force equation. The force only goes to zero

infinitely far away. When we finally get infinitely far away, there will be no potential

energy due to the gravitational force because the gravitational force will be zero.

Of course, there are more than just two objects (Earth and Moon) in the universe, so

as we get farther away from the Earth, the gravitational pull of, say, a galaxy, might

dominate. So we might not notice the weak pull of the Earth as we encounter other

nearrer objects.

We should show that this form for the potential energy due to gravity becomes the more

familiar  if our distances are small compared to the Earth’s radius.

Let our distance from the center of the Earth be 2 =  +  where  is the radius
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of the Earth and  ¿  . Then

 = −

2

= −

 + 

We can rewrite this as

 = − 



³
1 + 



´
= −



µ
1 +





¶−1
Since  is small  is very small and we can approximate the therm in parenthesis

using the binomial expansion

(1± )
 ≈ 1∓  if ¿ 1

then we have µ
1 +





¶−1
≈ 1− (−1) 



if




¿ 1

and our potential energy is

 = −



µ
1 +





¶
then

 = −



+


2

=  +

µ



2

¶


If we realize that  is the potential energy of the object at the surface of the Earth, then

the change in potential energy as we lift the object from the surface to a height  is

∆ =

µ
 +

µ



2

¶
 −

µ
 +

µ



2

¶
(0)

¶¶
= 

µ



2

¶


All that is left is to realize that µ



2

¶
has units if acceleration. This is just 

 =

µ



2

¶
so we have

∆ = 

and there is no contradiction. But we should realize that this is an approximation. The

more accurate version of our potential energy is

2 = −

2
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More importantly, we see that the field property,  is being created by  because

 is part of the defining equation.

Likewise we should expect that for charges

∆ = −
is an approximation that is only good when the field, , can be approximated as a

constant magnitude and direction and that the distribution of charge,  is not spatially

too big. With this understanding, we can understand electrical potential energy of point

charges.

Point charges potential

Suppose we now take a positive charge and define it’s position as  = 0 and place a

negative mover charge near the positive charge.

The work it would take to move the charge a distance∆ = 2 −1 would be

∆ = − = −
Z −→
F  · −→r

The magnitude of the electrical force is

 =
1

4



2

once again
−→
F  · −→r = − and

∆ = −
Z 2

1

µ
− 1

4



2

¶


=


4

Z 2

1



2

and we realize that this is exactly the same integral we faced in the gravitational case.

The answer must be

∆ = − 1

4



2
+

1

4



1

The similarity is hardly a surprise since the force equation for the Coulomb force is

really just like the force equation for gravity.
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It makes sense to choose the zero point of the electric potential energy the same way

we did for the gravitational potential energy since the equations is the same. We will

pick  = 0 at  =∞ Then we expect that

 = − 1

4




is the electrical potential energy stored by having the charges in this configuration.Question 223.29.4

Again the negative sign shows that the two opposite charges will be bound together by

the attractive force. Here is a graph of the electrical potential energy of an electron and

a proton pair, like a Hydrogen atom.
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Of course we remember that there is a large difference between electrical and gravita-

tional forces. If the two charges are the same sign, then they will repel and the potential

must be different for that situation. If we redraw our diagram for this case, we realize

that the sign of the force must change.

∆ = − = −
Z 2

1

µ
+

1

4



2

¶


this will change all the signs in our solution

∆ = +
1

4



2
− 1

4



1
then

 = +
1

4




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Now we can see that the potential energy gets larger as the two like charges get nearer.

It takes energy to make them get closer. This is clearly not a bound situation.

Three point charges.
Question 223.29.5

Suppose we have three like charges. What will the potential energy of the three-charge

system be?

Let’s consider the charges one at a time. If I move one charge, 1 from infinitely

far away. there is no environemntal field electric, so there is no force, since we need

two charges for there to be a force. Then there is no potential energy. This is like a

rock �oating in deep space far away from anything else in the universe. It just sits

there, there is no potential for movement, so no potential energy. But when we bring

in another charge, 2 then 1 is an environmental charge making a field and 2 is our

mover charge. Then 2 will take an amount of work equal to

12 =
1

4

12

12
to move in the charge because the two charges repeal each other. There is a force, so

now there is an amount of potential energy associated with the work done to move the

charges together.

Suppose we had chosen to bring in the other charge, 3 instead. Charge 1 forms an

envirnmental field. It takes an amount of energy

13 =
1

4

13

13
to bring in the third charge charge But if the second charge were already there, the

second charge also creates an environmental field, so it also creates a force on the third

charge. So it will take more work to bring in the third charge.

3 =
1

4

13

13
+

1

4

23

23
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So the total amount of work involved in bringing all three charges together

 =
1

4

12

12
+

1

4

13

13
+

1

4

23

23
then the potential energy difference would be

∆ =  −  = −
=  − 0
=

1

4

12

12
+

1

4

13

13
+

1

4

23

23
which we can generalize as

 =
1

4

X






for any number of charges. We simply add up all the potential energies. This is one

reason to use electric potential energy in solving problems. The electric potential

energies just add, and they are not vectors, so the addition is simple.

Dipole potential energy

Let’s try out our new idea of potential energy for point charges on a dipole. We will try

to keep this easy, so let’s consider the dipole to be in a constant, uniform electric field.

We know there will be no net force. The work done to move a charge we have stated to

be

 =

Z −→
F  · −→r

but in this case, we know the net force on the dipole is zero.

However, we can also do some work in rotating something

 =

Z

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we know from before that the magnitude of the torque is

 =  sin 

so

 =

Z 2

1

 sin 

=  (cos 2 − cos 1)
this must give

∆ = − =  − 

= − (cos 2 − cos 1)
then we can write as

 = − cos 
This is the rotational potential energy for the dipole. We can write this as an inner

product

 = −−→p ·−→E
What does this mean? It tells us that we have to do work to turn the dipole.

Let’s go back to our example of a microwave oven. If the field is  = 200Vm, then

how much work does it take to turn the water molecules?

Remember that the dipole moment for a water molecule is something like

 = 62× 10−30Cm
so we have

 = − ¡62× 10−30Cm¢ (200Vm) cos 
= −1 24× 10−27 J cos 

This is plotted in the next figure.

-200 -150 -100 -50 50 100 150 200

-1.0e-27

1.0e-27

Theta (deg)

U (J)

At zero degrees we can see that it takes energy (work) to make the dipole

spin. It will try to stay at zero degrees and a small displacement from zero degrees will
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will cause the dipole to oscillate around  = 0 but it will return to  = 0 as the added

energy is dissipated. then  = 0 rad is a stable equilibrium. Conversely, at  =  rad

we are at a maximum potential energy. We get rotational kinetic energy if we cause

any small displacement ∆ The dipole will angularly accelerate.  = ± rad is an

unstable equilibrium.

Shooting -particles

Let’s use electric potentials to think about a famous experiment. Ernest Rutherford shot

-particles,  = +2 at gold nuclei,  = +79 How close will the -particles get if

the collision is head-on and the initial speed of the -particles is 3× 106m s?

The easiest way to approach this is to use conservation of energy. The energies before

and after must be the same because we have no frictional or dissipative forces. The

-particle, of course, is our mover.

The before and after pictures are as shown.

We can write

 +  =  + 

when the -particles are at their closest distance to the gold nuclei, then  = 0. We

can envision starting the -particles from effectively an infinite distance away. Then

 ≈ 0 so
1

2


2 =
1

4




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Solving for  gives

 =
1

4


1
2
2

=
1

2

(79) (4)

2

then

 =
1

2
³
885× 10−12 C2

Nm2

´ 158
¡
1602× 10−19C¢2

(6 642 2× 10−27 kg) (3× 106m s)2

= 1 219 8× 10−12m
This is a very small number! and it sets a bound on how large the nucleus of the gold

atom can be.

Next lecture, we will try to make our use of electrical potential energy more practical by

defining the electrical potential energy per unit charge, and applying this to problems

involving moving charges (like those in electric circuits).

Basic Equations
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Fundamental Concepts

• Electric potential is a representation of the electric field environment.

• Electric potential is defined as the potential energy per unit charge.

• Equipotential lines are drawn to show constant electric potential surfaces

• The volt as a measure of electric potential

• The electron-volt as a measure of energy (and speed).

Electric Potential

We defined electrical potential energy last time.

 = − 1

4




This is a quantity that depends on two charges, the environmental charge  and the

mover charge  This is a lot like electric force
−→
F  =

1

4



2
r̂

If you will recall, we split the force into an environmental part and a mover part
−→
F  = 

µ
1

4



2

¶
r̂

−→
F  = 

−→
E

where  is the electric field. We can do the same for the electric potential energy

 = −
µ

1

4





¶
where charge  is our mover charge. By analogy, thenµ

1

4





¶
must represent the environment set up by  And sure enough, it has a  in it. But

this does not have the units of electric field. So it must be a new quantity. We will need

a name for this new representation of the environment created by Question 223.30.1
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Let’s give a symbol and a name to our new environment quantity.

 =
1

4





where we understand that  is making the environment and we are measuring that

environment a distance  from  to the mover charge 

Then

 = −
µ

1

4





¶
= − ()

It’s traditional to drop the subscripts on the 

 =
1

4




where we understand that an environmental charge labeled just  is making the

environment and  is a distance  from  to the location where we want to know the

environment. In that case we can write

 =  ( )

or

 =



This new environment representation appears to be an amount of potential energy per

unit charge. In general any electrical potential energy () per unit charge () is is

called an electric potential.

 =




This is a somewhat unfortunate name, because it sounds like electric potential energy.

But it is not, it is a representation of the environment set up by the electric field. We

don’t get electric potential energy without multiplying by a charge.  =   We can

think of  as the electrical potential energy and  as needing something beyond itself

() to be an electric potential energy, so it is just an electric potential (no “energy” in

the name) because it needs this extra piece.

Electric Potential Difference

We will give electric potential the symbol  but usually the important quantity is a

change in potential energy, then

∆ =
∆


(11.1)

If I know ∆ for a configuration of charge (like our capacitor plates) then I can find
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the∆ of different charges by multiplying by the amount of charge in each case

∆1 = 1∆

∆2 = 2∆

...

which is convenient if I am accelerating many different charges. We do this in linear

accelerators or “atom smashers” so this is important to physicists! We can see that the

units of∆ must be
J

C
= V (11.2)

which has been named the Volt and is given the symbol, V

Now this may seem familiar. Can you think of anything that carries units of volts?

Let’s consider a battery. In our clickers we have 15 volt batteries. Inside the battery we

would expect that a charge would experience a potential energy difference. We buy the

battery so we can convert that potential energy into some other form of energy (radio

wave energy for our clickers). The potential energy achieved depends on the charge

carrier. We would have electrons in metals but we would have ions in a solution. This

is so convenient to express the potential energy per unit charge, that it is the common

form or expressing the energy given by most electrical sources.Question 223.30.2

Question 223.30.3

Electric Potential

Let’s write out the electric potential difference between points  and  It is the change

in potential energy per unit charge as the charge travels from point  to point 

∆ =  −  =
∆


(11.3)

This is clearly a measure of how the environment changes along our path from  to 

Let’s reconsider gravitational potential energy. We remember that if the field is uniform

(that is, if we are near the Earth’s surface so the field seems uniform) we can set the

zero point of the potential energy anywhere we find convenient for our problem, with

the provision that once it is set for the problem, we have to stick with our choice.

One logical choice for many electrical appliances is to set the Earth’s potential equal

to zero. Note! this is not true for point mass problems where we have already set the

potential energy  = 0 at  = ∞ In our gravitational analogy, this is a little bit like

mean sea level. Think of river �ow. The lowest point on the planet is not mean sea

level. But any water above mean sea level will tend to �ow downward to this point.

Of course, if we have land below mean sea level, the water would tend to continue
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downward (like water �ows to the Dead Sea). The direction of water �ow is given by

the potential energy difference, not that actual value of the potential energy. It is the

same way with electric potential. If we have charge at a potential that is higher than the

Earth’s potential, then charge will �ow toward the Earth.Question 223.30.4

Consider a 9V battery. If the negative terminal is connected to a grounding rod or metal

water pipe, it will be at the electric potential of the Earth while it’s positive terminal

will be at∆ = 9V above the Earth’s potential. Likewise, in your home, you probably

have a 110V outlet. One wire is likely set to the potential of the Earth by connecting it

to a ground rod. The other is at∆ = 110V above it.

In our clickers, we don’t have a ground wire, so we cannot guarantee that the negative

terminal of the battery is at the same potential as the Earth. If our appliances in our

house are not all grounded to the same potential, there is a danger that there will be

a large enough difference in their potentials (think potential energy per unit charge)

to cause the charges to accelerate from one appliance to another. It is the difference

in potential that counts! This is a spark or shock that could hurt someone or damage

equipment. That is why we now use grounded outlets. These outlets have a third wire

that is tied to all the other outlet’s third wire and also tied physically to the ground near

your house or apartment. This way, all appliances are ensured to have the same low

electric potential point.

Example, potential of a capacitor

Let’s calculate the potential of our favorite device, the capacitor.
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The nice uniform field makes this a useful device for thinking about electric potentials.

We have found that field to be

 =



with a direction from positive to negative. The work to push a mover charge from one

side to the other is given by

 =

Z
 · 

The force is uniform since the field is uniform (near the middle at least)

 = 

then our work becomes

 =

Z
 · 

= ∆

and the amount of potential energy is

|∆ | = |−∆|

We can set the zero potential energy point any where we want, but it is tradition to set

 = 0 at the negative plate. If we do this we end up with the potential energy difference

going from the negative plate to the positive plate being

∆ = 
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Then if we go from the negative plate to the positive plate we have a positive∆

We have seen all this before when we compared the electric potential energy of a

uniform gravitation field and a uniform electrical field. Now let’s calculate the electric

potential difference

∆ =
∆


=




= 

Remember that the field is created by the charges on the capacitor plates, so it exists

whether we put any  inside of the capacitor or not. Then the potential difference must

exist whether or not there is a charge  inside the capacitor.

You probably already know that a voltmeter can measure the electric potential

difference between two points, say, the plates of a capacitor. If we use such a meter we

could find the field inside the capacitor (well, almost, remember our approximation is

good for the center of the plates).

 =
∆



Equipotential Lines
Question 223.30.5

We need a way to envision this new environmental quantity that, like a field, has a value

throughout all space. Our analogy with gravity gives us an idea. Suppose we envision

the height potential energy as the top of a hill. Then the low potential energy would be

the bottom of the hill. We know from our Boy Scout and Girl’s Camp experiences how

to show a change in gravitational potential energy. We plot on a map lines of constant

potential energy. We call it constant elevation, but since near the Earth’s surface

 =  the potential energy is proportional to the height, so we can say these lines

are lines of constant potential energy. Here is an example for Mt. Shasta.

Map courtesy USGS, Picture is in the Public Domain.

We can think of these lines of constant potential energy as paths over which the
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gravitational field does no work. If we walked along one of these lines we would

get neither higher nor lower and though we might do work to move us to overcome

some friction, the gravitational field would do no work. And we would do no work in

changing elevation.Question 223.30.6

Likewise we can draw lines of equal potential for our capacitor. When moving along

these lines the electric field would do no work.

Of course we could draw these lines for a crazier device. Say, for our charged conductor

Notice that our equal potential lines are always perpendicular to the field. From

 =

Z

−→
E · −→x

we can see that if the path we travel is perpendicular to the field, no work is done. This

is like us marching along around the mountain neither going up nor down.
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Electron Volt

Suppose I set up our uniform electric field device again

We are not including any gravitational field, so the directions involved are all relative to

the placement of the capacitor plate orientation.

This time, suppose I make the potential difference ∆ = 1V I release a proton near

the high potential side. What is the kinetic energy of the proton as it hits the low

potential side? From the work energy theorem

 = ∆ +∆

and if we do this in a vacuum so there is no non-conservative work,

∆ = −∆
 − = −∆

 = −∆

We can find the potential energy loss from what we just studied

∆ =
∆


so we can find the potential energy as

∆ = ∆
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but remember we are going from a high to a low potential

∆ =  − 

this will be negative, so the potential energy change will be negative too.

 = −∆
= −∆

which will be a positive value (which is good, because I don’t know what negative

kinetic energy would mean).

 = −∆
We can find the amount of energy in Jules

 =
¡
16× 10−19C¢ (1V)

= 1 6× 10−19 J
since we defined a volt as V = J

C
.

You might think this is not very useful, but remember that  = 1
2
2 The kinetic en-

ergy is related to how fast the proton is going. In a way, the kinetic energy tells us how

fast the particle is going (we know it’s mass). If you read about the Large Hadron Col-

lider at CERN, in Switzerland the “speeds”of the particles will be given in energy units

that are multiples of 1 6× 10−19 J We call this unit an electron-volt ( eV).

Beam magnet and Section of the Beam Pipe of the LHC. This section is actually no

longer used and is in a service area 100m above the operating LHC. The people you

see are part of a BYU-I Physics Department Tour of the facility.
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We can finish this problem by finding the speed of the particle

 =
1

2
2

so
2


= 2

or

 =

r
2



=

s
2 (1 6× 10−19 J)

100728 u1 660 5×10
−27 kg

1 u

= 13832
m

s
Which is pretty fast, but the Large Hadron Collider at CERN can provide energies up

to 7× 1014 eV which would give our proton a speed of 999999991% of the speed of

light.

CERN CMS detector during a maintenance event. The bright metal pipe seen in the

middle of the detector is the beam pipe through which the accelerated protons travel.

Note the workers near the scaffolding for scale.

Note that this energy would seem to provide a faster speed–faster than light! But with

energies this high we have to use Einstein’s theory of Special Relativity to calculate the

particle speed. And, sadly, that is not part of this class. If you are planning to work on

the GPS system, or future space craft, you might need to take yet another physics class

so you can do this sort of calculation.

You might guess that we will want to know the electric potential of more complex

configurations of charge. We will take on this job in the next lecture.

Basic Equations
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The electric potential is the electrical potential per unit charge

∆ =  −  =
∆


For the special case of a constant electric field in a capacitor the electrical potential is

just

∆ = ∆

where ∆ is the distance traveled from one side of the capacitor to the other.

The unit

1 eV = 1 6× 10−19 J





12 Electric potential of charges
and groups of charges

Now that we have a new representation of the environment created by environmental

charges, we will need to be able to calculate values for that representation for different

configurations of charge like we did for electrical fields. But there is a huge benefit in

using the electric potential representation, electric potentials are not vectors! So we

don’t have to deal with the vector nature of the field environment. The vector nature

is still there, but we will ignore it. This means we will give up being able to give up

vector directions for movement of our mover charges in many cases. But we can know

much about the movement and the equations will be much simpler. We will take on the

usual cases of environments from a point charge, a collection of point charges, and a

continuous distribution of charges.

Fundamental Concepts

• Finding the electric potential of a point charge

• Finding the electric potential of two point charges

• Finding the electric potential of many point charges

• Finding the electric potential of continuous distributions of point charges.

Point charge potential

The capacitor was an easy electric potential to describe. Let’s go back to a slightly

harder one, the potential due to just one point charge. The potential energy depends on

two charges

 = − 1

4




but the potential just depends on one.

 =



where  is a function of  so the mover charge will cancel.
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We say we have an electric potential due to the environmental charge even if the mover

charge is not there. This is like saying there is a potential energy per unit rock, even if

there is no rock to fall down the hill. The hill is there whether or not we are throwing

rocks down it.

For electric potential, the potential is due to the field, and the field from the

environmental charge is there whether another charge is there or not.

Let’s find this potential due to just one charge, but let’s find it in a way that demonstrates

how to find potentials in any situation. After all, from what we know about point

charges, we can predict that

 =



=

1
4





=

1

4





So finding the answer is not very hard. But not not all situations come so easily. We

only know forms for  for capacitors and point charges so far. So let’s see how to do

this in general, and compare our answer for the point charge with what we have guessed

from knowing  .

Symmetry tells us the field will be radial, so the equipotential surfaces must be

concentric spheres. Here is our situation:

We wish to follow the marked path from  to  finding the potential difference

∆ =  − 

Remember that the field due to a charge  is radially outward from the charge. To find

the potential we start with what we found last lecture, for a constant field

∆ =
∆


=

∆


= ∆

where  is the path length along our chosen path from  to . For our capacitor, this

was just the distance from one side to the other, but here we need to be more general.
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We should really write this as

∆ =
−→
E ·−→∆

Further, our field,  changes, so technically this value for ∆ is not correct. But if

we take vary small paths, ∆−→s  then the field will be nearly constant over the small

distances. Then we can add up the contribution of each small distance, ∆−→s  to deal

with the entire path from  to  for our point charge geometry.

That is, we take a small amount of path difference ∆−→s  and add up the contribution,−→
E ·−→∆ from this small path. Then we can repeat this for the next∆−→s +1 and the next,

until we have the contribution of each pice of the path. We can call the contribution

from one piece.

∆ =
−→
E ·−→∆

The total potential difference would be

∆ =
X


−→
E ·−→∆

In the limit that the∆ become very small this becomes an integral

∆ = −
Z 



−→
E · −→s (12.1)

where  and  are any two points.
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Here is an expansion of the region about  and .

Let’s divide up our −→s into components in the radial and azimuthal directions (polar

coordinates)

−→s =
³
r̂+ θ̂

´
from trigonometry we can see that

cos =



(remember that  and  are lengths, infinitesimal lengths, but lengths just the same)

and

sin =



so

 =  cos

 =  sin

and we can write

−→s =
³
 cosr̂+  sinθ̂

´
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The field due to the point charge is
−→
E =

1

4



2
r̂ (12.2)

if we take
−→
E · −→s =

1

4



2
r̂ · −→s

=
1

4



2
r̂ ·
³
 cosr̂+  sinθ̂

´
we get only a radial contribution since r̂ · θ̂ = 0. Then

−→
E · −→s =

1

4



2
r̂ ·  cosr̂+ 0

=
1

4



2
 cos

where  is the angle between −→s and r̂ and where we recall that r̂ · r̂ = 1 Recalling

that

 =  cos

we can eliminate  from our equation
−→
E · −→s = 1

4



2


and we can integrate this!

∆ = −
Z 



1

4



2


= − 

4

Z 



1

2


=


4

1



¯̄̄̄


so

∆ =


4

µ
1


− 1



¶
Question 223.31.1

Note that the potential depends only on the radial distances from the point charge–not

the path. We would expect this for conservative fields.

We know that, like potential energy, we may choose our zero point for the electric

potential. For a point charge, we often take the  = ∞ point as  = 0. This is

probably not a surprise, since  → 0 when  →∞ So you will often see the potential

for the point charge written as just

∆ =
1

4




or simply as

 =
1

4




(12.3)

Here is a plot of this with  = 2× 10−9 C and the charge placed right at  = 10m
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It is probably a good idea to state that in common engineering practice we kind of do

all this backwards. We usually say we will charge up something until it has a particular

voltage. This is because we have batteries or power supplies that are charge delivery

services. They can provide enough charge to make some object have the desired

voltage. By “desired voltage” we always mean the voltage at the conductor surface.

Early electrodes were spherical, so let’s consider making a spherical conductor have a

particular potential at it’s surface. A sphere of charge with radius  would have

 =
1

4




at it’s surface. We can guess this because Gauss’ law tells us that the field of a charged

sphere is the same as that of a point charge with the same  Then it takes

 = 4

to get the voltage we want. The battery or power supply must provide this. If the power

supply or battery has a large amperage (ability to supply charge) this happens quickly.

But away from the electrode the potential falls off. We can find how it falls off by again

using

 =
1

4




but with charge

 = 4

so that

 =
1

4

4


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or

 =





where  is the voltage at the surface. We can see that as  increases,  decreases.

Two point charges
Question 223.31.2

Question 223.31.3 We can guess from our treatment of the potential energy of two point charges that the

electric potential due to two point charges is just the sum of the individual point charge

potentials.

 = 1 + 2

=
1

4

1

1
+

1

4

2

2

=
1

4

µ
1

1
+

2

2

¶
This is an environment created by two point charges. We could convert this to a

potential energy by introducing a mover charge, 

 = 

µ
1

4

µ
1

1
+

2

2

¶¶
where both 1 and 2 are environmental charges.

It is instructive to look at the special case of two opposite charges (our dipole). We can

plot the electric potential in a plane through the two charges.

It would look like this
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¡
 = 2× 10−9C¢ were placed right at  = ±10m The potential

 =
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¶
becomes large near 1 =  or 2 =  where  is the charge radius (which is very

small, since these are point charges). Plotting the potential in two dimensions is also

interesting. We see that near the positive charge we have a tall mountain-like potential

and near the negative charge we have a deep well-like potential.
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Notice the equipotential lines. The more red peak is the positive charge (hill), the more

blue the negative charge (valley).A view from farther away looks like this
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Of course the hill and the valley both approach an infinity at the point charge because

of the 1 dependence.

Lots of point charges
Question 223.31.4

Suppose we have many point charges. What is the potential of the group? We just use

superposition and add up the contribution of each point charge

 =
1

4

X





(12.4)

where  is the distance from the point charge  to the point of interest (where we

wish to know the potential). Note that this is easier than adding up the electric field

contributions. Electric potentials are not vectors! They just add as scalars.

Of course the electrical potential energy requires a mover charge. It would be

 =  ( )

= 

Ã
1

4

X






!

Potential of groups of charges

Suppose we have a continuous distribution of charge. Of course, this would be made

of many, many point charges, but if we have so many point charges that the distance

between the individual charges is negligible, we can treat them as one continuous thing.

If we know the charge distribution we can just interpret the distribution as a set of small
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amounts of charge  acting like point charges all arranged into some shape.

Then for each charge  we will have a small amount of potential

 =
1

4




(12.5)

and the total potential at some point will be the summation of all these small amounts

of charge

 =
1

4

Z



(12.6)

This looks a little like our integral for finding the electric field from a configuration of

charge, but there is one large difference. There is no vector nature to this integral. So

our procedure will have one less step

• Start with  = 1
4

R



• find an expression for 

• Use geometry to find an expression for 

• Solve the integral

Let’s try one together

Electric potential due to a uniformly charged disk

We have found the field due to a charged disk. We can use our summation of the poten-

tial due to small packets of charge to find the electric potential of an entire charged disk.



Potential of groups of charges 177

Suppose we have a uniform charge density  on the disk, and a total charge , with a

disk radius  We wish to find the potential at some point  along the central axis.

To do this problem let’s divide up the disk into small areas,  each with a small

amount of charge,  The area element isQuestion 223.31.5

 = 

so the charge element,  is

 = 

For each  we have a small part of the total potential. Let me use the variable  to be

the distance from a part of the ring to the point  Then  =
√
2 + 2 and our integral

becomes

 =
1

4

Z




=
1

4

Z Z
√
2 + 2

We will integrate this. We will integrate over  from 0 to  and  from 0 to 2 which

will account for all the charge on the disk, and therefore all the potential.
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 =
1

4

Z 2

0

Z 

0

2√
2 + 2

(12.7)

=
2

4

Z 

0

√
2 + 2

=
2

4

p
2 + 2

¯̄̄
0

=
2

4

p
2 + 2 − 2

4


so

 =


2

³p
2 + 2 − 

´
(12.8)

This is the potential at point 

We compared our electric field solutions with the solution for a point charge. We can do

the same for electric potentials. We can compare our solution to a point charge potential

for an equal amount of charge. Far away from the disk, we expect the two potentials to

look the same. The point charge equation is

 =


4

1


Our disk gives

 =


4

2

2

³p
2 + 2 − 

´
(12.9)

They don’t look much alike! But plotting both yields
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The dashed line is the point charge, the solid line is our disk with a radius of 005m

and a total charge of 2C This shows that far from the disk the potential is like a point

charge, but close the two are quite different as we would expect. This is a reasonable

result.

We will calculate the potential due to several continuous charge configurations.
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But, you may ask, since we knew the field for the disk of charge, couldn’t we have

found the electric potential from our equation of the field? We will take up this question

in the next two lectures.

Basic Equations

The electric potential of a point charge is given by

 =
1

4




where the zero potential point is set at  =∞

Electric potentials simply add, so the potential for a collection of point charges is just

 =
1

4

X






To find the potential due to a continuous distribution of charge we use the following

procedure:

• Start with  = 1
4

R



• find an expression for 

• Use geometry to find an expression for 

• Solve the integral
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Since electric fields and electric potentials are both representations of the environment

created by the environmental charge, there must be a way to calculate the potential from

the field and vice versa. It will take us two lectures to do both.

Fundamental Concepts

• The potential and the field are manifestations of the same physical thing

• We find the potential from the field using∆ = − R −→E · −→s
• Fields and potentials come from separated charge

Connecting potential and field

It is time to pause and think about the meaning of this electric potential. Let’s trace

our steps backwards. We defined the electric potential as the potential energy per unit

charge:Question 223.32.1

∆ =
∆


where  is our mover and∆ is a measure of the change in the environment between

two points 1 and 2 measured from the environmental charge. ∆ is the change in

potential energy as  moves. But the potential energy change is equal to the negativeQuestion 223.32.2

of the amount of work we have done in moving 

∆ =
−


which is equal to

∆ =
−1


Z −→
F · −→s

where again −→s is a general path length. But this force was a Coulomb force. which

we know is related to the electric field
−→
E =

−→
F


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so we may rewrite the potential as

∆ = −
Z −→
F


· −→s

= −
Z −→
E · −→s

which we found last lecture by analogy with our capacitor potential. Our line

of reasoning in this lecture has been more formal, but we arrive at the same

conclusion–and it is an important one! If we add up the component of field magnitudeQuestion 223.32.3

times the displacement along the path take from 1 to 2 we get the electric potential

(well, minus the electric potential).

The electric field and the electric potential are not two distinct things. They are really

different ways to look at the same thing–and that thing is the environment set up by the

environmental charge. It is tradition to say the electric field is the principal quantity.

This is because we have good evidence that the electric field is something. That

evidence we will study at the end of these lectures, but in a nutshell it is that we can

make waves in the electric field. If we can make waves in it, it must be something!12

in our gravitational analogy, the gravitational field is the real thing. Gravitational

potential energy is a result of the gravitational field being there. The change in potential

energy is an amount of work, and the gravitational force is what does the work. No

force, no potential energy. The gravitational field makes that force happen.

It is the same for our electrical force. The electrical potential is due to the Coulomb

force, and the Coulomb force exists because the electric field is there.

If the field and the potential are really different manifestations of the same thing, we

should be able to find one from the other. We have one way to do this. We can find the

potential from the field, but we should be able to find the field from the potential. We

will practice the first

∆ = −
Z −→
E · −→s

today, and then introduce how to find the field from the potential next lecture.

Finding the potential from the field.

Actually we did an example last lecture. We found the field of a point charge. But let’s

12 By the end of these lectures, we will try to make this a more convincing (and more mathmatical)
statement!
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take on some harder examples in this lecture.

Let’s calculate the electric potential do to an infinite line of charge. This is like the

potential due to a charged wire. We already found the field due to an infinite line of

charge

 =
1

4

2


r̂

so we can use this to find the potential difference.

∆ = −
Z 



−→
E · −→s

We need −→s  Of course −→s could be in any direction. We can take components in

cylindrical coordinates

−→s = r̂+ θ̂ + ẑ

Putting in our field gives

∆ = −
Z 



1

4

2


r̂ ·
³
r̂+ θ̂ + ẑ

´
= − 2

4

Z 







which we can integrate

∆ =

µ
− 1

2




ln  −

µ
− 1

2




ln 

¶¶
= − 1

2




(ln  − ln )

This example gives us a chance to think about our simple geometries and to consider

when they are reasonable approximations to real charged objects. So long as neither 
nor  are infinite, this result is reasonable. But remember what it looks like to move

away from an infinite line of charge. No matter how far away we go, the line is still

infinite. So we never get very far away. The terms

 =
1

2




(ln )
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or

 =
1

2




(ln )

would look something like this
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The curve is definitely not approaching zero as  gets large. No matter how far we get

from an infinite line of charge, we really never get very far compared with it’s infinite

length. So the potential is not going to zero!

Our solution is good only when  and  are much smaller than the length of the line.

that is, when our simple geometry is a good representation for something that is real, in

this case, a finite length wire. But for  ¿  this works.

We should also pause to think of the implications of this result for electronic equipment

design. Our result means that adjacent wires in a cable or on a circuit board will feel

a potential (in ME210 you called this a voltage) due to their neighbors–something we

have to take into consideration in the design to ensure your equipment will work! This

is one reason why we use shielded cables for delicate instruments, and for data lines,

etc.

As a second example, let’s tackle our friendly capacitor problem again. What is the

potential difference as we cross the capacitor from point  to point ? We already

know the answer

∆ = 

But when we found this before, we assumed we knew the potential energy. This time

let’s practice using

∆ = −
Z 



−→
E · −→s
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We know the field is

 =



so

∆ = −
Z 



−→
E · −→s

= −
Z 






 cos 

where  is the angle between the field direction and our −→s direction. We could write

 =  cos 

Then

∆ = − 



Z 





= − 


( − )

= − 


∆

This is just

∆ = −∆
if we consider the negative side to be the zero potential, and we cross the entire

capacitor, then

∆ = − ( − )

= − (0− )

= 

as we expect. Note that we can now see how the positive result comes from our choice
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of the zero voltage point.

Sources of electric potential
Question 223.32.4

We know that the electric potential comes from the electric field. And if we think

about it, we know where the electric field comes from, charge. But we have found that

equal amounts of positive and negative charge produce no net field. So normal matter

does not seem to have any net electric field because the protons and electrons create

oppositely directed fields, with no net result.

But if we separate the positive and negative charges, we do get a field. This is the

source of all electric fields that we see, and therefore all electric potentials are due to

separated charge.

We have used charge separation devices already in our lectures. Rubbing a rubber rod

with rabbit fur transfers the electrons from the fur to the rod. Some of the charges that

were balanced in the fur are now separated. So there is an electric field that creates

an electric force. Then there must be an electric potential, since the potential is just a

manifestation of the field.

We have also used a van de Graaff generator. It is time to see how this works.

In the base of the van de Graaff, there is a small electrode. It is charged to a large

voltage, and charge leaks off through the air to a rubber belt that is very close. The

rubber belt is connected to a motor. The motor turns the belt. The extra charge is stuck
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on the belt, since the belt is not a conductor. The charge is carried up to the top where

there is a large round electrode. A conducting brush touches the rubber belt, and the

charge is able to escape the belt through the conductor. The charge spreads over the

whole spherical electrode surface.

The belt keeps providing charge. Of course the new charge is repelled by the charge

all ready accumulated on the spherical electrode, so we must do work to keep the belt

turning and the charge ascending to the ball at the top. This is a mechanical charge

separation device. It can easily build potential differences between the spherical top

and the surrounding environment (including you) of 30000V.

Much larger versions of this device are used to accelerate sub atomic particles to very

high speeds.

Electrochemical separation of charge
Question 223.32.5

When you eat table salt, the NaCl ionic bond splits when exposed to polar water

molecules, leaving a positively charged Na ion and a negatively charged Cl ion. This

is very like the “bleeding” of charge from our charged balloons that we talked about

earlier. The water molecules are polar, and the mostly positive hydrogens are attracted

to the negatively charged Cl ions. This causes a sort of tug-o-war for the Cl ions. The

positively charged Na ions pull with their coulomb force, and so do the positively

charged hydrogens of the water molecules. If we have lots of water molecules, they

win and the NaCl is broken apart. Water molecules are polar, but overall neutral. But

now, with the Na and Cl ions, we have separated charge. We can make this charge �ow,

so we can get electric currents in our bodies. Our nervous system uses the positively

charged Na ions to form tiny currents into and out of neurons as part of how nerve

signaling works. Of course, NaCl is a pretty simple molecule. We could use more

complex chemical reactions to separate charge.

Batteries and emf

Most of us don’t have a van de Graaff generator in our pockets. But most of us do have

a charge separation device that we carry around with us. We call it a battery. But what

does this battery do?

Somehow the battery supples positive charge on one side and negative charge on the
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other side. This is accomplished by doing work on the charges. A lead acid battery

is often used in automobiles. The battery is made by suspending two lead plates in a

solution of sulfuric acid and water.

One plate is coated with lead dioxide. There is a chemical reaction at each plate. The

sulfuric acid (H2SO4) splits into two H+ ions and an SO−24 ion.

The plain lead plate reacts with the SO−24 ions.

The overall reaction is

 (solid)+2
−
4 (aqueous)→ 4 (solid)+2+ (aqueous)+2− (in conductor)



Batteries and emf 189

producing lead sulfate on the electrode, some hydrogen ions in solution and some extra

electrons that are left in the metal plate.

The coated plate’s lead dioxide also reacts with the SO−24 ions and uses the hydrogen

ions and the oxygen from the PbO2 coating.

It also uses some some electrons from the lead plate. The PbO2 splits apart and the

Pb+4 combines with the SO−24 and the two electrons. The left over O2 combines with

the hydrogens to form water. The reaction equation is

 (solid)+2
−
4 (aqueous)+2+ (solid)+2− (in conductor)→ 4 (solid)+22 (liquid)
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So one lead plate has two extra electrons, and one lacks two electrons. We have

separated charge!

If we connect a wire between the plates, the extra electrons from one plate will move to

the other plate, and we have formed a current (something we will discuss in detail later).

Lead acid batteries are rechargeable. The recharging process places an electric potential

across the two lead plates, and this drives the two chemical reactions backwards.

Now that we see that we can use chemistry to separate charge, let’s think about what
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this means for an electric circuit.

 = ∆

That work is equivalent to an amount of potential energy, so we have a voltage. That

voltage due to the separated charge is

∆ =




This is not a chemistry class, so we won’t memorize the chemical process that does

this. Instead, I would like to give a mechanical analogy.

If we have water in a tank and we attach a pump to the tank, we can pump the water to

a higher tank. The water would gain potential energy. This is essentially what a battery

does for charge. A battery is sort of a “charge pump” that takes charge from a low

potential to a high potential.

The water in the upper tank can now be put to work. It could, say, run a turbine.

A battery can do the same. The battery “pumps” charge to the higher potential. That
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charge can be put to work, say, lighting a light bulb.

Of course, we could string plumps together to gain even more potential energy differ-

ence.

likewise we can string two batteries to get a larger electrical potential difference.
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If we had more batteries, we would have more potential difference. Each battery

“pumping” the charge up to a higher potential. Our analogy is not perfect, but it gives

some insight into why stringing batteries together increases the voltage. Our clickers

use three 15V batteries for a total potential difference from the bottom of the first to

the top of the last of

∆ = 3× 15V = 4 5V

If you have been introduced to Kirchhoff’s loop law, you may see this as familiar.

Kerchhoff said that

∆ =
X


∆ = 0

That is, if we go around a loop, we should end up at the same potential where we

started. This would be true for our plumbing example. If we start at the lower tank, then

travel through the pump to the upper tank, then through the turbine to the lower tank we

have

∆ = ∆ +∆ = 0

we are at the same elevation, we lost all the potential energy we gained by being

pumped up when we fell back down through the turbine.

Similarly, the battery pumps the charge up an amount ∆ and it “falls” down an

amount∆ returning to where it started

∆ = ∆ +∆

This is just conservation of energy. As we go around the loop we must neither create

nor destroy energy. We can convert work into potential through the pump or battery,

then we can create movement of water or charge and even useful work by letting the



194 Chapter 13 Potential and Field

charge or water “fall” back down to the initial state. The change in energy must be zero

if there is no loss mechanism. Eventually we must allow some loss to occur, but for

now we have ideal batteries and wires and lights, so energy is conserved.

We have a historic name for a charge pump like a battery. We call it an emf. This is

pronounced “ee em eff,” that is, we say the letters. Emf used to stand for something,

but that something has turned out to be a poor model for electric current, but the letters

describing a charge pump persist. This is a little like Kentucky Fried Chicken changing

it’s name to KFC because now they bake chicken (and no one wants to think about

eating fried foods now days). The letters are the name.

Next lecture we will complete our task. In this lecture we discussed finding the potential

if we know the field. Next lecture we will find out how to calculate the field if we know

the potential.

Basic Equations



14 Calculating fields from
potentials

In our last lecture, we found that we could calculate the electric potential from the

electric field. In this lecture we go the other way, calculating the field from the potential.

Fundamental Concepts

• To find the field knowing the potential, we use
−→
E = −

³


̂+ 


̂+ 


k̂
´


• The gradient shows the direction of steepest change

• The potential of conductors in equilibrium

Finding electric field from the potential

We did part-one of relating fields to potentials in the last lecture. Now it is time for part

two, obtaining the electric field from a known potential. Starting with

∆ = −
Z 



−→
E · −→s

we realize that we should be able to write the integrand as a small bit of potential

 = −−→E · −→s
= −

where  is the component of the electric field in the ŝ direction. We can rearrange this

 = −


This tells us that the magnitude of our field is the change in electric potential. Of

course,
−→
E is a vector and  is not. So the best we can do is to get the magnitude of the

component in the −→s direction.

We can try this out on a geometry we know, say, a point charge along the -axis
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We know the potential will be

 =
1

4




and we know the field is −→

E =
1

4



2
r̂

then we can try

 = −


= − 



1

4





=
1

4



2

Since  in the  direction is just  this is just what we expected!

Let’s try another. Let’s find the electric field due to a disk of charge along the axis. We

have done this problem before. We know the field should be

 = 2

µ
1− √

2 + 2

¶
(14.1)

and in the previous lectures we found the potential to be

 =


2

³p
2 + 2 − 

´
(14.2)

Now can we find the electric field at  from  ? Let’s start by finding the −component
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of the field, 

 = −


(14.3)

= − 



µ


2

³p
2 + 2 − 

´¶
(14.4)

= − 





2

p
2 + 2 − 


2 (14.5)

= − 

2





p
2 + 2 + 2 (14.6)

= − 

2

√
2 + 2

+ 2 (14.7)

 =


2

µ
1− √

2 + 2

¶
(14.8)

or

 = 2

µ
1− √

2 + 2

¶
(14.9)

But remember that this situation is highly symmetric. We can see by inspection that all

the  and  components will all cancel out. So this is our field! And it is just what we

found before.

We can graph these functions to compare them (what would you expect?). To do this

we really need values, but instead, let’s play a clever trick that some of you will see in

advanced or older books. I am going to substitute in place of  the variable  = 



Then

 = 2

³p
2 + 2 − 

´
= 2

Ãr
1 +

2

2
− 



!
= 2

³p
1 + 2 − 

´
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and

 = 2

µ
1− √

2 + 2

¶
(14.10)

= 2

⎛⎝1− 



q
1 + 2

2

⎞⎠
= 2

⎛⎝1− 



q
1 + 2

2

⎞⎠
= 2

⎛⎝1− 
q
1 + 2

2

⎞⎠
= 2

µ
1− √

1 + 2

¶
Both my equation for  and for  now are in the form of a set of constants times a

function of 

 = 2

³p
1 + 2 − 

´
= 2 ()

 = 2

µ
1− √

1 + 2

¶
= 2 () (14.11)

If I plot  in units of 2 (the constants out in front) I can see the shape of the

curve. It is the function of () I can compare this to  in units of 2 The shape

of  will be  ()  Of course we are plotting terms of 

0 2 4 6
0.0

0.5

1.0

u

Strange Units

Now we can ask, is this reasonable? Does it look like the -field (red dashed line) is

the right shape for the derivative of the potential (solid green line)? It is also comforting

to see that as  (a function of ) gets larger the field falls off to zero and so does the

potential as we would expect. When  (green solid curve) has a large slope,  is a
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large number (positive because of the negative sign in the equation

 = −


and when  is fairly �at,  is nearly zero. Our strategy for finding  from  seems to

work.

Geometry of field and potential

You should probably worry that so far our equation

 = −


is only one dimensional. We know the electric field is a three dimensional vector field.

We may find situations where we need two or three dimensions. But this is easy to fix.

Our equation

 = −


gives us the field magnitude along the ŝ direction. Let’s choose this to be the x̂

direction. Then

 = −


is the -component of the electric field. Likewise

 = −


 = −


The total field will be the vector sum of it’s components
−→
E = ̂+ ̂+k̂

= −


̂−


̂−

k̂

which we can cryptically write asQuestion 223.33.1

Question 223.33.2 −→
E = −

µ



̂+




̂+




k̂

¶


The odd group of operations in the parenthesis is call a gradient and is written as
−→∇ =

µ



̂+




̂+




k̂

¶
using this we have −→

E = −−→∇

which is how the relationship is stated in higher level electrodynamics books. But what

does it mean?

The gradient is really kind of what it sounds like. If you go down a steep grade, you

will notice you are going down hill and will notice if you are going down the steepest
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part of the hill. The gradient finds the direction of steepest decent. That is, the direction

where the potential changes fastest. This is like looking from the top of the hill and

taking the steepest way down! Our relationship tells us that the electric field points in

this steepest direction, and the minus sign tells us that the electric field points down

hill away from a positive charge, never up hill (think of the acceleration due to gravity

being negative). Let’s see if this makes sense for our geometries that we know.Stamp in a circle:
mimic a blindfolded
person swiveling on
one foot and testing
the slope with the
other

Here is our capacitor. We see that indeed the field points from the high potential to the

low potential. The steepest way “down the hill” is perpendicular to the equipotential

lines.

We also know the shape of the field for a dipole. The equipotential lines we have seen

before.
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But now we can see that the field lines and equipotential lines are always perpendicular

and the field points “down hill.” The meeting of the field and equipotential lines at right

angles is not a surprise. Think again about our mountain

Map courtesy USGS, Picture is in the Public Domain.

The steepest path is always perpendicular to lines of equal potential energy.

We should try another example of finding the field from the gradient. Suppose we have

a potential that varies as

 = 32 + 2

I don’t know what is making this potential, but let’s suppose we have such a potential.

It would look like this.

x
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what is the electric field? −→
E = −−→∇

or −→
E = −

µ



̂+




̂+




k̂

¶


so −→
E = −

µ



̂+




̂+




k̂

¶¡
32 + 2

¢
−→
E = −

µ
̂




¡
32 + 2

¢
+ ̂





¡
32 + 2

¢
+k̂





¡
32 + 2

¢¶
= −

µ
̂ (6+ 2) + ̂




(2)+0

¶
This example shows how to perform the operation, but it does not give much insight.

We have learned to work with our standard charge configurations, and this is really not

one of them. So we don’t have much intuitive feel for this electric field that we found.

To gain more insight, let’s change back to one of our standard configurations. let’s

return to finding the point charge field from the point charge potential. The potential for

a point charge is

 =
1

4




And of course we know that the field is

 =
1

4



2
r̂

but we want to show this using −→
E = −−→∇

So
−→
E = −

µ



̂+




̂+




k̂

¶


= −
µ




̂+




̂+




k̂

¶
1

4





but we know in Cartesian coordinates

 =
p
2 + 2 + 2
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so
−→
E = −

µ



̂+




̂+




k̂

¶
1

4

p
2 + 2 + 2

= − 

4

µ



̂+




̂+




k̂

¶
1p

2 + 2 + 2

= − 

4

Ã
− 

(2 + 2 + 2)
3
2

̂− 

(2 + 2 + 2)
3
2

̂− 

(2 + 2 + 2)
3
2

k̂

!

=


4

³
̂+ ̂+ k̂

´
(2 + 2 + 2)

3
2

=


4

³
̂+ ̂+ k̂

´
(2 + 2 + 2)

p
(2 + 2 + 2)

=
1

4



2

³
̂+ ̂+ k̂

´
p
(2 + 2 + 2)

=
1

4



2
r̂

but really, this is a bit of a mess, we don’t want to do such a problem in rectangular

coordinates. We could write∇ in spherical coordinates (something we won’t derive

here, but you should have seen in M215 or M316).
−→∇ = r̂




+ θ̂

1






+ φ̂

1

 sin 





Let’s try this out on our point charge potential. We have
−→
E = −

µ
r̂



+ θ̂

1






+ φ̂

1

 sin 





¶


= −
µ
r̂



+ θ̂

1






+ φ̂

1

 sin 





¶
1

4





= − 

4

µ
− 1
2
r̂+ 0 + 0

¶
=

1

4



2
r̂

just as we expected. But this time the math was much easier. If we can, it is a good idea

to match our expression for
−→∇ to the geometry of the system. A good vector calculus

book or a compendium of math functions will have various versions of
−→∇ listed.

Conductors in equilibrium again
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Question 223.33.3

We know that there is no field inside a conductor in electrostatic equilibrium, but we

should ask what that means for the electric potential. To build circuits or electronic

actuators, we will need to know this. Let’s start again with

∆ = −
Z 



E · s (14.12)

and since the field  = 0 inside the conductor, then inside

∆ = 0 (14.13)

On the surface we see that there is a potential, since there is a field. If we take our

spherical case,

and observe the potential as we go away from the center, we expect the potential to be

constant up to the surface. Then as we reach the surface, we know from Gauss’ law that

the field will be

 =
1

4



2

like a point charge, so the potential at the surface must be

 =
1

4




where  =  the radius of our sphere. As we move into the sphere from the surface,

the potential must not change. The interior will have the potential

 =
1

4




(14.14)
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Outside, of course, the potential will drop like the potential due to a point charge. We

expect

 =
1

4




(14.15)

For a sphere of radius  = 05m carrying a charge of 0000002C (about what our van

de Graaff holds) we would have the situation graphed in the following figure:

This is an important point. For a conductor, the electric potential everywhere inside the

conductive material is exactly the same once we reach equilibrium. This is just what we

want for capacitors or electrodes or electrical contacts in circuits.

Non spherical conductors

The field is stronger where the field lines are closer together. One way to describe this

is to use a radii of curvature. That is, suppose we try to fit a small circle into a bump on

the surface of a conductor.

RR
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In the figure there are two bumps shown with circles fit into them. The bump on the

right has a much smaller radius circle than the one on the left. The radius of the circle

that fits into the bump is the radius of curvature of the bump. From what we have said,

the bump on the right will have a much stronger field strength near it than the bump on

the left.

Where there is a lot of charge on a conductor, and the field is very high, electrons

from random ionizations of air molecules near the conductor are accelerated away

from the conductor. These electrons hit other atoms, ionizing them as well. We get a

small avalanche of electrons. Eventually the electrons recombine with ionized atoms,

producing an eerie glow. This is called corona discharge. It can be used to find faults in

high tension wires and other high voltage situations.Coronal Discharge
Clips

Cavities in conductors

Suppose we have a hollow conductor with no charges in the cavity. What is the field?

We know from using Gauss’ law what the answer should be, but let’s do this using

potentials.

All the parts of the conductor will be at the same potential. So let’s take two points, 

and  and compute

 −  = −
Z 



E · s
We know that  −  = 0 because  must be the same as  So for every path, 

we must have

−
Z 



E · s = 0
We can easily conclude that  must equal zero.

So as long as there are no charges inside the cavity, the cavity is a net field free zone.
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It is often much easier to find the potential, and from the potential, find the field.

Much of the study of electrodynamics uses this approach. This is because it is more

straight-forward to differentiate than it is to integrate. Some of you may use massive

computational programs to predict electric fields. They often use differential equations

in the potential to find the field rather than integral equations to find the field directly.

Basic Equations





15 Capacitance

Fundamental Concepts

• The charge on a capacitor is proportional to the potential difference  = ∆

• The constant of proportionality is called the capacitance and for a parallel plate
capacitor, it is given by  = 




• In parallel capacitors capacitances add  = 1 + 2

• In series capacitors capacitances combine as 1


= 1
1
+ 1

2

Capacitance and capacitors

Consider the following design for a pump-tank system.

This is may not be an optimal design. At first there is no problem, water �ows into the

upper tank just fine. But once the upper tank begins to fill, the water already in the



210 Chapter 15 Capacitance

upper tank will make it harder to pump in more water. As the tank fills, the pressure at

the bottom increases, and it takes more work for the pump to overcome the increasing

pressure.

Something analogous happens when a capacitor is connected to a battery.

At first the charge is free to �ow to the plates, but as the charge builds, it takes more

work to bring on successive charges.

The charges repel each other, so the charge already on a capacitor plate repels the new

charge arriving from the battery. The repelling force gets larger until finally the force

repelling the charge balances the force driving the charge from the battery and the

charge stops �owing onto the capacitor.

A capacitor is made from two plates. For us, let’s assume they are semi-infinte sheets

of charge. Of course this is not exactly true, but it is not too wrong near the center of

the plates. And we know quite a lot about semi-infinate sheets of charge because they
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are one of our standard change configurations. We know the field for each sheet is

 =


2
and that for two sheets, one with + and one with − the field in between will be

 =


2
We also know the potential difference between the two plates is just

∆ = 

where  is our electric field and  is the capacitor spacing.

We can guess that we will build up charge until the potential energy difference of the

capacitor is equal to the potential energy difference of the battery

∆ = ∆

because at that point the forces causing the potential energy will be equal.

We can write our electric field between the two plates as

 =



=




so

∆ =





Then the potential difference is directly proportional to the charge. I want to switch this

around, and solve for the amount of charge.

 =

µ




¶
∆

Since all the terms in the parenthesis are constants, we could replace them with a

constant, 

 = ∆ (15.1)

where

 =



 (15.2)

is a constant that depends on the geometry and construction of the plates. This

equation tells us that if we build two different sets of plates, say, one circular and one

triangular, and we give them the same potential difference (say, connect them both to

12V batteries) then, if both have the same construction constant  they will carry the

same charge even though their size and shape are different. We can reduce the burden

of calculation of how much charge a capacitor can hold but asking the person who

manufactured it to calculate the construction constant and mark the value on the outside

of the capacitor. Different capacitors may be constructed differently (different  or 

values) but so long as the construction constant,  is the same, the charge amount for a

given voltage will be the same.Question 223.34.1
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The electronics field gives this construction constant a name, capacitance.

 =


∆
(15.3)

The capacitance will have units of CV but we give this a name all it’s own, the Farad

( F)  A Farad is a very large capacitance. Many capacitors in electronic devices are

measured in microfarads.Question 223.34.2

Question 223.34.3

Question 223.34.4 Capacitors and sources of potential

Consider what happens when we connect our two parallel plates to the terminals of

a battery. Assuming the plates are initially uncharged, charge �ows from the battery

through the conducting wires and onto the plates. Recall that for a metal, the entire

surface will be at the same potential under electrostatic conditions. The charge carriers

supplied by the battery will try to achieve electrostatic equilibrium, so we expect the

plate that is connected to the positive terminal of the battery to eventually be at the

same potential as the positive battery terminal. Likewise for the negative terminal and

the plate connected to it.

We can even use our capacitor as a source of electrical power. A camera �ash uses ca-

pacitors to make the burst of light that illuminates the subject of your photo. In ME210

you should have studied RC circuits, so you will understand that the battery is used to

charge the capacitor and then a switch is thrown to allow the charge to quickly leave

through a different circuit, making the �ash.

Camera �ash unit (Public Domain image by Julo)

Single conductor capacitance

Physicists can’t leave a good thing alone. We often calculate the capacitance of a single
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conductor! If the geometry is simple we can easily do this. It is not immediately

obvious that a single conductor should even have a capacitance, so it might be a

problem if you forget this in a design problem for an unusual device.

As an example, let’s take a sphere. We will assume there is a spherical conduction shell

that is infinitely far away. This configuration gives exactly the same field lines that the

charged sphere gives on it’s own, but the mental picture is helpful. The imaginary shell

will give  = 0 (we set our zero potential at  =∞). The potential of the little sphere

we know must be just like the potential of a point charge if we are outside of the sphere

 = 



for  = , the radius of our little sphere. Then

∆ = 



− 0 = 




so

 =


∆
=







=



= 4 (15.4)

This is the capacitance of a single sphere. Note that  only depends on geometry! not

on  just as we would expect.

But why would we care? If you have taken ME210 you know about RC circuits. This

says that even if we just connect a ball to, say, the positive terminal of a batter, that

there will be some capacitance. This capacitance will limit the �ow of charge to the

ball. So it will take time to charge even a single conductor. This is always true when a

device is initially connected to a power source. Often we can ignore such “transient”

effects because the charging times are still small. But in special cases, this may not be

possible because the changing voltage or charge could damage sensitive equipment. So

although this is rarely a problem, it is good to keep in the back of our minds.

Capacitance of two parallel plates

The capacitance of single conductors is profound, but more useful to us in understanding

common electronic components is the parallel plate capacitor. We found that for

parallel plates we also had only geometry factors in the capacitance. Of course, there

are other shapes possible. Let’s see if we can reason out how the capacitance depends

on the geometry.

Plate area

Since the charge will tend to separate to the surface of a conductor, we might expect
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that if the surface area increases, the amount of charge that the capacitor can hold might

increase as well. We see this in our equation for the parallel plate capacitor.

 =





Plate separation

We also see that it matters how far apart the plates are placed. The greater the distance,

the less the capacitance. This makes some sense. If the plates are farther apart, the

Coulomb force is weaker, and less charge can be held in the capacitor, because the force

attracting the charges (the force between the charges on the opposite plates) is weaker.

Capacitance of a cylindrical capacitor

We should try some harder geometries. A cylindrical capacitor is a good case to start

with

(you will do a sphere in the homework problems). We want to find the capacitance

of the cylindrical capacitor. Our strategy will be to find the voltage difference for the

capacitor and the amount of charge on the capacitor, and then divide to find 

 =


∆

Let’s begin with our equation relating potential change to field.

 −  = −
Z 



Ẽ · s̃ (15.5)

Let’s assume that there is a linear charge density,  along the cylinder with the center
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positive and the outside negative. Then

Φ =

I
Ẽ · Ã (15.6)

where I will choose a Gaussian surface that is cylindrical around the central conductor.

This is nice, since the field will be radially out from the conductor (ignoring the

end effects) and so no field will pass through the end caps of the Gaussian surface

(Ẽ · Ã = 0 on the end caps). Moreover, the field strikes the surface at right angles

(Ẽ · Ã =  on the side of the cylinder), and will have the same magnitude all the

way around so

Φ = 

I


= 

Now we know from Gauss’ law that

Φ =



where

 = 

and where  is the height of our Gaussian surface, so

Φ =



= 2



2
= 

Now, knowing our field, and taking a radial path from  to , we can take

 −  = −
Z 





2
r

= − 

2

Z 



1


r

= − 

2
ln

µ




¶
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Using this, we can find the capacitance, We have a negative value for ∆ but this is

just due to our choice of making the center of the concentric cylinders positive and

the outside negative. We chose the zero point on the positive center. The amount of

potential change going from  to  is just |∆ |  Then in finding the capacitance using

 = ∆

we want just the value of∆ so we will plug in the absolute value of our result.

|∆ | = 

2
ln

µ




¶
Then, solving for  gives

 =


∆

=



2

ln
¡



¢
=




2
ln
¡



¢
=

2

ln
¡



¢
Wow! That was fun! But more importantly, this is a coaxial cable geometry, and we

can see that coaxial cable will have some capacitance and that that capacitance will

depend on the geometry of the cable including its length and width. This capacitance

can affect signals sent through the cable. If you have taken ME210 and have considered

RC circuits, you can see why.

Increasing amounts of distortion in a signal due to increasing cable capacitance.

The nice square pulses that represent digital data will be distorted, and in extreme cases,

undetectable. When designing data lines, this capacitance of the cable must be taken

into account.

Combinations of Capacitors
Question 223.34.5

We don’t want to have to do long calculations to combine capacitors that we buy
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+
-

Capacitor

Battery

+
-

+
-

Capacitor

Battery

Figure 15.6.

from an electronics store. It would be convenient to come up with a way to combine

capacitors using a simple rule.

We need a simple way to write capacitors in our homework problem drawings, here are

the usual symbols for capacitor and battery. Using these symbols, let’s consider two

capacitors as shown below.

Remember that a conductor will be at the same potential over all of its surface. If we

connect the capacitors as shown then all of the left half of this diagram will be at the

positive potential of the battery terminal. Likewise, the right side will all be at the same

potential. It is like we increased the area of the capacitor 1 buy adding in the area of
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+
-

C1 C2

+
-

+
-

+
-

C1 C2

Figure 15.7.

capacitor 2

 =
1 +2


 =

1


 +

2




So we may write a combined capacitance for this set up of

 = 1 + 2 (15.7)

We call this set up a parallel circuit. This means that each of the capacitors are hooked

directly to the terminals of the battery.

But suppose we hook up the capacitors as in the next drawingNow we expect the left

hand side of 1 to be at the positive potential of the positive terminal of the battery. We

expect the right side of 2 to be at the same potential as the negative side of the battery.

What happens in the middle?

We can see that we will have negative charge on the right hand plate of 2 and positive

charge on the left plate of 1 This must cause there to be a positive charge on the right

plate of 1 and a negative charge on the left plate of 2 Moreover, all the charges will

have the same magnitude. That means each of the plates will have a potential difference

∆1 =


1
and

∆ 2 =


1

But the total potential difference is∆ of the battery, then

∆ = ∆1 +∆2

We can again define an equivalent capacitance.

∆ =



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then

∆ = ∆1 +∆2




=


1
+



2
The s are all the same. So

1



=
1

1
+
1

2
(15.8)

We call this type of set up a series circuit.

Now after all this you might ask yourself how to know the capacitance of the parts you

buy to build things. They are designed by engineers and tested at the factory, and the

capacitance is usually printed on the side of the device. You can, of course, devise a test

circuit based on what we have learned that could test the capacitance.

Basic Equations
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Fundamental Concepts

• Dielectrics and capacitors

• Microscopic nature of electric current

• Current direction is defined as the direction positive charges would go, regardless of
the actual sign of the charge.

• In a capacitor, the stored energy is  = 1
2
∆ 2

• The energy density in the electric field is  = 1
2


2

Energy stored in a capacitor

We have convinced ourselves that∆ is the change in potential energy per unit charge,

so when a capacitor is charged, and the wires connecting it to the battery are removed,

is there potential energy “stored” in the capacitor? The answer is yes, and we can see

it by considering what would happen if we connected a wire (no battery) between the

two plates. Charge would rush from one plate to the other. This is like storing a tank of

water on a hill. If we connect a pipe from the tank at the top of the hill to a tank at the

bottom of the hill, the water will rush through the pipe to the lower tank.

BE CAREFUL, you are enough of a conductor that by touching different ends of a

capacitor you could create a serious current through your body. The capacitors in

computer monitors or TV sets can store enough charge to kill you!

But how do we know how much energy is there? Clearly it must be related to the

amount of energy it takes to move the charge onto the plates. By analogy, the energy

stored in the water was the minimum amount of energy it took to pump the water to the

upper tank () It is the minimum, because our pipes might have some resistance,

and then we would have to include more work to overcome the resistance.

But for a capacitor it is a little bit more tricky. When the capacitor is not charged, it
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takes no work (or very little) to move charge from one plate to the other. But once there

is a charge there is an electric field between the plates (think of my poorly designed

water storage system from the beginning of last lecture). This creates a potential

difference. And we must fight against this potential difference to add more charge. This

is sort of like transferring rocks up a hill. The more rocks that we carry, the higher the

hill gets, and the more work it takes to bring up more rocks.

From our formula

 =  ( − )

we can see that if we have just a small amount of charge, ∆ we will have a small

amount of work

∆ = ∆∆

to move it onto the capacitor. Note! here ∆ is a small amount of charge, and ∆ is

 − . We have used ∆ in two different ways in the same equation. If we start with

no charge, then go in small ∆ steps, we would see a potential rise as shown in the

graph below.

The quantity∆∆ is the area of the shaded (e.g. green) rectangle. So∆ the work

it took to add ∆ to the capacitor, is given by the area of a rectangle under a stair-step

on our graph. The shaded rectangle is just one of many rectangles in the graph. The

stair-shape comes from the fact that every time we deliver a ∆ package of charge to

the capacitor, it makes the potential a little higher. It takes more work to bring in the

next package of charge,∆

From our basic equation

 = ∆
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we can write, ,for our small bit of charge,∆

∆ =
∆


As∆ gets small we can go to a continuous charge model

∆ = ∆∆

We can replaced the small unit of charge∆ with a continuous variable to obtain

 =  (∆ )

Recall that

∆ =



so we can write  as

 = 
³ 


´
 =

1




Of course, we will integrate this

 =

Z 

0

1




 =
1



Z 

0



=
2

2
(16.1)

or sometimes using

 = ∆

this is written as

 =
1

2
∆ 2 (16.2)

There is a limit to how much energy we can store. That is because even air can conduct

charge if the potential difference is high enough. We call this air conduction a spark or

coronal discharge. At some point charge jumps from one plate to another through the

air in between. If the potential difference is very high, the Coulomb force between the

charges on opposite plates will force charge to leave one plate and jump to the other

even if there is no air!Question 223.34.6

Question 223.34.7

Field storage

We usually consider the energy stored in the capacitor to be stored in the electric field.

The field is proportional to the amount of charge and related to the potential energy, so

this seems reasonable. Let’s find the potential energy stored in the field in the capacitor.
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Recall for an ideal parallel plate capacitor

∆ = 

and

 = 



We assume that energy provided by the work to move the charges on the capacitor is all

stored as potential energy, so

 =
1

2
∆ 2 (16.3)

then

 =
1

2

µ





¶
()

2

=
1

2


2

We often define an energy density

 =



In this case the volume  is just  so

 =
1

2


2 (16.4)

This is the density of energy in the electric field. It turns out that this is a general

formula (not just true for ideal parallel plate capacitors).

This is a step toward our goal of showing that electric fields are a physically real thing.

They can store energy, so they must be a real thing.

Dielectrics and capacitors
Question 223.35.1

We should ask ourselves a question about our capacitors, does it matter that there is air

in between the plates? For making capacitors, it might be convenient to coat two sides

of a plastic block with metal and solder wires to the coated sides. Does the plastic have

an effect?

Plastic is an insulator, and another name for “insulator” is dielectric. If we perform

the experiment, we will find that when a dielectric is placed in the plates, the potential

difference decreases!
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We are lucky, though, from experimentation we have found that it seems to decrease in

a nice, linear way. We can write this as

∆ =
∆


(16.5)

where  is a constant that depends on what material we choose as our dielectric13. But

what is happening?

The plates of the capacitor are becoming charged. These charges will polarize the

material in the middle.

13 This symbol  is the greek letter “kappa.”
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Notice how the polarized molecules or atoms sill have a net zero charge in the middle,Question 223.35.2

but on the ends, there is a net charge. It is like we have oppositely charged plates nextUbalanced Handed-
ness Demo, Stick
out your hands, one
side of room has
extra left hands,
one side extra right
hands

to our capacitor plates. That reduces the net charge seen by the capacitor, and so the

potential difference is less. There is effectively less separated charge.

Question 223.35.3

But since our capacitor is not connected to a battery or any other electrical device, the

amount of actual charge on the capacitor plates can’t have changed, so if ∆ changed,

but  did not , then since

 = ∆

we suspect the material properties part, or the capacitance must have changed.

 =


∆
=



∆


=


∆

but this is just

 =  (16.6)

For a parallel plate capacitor, we have

 = 



(16.7)

So where do you find values for ? For this class, we will look them up in the tables in
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books or at manufacturer’s web sites. Here are a few values for our use.
Material  Material 

Vacuum 100000 Paper 37

Dry Air 10006 Waxed Paper 35

Fused quartz 378 Polystyrene 256

Pyrex glass 47− 56 PVC 34

Mylar 315 Te�on 21

Nylon 34 Water 80

Induced Charge

In the last discussion we discovered that if we put a dielectric inside a capacitor, we end

up with polarized charges with the net result that there will be excess negative charge

near the positive plate of the capacitor, and excess negative charge near the positive

plates of the capacitor. In the middle of the dielectric, the charges are polarized in each

atom. But still, for any volume inside, the net charge is zero. The excess charge near

each plate we will call the induced charge.

Since we have an induced positive charge on one side and an induced negative charge

on the other side, we expect there will be an electric field directed from the positive to

negative charge inside the dielectric.

Let’s attempt to find the induced charge density on the dielectric. The total field inside

the dielectric is

 =  − (16.8)
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where  is the field due to the capacitor plates. From our previous discussion, we

recall that

∆ =
∆


and we recall that the magnitude of the potential difference is given by

∆ = 

Then our new net field can be found

 =



or

 =



and, recalling for a parallel plate capacitor (near the center) the field is approximately

 =



then

 =  −

gives



=




− 


and we can find the induced surface charge density as

 = 

µ
1− 1



¶
You might guess that the induced charge is attracted to the charge on the plates, so a

force is required (and work is required) to remove the dielectric once it is in place. If

we draw out the dielectric, we can see that the weaker field outside the capacitor causes

little induced charge, but the stronger field inside the capacitor causes a large induced

charge. A net inward force will result.

Electric current
Question 223.35.4

Question 223.35.5
For some time now, we have been talking about charge moving. We have had charge
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move from a battery to the plates of a conductor. We have had charge �ow from one

side to another of a conductor, etc. It is time to become more exact in describing the

�ow of charge. We should take some time to figure out why charge will move.

Let’s consider a conductor again.

We remember that in the conductor, the valance electrons are free to move. In fact, they

do move all the time. The electrons will have some thermal energy just because the

conductor is not at absolute zero temperature. This thermal energy causes them to move

in random directions. (think of air molecules in a room).

Let’s take a piece of a wire ∆ long. The speed of the electrons along the wire (in the

-direction in this case) is called the drift speed,  because the electrons just drift from

place to place with a fairly small speed. This drift speed could be due mostly to thermal

energy, so it can be very small or even zero (if no electric potential is applied). Of

course,  must be an average, each charge carrier will be moving random directions

with slightly different speeds, so the -component of the velocity will be different for

each charge carrier, but on average they will move at a speed 
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So we will suppose that there are charge carriers of charge  that are moving through

the wire with velocity  Then we can write some length of wire,∆ as

∆ = ∆

The volume of the shaded piece of wire is

V = ∆

if there areQuestion 223.35.6

 =
#

V
charge carriers per unit volume, a volume charge carrier number density, then the total

charge in our volume is

∆ = ∆

If we have electrons as our charge carrier, then  is just 

We can substitute for∆

∆ = ∆

This gives the charge within our small volume. But it would be nice to know how much

charge is going by, because we want moving charge. We can divide by∆

∆

∆
=  (16.9)

to get a charge �ow rate. This is very like our volume or mass �ow rate in �uid �ow.

We have an amount of charge going by in a time∆

I gave the �ow velocity a special name,  But I did not give all the reasons for using

an average -component of the velocity. But if we think about it, we will realize that

the electrons don’t really �ow in a straight line. They continually bump into atoms14.

So the actual path the electrons take looks more like this.

vdvd
We only care about the forward part of this motion. It is that forward component that

we call the drift speed of the electrons. It is much slower than the actual speed the

14 We will refine this picture in the next lecture.
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electrons travel, and it depends on the type of conductor we are using.

We already know the name for the �ow rate of charge, it is the electric current.
∆

∆
=  (16.10)

We should take a minute to think about what to expect when we allow charge to �ow.

Think of a garden hose. If the hose is full of water, then when we open the faucet, water

immediately comes out. The water that leaves the faucet is far from the open end of the

hose, though. We have to wait for it to travel the entire length of the hose. But we get

water out of the hose immediately! Why? Well, from Pascal’s principle we know that a

change in pressure will be transmitted uniformly throughout the �uid. This is like your

hydraulic breaks. The new water coming in causes a pressure change that is transmitted

through the hose. The water at the open end is pushed out.

Current is a little bit like this. When we �ip a light switch, the electrons near the near

the switch start to �ow at  But there are already free electrons in all the wire. These

experience a Pascal’s-principle-like-push that makes the light turn on almost instantly.Question 223.35.7

There is a historical oddity with current �ow. It is that the current direction is the

direction positive charges would �ow. This may seem strange, since in good conductors,

we have said that electrons are doing the �owing! The truth is that it is very hard to tell

the difference between positive charge �ow and negative charge �ow. In fact, only one

experiment that I know of shows that the charge carriers in metals are electrons.
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That experiment accelerates a conductor. The experiment is easier to perform using a

centrifuge, but it is easier to visualize with linear motion. If we accelerate a bar of metal

as shown in the preceding figure, the electrons are free to move about in the metal but

the nuclei are all bound together. If the nuclei are accelerated they must go as a group.

But the electrons will tend to stay with their initial motion (Newton’s first law) until

the end of the bar reaches them. At this point they must move because the electrical

force of the mass of nuclei will keep them bound to the whole mass of metal. But the

electrons will pile up at the tail end of the bar–that is–if it is the electrons that are free.

When this experiment is performed, it is indeed the electrons that pile up at the tail end,

and the forward end is left positive. This can be measured with a voltmeter.

Ben Franklin chose the direction we now use. He had a 50% chance if getting the

charge carrier right. All this shows just how hard it is to deal with all these things we

can’t see or touch. And even more importantly, in semiconductors and in biological sys-

tems, it is positive charge that �ows. In many electrochemical reactions both positive

and negative charges �ow. We will stick with the convention that the current direction

is the direction that positive charges would �ow regardless of the actual charge carrier

sign.

Flow of positive charge through a gate into a neural cell.
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Basic Equations

Voltage if a dielectric is placed between the plates of the capacitor(equation 16.5)

∆ =
∆



Capacitance increases (equation 16.5)

 = 

For parallel plate capacitors we get

 = 




The induced field in a dielectric is (equation 16.8)

 =  −

Current is the rate of charge �ow (equation 16.10)
∆

∆
= 

Definition of current (equation 16.9)

 = 





17 Current, Resistance, and
Electric Fields

Fundamental Concepts

• There is a nonconservative (friction-like) force involved in current �ow called
resistance.

• A nonuniform charge distribution creates an electric field, which provides the force
that makes current �ow

• Current �ow direction is defined to be the direction positive charge carriers would
go

• The current density is defined as  = 

• Charge is conserved, so in a circuit, current is conserved.

• The material property of a conductor that tells us how well the conductor material
will allow current to �ow through it is called the conductivity

• The inverse of conductivity is the resistivity

• Resistivity may be temperature dependent

• Resistance depends on the resistivity of the material and the geometry of the
conductor piece. For a wire it is given by  = 

• For many conductors, the change in voltage across the conductor is proportional to
the current and the resistance. This is called Ohm’s law

• The ideal voltage delivered by a battery is called the “emf” and is given the symbol
E

• Some materials do not follow Ohm’s law. They are called nonohmic

Current and resistance
Question 223.36.1

We now have �owing charges, but our PH121 or Dynamics experience tells us that

there is more. If we push or pull an object, we expect that most of the time there will be

dissipative forces. There will be friction.
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We should ask, is there a friction involved in charge movement? We already know howQuestion 223.36.2

to push a charge, we use an electric field
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The force is

 = 

If we push or pull a box, it will eventually come to rest. In our capacitor there are no

resistive forces for our charge to encounter. But suppose we place a conductor inside

our capacitor, hooked to both plates
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Of course, in conductors we now know the charge carrier is an electron and it is

negative, so let’s try to redraw this picture to show the actual charge motion.Question 223.36.3

Now the charge is free to move inside of the conductor, but it is not totally

unencumbered. The free charges will run into the nuclei of the atoms. The charges

will bounce off. So as they travel through the material we will expect to see some

randomness to their motion. This is compounded by the fact that the electrons already

have random thermal motion. So the path the charge takes looks somewhat like this

We can recognize that each path segment after a collision must be parabolic because the

acceleration will be constant

 =  = 
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so

 =



we can describe the electron motion using the two of the kinematic equations

 =  + ∆+
1

2

µ




¶
∆2

 =  + ∆

Which we reccognize as a parabolic path.

Of course, this is just for one electron, and only for a segment between collisions. We

will have millions of electrons, and therefore, many millions of bounces. But for each

electron, between bounces we expect a parabolic path. For considering current �ow, we

don’t care about motion perpendicular to the current direction. So we can look only at

the component of the motion in the �ow direction. The net �ow in the current direction

is toward the positive plate. Let’s see how this works.Question 223.36.4

If we average the velocities of all the electrons we find

 = ̄

= ̄ + ∆̄

the first term ̄ = 0 because the initial velocities are random from the thermal and

scattering processes. That is, on average, the electrons have no preferred direction after

a bounce. This leaves

 =

µ




¶
∆̄

The average time between collisions, ∆̄, is sometimes given the symbol   Let’s use

this. Recall that current is

 = 

Then, if we rearrange our equaton for 

 =
³


´


we can write our current equation as

 = 
³


´


We have shown that the current is directly proportional to the field inside the conductor.

It is this field that causes the charges to �ow. We are right back to an environment

(field) and mover charges (electrons)!Question 223.36.5

But let’s look even closer. Suppose we connect our two plates with a wire instead of

filling their gap with a conductor. If current �ows through the wire, there must be a

field in the wire. But how does it get started?
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This figure is supposed to show our wire connected to the capacitor. The capacitor is in

the background, and the wire loops close to us. The end of the wire that is connected to

the positive side of the capacitor will become positively charged, and the end connected

to the negative side of the capacitor will become negatively charged. But if we look at

the wire an infinitesimal time after the connection has happened, the wire will not be

uniformly charged. It will take some time for the charges to reach equilibrium (if you

have taken ME210, think of RC circuits). In the mean time, the charge is stronger near

the plates, and diminishes toward the middle.

We can’t find the exact field in the conductor without resorting to a computational solu-

tion, but we can mentally model the situation by viewing the wire as consisting of rings

of charge that vary in surface charge density. We know the field along the axis due to a

ring of charge because we have done this problem in the past.

−→
E =

1

4



(2 + 2)
3
2

k̂
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We know the field is along the axis and that it diminishes with distance from the ring.

Now consider the field due to ring 1 As we move to the right, away from ring 1 that

field will diminish with distance. Also consider the field due to ring 2 As we move to

the right toward ring 2 the field due to ring two will grow. The field due to ring two

grows at the same rate that the field from ring 1 diminishes. The fields 1 and 2 add

up to a constant value along the axis for every point in between the two rings. Now

consider the field on the right side of ring 2 and the field on the left side of ring 3. A

little thought shows that the situation is the same as that for rings 1 and 2. We will have

a constant net field between the two rings.

Likewise for the region between rings 3 and 4 There is a constant net electric field at

all points along the wire. This field points from positive to negative. It will exert a force

 = 

on the free charges inside the wire. These free charges are not extra charge. They are

the free electrons that are loosely attached to the metal atoms that make up the wire. So

these free charges are distributed throughout the volume of the wire. These free charges

will accelerate, forming a current inside the wire.

Note that these free charges are not just on the surface, they are inside the wire, even

on the axis of the wire in the center. We no longer have a static equilibrium, so we no

longer have excess charge only on the surface.

All this usually happens very fast, so when we switch on a light, we don’t notice the

time it takes for the current to start. But this uneven distribution of charge is the reason

we get a current.
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Current density
Question 223.36.6

We now realize that when there is an electric field inside a wire, there will be current

�ow inside the wire. The �ow goes through the volume of the wire.

The rate of �ow is given by

 =
∆

∆
= 

µ




¶


for steady current �ow. Here we are writing  =  for the electron charge and  = 

for the electron mass, since our charge carrier is an electron..

The unit for current �ow is
C

s
= A

where A is the symbol for an Ampere or, for short, an amp.Question 223.36.7

Historically there was no way to tell whether negative charges were �owing or whether

positive charges were �owing. It really did not matter so much in the early days, since a

�ow of positive charges one way is equivalent to a �ow of negative charges the other

way.

Worse, we know that for some systems there are positive charge carriers and for others

negative charge carriers.
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By convention, we assign the direction of current �ow as though the charge carrier

were positive.

This is great for biologists, where the charge carriers are positive ions. But for

electronics this gives us the uncomfortable situation that the actual charge carriers,

electrons, move in the direction opposite to that of the current.

Let’s look again at our definition of current

 =
∆

∆
= 

µ




¶


If we, once again, write this in terms of 

 =
³


´


then after rearranging, we have

 = ()

the part in parentheses contains only bulk properties of the conductor material, theQuestion 223.36.8

number of free charges, the charge of the charge carrier, and the drift speed which

depends on the material structure of the conductor. The final factor is just the cross

sectional area of the wire. It gives the geometry of the wire we have made out of the

bulk material (say, copper). It is convenient to group all the factors that are due to bulk

material properties

 = 

then the current would be

 = 

Note how similar this is to a surface charge density

 = 

For a static charged surface,  is the surface charge density multiplied by the particular

area. For our case we have a total current,  that is the material properties multiplied by

an area. By analogy we could call this new quantity,  a kind of density, but now our

charges are moving. So let’s call it the current density.

Notice that it is the cross sectional area of the wire that shows up in our current
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equation. This is another indication that the charge is not �owing along the surface, but

that it is deep within the wire as it �ows.

Conservation of current
Question 223.36.9

Let’s go back to our pumps and turbines.

How much of the water is “used up” in turning the turbine? Another way to say this is

to ask if there are 20 l of water entering the turbine, how much water leaves the turbine

through the lower pipe?

If the turbine leaks, then we might lose some water, but if all is going well, then you can

guess that 20 l of water must also leave the turbine We can’t lose or gain water as the

turbine is turned. But we must be losing something! We must be giving up somethingQuestion 223.36.10

to get useful work out of the system. That something that we lose is potential energy.

Now consider a battery. How much of the current is “used up” in making the light bulb

light up?
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This case is really the same as the water case. The electric current is a �ow of electrons.

The �ow loses potential energy, but we don’t create or destroy electrons as we convert

the potential energy of the battery to useful work (like making light) just like we did not

create or destroy water in making the turbine turn.

But surely the water slowed down as it traveled through the turbine–didn’t it? Well, no,

if the water slows down as it goes through the turbine, then the pipe below the turbine

would run dry. This does not happen. The �ow rate through a pipe does not change

under normal conditions, and under abnormal conditions, we would destroy the pump

or the turbine! If we throw rocks off a hill, they actually gain speed when the water

loses potential energy. Now the �ow rate is slower with a turbine in the pipe than it

would be with no turbine in the pipe! But with the turbine in the pipe, the �ow rate is

the same throughout the whole pipe system.

Like the water case, the �ow rate of charge does not change from point to point in the

wire. The same amount of charge per unit time leaves the wire as went in.

This explains the reasoning behind one of the great laws of electronics

The current is the same at all points in a current-carrying wire.

Like in the water case, the electrons would �ow faster if there were no light bulb and

just a continuous wire. We can have different �ow rates in our wire depending on how

much resistance there is to the �ow. But the �ow rate will be the same in all parts of the

wire system.

This leads to the second of the pair of rules called Kirchhoff’s laws:

X
 =

X


If the wire branches into two or more pieces, the current will divide. This is not too sur-

prising. The same is true for water in a pipeQuestion 223.36.11
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In the figure the �ow through pipe segment  is split into two smaller currents that

�ow through pipe segments  and  We would expect that the �ow through  and 

combined

must be equal to the �ow through Question 223.36.12

The same must be true for electrical current. The situation is shown in the next figure.

The current that �ows through wires  and  combined must be equal to the current

that came through wire Question 223.36.13

Basic Equations





18 Resistance

Conductivity and resistivity

We talked in our last lecture about resistance to electric current. We can see where that

resistance might come from. We have electrons bouncing off of atoms in the conductor.

Some of the collision energy will be converted into thermal energy of the atoms. Then,

different materials will have different amounts of friction, and even different crystal

structures of the same material will act differently. We need a way to describe how

easily a current can go through a material. Let’s look at our equations and see if we can

find an easy expression for the material properties of the conductor that tell us how well

current can �ow through it.Question 223.37.1

We defined the current density last lecture

 = 

but we know that the drift speed is

 =

µ




¶


so we can write the current density as

 = 

µ




¶


=

µ
2



¶


The factor in parentheses depends only on the properties of the conducting material.

For example, if the material is copper, then we would have the  = 85× 1028 1
m3

as the number of valence electrons per unit meter cubed for copper. The mean time

between collisions is something like   = 25 × 10−14 s So our quantity in
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parentheses isµ
2



¶
=

¡
85× 1028 1

m3

¢ ¡
16× 10−19C¢2 ¡25× 10−14 s¢
911× 10−31 kg

= 5 971 5× 107 A
2

m3
s3

kg

= 5 971 5× 107 1

Ωm

The field is due to something outside of the conducting material (e.g. the charge on

the battery terminals and the extra charge supplied). Again it we have grouped all the

properties of the material together. Lets give a name to the quantity in parentheses

that contains all the material properties. Since this quantity tells us how easily the

charges will go through the conductive material, we can call this the conductivity of the

material.

 =
2


Then

 = 

The current density depends on two things, how well the material can allow the current

to �ow (bulk material properties related to conduction),  and and the field that makes

the current �ow, 

The current, then, depends on these two items, as well as the cross sectional area of the

wire

 = 

= 

Really, the conductivity is more complicated than it appears. The mean time between

collisions,  , depends on the structure of the conductor. Different crystalline structures

for the same element will give different values. Think of trying to walk quickly through

the Manwering Center crowds during a class break. This takes some maneuvering. But

if all the people were placed at equally spaced, regular intervals, it might be easier to

make it through quickly. It would also be easier if the crowd stood still. Likewise, the

position of the atoms in the conductor make a big difference in the conductivity, and

thermal motion of those atoms also makes a large difference. We would expect the

conductivity to depend on the temperature of the material.
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Resistivity
Question 223.37.2

It is common to speak of the opposite of the concept of conductance. In other words,

how hard it is to get the electrons to travel through the conductive material. For

example, we might want to build a heating device, like a toaster or space heater. In

this case, we want friction in the wires, because that friction will produce heat. So

specifying a conductive material by how much friction it has is useful. How much the

material impedes the �ow of current is the opposite of how much the material allows

the current �ow, so we expect this new quantity to be the inverse of our conductivity

 =
1


=



2

Special conductors are often made that use “impurities,” that is, trace amounts of other

atoms, to increase or decrease the resistivity of conducive materials. The thermal

dependence can be modeled using the equation

 =  (1 +  ( − ))

where  is the resistivity at some reference temperature (usually 20 ◦C) and  is a

constant that tells us how our particular material changes resistance with temperature.

It is kind of like the specific heat in thermodynamics  = ∆ . This is an

approximation. It is a curve fit that works over normal temperatures. But we would not

expect the same resistive properties, say, if we melt the material. The position of the

atoms would change if the material goes from solid to liquid. So we will need to be

careful in how we use this formula.

Here are some values of the conductivity, resistivity, and temperature coefficients for a

few common conductive materials.Question 223.37.3

Material
Conductivity¡
Ω−1m−1

¢ Resistivity
(Ωm)

Temp. Coeff.¡
K−1

¢
Aluminum 35× 107 28× 10−8 39× 10−3

Copper 60× 107 17× 10−8 39× 10−3
Gold 41× 107 24× 10−8 34× 10−3
Iron 10× 107 97× 10−8 50× 10−3

Silver 62× 107 16× 10−8 38× 10−3
Tungsten 18× 107 56× 10−8 45× 10−3
Nichrome 67× 105 15× 10−6 04× 10−3

Carbon 29× 104 35× 10−5 −05× 10−3
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Superconductivity

The relationship

 =  (1 +  ( − ))

also breaks down at low temperatures. The low end is very important these days. For

some special materials, the resistivity goes to zero when the material is cold enough.

We call these materials superconductors. A superconductor can carry huge currents,

because there is no loss of energy, and no heat generated without any friction. Unfor-

tunately most superconducting materials only operate at temperatures near absolute

zero. But a few “high temperature” superconductors operate at temperatures at high as

125K This is still very cold (−150 ◦C), but these temperatures are achievable, so some

superconducting products are possible. As you can guess, there is very active research

in making superconductors that operate at even higher temperatures.

Superconducting fiber material and superconducting magnet at CERN.
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Let’s pause to review

 = 

=
1




Then the current is given by

 = 

=





The field is similar to our capacitor field, nearly uniform in our conducting wire

∆ = 

= ∆

so the electric field is approximately given by

 =
∆

∆
for our wire of length  this is

 =
∆


Then we can use this field to write our current

 =




∆



or rewriting, we have

 =

µ




¶
∆

and rewriting again we have

∆ = 

µ





¶
The part in parenthesis contains all the friction terms. It says that the longer the wire,

the more friction we will experience. This makes sense. If you are familiar with �uid

�ow. The longer the hose, the more resistance. It also says that the larger the area, the

lower the friction. That is also reasonable, since the electrons will have more places to

go unrestricted if the area is bigger. In water �ow, the larger the pipe, the less the water

interacts with the sides of the pipe and therefore the lower the friction. This situation is

analogous.Question 223.37.4
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We should give a name to this quantity that describes the frictional properties of the

wire. We will call it the resistance of the wire.

 = 



so that we can write

 =
∆



The resistance has units of
V

A
= Ω

where Ω is given the name of ohm after the scientist that did pioneering work on

resistance.

The relationship

 =
∆


is called Ohm’s law.

Life History of an electric current

Let’s go back and think about our pump model for a battery.

The pump is a source of potential energy difference. This is what a battery does as well.

The battery is a charge pump. It moves the charges from a low to a high potential. So

it is a source of electric potential. The battery’s job is to provide the charge separation

that creates the electric field that drives the free charges, making the current.

A positive charge in the wire on the negative side of the battery is pumped up to the

positive side through a chemical process. We can mentally envision a small charge

pump inside of the battery
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The battery is the source of the potential. A positive charge near the negative side of the

battery would be pumped up to the positive side of the battery, It would gain potential

energy

∆ = ∆

Then it would “fall” down the wire. It must lose all of the potential energy it gained. So

it will loose

|∆| = |∆|
but if the battery potential energy change is positive, the wire change must be negative.

We can see that

∆ = −∆
so the potential change in the wire is negative. We sometimes call this a potential

“drop.”

The field forces our charge to move through this wire much like the gravitational field

forces rocks to fall. The positive charge ends up at the negative end of the battery again,

ready to be pumped up to make another round.

of course, really this process goes backwards, since our charge carriers are negative, but

we recall that mathematically negative charges going the opposite way is the same. So

we will make this picture our mental model of a current.

Ohmic or nonohmic
Question 223.37.5

This simple model of resistance is great for understanding simple things. Wires, and
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resistors do work like this. If we were to take a set of measurements of ∆ and  we

expect a straight line

 = + 

E = ∆ =  + 0

where  is the slope.
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But there are times when the model fails terribly. An incandescent light bulb is an

example that we can quickly understand. The resistance at any one moment fulfils

Ohm’s law

 =
E


but light bulbs get hot. The resistance will change in time. So our relationship is now

time dependent. Starting with the resistivity,

 =  (1 +  ( − ))

let’s multiply both sides by 




 =




 (1 +  ( − ))

this gives

 =  (1 +  ( − ))

So if the resistance is temperature dependent, the slope of the line will change as we go

along making measurements. We might get something like this
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The dashed line is what we expect from Ohm’s law. The solid line is what data from a
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light bulb would actually look like. We could use our temperature dependent resistance,

and realize that the temperature is a function of time, to obtain

 =
E

 (1 +  ( ()− ))

Since this set of measurements is not strictly following Ohm’s law, we will say that the

light bulb is nonohmic.

Many common circuit elements are vary nonohmic. A diode, for example, has a ∆

vs.  relationship that looks like this.
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We can now understand how an electric current is formed. We should take some time

to study the basics of how to build electric circuits. We will do that in the next few

lectures.

Electronic symbols

In our problems we will need to be able to draw diagrams. There are standard symbols

for things like batteries, capacitors, and resisters. It will be convenient to use these

symbols. So here are some symbols to learn.
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These are basic symbols, and they are not universal, sadly. But they are fairly standard,

so you should recognize components in circuit diagrams you may see.
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The figure above is from the FCC Amateur Radio examination. You can see that we can

already identify several of the symbols from our chart. We can also see that there are

others that we have yet to learn!





20 Kirchoff’s Rules for Direct
Current Circuits

EMF

Once again, we need to introduce a quantity that has an historic name. Let’s save the

name for last (since it is kind of dumb).

We have thought of a battery as a “charge pump,” something that takes charge from a

low potential to a high potential. This is like a water pump taking water from a low

tank to a high tank. Once the water is at the higher tank, it can be used to do work by

allowing it to �ow back down to the lower tank (and move paddle wheels or something

along the way). As usual, we want to think of the work per unit charge done by this

"charge pump." We will give a “charge pump” a new name. We will call it the source

of emf and write it with the symbol E What does emf stand for? I am not going to tell

you, because the original meaning is historical and was very wrong. But we have a long

tradition of calling a “charge pump” a source of emf, so we have to keep using this

term. Think of Kentucky Fried Chicken changing to KFC so we don’t have to say “fried

chicken” and think of the calories. There is only a small difference between an emf and

a voltage difference. A difference that we will discuss in a lecture or two. So for now,

really we are just naming the∆ of a battery E and calling it by a nickname emf.

Conservation of Charge (Reprise) and Conservation of Energy

A few lectures ago, we studied conservation of charge for a circuit.

X
 =

X


If the wire branches into two or more pieces, the current will divide. This is not too sur-

prising. The same is true for water in a pipeQuestion 223.36.11
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In the figure the �ow through pipe segment  is split into two smaller currents that

�ow through pipe segments  and  We would expect that the �ow through  and 

combined must be equal to the �ow through Question 223.36.12

The same must be true for electrical current. The situation is shown in the next figure.

The current that �ows through wires  and  combined must be equal to the current

that came through wire Question 223.36.13

This is really a statement of the idea of conservation of charge. As the charge �ows

through the circuit, no electrons get lost, and no electrons are created. An early

researcher’s name is applied to this relationship. It is called Kirchhoff’s junction rule.

We can combine this with another conservation law, conservation of energy.
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Combinations in series and parallel

We discovered the rules for adding capacitors in parallel and series, now let’s do the

same for resistors

Series Resistances

Series connection of light bulb demo

If we add light bulbs in series, the lights are individually dimmer than if we just had

one bulb. We can conclude that adding in lights must reduce the current. The lights are

resisters15 and this is true for any resistor

We say the current through the circuit must be the same throughout the whole circuit.

We don’t build up charge or remove charge anywhere (no capacitors yet). But the

potential is not the same at each point in the circuit. Think of a series of water tanks and

a pump as shown in the next figure.

15 But not Ohmic resistors!
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The pump increases the potential energy of the water. The water’s potential energy can

then be used as it is lowered, first to a tank half way down, then all the way to the lower

tank. It is easy to see that

∆ = ∆1 +∆2 (20.1)

that is, the total energy given up to get to the lower tank is just the energy the pump

provided to the water to get it to the upper tank. If we choose the zero point for the

potential energy to be the lower tank, then the pump gives a positive ∆ and each of

the waterfalls give negative ∆ values. So we start with zero potential energy, gain

potential energy, then lose it in series of steps returning to zero potential energy when

the water is back in the lower tank. We could write this as

0 =
X


∆

the sum of the potential energy changes must be zero as we go around the water loop.

This is conservation of energy. No energy has been lost. We start and end with the same

value.

In a circuit, we use potential energy per unit charge, but the situation is very much the

same.
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The battery “pumps” the charge to a higher potential. The current “drops” in potential

as it goes though resister 1 (the top resister). It also “drops” in potential as it goes

through resister 2 (the bottom one). Since the charge along the bottom wire must be

at the same potential as the negative pole of the battery, we can say that the “drop” in

potential for each battery mush have used all the potential that was originally supplied

by the battery.

∆ = ∆1 +∆2 (20.2)

If we choose the zero point for the electric potential to be the negative side of the

battery, then the battery gives a positive ∆ and each of the resisters give negative

∆ values. So we start with zero potential at the negative side of the battery, gain

potential energy, then lose it in series of steps returning to zero potential when the

charge is back at the negative side of the battery. We could write this as

0 =
X


∆

the sum of the potential changes must be zero as we go around the current loop. This is

also conservation of energy. Electrical potential is potential energy per unit charge, and

all our charges are the same, electron charge. So

0 =
X


∆ =
1



X


∆

No energy has been lost. We start and end with the same value.

This is another of the rules cataloged by Kirchhoff and it is called Kirchhoff’s loop rule.

Now we know that

∆ = 

We can use this to re-write equation 20.2.

0 =
X


∆ = ∆ +∆1 +∆2

= ∆ − 1 − 2

where we see that the voltage drops are negative as we expected. We could rewrite this
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as

∆ = 1 + 2 (20.3)

Since charge is conserved, and we don’t allow the charge to pool up or leak out, we can

say that the charge in the entire series circuit must be the same. So

∆ =  (1 +2) (20.4)

Question 220.18.1

Kirchhoff’s Rules

We have collected some good rules for adding resisters and capacitors. Kirchhoff is

credited with succinctly stating these rules

1. The sum of the currents entering any junction must equal the sum of the currents
leaving that junction. (conservation if charge–junction rule)

2. The sum of the potential differences across all the elements around any closed
circuit loop must be zero (conservation of energy–loop rule)

When we actually apply these rules, we

1. assign symbols and directions to the currents in all branches of the circuit. Don’t
worry about the getting the sign (direction) of the currents right. If you guess wrong,
the answer will just be negative, so you will know it really goes the other way

2. When applying the conservation of energy or loop rule, choose a direction for
traversing the loop and be consistent. Record potential drops or rises, so you can
make sure the they sum to zero. Use the following rules.

a. If a resister is traversed in the direction of the current you chose, the change in
the potential across the resister is − This is a voltage drop.

b. If a resister is traversed in the direction opposite the current you chose, the
change in the potential across the resister is + This is like going up-hill so
the change in potential is positive.

c. You must include the source of emf (battery). If it is traversed in the direction
of the emf (from − to +) the charge in potential is +E 

d. If the source of emf is traversed in the opposite direction of the emf (from + to
−) the change in potential is −E  This is like going the wrong way through the
water pump. You are going down-hill so you are loosing potential energy.

A capacitor acts as a break in the wire; no current �ows through the wire (for now,

anyway).
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Suppose we do an example

Series Resistances

Let’s return to our basic circuit with two resisters. When we had more than one

capacitor in a circuit, we found the equivalent

Let’s see if we can do this for resisters. We want a single, equivalent resistance 

such that

∆ +∆ = 0

where

∆ = 

Recall that

∆ = ∆1 +∆2 (20.5)

And

∆ = 

So

∆ = 1 + 2 (20.6)

Since charge is conserved, and we don’t allow the charge to pool up or leak out, we can

say that the charge in the entire series circuit must be the same. So

 =  (1 +2) (20.7)

The current cancels, so we have found what we were looking for. The equivalent

resistance is given by

 = 1 +2 (20.8)
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Examples

Let’s try a problem with series resisters. Here is a circuit with two resisters and two

batteries. Let’s find the current and the voltage drop across each resister. We need to

know that the resistances are 1 = 600Ω and 2 = 1000Ω. We also need to know the

batteries’ emfs they are E1 = 3V and E2 = 9V

We can use the loop rule to find

∆1 +∆2 +∆1 +∆2 = 0

Let’s envision going counter clockwise around the loop (we get to choose which way

we go) and let’s envision starting at the negative side of 2 We also can use Ohm’s law

∆ = 

to write our loop equation as

E1 + E2 − 1 − 2 = 0

E1 + E2 = 1 + 2

E1 + E2 =  (1 +2)
E1 + E2
(1 +2)

= 

and we have found the current!

 =
3V + 9V

(600Ω+ 1000Ω)

= 0007 5A

The voltage drop across the resisters is then

∆1 = 1

∆2 = 2

or

∆1 = (0007 5A) (600Ω) = 4 5V

∆2 = (0007 5A) (1000Ω) = 75V
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we should check our loop rule with our results

3V + 9V + 4 5V + 75V = 0

so this solution works!

Let’s try another problem.

Let’s use the same resisters and batteries, but reconfigure them as shown. And let’s go

clockwise around the loop this time. Let’s assume that  is also clockwise. This is a

guess, but if we are wrong, we will just get a negative current, so we will know it goes

the other way.

Then, starting on the negative size of∆2 we have

∆2 +∆1 +∆1 +∆2 = 0

As we go around the loop we go up-hill through∆2 so∆2 = +E2
E2 +∆1 +∆1 +∆2 = 0

and we go down hill through 1 so∆1 = −1
E2 − 1 +∆1 +∆2 = 0

but notice that as we arrive at ∆1 we are going the wrong way through the pump. We

are going down hill. So∆1 = −E1
E2 − 1 +−E1 +∆2 = 0

finally, we are going in the current direction through 2 so we are going down hill.
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∆2
= −2

E2 − 1 +−E1 +−2 = 0

Now we can solve for the current like we did before

E2 +−E1 = 1 + 2

E2 +−E1 =  (1 +2)
E2 +−E1
(1 +2)

= 

then

 =
9V− 3V

(600Ω+ 1000Ω)
= 0003 75A

we got lucky and picked the right direction for the current! From

∆1 = 1

∆2 = 2

we can find the potential drop across each resister

∆1 = (0003 75A) (600Ω) = 2 25V

∆2 = (0003 75A) (1000Ω) = 3 75V

and once again we check to find

9V− 2 25V +−3V +−3 75V = 0
You might be concerned, It looks like we put one battery in the circuit backwards. Why

would we ever do that? But remember when we studied lead acid batteries? To recharge

a the battery we had to run the process backward. This means we put the battery in

the circuit backwards. There are other reasons we might do this, but one is to make a

battery charger.

You might guess that things could get more complicated. An that is certainly true. In

the next lecture we will combine resisters and batteries in harder ways, and we will add

in capacitors!

Power in resisters

We learned that the resistance in a resister depends on the temperature of the resister,

and even have an approximate relationship that shows how this works

 = (1 +  ( − ))

so we know that temperature and resistance are related. But most of us have used a

toaster, or an electric stove, or an electric space heater, etc. How does an electric circuit

produce heat? or even light from a light bulb?
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To answer this let’s think of the energy expended as an electron travels a circuit. The

potential energy expended is

∆ = ∆

where the∆ comes from the battery, so we could write this as

∆ = E
This is the energy lost as the electron travels from one side of the battery to the other.

We could describe how fast the energy is lost by dividing by the time it takes the

electron to make the trip
∆

∆
=



∆
E

but of course we want to do this for more than one electron. Let’s take a packet of

charge,∆ then
∆

∆
=
∆

∆
E

∆

∆
=
∆

∆
E

and if we make the packet of charge small we have



=




E

and we recognize  as the power and  as current, then

P = E

This is the power supplied by the battery in moving the group of electrons through the

circuit. But from Kirchhoff’s loop rule, the charge packet must lose all the energy that

the battery provides, so

P = P = ∆

is the energy that leaves the circuit as the packet of charge moves.

This equation is general

P = ∆

so it works for any resistance, but if the resister is ohmic, then we can use Ohm’s law

∆ = 

to find

P =  ()

= 2

but this is only true for ohmic resisters.

But where does this energy go? This is the energy that makes the heat in the space

heater, or the light in the light bulb.
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Parallel Resistances

We found the equivalent resistance for resisters in series last lecture. You probably

thought at the time that we would need an equivalent resistance for resisters in parallel.

And you were right. For a parallel circuit, all the top parts of the circuit (see diagram

below) are connected to the positive side of the battery. All the bottom parts are

connected to the negative side of the battery. Since the connections are with conductors,

we can see that the potential “drop” across each resister must be the same as the

potential gain from the battery “pump.” Both branches of the circuit let the current

“drop” the same amount.

But we can see from charge conservation that the currents in the resisters will not be the

same. At point  we can see that

 = 1 + 2 (21.1)

again we can use

∆ = 

but we want to write it as
∆


= 
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then from the junction rule we see that

 = 1 + 2

or
∆



=
∆

1
+
∆

2
(21.2)

so
1



=
1

1
+
1

2
(21.3)

We can solve this for the equivalent resistance of the circuit, first get common

denominators
1



=
1

1

2

2
+
1

2

1

1
(21.4)

then add the RHS
1



=
2 +1

12
(21.5)

Now we can invert both sides
12

2 +1
=



1
(21.6)

or

 =
12

2 +1
(21.7)

This is always smaller than 1 or 2 For example, if 1 = 2 then

 =


+
=



2
=



2
(21.8)

or the equivalent resistance of the circuit is half the resistance of the individual resisters.

Emf

We have ignored something in our pump model of a battery. In real water �ow, there

would be resistance to the �ow even inside the pump. This resistance would be small,

but not zero. So the actual potential energy gain would be

∆ = ∆ideal − loss due to friction

The same is true for an actual battery. There is some resistance in the battery, itself.

∆ = ∆ideal −∆loss due to resistance

Now that we have Ohm’s law, we can saw what ∆loss due to resistance would be in terms

of the internal resistance of the battery and the current that �ows. Referring to the last

figure, there is only one way for the current to go. So for this circuit, the current must

be the same throughout the entire circuit., even in the battery! If we call the small

resistance in the battery  then

∆loss due to resistance = 
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and

∆ = ∆ideal − 

It is traditional to give the ideal voltage a name and a symbol. We have encountered

them before. This is the emf. At one time, the letters ‘e’, ‘m’, and ‘f’ stood for

something. But not any more. It is just a name. It is pronounced “ē-em-ef,” and the

symbol is a script capital E .

When we first encountered emf we said it was essentially just the potential difference,

but now we see that there is a difference. That difference is because of the internal

resistance of the battery.

∆ = E − 

Sometimes you will hear E referred to as the voltage you would get if the battery is

not connected (the “open circuit” voltage). This is the voltage marked on the battery.

Notice that the actual voltage provided at the battery terminals depends on how much

current is being drawn from the battery. So if you are draining your battery quickly

(say, using your electric starter motor to start your car engine) the voltage supplied by

your battery might drop (your lights might dim while the starer motor runs). You are

not getting 12V because the current  is large while the starter motor runs. We will

change to this new symbol for ideal voltage. But we should keep in mind that actual

voltages delivered may be significantly less than this ideal emf unless we plan our

designs carefully.

Circuits made from Resisters

Let’s try to use all we know about resisters and batteries to do a harder problem.

Determine the current in each branch of the circuit shown in the following figure.
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Note that I have labeled the currents 1 2 and 3 and I have given them directions.

We have junctions now, so we can use the junction rule. I can write an equation using

the top junction

0 = 3 − 2 − 1 (21.9)

Note that we have used all the currents we have, so we can stop with this one junction.

The other junction at the bottom just gives

0 = −3 + 2 + 1

which gives the same equation. This is typical, usually we don’t need all the junctions,

but we do need to use enough junctions that every current shows up in an equation.

Now let’s use the loop rule. Starting with the right most loop and going counter clock

wise.

I will start with the battery. It will be +12V because we are going from − to +

12V− 3 (1Ω)− 3 (3Ω)− 2 (5Ω)− 2 (1Ω)− 4V = 0 (21.10)

we can simplify this

8V + 3 (−1Ω− 3Ω) + 2 (−5Ω− 1Ω) = 0 (21.11)

8V− 3 (4Ω)− 2 (6Ω) = 0 (21.12)

8V = 3 (4Ω) + 2 (6Ω) (21.13)

4V = 3 (2Ω) + 2 (3Ω) (21.14)

Now lets take the left most loop, starting again with a battery
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4V + 2 (1Ω) + 2 (5Ω)− 1 (8Ω) = 0 (21.15)

4V + 2 ((1Ω) + (5Ω))− 1 (8Ω) = 0 (21.16)

4V + 2 (6Ω)− 1 (8Ω) = 0 (21.17)

2V + 2 (3Ω)− 1 (4Ω) = 0 (21.18)

so we have three simplified equations to solve simultaneously.

0 = 3 − 2 − 1

4V = 3 (2Ω) + 2 (3Ω)

2V + 2 (3Ω)− 1 (4Ω) = 0

Let’s solve the first for 3
3 = 2 + 1

and substitute this into the second equation

4V = (2 + 1) (2Ω) + 2 (3Ω)

4V = 2 (2Ω) + 1 (2Ω) + 2 (3Ω)

4V = 1 (2Ω) + 2 (2Ω) + 2 (3Ω)

4V = 1 (2Ω) + 2 (2Ω+ 3Ω)

4V = 1 (2Ω) + 2 (5Ω)

and solve for 2
4V− 1 (2Ω) = +2 (5Ω)

4V− 1 (2Ω)

(5Ω)
= 2

now substitute this into the third of our equations

2V +
4V− 1 (2Ω)

(5Ω)
(3Ω)− 1 (4Ω) = 0
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and solve for 1

2V + 4V
(3Ω)

(5Ω)
− 1

(2Ω) (3Ω)

(5Ω)
− 1 (4Ω) = 0

2V + 4V
(3Ω)

(5Ω)
−
µ
1
(2Ω) (3Ω)

(5Ω)
+ 1 (4Ω)

¶
= 0

2V + 4V
(3Ω)

(5Ω)
− 1

µ
(2Ω) (3Ω)

(5Ω)
+ (4Ω)

¶
= 0

2V + 4V
(3Ω)

(5Ω)
= 1

µ
(2Ω) (3Ω)

(5Ω)
+ (4Ω)

¶
2V + 4V

(3Ω)

(5Ω)³
(2Ω)(3Ω)

(5Ω)
+ (4Ω)

´ = 1

1 = 0846 153 846 A (21.19)

and now that we have 1 we go back an equation or two to find 2 terms of 1 and plug

in our 1
4V− (0846 153 846 A) (2Ω)

(5Ω)
= 2

2 = 0461 538 462 A (21.20)

and again find our solution for 3 from the work we did above.

3 = 2 + 1

= 0846 153 846 A + 0461 538 462 A

= 1 307 692 31A

It is a little bit long for a complicated circuit, but it is not really very hard.

ConcepTest 19.9 Wheetstone Bridge

ConcepTest 19.8

ConcepTest 19.10

Resisters and Capacitors Together

Concept Question 18.1 - 18.3

Let’s use our new  notation to write the charge on a capacitor

 = ∆
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or now, with an ideal battery,

 = E
when the capacitor is fully charged (so  = 0 and  does not matter).

Now consider what happens in the circuit shown below

With the switch open, the capacitor is uncharged . So  = 0 before the switch is closed.

It takes some time for current to start to �ow after.

10F capacitor and bulb demo

We can see that if we let  = 0 be the time the switch is closed, at  = 0 we still have

 = 0 We will have a current of

 =
E


at this initial time.

We expect that at some later time,  we will have

 = E
When this happens, ∆ of the capacitor will be equal to E  Since the potential is equal

to the potential of the battery, the current must stop by  . It would be good to be

able to calculate what happens between  = 0 and  = 

RC charge as function of time

We can do this using Kirchhoff’s loop rule.

∆ −∆ −∆ = 0
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or

E − 


−  = 0

and we know that the current  =  so

E − 


− 


 = 0

rearranging gives
E

− 


=




which is a wonderful differential equation–one we can solve. We separate the variables

 and 
E − 


=




then

 =


E−





=



E − 
and we integrate both sides

1



Z 

0

0 =
Z 



1

E − 0
0

or



=

Z 



1

E − 0
0

now we let  = E −  so  = − and our limits of 0 = 0 gives  = E and the

limit of 0 =  gives  = E − 




= −

Z E−

E

1




= − ln|E−E

= − (ln (E − )− ln (E))
= − ln

µ
E − 

E
¶

then



= − ln

µ
E − 

E
¶

Exponentiating both sides gives

−

 =

µ
E − 

E
¶

−

 = 1− 

E
−


 = 1− 

E
−


 − 1 = − 

E
E

³
1− −




´
= 
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and now we recognize that

 = ∆ = E
as the total charge that the capacitor can hold, then

 () = 
³
1− −




´
(21.21)

RC example

The small  is the charge is has at the current time. This will get bigger until at  it

will reach  The letter  here is the base of the natural logarithm. Suppose we had the

following values
 = 2Ω

 = 10F

E = 15V
(21.22)

then our charge as a function of time would be

() = (10F) (15V)
³
1− 

− 
(2Ω)(10 F)

´
(21.23)

We can plot this
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0
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notice, that by about  = 70 s we essentially have  =  But up to that point, the

charge changes in a very non-linear way. The part of the equation that looks like³
1− −




´
is interesting, what is 0?

0 = 1

so at  = 0 we do have  = 0 because³
1− −




´
= (1− 1)

For any positive time, −

 will be less than 1 For large times 


gets to be a big

number. So −

 gets very small, So

³
1− −




´
gets very close to 1 That means

that

 = 
³
1− −




´
→  (1) = 

just as we saw in the graph and as we know it must.
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We sometimes give a name to × 

 =  (21.24)

this is called the time constant because it tells us something about how long it takes for

 to go from 0 to get to  The “t-looking-thing” is a Greek letter “t” It is pronounced

“tau.” Note that we also use  for torque, but this is really not torque. It is an amount of

time.

RC Current

We can also find the current. We know that

 =



=





³
1− −




´
= − 


−


 =




−




but from  = E we have

 () =
E

−




= 
− 


where  is the maximum current max = E. For our case this looks like

 () = 075A−


20 s

RC Discharging

To understand better what the time constant means, lets now remove the battery from

the circuit, but let the circuit stay connected (say, replace the battery with a piece of

wire). Now we find that the charge seems to fade away!

10F capacitor and bulb demo

We can calculate what the charge would be as a function of time. We probably won’t

have time to do this in class, but really it is just the same the answer is

 = −

 = −


 (21.25)

We find by again taking Kirchhoffs rule

∆ −∆ −∆ = 0
or

0− 


−  = 0
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Again writing out the current gives



= −





= −



and integrating gives

− 1



Z 

0

0 =
Z 



0

0
so

− 


= ln

µ




¶
and exponentiating both sides gives

 = −

 = −


 (21.26)

Now we can see that if  =   then

 = −

 = −

1
1 = −1

since  = 2 718 3

−1 =
1


= 0367 88

so we have

 = 0367 88

That is, after a time   we are at about 37% of the original charge, or we have lost about

63% of the original charge. Likewise, if we decide to recharge our capacitor,  will tell

us how long it takes to gain 63% of the full charge.

We can say a capacitor discharges when it looses its charge. Let’s plot the discharge.
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As we would expect, by about  = 50 s we have discharged. At  = 10 s we have about

37% of the full charge (3C in this case).

The observant student might worry that our equation gives values for very large values
of  Does the capacitor ever fully discharge? Well, yes it does. Remember that we have
a minimum charge of 16 × 10−19C because that is the charge of our charge carrier.
We can’t have less charge than that. So when our equation gives   16× 10−19C
we will remember that it must really be  = 0.



282 Chapter 21 RC Circuits

Concept Question 18.4

Meters

Ammeters

Suppose we wanted to know how much water �owed through our pipes in our water

system.

To do this we install a �ow meter. The �ow meter has to have the water �ow through it

in order to tell how much water has gone by.
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The same is true for measuring current. The meter must be in the circuit to measure the

current because the current has to go through the meter to me measured. The meter

that measures current is called an ammeter, and ideally the ammeter will not have any

resistance. You might guess that this is hard to achieve. in practice. Well, in the circuit

above we have an ammeter measuring the current through two resisters. The current

should be

 =
E

1 +2
(21.27)

but we know that there must be some resistance from the ammeter, so

 =
E

1 +2 +

(21.28)

where  is the resistance due to the ammeter. Suppose all three resistances are the

same, then with no ammeter we would have

 =
E
2

(21.29)

but with the ammeter

 0 =
E
3

(21.30)

which gives a percent change of

 −  0

 0
=

E
2
− E

3
E
3

= 05 (21.31)

or on the order of 50%! Usually  is designed to be very small, but you need to know

your meter to know how much to trust it when you seek to measure circuits with low

resistance.

Voltmeters

Suppose we wanted to know how much potential energy lose when the water moves

from the middle tank to the lower tank. What would we do?
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Well, I think we would measure the distance from the lower tank to the middle tank,

and then multiply by  The potential would be

∆ = (2 − 1)

Notice that to measure potential energy we have to make two measurements, one at 1
and one at 2 This is always true for a potential energy difference. The same is true for

electric potential. But we don’t use a ruler to measure electric potential. We use a volt

meter.

Notice that to measure the voltage drop for the lower resister we need two measurements

on either side of the resister.

Really the meter measures a small current �owing through a very large resistor inside

the meter. Ideally, a voltmeter would have infinite resistance. Of course it is difficult to
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achieve an infinite resistance, so we have to make due with smaller, finite, resistances.

We can see that if  of the voltmeter is not much larger than 2 then it will change

the current through 2 Since

∆ =  (21.32)

the current should be

∆ = 2 (21.33)

were we can find 

 =
E

1 +2
(21.34)

but suppose the voltmeter has a resistance equal to 2 Then, from the loop rule,

 = 2 +  (21.35)

where 2 will go through 2 and  will go through the voltmeter. Since the resistances

are the same, we expect 2 =  . so now

2 =


2
(21.36)

Then

∆ = 22 =
2

2
(21.37)

or half the value we expected!

A too-small resistance will change the voltage it is trying to measure. Again, you must

know your meter before you attempt to make the measurement across elements with

large resistances.

Household Circuits

Many of you may have worked on new homes and may understand household wiring

quite well. I am just going to give a high level overview.
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Electrical power enters our homes through a meter (so the power company can charge

us) and is divided into several major circuits. Each circuit is designed according to what

is likely to be done in the room it services. Bedrooms likely will require less power

than kitchens, for example. Each circuit has a circuit breaker. This devices senses when

too much current is �owing and stops the �ow to the entire circuit before wires can heat

an pose a danger.

Usually only one of the wires entering the home carries current. We call this the live

wire. The other is neutral and represents our home zero potential point. For larger

appliances, we often will have a third wire that represents a large negative potential as

well.

In modern electrical outlets, there are also three wires. One is called the ground wire.

The chassis of many electrical devices are connected to this ground wire. If there is a

malfunction such that the live wire is accidently connected to the device, the electrical

current is more likely to travel though the ground wire. This is good because relatively

small currents (100mA) can be fatal!
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Fundamental Concepts

• The Earth has a magnetic field

• Magnets have “magnetic charge centers” called poles and there is a magnetic field.

• Magnetic poles don’t seem to exist independently

• A long wire that carries a current produces a magnetic field

• The magnetic field due to a long wither with current becomes weaker with distance
and forms concentric cylinders of constant magnetic field strength

• The direction of the long-wire-with-current field is given by a right-hand-rule.

• The field due to a moving charge is given by the Biot-Savart law

 =

4

 sin 

2

Most people have used a magnet. at some time. They come as ads that stick to a

refrigerator. They are the working part of a compass. They hold the pieces of travel

games to their boards, etc. So I think we all know that magnets stick to metal things.

But do they stick to all metal things?

The answer is no, only a few metals work. Iron and Nickel and Cobalt are some that

do. Aluminum and Copper do not. By the time we are done studying magnetism, we

should be able to explain this.

Magnets are very like charged objects in some ways. They can attract or repel each

other They attract “unmagnetized” materials. But there are some important differences.

Bar Magnet Demo –
Make this like the
first charge demo

Bar Magnet Demo
– Alternate, use the
array of iron ar-
rows and an over-
head projector with
the bar magnet

Notice that a “magnetic charge” seems to be induced in some metal objects, but not

in other common objects. This is very different than electric charge and electric

polarization! And we should state explicitly that for magnets, there seem to be both

“charges” in the same object! We call the “charge centers” the poles of the magnet.

We find that one pole attracts one of the poles of a second magnet and repels the other.
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If we turn around the first magnet, we find that our pattern of attraction and repulsion

reverses. Because magnets were used for centuries in navigational compasses, we callMore Bar Magnet
Demo – Like Poles one pole the north pole of the compass and the other the south pole of the magnet. The

north pole is the pole that would orient toward the north. Why does this happen?

I hope your high school science class taught you that the Earth has a magnetic field.

So we constantly live under the in�uence of a large magnet! Now lets hang both of our

magnets from a string, and see which way they like to hang. The north facing end we

will label  and the south facing end we will label  Now we can see that the two 

ends repel each other and the two  ends repel each other. But a  end and a  end

will attract.

Once again we have a situation where we can define a mover object and an

environmental object. We can picture one of the magnets making a magnetic field and

the other magnet moving through this field. Of course both magnets make magnetic

fields, but since a magnet can’t make a magnetic field that moves itself, we won’t

draw this self-field for the mover magnet. We just draw the field for the environmental

magnet. We did this in our Earth-compass picture. The Earth was the environmental

magnet and the compass was the mover magnet.

One quirk of history is that since a  end of a magnet is attracted to the North part of
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the Earth. But north end of magnets are attracted to south poles of magnets, the Earth’s

geographic north pole must be a magnetic south pole!

One common misconception is that there is one specific place that is the magnetic north

pole. Really it is a region near Newfoundland where the field strength actually varies

quite a bit. You may have heard people discuss how the poles switch every so often.

This is true, and we don’t fully understand the mechanism for this.

There is a large difference between the magnetic force and the electric force. Electric

charges are easy to separate. But magnetic poles are not at all easy to separate. If we

break a magnet

we end up with each piece being a magnet complete with both north and south ends.

This is very mysterious! something about the source of the magnetic field must be very

different than for the source of the electric field. We will investigate the source of a

magnetic field as we go.

The Earth’s magnetic fields affects many biological systems. One of these is a bacteria

that contain small permanent magnets inside of them to help them find the mud they

live in.

In the 1990’s there was a health fad involving magnets. Many people bought magnets to

strap on their bodies. They were supposed to reduce aging and give energy. Mostly they

stimulated the economy. But we will find that magnetic fields can alter the �ow of blood

(but these magnets did not do so, the FDA would not allow strong enough magnets to

be sold as apparel to have this effect). Another common place to find magnetic fields is

the MRI devices used in hospitals to make images of the interior of bodies.Question 223.37.6

Pass out magnets on
sticks

Pass out magnets

We have now experience with two non-contact forces, the gravitational force and the

electric or Coulomb force. In both cases, we have found that there is a field involved

with the production of this force. We can guess that this is true for the magnetic force

as well.

The discovery of this field involved an accidental experiment, and understanding this

experiment gives us great insight into the nature of this field and where it comes from.
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So we will spend a little time describing it.

Discovery of Magnetic Field
Question 223.38.1

In 1819 a Dutch scientist named Oersted was lecturing on electricity. He was actually

making the point that there was no connection between electricity and magnetism. He

had a large battery connected to a wire. A large current �owed through the wire. By

chance, Oersted placed a compass near the wire. He had done this before, but this time

the wire was in a different orientation than in previous demonstrations. To his great

surprise, the compass needle changed direction when it was placed near the wire!

A similar experiment, but this time with several compasses, is shown in the next figure.

When the current is turned on, the compasses change direction.

This is a very good clue that there really is a connection between electricity and
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magnetism.Oersted’s Experi-
ment Demo: Use
the 106 boards and
compasses

We know that a compass orients itself in the Earth’s magnetic field. We can infer that

the compass needle will orient in any magnetic field. In the next figure you can see that

there is a force on each end of the needle due to the magnetic field.

Notice that we have marked the environmental magnetic field with the letter  This

is traditional. Magnetic fields are often called -fields for this reason. But more

importantly, this looks very like an electric dipole in a constant electric field. We know

enough about the dipole situation to predict that there will be a torque, and that there

will be a stable equilibrium when the compass needle is aligned with the magnetic field.

Since our compasses oriented themselves near the current carrying wire, there must be

a magnetic field caused by the current in the wire. The field shown in the last figure is

uniform, but the field of our wire cannot be uniform. The compasses pointed different

directions. A common way to describe this field is with a right-hand-rule. We imagine

grabbing the wire with our right hand with our thumb pointing in the current direction.

The field direction is given by our fingers.
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Question 223.38.2

Although this is true, it takes some interpretation Let’s take some time to see what it

means. Let’s redraw the figure.

Now that we have a new figure, let’s reconsider what our right hand rule. What we

mean is that the magnetic field is constant in magnitude around a circle, and that the

direction of the field is tangent to the circle, with the arrow pointing in the direction

your fingers go with the right-hand-rule.

This is easier to see in a top-down view.
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But in the first figure we only drew the field around one circle. By using symmetry,

we can guess that the field magnitude must be constant around any circle. It must

depend only on if the current is constant. So we could draw constant field lines at any

distance,  away from the wire.

But again, this figure is not so good, because the entire wire makes a field that has aQuestion 223.38.3

constant value for  at a distance  away. So we could also draw the field above our

hand.
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Maybe a better way to draw this field would be a set of concentric cylinders. Along the

surface of the cylinder (but not the end caps) the field will be constant.

Of course, if our wire is infinitely long, the cylinders will be infinitely long too...

And the field does not stop after a few cylinders, it reaches  = 0 only when  =∞Question 223.38.4

So the field fills all of space.
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This is a more accurate way to draw the magnetic field due to a long straight wire, but it

takes a long time to draw such a diagram, so usually we will just draw one circle, and

you will have to mentally fill in the other circles and the concentric cylinders that they

represent.

To use the right hand rule, remember to place your thumb in the current direction. Then

the field direction is given tangent to the circle and pointing in our finger direction.

Making the field–moving charges

But how does a current in a wire make a magnetic field?

The secret is to look at the individual charges that are moving. When early scientists

caused individual charges to move, they found they created magnetic fields. The

experimental results gave a relationship for the strength of this field

 =

4

 sin 

2

and the direction is given by the right hand rule by pointing the thumb in the direction

the charges are going and using the figures to indicate the field direction as we have

described above. In a sense, this is a very small current (one moving charge!). So the

field should look very similar.

This relationship was found by two scientists, Biot and Savart, and it carries their name,

the Biot-Savart law.

The factor  is a constant very like  It has a value

 = 4 × 10−7
Tm

A
and is called the permeability of free space, The unit T is called a tesla and is

T =
N

Am
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The charges already had an electric field before they were accelerated, but now they

have two fields, an electric and a magnetic field.

We used unit vectors to write our -field.
−→
E =

1

4



2
r̂

It is convenient to do the same for the magnetic case. We can remember that a vector

cross product is given by
−→a ×−→b =  sin  ⊥ −→a ⊥ −→b

where the resulting vector is perpendicular to both −→a and
−→
b  Thinking about this for

a while allows us to realize this is just what we want for the magnetic field. If the

velocity of the charges is up (say, in the ̂ direction) then we can use our right hand rule

to realize we need a vector perpendicular to both ̂ and ̂ This is given by

ẑ× r̂
which is always tangent to the circle indicated by our fingers. Since  is in the 

direction we can use
−→v × r̂ =  sin  ⊥ −→v ⊥ r̂

to write the Biot-Savart law as
−→
B =


4

−→v × r̂
2

We should do a problem to see how this works.

Suppose we accelerate a proton and send it in the -direction to a speed of

10× 107m s Let’s further suppose we have a magnetic field detector placed 1mm

from the path of the proton. What field would it measure?

We know −→
B =


4

−→v × r̂
2

and by symmetry we know that  is perpendicular to ̂ just as the proton passes the

detector. So, using the right hand rule for cross products, we put our hand in the

-direction and bend our fingers into the -direction. Then our thumb shows the
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resulting direction. In this case it is in the positive -direction, or out of the page. The

magnitude would be

−→
B =

4 × 10−7 Tm
A

4

¡
16× 10−19C¢ ¡10× 107m s¢

(0001m)
2

ŷ

= 1 6× 10−13 Tŷ





23 Current loops

Fundamental Concepts

• The magnetic field due to a current in a wire is given by the integral form of the
Biot-Savart law

−→
B =



4

R
−→s ×r̂
2

• The magnetic field magnitude of a long straight wire with a current is given by
 =



2
with the direction given by the right hand rule we learned last time.

• The field due to a magnetic dipole is
−→
B ≈ 

4
2−→
3

̂ where −→ is the magnetic dipole
moment  =  with the direction from south to north pole.

Magnetic field of a current

Last lecture, we learned the Biot-Savart law
−→
B =


4

−→v × r̂
2

now let’s consider our  to be part of a current in a wire. A small amount of current

moves along the wire. Let’s call this small amount of charge∆

This small amount of charge will make a magnetic field, but it will be only a small part

of the total field, because∆ is only a small part of the total amount of charge �owing
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in the wire. That part of the field made by∆ is

∆
−→
B =


4

∆−→v × r̂
2

Let’s look at ∆−→v  We can rewrite this as

∆−→v = ∆
∆−→s
∆

=
∆

∆
∆−→s

= ∆−→s
then our small amount of field is given by

∆
−→
B =


4

∆−→s × r̂
2

as usual, where there is a∆ we can predict that we can take a limit and end up with a 


−→
B =


4

−→s × r̂
2

Some things to note about this resultQuestion 223.39.1

1. The vector 
−→
B is perpendicular to −→s and to the unit vector r̂ directed from −→s to

some point 
Question 223.39.2

2. The magnitude of 
−→
B is inversely proportional to 2

Question 223.39.3

3. The magnitude of 
−→
B is proportional to the current

Question 223.39.4

4. The magnitude of 
−→
B is proportional to the length of −→s

Question 223.39.5

5. The magnitude of 
−→
B is proportional to sin  where  is the angle between −→s and

r̂

Where there is 
−→
B we will surely integrate. The field 

−→
B is due to just a small part of

the wire −→s  We would like the field due to all of the wire. So we take
−→
B =



4

Z
−→s × r̂

2

This is a case where the equation actually is as hard to deal with as it looks. The

integration over a cross product is tricky. Let’s do an example.

The field due to a square current loop

Suppose we have a square current loop. Of course there would have to be a battery or

some potential source in the loop to make the current, but we will just draw the loop

with a current as shown. The current must be the same in all parts of the loop.
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Let’s find the field in the center of the loop at point  .

I will break up the integration into four parts, one for each side of the loop. For each

part, we will need to find −→s × r̂ and  to find the field using
−→
B =



4

Z
−→s × r̂

2

This is very like what we did to find electric fields. For electric fields we had to find 

r̂ and  and we integrated using
−→
E =

1

4

Z


2
r̂

Now we need −→s × r̂ and  For electric fields, we needed to deal with the vector r̂

Now we need to deal with a cross product, −→s × r̂, involving r̂

For the bottom part of our loop −→s × r̂ is just

−→s × r̂ = − sin k̂
= − sin k̂

We can see this in the figure
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so our field from the bottom wire is
−→
B =



4

Z
−→s × r̂

2

=


4

Z − sin k̂
2

But we need to find  From trigonometry we realize

sin  =



on the right side of the wire, and

sin ( − ) = sin  =



on the left, thus

 =


sin 
then our field equation for the bottom wire becomes

−→
B =



4

Z − () sin k̂¡


sin 

¢2
but now we have an integration over  and our function is in terms of  which depends

on  We should try to fix this. Let’s find  in terms of  We can pick  = 0 to be

the middle of the wire. Then

tan  =



on the right and

tan ( − ) = − tan  = 


on the left. Since on the left  is negative, this makes sense. So we have either

 =


tan 
or

 = − 

tan 
depending on which size of the dotted line we are on. We could write these as

 = ± 

tan 
= ± cos 

sin 
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for both cases. We really want  and moreover we want it as a magnitude (we deal

with the direction in the cross product). So we can take a derivative and then take the

magnitude (absolute value).



=
sin  (− sin )−  cos  cos 

sin2 
=
−
sin2 

This derivative was not obvious! We had to use the quotient rule. But once we have

found it we can rewrite this as

 =

¯̄̄̄ −
sin2 



¯̄̄̄
(now with the absolute value inserted) and since neither  nor sin2  can be negative we

can just write this as

 =


sin2 


Then our field for the bottom wire is
−→
B =



4

Z − ¡ 
sin2 

¢
 sin k̂¡


sin 

¢2
which we should simplify before we try to integrate.

−→
B =



4

Z − sin k̂


= −

4
k̂

Z
sin 

which is really not too bad considering the integral we had at the start of this problem.

When we get to the corner of the left hand side  = 3
4

and when we start on the right

hand side  = 
4

and along the bottom wire  will be somewhere in between 
4

and 3
4


Then 
4

and 3
4

are our limits of integration. We can perform this integral

−→
B = −

4
k̂

Z 3
4


4

sin 

= −
4

k̂ [− cos |
3
4

4

= −
4

k̂

Ã√
2

2
−
Ã
−
√
2

2

!!

= −
√
2

4
k̂

This was just for the bottom of the loop. Now let’s look at the top of the loop. There

is finally some good news. The math will all be the same except for the directions. We

had better work out −→s × r̂ to see how different it is.

Now the −→s is to the right and r̂ is downward so

−→s × r̂ = − sin k̂
But this is just as before. So even this is the same! The integral across the top wire
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will have exactly the same result as the integral across the bottom wire. We can just

multiply our previous result by two.

How about the sides? Again we get the same −→s × r̂ direction and all the rest is the

same, so our total field is
−→
B = 4

−→
B = −

√
2


k̂

This was a long hard, messy problem. But current loops are important! Every electric

circuit is a current loop. Does this mean that every circuit is making a magnetic field?

The answer is yes! As you might guess, this can have a profound effect on circuitQuestion 223.39.6

design. If your circuit is very sensitive, adding extra fields (and therefore extra forces

on the charges) can be disastrous causing the design to fail. There is some concern

about “electronic noise” and possible effects on the body (cataracts are one side effect

that is well known). And of course, as the circuit changes its current, the field it creates

changes. this can create the opportunity for espionage. The field exists far away from

the circuit. A savvy spy can determine what your circuit is doing by watching the field

change!

Long Straight wires

In our last example, we found that the magnitude of the field due to a wire is

 =

¯̄̄̄
−
4

Z
sin 

¯̄̄̄
Of course, we would like to relate this to our standard charge configuration, in this case

an infinite line of (now moving) charge. If the wire is infinitely long, then the limits of

integration are just from  = 0 to  = 

 =

¯̄̄̄
−

4

Z 

0

sin 

¯̄̄̄
=

¯̄̄̄
− 

4
(− cos )

¯̄̄̄
0

¯̄̄̄
=



2
This is an important result. We can add a new geometry to our list of special cases, a

long straight wire that is carrying a current  The direction of the magnetic field, we

already know, is given by our right-hand-rule. Of course, if our wire is not infinitely

long, we now know how to find the actual field. It is all a matter of finding the right

limits of integration.Question 223.39.7
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Magnetic dipoles

As a second example, let’s find the magnetic field due to a round loop at the center of

the loop. We start again with
−→
B =



4

Z
−→s × r̂

2

We need to find −→s × r̂ and , to do the integration. Our steps are:

1. Find an expression for −→s × r̂ this is a vector

2. Find an expression for 

3. Turn three-dimensional problems into three one-dimensional problems by taking
components

4. Assemble the integral, including limits of integration

5. Solve the integral.

Let’s start with the first step. As we go around the loop −→s and r̂ will be perpendicular

to each other, so

s× r̂ = k̂

For the second step, we realize that  is just the radius of the loop, . Then the

integration is quite easy (much easier to set up than the last case!)
−→
 =



4

Z


2
k̂
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The limits of integration will be 0 to 2 Notice that this is really a one-dimensional

problem!  is a vector that points in the k̂ direction only. So we don’t need to take

components. Or in other words, we already know  and  are zero for this case. We

can perform this integral

−→
 =



4

Z 2

0



2
k̂

=


4

2

2
k̂

so −→
 =



2
k̂ loop

The field is perpendicular to the plane of the loop, which agrees with our square loop

problem.

Let’s extend this problem to a point along the axis a distance  away from the loop.

Starting with step 1 we realize that, in general, our value of −→s × r̂ is

−→s × r̂ =  sin

where  is the angle between −→s and r̂ We can see that for this case  will still be

90 ◦
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Side View

We have tipped r̂ toward our point  but tipping r̂ from pointing to the center of the

hoop to pointing to a point on the axis just rotated r̂ about part of the hoop. We still

have  = 90 ◦ So ¯̄
−→s × r̂

¯̄
= 

with a direction shown in the figure. But our value of  is now more complicated

 =
p
2 + 2

We have used symmetry to argue that we can take just  or -components in the past

because all the others clearly canceled out. We can also do that again here. UsingMIT Visualization

symmetry we see that only the -component of the magnetic field will survive. So we

can take the projection onto the -axis.
−→
B =



4

Z


2
cos k̂

We know how to deal with such a situation, since we have done this before. From the

diagram we can see that

cos  =
√

2 + 2

so our field becomes −→
B =



4
k̂

Z


(2 + 2)
3
2

This is also a one-dimensional problem with
−→
B only in the k̂ direction. Fortunately this
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integral is also not too hard to do. Let’s take out all the terms that don’t change with 

−→
B =



4 (2 + 2)
3
2

k̂

Z 2

0



The limits of integration are 0 to 2, the circumference of the circle
−→
B =

2

4 (2 + 2)
3
2

k̂

=


2

2 (2 + 2)
3
2

k̂

Let’s take some limiting cases to see if this makes sense. Suppose  = 0 then
−→
B =


2

2 (2 + 0)
3
2

k̂

=


2

23
k̂

=


2
k̂

which is what we got before for the field at the center of the loop. That is comforting.

Now suppose that  À  In that case, we can ignore the 2 in the denominator.
−→
B ≈ 

2

2 (2)
3
2

k̂

=


2

23
k̂

We have just done this for on-axis positions because the math is easy there. But we

could find the field at other locations. The result looks something like this.

The figure on the left was taken from the pattern in iron filings that was created by an

actual current loop field. The figure to the right is a top down look. We will use the

symbol to mean “coming out of the page at you” and the symbol “going into the

page away from you.” Imagine these as parts of an arrow. The dot in the circle is the

arrow tip coming at you, and the cross is the �etching going away from you. Notice

that the field is up through the loop, and down on the outside.
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As we generalize our solution for the magnetic field far from the loop we have
−→
B ≈ 

2

23
k̂

This looks a lot like the electric field from a dipole
−→
E =

2

4

−→p
3

which gives us an idea. We have a dipole moment for the electric dipole. This magnetic

field has the same basic form as the electric dipole. We can rewrite our field as

−→
B ≈ 

¡
2

¢
2 () 3

̂

=
 (2)  ()

(2) 2 () 3
̂

=

4

2

3
̂

where  = 2 is the area of the loop.

The electric dipole moment is the charge multiplied by the charge separation

 = 

we have something like that in our magnetic field, The terms  describe the amount of

charge and the geometry of the charges. We will call these terms together the magnetic

dipole moment

 = 

and give them a direction so that  is a vector. The direction will be from south to north

pole

where we can find the south and north poles by comparison to the field of a bar magnet.

−→ =  from South to North
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This is a way to characterize an entire current loop.

As we get farther from a loop, the exact shape of the loop becomes less important. So

as long as  is much larger than  we can write
−→
B ≈ 

4

2−→
3
k̂

for any shaped current loop.

The integral for of the Biot-Savart law is very powerful. We can use computers to

calculate the field do to any type of current configuration. But by hand there are only a

few cases we can do because the integration becomes difficult. With electrostatics, we

found ways to use geometry to eliminate or at least make the integration simpler. We

will do the same thing for magnetostatics starting with the next lecture. Our goal will

be to use geometry to avoid using Biot-Savart when we can.

Basic Equations



24 Ampere’s law, and Forces on
Charges

Fundamental Concepts

• The magnetic field can be found more simply for symmetric currents using
Ampere’s law

H −→
 · −→ = 

• The force due to the magnetic field on a charge, is given by
−→
F = −→v ×−→B

Ampere’s Law

The Biot-Savart law is a powerful technique for finding a magnetic field, but it is more

powerful numerically than in closed-form problems. We can only find exact solutions

to a few problems with special symmetry. Since problems we can do by hand require

special symmetry anyway, we would like to use symmetry as much as possible to

remove the need for difficult integration.

We saw this situation before with electrostatics. We did some integration to find fields

from charge distributions, but then we learned Gauss’ law, and that was easier because

it turned hard integration problems into relatively easy ones. This still required special

symmetry, but when it worked, it was a fantastic time saver. For non-symmetric

problems, there is always the integration method, and a computer.

Likewise, for magnetostatics there is an easier method. To see how it works, let’s

review some math.

In the figure there is a line, divided up into many little segments.
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We can find the length of the line by adding up all the little segment lengths

 =
X


∆

Integration would make this task less tedious

 =

Z


This is called a line integral. Our new method of finding magnetic fields will involve

line integrals. The calculation of the length is too simple, however. We will have to

integrate some quantity along the line. For example, we could envision integrating the

amount of energy lost when pushing a box along a path. The integral would give the

total energy loss. The amount of energy lost would depend on the specific path. Thus a

line integral

 =

Z −→
F · −→s

would be useful to find the total amount of work. Each small line segment would give a

differential amount of work

 =
−→
F · −→s

and we use the integral to add up the contribution to the work for each segment of size

 along the path. Notice the dot product. We need the dot product because only the

component of the force in the direction the box is going adds to the total work done.
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We wish to do a similar thing for our magnetic field. We wish to integrate the magnetic

field along a path. The integral would look like thisZ 



−→
 · −→

This may not look like an improvement over integrating using the Biot-Savart law, but

our goal will be to use symmetry to make this integral very easy. The key is in the dot

product. We want only the component of the magnetic field that is in the −→ direction.

There are two special cases.

If the field is perpendicular to the −→ direction, thenZ 



−→
 · −→ = 0

because
−→
 · −→ = 0 for this case

If the field is in the same direction as −→  then
−→
 · −→ =  andZ 



−→
 · −→ =

Z 





Further if we can make is so that  is constant and everywhere tangent to the path, thenZ 



−→
 · −→ =

Z 





= 

Z 





= 

This process should look familiar. We used similar arguments to make the integralR −→
 · −→ easy for Gauss’ law.

With Gaussian surfaces, we found we could imagine any surface we wanted. In a

similar way, for our line integral we can pick any path we want. if we can make 

constant and everywhere tangent to the path, then, the integral will be easy. It is

important to realize that we get to make up our path. There may be some physical thing

along the path, but there is no need for there to be. The paths we will use are imaginary.

Usually we will want our path to be around a closed loop. Let’s take the case of a long

straight current-carrying wire. We know the field shape for this. We can see that if we

take a crazy path around the wire, that
−→
 ·∆−→ will give us the projection of

−→
 onto

the∆−→ direction for each part of the path.
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We get X


k∆

or in integral form Z
k

The strange shape I drew is not very convenient. This is neither the case where−→
 · −→ = 0 nor where

−→
 · −→ =  But if we think for a moment, I do know a

shape where
−→
 · −→ =  If we choose a circle, then from symmetry  will be

constant, and it will be in the same direction as  so
−→
 · −→ = . From our last

lecture we even know what the field should be.

 =


2
Let’s see if we can use this to form a new general approach. Since  is constant around

the loop, we can write our line integral asZ −→
 · −→ = 2

=


2
2

= 

This is an amazingly simple result. We integrated the magnetic field around an

imaginary loop path, and got that the result is proportional to the current in the wire.

This reminds us of Gauss’ law where we integrated the electric field around a surface

and got that the result is proportional to the amount of charge inside the surface.

Z −→
 · −→ =




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Let’s review. Why did I pick a circle as my imaginary path? Because it made my math

easy! I don’t want to do hard math to compute the field, so I tried to find a path over

which the math was as easy as possible. Since the path is imaginary, I can choose

any path I want, so I chose a simple one. I want a path where
−→
 · −→ = 0 or where−→

 · −→ =  This is very like picking Gaussian surfaces for Gauss’ law. If I chose

a harder path I would get the same answer, but it would take more effort. I found the

result of my integral
R −→
 · −→ to be just 

We had to integrate around a closed path, so I will change the integral sign to indicate

that we integrated over a closed path.

I −→
 · −→ =  (24.1)

and only the current that went through the imaginary surface contributed to the field, so

we can mark the current as being the current that goes through our imaginary closed

path.

This process was first discovered by Ampere, so it is known as Ampere’s law.

Let’s use Ampere’s law to do another problem. Suppose I have a coil of wire. This coil

is effectively a stack of current rings. We know the field from a single ring.

 =


2
But what would the field be that is generated by having a current �ow through the coil?

Well, looking at the single loop picture, we see that the direction of the field due to a

loop is right through the middle of the loop. I think it is reasonable to believe that if

I place another loop on top of the one pictured, that the fields would add, making a

stronger field down the middle. This is just what happens. So I could write our loop
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field equation as

 = 


2
where  is the number of loops I make. It is customary in electronics to define  as

the number of loops per unit length (sort of like the linear mass density we defined in

waves on strings, only now it is linear loop density). Suppose I take a lot of loops! In

the picture I have drawn the loops like a cross section of a spring. But now the loops

are not all at the same location. So we would guess that our field will be different than

just  times the field due to one loop. We can use Ampere’s law to find this field?

1

2

3

4



w

1

2

3

4



w

Consider current is coming out at us on the LHS and is going back into the wires on the

RHS. Remember our goal is to use Ampere’s lawI −→
 · −→ = 

to find the field. Let’s imagine a rectangular shaped Amperian loop shown as a dotted

black line. Note that like Gaussian surfaces, this is an imaginary loop. Nothing is really

there along the loop. Let’s look at the integral by breaking it into four pieces,Z
1

−→
 · −→ +

Z
2

−→
 · −→ +

Z
3

−→
 · −→ +

Z
4

−→
 · −→ = 

one for each side of the loop. If I have chosen my loop carefully, then
−→
 · −→ will

either be
−→
 · −→ = 0 or

−→
 · −→ =  Let’s start with side 2. We want to consider

−→
 · −→2

We see that for our side 2 the field is perpendicular to −→2 So

B · 2 = 0
This is great! I can integrate 0 Z

0 = 0

The same reasoning applies to −→
 · −→4 = 0

From our picture we can see that there is very little field outside of our coil of loops. So

3 is very small, so
−→
 · −→3 ≈ 0 It is not exactly zero, but it is small enough that I will
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call it negligible for this problem. For an infinite coil, this would be exactly true (but

infinite coils are hard to build).

That leaves path 1 There the -field is in the same direction as −→1 so
−→
 · −→1 = 1

Again this is great!  is fairly uniform along the coil. Let’s say it is close enough to be

considered constant. Then the integral is easy over side 1Z
1 = 

We have performed the integral!I −→
 · −→ =

Z
1

−→
 · −→ +

Z
2

−→
 · −→ +

Z
3

−→
 · −→ +

Z
4

−→
 · −→

= + 0 + 0 + 0

= 

Now we need to find the current in the loop. This is more tricky than it might appear. It

is not just  because we have several loops that go through our loop, each on it’s own

carrying current  and each contributing to the field. We can use a linear loop density16

 to find the number of loops.

 = 

and the current inside the loop will be

 = 

Then, putting the integration all together, we haveI −→
 · −→ = + 0 + 0 + 0 = 

or

 = 

which gives a field of

 = 





or

 = 

This device is so useful it has a name. It is a solenoid. You may have made a coil as a

kid and turned it into an electromagnet by hooking it to a battery (a source of potential

difference) so that a current ran through it. In engineering solenoids are used as current

controlled magnetic switches.

16 Physicists like densities!
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Solenoid operated valve system.

There is another great thing about a solenoid. In the middle of the solenoid, the field

is really nearly constant. Near the ends, there are edge effects, but in the middle we

have a very uniform field. This is analogous to the nearly uniform electric field inside a

capacitor. We can therefore see how to generate uniform magnetic fields and consider

uniform -fields in problems. Such a large nearly uniform magnetic field is part of the

Compact Muon Solenoid (CMS) experiment at CERN.
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CMS Detector at CERN. The detector is constructed of a very large solenoid to bend

the path of the charge particles.

Magnetic Force on a moving charge

Now that we know how to generate a magnetic field, we can return to thinking about

magnetic forces on mover charges. Our magnetic field is slightly more complicated

than the electric field. We can still use a charge and the force, but now the charge

is moving so we expect to have to include the velocity of the charge. We want an

expression that relates  and  in both magnitude and direction.

Our expression for the relationship between charge, velocity, field and the force comes

from experiment (although now we can derive it). The experiments show that when a

charged particle moves parallel to the magnetic field, there is no force! This is radically

different from our -field! Worse yet, the force seems to be perpendicular to both  and

 when the angle between them is not zero! Here is our expression.

F = v×B (24.2)

where  is the mover charge and  is the magnetic field environment.

We have a device that can shoot out electrons. The electrons show up because they hit

a phosphorescent screen. When we bring a magnet close to our beam of electrons, we

find it moves!Magnetic De�ec-
tion Demo
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But we did this with moving electrons, what happens if they are not moving? We might

expect the electrons to accelerate just the same–and we would be wrong! Static charges

seem to not notice the presence of the magnet at all!

We expect that, like gravity and electric charge, the force on the moving electrons

must be due to a field, but this magnetic field does not accelerate stationary electrons.

We learned before that the reason we know that there is some force on the electrons

came when Oersted, a Dutch scientist experimenting with electric current, found that

his compass acted strangely when it was near a wire carrying electric current. This

discovery is backwards of our experiment. It implies that moving charges must effect

magnets, but given Newton’s third law, If moving electrons make a field that makes a

force on a magnet, then we would expect a magnet will make a field that makes a force

on moving charges as well!

The derivation of the magnitude of the force from the experimental data is tedious. We

will just learn the results, but they are exciting enough! The magnitude of the force on a

moving charge due to a constant magnetic field is
−→
F = −→v ×−→B (24.3)

The magnitude is given by

 =  sin 

where  is charge,  is speed, and  is the magnitude of the magnetic field We need

to carefully define  Since we have a cross product,  is the angle between the field

direction and the velocity direction.

We can solve the equation for the magnetic field force (equation 24.3) to find the

magnitude of the field


 sin 
= 

But the strangeness has not ended. we need a direction of the force. And it turns out

that it is perpendicular to both −→v and
−→
B as the cross product implies! We use our

favorite right hand rule to help us remember.
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We start with our hand pointing in the direction of ṽ Curl your fingers in the direction

of B̃ And your fingers will point in the direction of the force. We saw this type of right

hand rule before with torque, but there is one big difference. This really is the direction

the charge will accelerate! Note that this works for a positive charge. If the charge is

negative, then the  in −→
F = −→v ×−→B

will be negative, and so the force will go in the other way. To keep this straight in my

own mind, I still use our right hand rule, and just remember that if  is negative, it goes

the opposite way of my thumb.

Right hand rule #2: We start with our hand pointing in the direction of ṽ Curl your
fingers in the direction of B̃ And your fingers will point in the direction of the force.
The magnitude of the force is given by

 =  sin  (24.4)

Motion of a charged particle in a -Field
Question 223.40.1

Question 223.40.2

Question 223.40.3

Question 223.40.5

We refer to the magnetic field as a -field for short.

Let’s set up a constant -field as shown in the figure. We draw a -field as a set of

vectors just like we did for electric fields. In the figure, the vectors are all pointing "into

the paper" so all we can see is their tails.

+

v

+

v

If I have a charged particle, with velocity ṽ what will be the motion of the particle inQuestion 223.40.6

the field? First off, we should recall that F̃ is in a direction perpendicular to ṽ and
−→
B ..

Using our right hand rule we see that it will go to the left.
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+

v
F

+

v

+

v
F

Remember that  =  so the charge will accelerate in the − direction.

Now, if we allow the charged particle to move, we see that the  direction changes. This

makes the direction of  change. Since  and  are always at 90 ◦ the motion reminds

us of circular motion! Let’s see if we can find the radius of the circular path of the

charge.

 =  sin 

will be just

 = 

because  is always 90 ◦ Then, using Newton’s second law

 =  = 

and noting that the acceleration is center-seeking, we can write it as a centripetal

acceleration

 =
2



Then


2


= 





= 
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We can find the radius of the circle



= 

Could we find the angular speed?

 =



=





How about the period? We can take the total distance divided by the total time for a

revolution

 =
2


to find

 =
2


and we recognize

1


=




so

 =
2


so, using our angular speed we can say

 =
2



The angular frequency  that we found is the frequency of a type of particle accelerator

called a cyclotron. This type of accelerator is used by places like CERN to start the

acceleration of charged particles. The same concept is used to make the charged

particles go in a circular path in the large accelerators like the LHC at CERN.

Turning magnets at CERN. This is an actual magnet, but this magnet is at ground level

in the testing facility. The tunnel is a mock-up of what the actual beam tunnel looks

like.

Within the detector systems, like the CMS, charged product particles can be tracked

along curved paths for identification.Question 223.40.7

Question 223.40.8

Question 223.40.9
But it is also interesting to know that charged particles that enter a magnetic field with
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some initial speed will gain a circular motion as well.

An example is the charged particles from the Sun entering the Earth’s magnetic field.

the particles will spiral around the magnetic field lines.

As the helical motion tightens near the poles, the particles will sometimes give off

patterns of light as they hit atmospheric atoms.

Aurora Borealis: Sand Creek Ponds Idaho 2013

The light is what we call the aurora borealis. A more high-tech use for this helical

motion is the confinement of charged particles in a magnetic field for fusion reaction.
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The velocity selector
Question 223.40.10

This device shows up on tests, especially finals, because it has both an electric field and

a magnetic field–you test two sets of knowledge at once! So let’s see how it works. Our

question should be, what is the velocity of a charged particle that travels through the

field without being de�ected?

-field

We remember that the force on a positively charged particle will be

 = 

directed in the field direction so it is downward.

-Field

Now we know that

F = v×B
and we use our right hand rule to find that the direction will be upward with a magnitude

of

 =  sin 

= 

So there will be no de�ection (no acceleration) when the forces in the -direction

balance.

Σ = 0 = − + 

or

 = 
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which gives

 =



as the speed that will be “selected.”

Bainbridge Mass Spectrometer

You may use a mass-spec some time in your careers. I have had samples identified

by mass-spectrometers several times in my industrial career. They are very useful

devices–especially when chemical identification is hard or impossible.

The Bainbridge device is one type that we can easily understand. It starts with a

velocity selector which sends charged particles at a particular speed into a region of

uniform magnetic field. The charged particles then follow curved paths on their way to

an array of detectors. When they hit the array, their spatial location is recorded. Where

they hit depends on their ration of charge to mass. From our study of the rotational

motion we found

 =




so the charge to mass ratio is



=




Since we know the initial velocity will be

 =



from the velocity selector, then




=





One way this is often used is to separate a sample of substance, say, carbon to find the
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relative amount of each isotope. The carbon atoms will all ionize to the same charge.

Then the position at which they are detected depends on the mass.

I used a mass-spec in my last industry project to identify large carbon compounds and

their relative concentration in complex oil leaks. This data helped us look for possible

leak detection targets so pipeline leaks could be detected before the oil was visible to

the naked eye.

Classical Cyclotron

We already found the period of rotation of a charged particle in a uniform magnetic

field.

 =
2


Note that this does not depend on the speed of the particle! So it will have the same

travel time regardless of how fast it goes. We can use this to accelerate particles. But we

add in an electric field to do the acceleration. The device is shown in the figure below

Basic Geometry of the Cyclotron. (Public Domain image courtesy KlausFoehl)

The particle starts in the center circling around in the magnetic field. but the device is

divided into halves (called “Ds”). There is a gap between the Ds, and the electric field

is created in the gap. One side at high potential and the other at low potential. When the

particle is in the gap, it accelerates. It will gain a kinetic energy equal to the potential

energy difference across the gap

∆ = ∆

As the particle travels around the D to the other side of the, the cyclotron switches the

polarity of the potential difference. So as it passes the gap on the other side of the

cyclotron, it is again accelerated with an additional ∆ = ∆ Since  does depend

on the speed,

 =



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the radius increases with each “kick.” Finally the particle leaves the cyclotron with a

velocity of
max


= 

Since we often describe the velocity of particles in energy terms, the kinetic energy of

the particle

 =
1

2
2

=
1

2


µ
max



¶2
=

222max
2

Hall Effect
Hall Effect Demo

The Hall probe is a cool little device that measures the magnitude of the magnetic field.

We should find out how it works.

Let’s take a piece of material that has a current going through it. If we place it in a

magnetic field, then the charge carriers will feel a force. Suppose it is a metal, and that

the charge carriers are electrons. The force is perpendicular to the current direction.

So the electrons are accelerated toward the top of the piece of metal as shown in the

drawing. This creates a negative charge on the top side of the metal piece. Then

the bottom side will be positively charged relative to the top. With separated charge

like this, we think of a capacitor and the electric field created by such a separation of

charges. There will be a field in the conductor with a potential difference between the

top and bottom of the conductor. We call this potential difference

∆
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the Hall potential after the man who first observed it.

Now if the charge carriers were positive, we would still build up a potential, but it

would be in the opposite polarity. We wish to find this hall potential. The electric field

of the charges will try to push them back down as more charge builds up. So at some

point the upward force due to the magnetic field on the electrons will be balanced by

the built up electric field. At that point

Σ = 0 =  − 

so

 = 

where  is the field due to the separation of charges.

So

 = 

The potential is nearly equal to

∆ ≈ 

where  is the top-to-bottom distance of the conductor , so

∆ ≈ 

Since we know

 = 

then

 =



and the area  is

 = 

where  is the thickness of the conductor, then

 =




and

∆ ≈ 


You may find this expressed in terms of the Hall coefficient

 =
1


so

∆ ≈ 




To do a good job of finding  for metals and semiconductors, you have to go beyond

classical theory. But if we know    and ∆ which can all be measured, then we

can find   Once this is done, we can place the Hall probe in different magnetic fields
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to find their strength. One way to do this is to control  and measure∆ so

 ≈ 


∆

Basic Equations



25 Magnetic forces on wires

Fundamental Concepts

• The magnetic force on moving charges extends to wires with currents

• The force on a wire with current is given by F = L×B
• The torque on a current loop is τ = μ×B where μ = A

Magnetic forces on Current-Carrying wires
Question 223.41.1

Question 223.41.2 If there is a force on a single moving charge due to a magnetic field, then there must be

a force on lots of moving charges! We call lots of moving charges an electric current

 =
∆

∆
For charges in a wire, we know that the charges move along the wire with a velocity 

We would expect the total force on all the charges to be the sum of all the forces on the

individual charges.

 =
X


 =
X


 sin 

but, since in our wire all the charge carriers are the same, this is just

 =  sin 

where here  is the number of charge carriers in the part of the wire that is experiencing

the field. We used a charge density  before. Let’s use it again to make an expression

for 

 =  = 

where  is the cross sectional area of the wire and  is the length of the wire. So

 =  sin 

Now let’s think back to our definition of current. We know that

 = 
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so our force on the current carrying wire is

 = () sin 

=  sin 

Remember that  is the angle between the field direction and the velocity. In this case 

is in the direction of the velocity (we still assume positive charge carriers, even though

we know they are electrons). So  is the angle between the field direction and the

direction of the current. We can write this as a cross product
−→
F  = 

−→
L×−→B (25.1)

where
−→
L is in the current direction.

Force between two wires
Question
223.41.2.3

We can use what we have learned to find the force between two wires.MIT movies

If I have two wires with current, I will have a field created by each wire. Let’s suppose

that 1 and 2 are in the same direction

and let’s calculate the force on wire 1 due to the field of wire 2 The field due to wire 2

at the location of wire 1 will be

12 =
2

2
where  is how far away wire 1 is from wire 2 We know

12 = 12 sin 

We can see that sin  = 1 since 1 will be perpendicular to 12

12 = 112
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and using our expression for 12

12 = 1
2

2

= 
21

2
(25.2)

Would you expect 21 to be very different?

Torque on a Current Loop
Question 223.41.4

Question 223.41.5 Remember that in PH121 or Statics and Dynamics we defined angular displacement

∆ =  −  (25.3)

and this told us how far in angle we had traveled from a starting point 

We also defined the angular velocity

 =
∆

∆
(25.4)

which told us how fast an object was spinning in radians per second. The direction of

this angular velocity we found using a right hand rule.

We also defined an angular acceleration

 =
∆

∆
(25.5)

and we used angular acceleration in combination with a moment of inertia to express a

rotational form of Newton’s second lawX
 =  (25.6)

where  is a torque. We found torque with the expression
−→τ = −→r ×−→F (25.7)

We wish to apply these ideas to our new force on wires due to magnetism.

Let’s take a specific example. I want to use a current loop. This is just the simple loop

of current we have seen before.
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I

a

b

I

a

b

I want to place this into a magnetic field.
I

a

b
B

I

a

b

I

a

b
B

I drew the current loop as a rectangle on purpose, I want to look at the force on the

current for each part of the loop. Each side of our loop is a straight wire segment.

Remember that the magnitude of the force on a wire is given by

 =  sin 

where  is the angle between  and  so if  = 0 or if  =  rad, then sin  will be

zero. The magnitude of the force will then be zero. So the top and bottom parts of the

loop will not experience a force. The sides will, though, and since for  = 
2

or  = −
2

( = −
2

is the same as  = 3
2

) then sin  = 1 and the force will be a maximum.

 = 

on each side wire segment. But we need to consider direction. The force will be

perpendicular to both  and  We use our right hand rule. Fingers in the direction of

 curl to the direction of  We see the force is out of the figure for the left hand side

and into the figure for the right hand side. The next figure is a bottom-up view.
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Clearly the loop will want to turn! This looks like a nice problem for us to describe

with a torque. We have a force acting at a distance from a pivot. We have a torque

 =  sin

We have already used  and our torque angle is the angle between  and  , so we

needed a new greek letter. I have used 17. Then  is the angle between  and 

Let’s fill in the details of our total torque. Remember we have two torques, one for

the left hand side, and one for the right and side. Their magnitudes are the same, and

the directions we need to get from yet another right hand rule. Both are in the same

direction so

 =


2
 sin () +



2
() sin ()

=  sin ()

Putting in the force magnitude gives

 =  () sin

and rearranging lets us see

 = ()  sin

= ()  sin

where  =  is the area of our loop. Of course we can write this as
−→τ =−→A ×−→B (25.8)

The torque is the cross product of the area vector and the magnetic field multiplied by

the current.

We did this for a square loop. It turns out that it works for any loop shape.

When things rotate, we expect to use moments. We defined a magnetic dipole moment

17 which is a psi
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for a current loop. Now we can see why it is useful. The magnetic moment tells us

about how much torque we will get for a particular current loop.
−→μ  = 

−→
A

using this we have
−→τ =−→μ  ×−→B

We could envision our loop as a single circle of wire connected to a battery. But we

could just as easily double up the wire. If we do this, what is our torque? Well we

would have twice the force, because we now have twice the current (the current goes

trough both turns of the wire). So now we have

 = 2 ()  sin

But why stop there? We could make three loops all together.

 = 3 ()  sin

or many more, say  loops,

 =  sin

Thinking of our magnetic dipole moment, we see that

 =  sin

for a coil. We could combine the effects of all the loops into one magnetic moment that

represents the coil.
−→μ = 

−→
A (25.9)

then

 =  sin

or in cross product form
−→τ =−→μ ×−→B (25.10)

Using this total magnetic moment, we can more easily do problems with coils in

magnetic fields.

For example, we found that there was a potential energy associated with spinning

dipoles, for a spinning current loop we also expect a potential energy. We have a simple

formula for this potential energy in terms of the magnetic moment.

 = −−→μ ·−→B (25.11)Question 223.41.5
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Galvanometer

We finally know enough to understand how to measure a current. The device is called a

galvanometer.

In the picture, we see the typical design of a galvanometer. It has a coil of wire (shown

looking at the side of the coil) and a spring. The coil is placed between the ends of a

magnet. When there is a current in the wire, there will be a torque on the coil that will

compress the spring. The amount of torque depends on the current. As the current

increases, the spring is more compressed. A marker (large needle) is attached to the

apparatus. As the spring is compressed, the indicator moves across the scale. Since this

movement is proportional to the current, a galvanometer can easily measure current.

Electric Motors
Question 223.41.6

With our new understanding of torque on a current loop, we should be able to see how

an electric motor works. A current loop is placed in between two magnets to form a

magnetic field. The loop will turn because of the torque due to the -field. But we have

to get clever. What happens when the loop turns half way around so the current is now

going the opposite way?
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I

a

bB

I

a

bB

Now the torque switches direction and the loop will come to rest. We don’t want that if

we are building a motor, so we have to switch the current direction every time the loop

turns half way.

N S

Commutator
Brushes

The way we do this is to have electrical contacts that are �exible, called brushes. The

brushes contact a metal ring. The metal ring is connected to the loop. But the ring has

two slits cut out of it.

The ring with slits is called a commutator As the loop turns, the commutator turns,

and when it has turned a half turn, the brushes switch sides. This changes the current

direction, which puts us back at maximum torque.
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This keeps the motor going the same direction.

Basic Equations





26 Permanent Magnets, Induc-
tion

Fundamental Concepts

• Using classical physics, we can’t quite explain a permanent magnet.

• Using a semiclassical model, the permanent magnet’s field is due to spinning
electrons.

• Alignment of the spinning electrons creates what we call magnetism.

• Temporary alignment results in paramagnetism and diamagnetism.

• More permanent alignment yields ferromagnetism.

• A changing magnetic field can create an emf.

Finally, why magnets work
Question 223.42.1

We all would like to know how magnets work. Can a permanent magnet have something

to do with current loops?

Well, lets look at the field due to a current loop. It looks a lot like the field due to a

magnet. Could there be current loops inside a bar magnet? The answer is well, sort

of... We have electrons that sort of travel around the atom. Suppose the electrons orbit

like planets. Then there would be a current as they travel. For one electron the current
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would be

 =




where  is the period of rotation. It is an amount of charge per unit time. We can write

this as

 = 


2
and recalling

 = 

then

 = 


2
We can find a magnetic moment (a good review of what we have learned!)

 =  = (1) 

= 


2

¡
2

¢
=



2
Physicists often write this in terms of angular momentum. Just to review, angular

momentum is given by

 = 

where  is the moment of inertia. Then

 = 

=
¡
2

¢ ³


´
= 

so the magnetic moment of the orbiting electron would be

 =


2
(26.1)

which gives us a magnetic moment related to the angular momentum of the electron.

Quantum effects
Question 223.42.2

All of this works well for Hydrogen. We find that individual hydrogen atoms do act

like small magnets. But if the hydrogen is in a compound, it is more complicated

because we then have many electrons and they are “orbiting” in different directions. It

is even true that most atoms have many electrons, and within the atom these electrons

�y around in all different directions. The magnetic field due to one electron in the atom

cancels out the magnetic field due to another, so there is no net magnetic field. So in

general there is no net magnetic field. Even for Hydrogen in a compound the overall

magnetic moment of the compound tends to cancel out.
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Further, we know that electrons do not travel like planets in circular orbits. So our

model for magnetism is not really correct yet. To understand the current model of

electron orbitals takes some quantum mechanics (and a few more years of physics). But

we can understand a little, because quantum mechanics does tell us that the electrons

have angular momentum. The big difference is that the angular momentum is quantized

meaning it can have only certain values (think of the quantized modes of an oscillating

string). The smallest magnetic moment for an electron turns out to be

 =
√
2


2

} (26.2)

where

} =


2
= 105× 10−34 J s

is pronounced “h-bar” and is a constant. We encountered Planck’s constant  before

( = 663× 10−34 J s). This is just Planck’s constant divided by 2 So it would seem

that with only certain values being available the magnetic moments might be more

likely to line up.

But it turns out that even in quantum mechanics, the magnetic moments of the electrons

due to their orbits cancel each other out most of the time.

But there is another contribution to the magnetic moment, this time from the electron,

itself. The electron has an amount of angular momentum. It is as though it spins on an

axis. This spin angular momentum is also quantized. It can take values of

 = ±
√
3

2
} (26.3)

My mental picture of this is a charged ball spinning on an axis.

The magnetic moment due to spin is

 =
}
2

(26.4)

This means that electrons, themselves are little magnets. Where does this magnetic

moment come from? Well it is as though the electron is constantly spinning. It is not

really, but this is a semi-classical mental model that we can use to envision the source

of the electron’s magnetic field. The “spinning” electron is charged, so the electron acts

like a miniscule current loop. The electron, itself is a source of the magnetic field for

permanent magnets.
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The spin magnetic moment was given the strange name Bohr magneton in honor of

Niels Bohr. If there are many electrons in the atom, there will be many contributions

to the total atomic magnetic moment. The nucleus also has a magnetic moment (a

detail we will not discuss) and there are other details like electron spin states pairing

up. But those are topics for PH279 and our senior quantum mechanics class. But it

turns out that this spin magnetic moment is the major cause that produces permanent

magnetism. We don’t want to wade though a senior level physics class now (well, you

probably don’t anyway) so we need a more macroscopic description of magnetism. But

fundamentally, if we can get the electrons spins in a material to line up, we will have a

magnet.

Ferromagnetism
Question 223.42.3

Because of the spin magnetic moment, we can see some hope for how a permanent

might work. But these spin magnetic moments are also mostly randomly arranged. So

again, most atoms won’t have an overall magnetic moment. But some atoms do have a

slight net field. They have an odd number of electrons. So the last electron can have an

unbalanced magnetic moment. That atom would act as a magnet

Still, this does not produce much of an effect, because neighboring atoms all are

oriented differently. So neighboring atoms cancel each other out. In a few materials,

though, the atoms within small volumes will align their magnetic moments. These

little domains form small magnets. But still the overall effect is very small because the

domains are all oriented in different directions.

If we place these materials in a magnetic field, we can make the domains align, and

then we have something!
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Few materials can do this. The ones that can are called ferromagnetic. Iron is one

material. We can make the domains align, but the alignment decays quickly. That is

why iron objects stick to a magnet, but don’t stick to each other when they are taken

away from the magnet. But if we can force the domains to stay in one direction, say, by

heating the ferromagnetic metal in a magnetic field and letting it cool and form crystals,

then we can make a magnet that will last longer. The magnetic moments will get stuck

all pointing about the same direction as the ferromagnetic metal cools. Some materials

like Cobalt form very long lasting permanent magnets.

Magnetization vector

We now know that each atom of a substance may have a magnetic moment. For a block

of the material, it is useful to think of the magnetic moment per unit volume. We will

call thisM It must be a vector, so that if there is an overall magnetic moment, we have

a magnet! Let’s see how to use this new quantity.

Suppose I have a current carrying wire that produces a field B But I also have a

material whereM is not zero. Then there must be a a field due to the magnetic material

B So the total field will be

B = B +B (26.5)

and all we have to do is determine the relationship betweenB andM

Solenoid approximation

Lets look at two atoms, We will model them as little current loops, since they have

magnetic moments.
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I

I

II

notice that in between the loops, the currents go opposite directions. We could think of

them as canceling. We get a net current that is to the outside of the loops

II

Now let’s take many current loops.

I

I

II

I

I

II

I

I

II

again, the inside currents cancel, leaving an overall current along the outside. Now if

we view a material as a stack of such current loops

I
I

I
I

I
I

I
I

we can model a magnetic material like a solenoid! That is great, because we know how

to find the field of a solenoid.

 = 

= 



I didn’t cancel the s because I want to recognize the numerator as the magnetic
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moment

 = 

so

 = 



but note that  is just the volume of the piece of magnetic material, so

 = 



which is gives us our new quantity, the magnetization vector

 =



(26.6)

well, this is the magnitude, anyway, so

 =  (26.7)

and of course the directions must be the same, since  is just a scalar constant

B = M (26.8)

So the total field is given by

B = B + M (26.9)

Magnetic Field Strength (another confusing name)
Only do this if you
have extra time

Sometimes we physicists just can’t let things alone. So when we arrived at the equation

B = B + M (26.10)

someone wanted to define a new term
B


(26.11)

so we could write the equation

B = 

µ
B


+M

¶
(26.12)

This new term is given an unfortunate name. The magnetic field strength. It is not the

magnitude of the magnetic field, but is the magnitude divided by the constant  It

has it’s own symbol,H So you may write our total field equation as

B =  (H+M) (26.13)

You might find this change unnecessary and confusing (I do) but it is tradition to use

this notation, and is not bad once you get used to it.
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Macroscopic properties of magnetic materials

We want a way to describe how “magnetic” different substances are without doing

quantum mechanics. This will allow us to classify materials, and choose the proper

material for whatever experiment or device we are designing.

For many substances we find that the magnetization vector is proportional to the field

strength (which is why field strength hangs around in usage)

M = H (26.14)

For many materials, this nice linear relationship applies, and we can look up the

constant of proportionality in a table. The name of the constant  is the magnetic

susceptibility.

If  is positive ( is in the same direction as ), we call the material paramagnetic.

If  is negative ( is in the opposite direction as ), we call the material diamagnetic.

Using this new notation, our total field becomes

B =  (H+M)

B =  (H+ H)

B =  (1 + )H (26.15)

The quantity  (1 + ) is also given a name,

 =  (1 + ) (26.16)

it is called the magnetic permeability. Now you see why  is called the permeability

of free space! (the name was not so random after all!). If  = 0 then

 =  (26.17)

and this is the case for free space. We can write definitions of paramagnetism and

diamagnetism in terms of the permeability.

Paramagnetic   
Diamagnetic   
Free Space  = 

For paramagnetic and diamagnetic materials,  is usually not too different from 

but for ferromagnetic materials  is much larger than 

Note that we have not included ferromagnetic substances in this discussion. That is
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because

M = H

is not true for ferromagnetic materials.

Ferromagnetism revisited
Question 223.42.4

But why is ferromagnetism different? To try to understand, let’s take a iron toroid and

wrap it with a coil as shown.

Field Meter

Iron
Toroid

Field Meter

Iron
Toroid

We have a magnetic field meter that measures the field inside the windings of the coil.

When we throw the switch, the coil produces a magnetic field. The field will produce a

magnetization vector in the iron toroid and, therefore, a field strength. We can plot the

applied magnetic field vs. the field strength to see how much effect the applied field has

on the magnetic properties of the iron toroid. We won’t do this mathematically, but the

result is shown in the figure.
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As we throw the switch, we go from no alignment of the domains so zero  and

therefore zero induced field in the iron toroid to a value that represents the almost

complete alignment of the magnetic moments of each atom of the iron. This is point 

It may take a bit of current, but in theory we can always do this. All the domains are

aligned and  is maximum.

Now we reduce the current from our battery, and we find that the field due to the

aligned domains drops as expected, but not along the same path that we started on! We

go from  to  as the current decreases. At point  there is no current, but we still have a

magnetic field in the toroid!

We can even keep going and reverse the field by changing the polarity of our power

supply contacts. Since we still have some field in the toroid, it actually takes some

reverse current to overcome the residual field. But if we apply enough reverse current,

then we get alignment in the other direction. Almost complete alignment is at point  If

we again reduce the current and find that–once again–it does not retrace the same path!

Each time we align the domains with our applied external field from the coil, the

domains in the iron toroid seem to want to stay aligned. Most do lose alignment, but

some stay put. We have created a weak permanent magnet by placing our ferromagnetic

material in a strong external magnetic field.

This strangely shaped curve is the magnetization curve for the material. The fact that

the path is a strange loop instead of always following the same path is called magnetic

hysteresis. We can see now that the external field (represented by the current  since

 ∝ ) and magnetization don’t behave in a simple relationship like they did for
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diamagnetic or permanganic materials.

The thickness of the area traced by the hysteresis curve depends on the material. It also

represents the energy required to take the material through the hysteresis cycle.

If we add enough thermal energy, it is hard to keep the atomic dipole moments aligned.

The next figure shows this effect.

At a temperature called the Curie temperature, the material no longer acts ferromagnetic.

It becomes simply paramagnetic. So if we heat up a permanent magnet, we expect

it to lose it’s alignment and therefore to stop being a magnet. This is what happens

to ferromagnetic materials when they are heated due to volcanism. The domains are

destroyed and all the atoms lose alignment. Whey the material cools, the Earth’s

magnetic field acts as an external field and some of the domains will be aligned with

this field. This is how we know that the Earth’s magnetic field switches polarity. We

can see which way the magnetization vector points in the cooled lava deposits from

places like the Mid-Atlantic Trench.

This is also how magnetic tapes and disks work.

Paramagnetism

So what is paramagnetism? It comes from the material having a small natural magnetic

susceptibility.

0  ¿ 1 (26.18)

So in the presence of an external magnetic field, you can force the little magnetic

moments to line up. You are competing with thermal motion as we saw in

ferromagnetism, so the effect is usually weak. A rule of thumb for paramagnetism is

that

 = 



(26.19)
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where  contains the particular material properties of the substance you are

investigating (another thing to look up in tables in books),  the applied field, and  is

the temperature. In other words, if it is cool enough, a paramagnetic material becomes

a magnet in the presence of an external magnetic field. This is a little like polarization

of neutral insulators in the presence of an electric field. For paramagnetic materials, the

induced magnetic field is in the same direction as the external field.

Some examples of paramagnetic materials and their susceptibilities are given below
Material Susceptibility
Tungsten 68× 10−5
Aluminium 22× 10−5
Sodium 072× 10−5

Diamagnetism.

This is fundamentally quite different from paramagnetism. It comes from the material

having paired electrons that orbit the atom (classical model). The magnetic moments of

the electrons will have equal magnitudes, but opposite directions (a little bit of quantum

mechanics to go with our classical model). When the external field is applied, one

electron’s orbit is enhanced by the field, and the other is diminished (think v × ).

So there will be a net magnetic moment. If you think about this for a while, you will

realize that the new net magnetic moment is in the opposite direction of the applied

external field! So diamagnetism will always repel.

There is always some diamagnetism in all mater. We can enhance the effect using a

superconductor. The diamagnetism of the superconductor repeals the external field

entirely! Why does this happen only for superconductors? Well, that will take more

theory to discover (a great topic for our junior level electrodynamics class). But the

phenomena is called the Meissner effect.Meissner effect
demo

Back to the Earth

So now we can see that the Earth is a magnet and we know how magnets are formed.

But wait, why is the Earth a magnet? The real answer is that we don’t know. But we

believe that again it is because of current loops. We believe there is a current of ionized

Nickel and Iron in near the center of the Earth. So the �ow of these charged liquid

metals will create a magnetic field. This is a vary large current loop! The evidence for
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this is that magnetic field seems proportional to the spin rate of the planet. But this is

an area of active research.

It is curious that the magnetic pole and the geographic pole are not in the same place.

The magnetic pole also moves around like a precession. Then, every couple of hundred

thousand years, the polarity of the Earth’s field switches altogether!

There is still plenty of good research to do in this area.

The location of the magnetic pole explains the declination adjustment you have to use

when using a compass. What you are really doing is accounting for the difference in

pole location.

Induced currents

We spend most of the last two lectures building a relationship between moving charge

(current) and magnetic fields. But suppose we have moving magnetic fields. Could aQuestion 223.42.5

moving magnetic field make a current?

If we think of relative motion, it seems like it should. After all, how do we know that

it is the charge that is moving and not a moving -field. In fact, moving -fields do

cause a current. We say that a moving or changing magnetic field induces a current.MIT 1edit.wmv

Notice that in our movie, the current does not stay constant. As the magnet moves, we

get a spike in current. But it drops back down to zero. When the magnet is taken away,

again we get a spike in current (now the other direction). But again it dies back down.

The current seems to exist only as the field changes, and there is more current where

the field is changing fastest

Faraday discovered this effect. He described it as an induced emf. An emf is something

that “pumps” the charges in the wire. It takes them from a lower to a higher potential so

they can form a current. The changing magnetic field must be “pumping” the charges

as it changes!

What is really going on here? Think for a minute what must be happening.
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When we defined the electric potential, we use a capacitor. We found that there was a

field directed from the + charges to the − charges. And in this field, charges had an

amount of potential energy. When a current �ows from the + end of the battery to the

− end. there must be an electric field acting on the charge in the wire! That is what

creates the electric potential. So, then, does a moving magnetic field create an electric

field?

The answer is yes! We say that an electric field is induced by a moving magnetic field.

This is really the same as saying that there is an induced emf for our current loop.

Faraday actually set up his experiment with two coils of wire. One coil was connected

to a battery. We now know this coil will make a magnetic field. As the current starts

�owing the field will form. While it is forming, it will induce an emf in the second coil.

But this is just using an electromagnet instead of a permanent magnet.

To be able to calculate how much current �ows, we will need to investigate changing

magnetic fields. We will do this next lecture with our concept of �ux.
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Basic Equations





27 Induction

Fundamental Concepts

• Conductors moving in magnetic fields separate charge. creating a potential
difference that we call “motional emf.”

• Motional emfs generate currents, even in solid pieces of conductor. These currents
in conductors are called “eddy currents.”

• Magnetic �ux is found by integrating the dot product of the magnetic field and a
differential element of area over the area. Φ =

R


−→
 · −→

Motional emf

Last lecture, we studied Faraday’s experiment. He created a magnetic field, and then

used that magnetic field to make a current. But currents are caused by electric fields!

Did Faraday’s magnetic field create an electric field?

To investigate Faraday’s result, let’s see if we can find a way to use charge motion

and a magnetic field to make an electric field. Let’s take a bar of metal and move it

in a magnetic field. The bar has free charges in it (electrons). We have given them a

velocity. So we expect a magnetic force
−→
F = −→v ×−→B

The free charges will accelerate together, but the positive stationary charges can’t move.

We have found another way to separate charge. We know that separated charge creates

a potential difference. We often call this induced potential difference the motional emf

because it is created by moving our apparatus.

Let’s take an example to see how it works.
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For this example, let’s look at a piece of wire moving in a constant field. To make the

math easy, let’s move the wire with a velocity perpendicular to the -field.

As the figure shows, the electrons will feel a force. Using our right hand rule, we get an

upward force for positive charge carriers, but we know the electrons are negative charge

carriers, so the force is downward. We find that the magnitude of the force is

 = 

The electrons will bunch up at the bottom of the piece of wire, until their electric force

of repulsion forces them to stop. That force is

 = 

By separating the charges along the wire, we now have and -field. We can solve for 

when we have reached equilibrium.

Σ = 0 = − + 

or

 = 

which tells us

 =  (27.1)

Now, we know that electric fields cause potential differences. The -field in the wire

will be nearly uniform. Then it looks much like a capacitor with separated charges. The

potential difference will be

∆ =

Z −→
 · −→

≈ 
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where  is the length of our wire. So

∆ ≈  (27.2)

This is like a battery. The magnetic field is “pumping” charge. If we connected the

two ends somehow with a wire that is not moving, a current will �ow (that is tricky to

actually do!).Question
223.43.0.1

Let’s take another example. We wish to make a bar of metal move in a -field. To

make the rest of the circuit, we allow the bar to slide along two wires as shown. We

will call the two wires “rails” since they look a little like railroad rails. Then we have

a connection between our moving piece of metal, and the rest of the circuit. What we

have is very like the circuit on the right hand side of the last figure.

We will have to apply a force  to move the bar. This is because there is another

force, marked as  in the figure. This force is one we know, but might not

recognize unless we think about it. We now have a current �owing through a wire, and

the wire is in a magnetic field. So there will be a force

 = 
−→
 ×−→

=  sin 

= 

pushing to the left. This force resists our pull.

From Ohm’s law, the current in the wire will be

 =
∆



=






360 Chapter 27 Induction

so the force is

 =

µ




¶


=
22


Thus we have to push with an equal force

 = 

to keep the bar moving along the rails. If    then the bar will have an

acceleration, and it will be in the opposite direction from the velocity, so the bar will

slow down.

Eddy Currents
Question 223.43.1

Pendulum-loop So if we have a conductive loop and part of that loop moves in a magnetic field, we get

a current. I chose to make our apparatus a pendulum.

So as the pendulum swings, through the magnetic field, we get a current. What if we

have a solid sheet of conductor and we move that sheet through the magnetic field, will

there be a current?Pendulum-plate

Question 223.43.2

The answer is yes. We call this current an eddy current. Let’s see that this must be true

with another experiment.Let’s cut groves in the plate.Question 223.43.3
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The current is broken by the grooves, so there is little opposing magnetic fieldThisAl plate and strong
magnets effect due to the eddy currents is often used to slow down machines. Rotating blades,

and even trains use this effect to provide breaking.Floating Plate
Demo

Magnetic �ux

Remember long ago we defined the electric �ux.

Recall that the electric �ux is given by

Φ =
−→
 ·−→

=  cos 

But we now have a magnetic field.
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We define a magnetic �ux

Φ =
−→
 ·−→ (27.3)

Φ =  cos  (27.4)

where  is the angle between
−→
 and

−→

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We found that the electric �ux was very useful. We used Gauss’ law to find fields using

the idea of electric �ux. It turns out that this magnetic �ux is also a very useful idea.

There is a difference, though. With electric �uxes, we had imaginary areas that the field

penetrated. Often when we measure magnetic �ux, we actually have something at the

location of our area. We generally want to know the �ux through a wire loop.

Just like with electric �ux, we expect the �ux to be proportional to the number of field

lines that pass through the area.

Non uniform magnetic fields

So far in this lecture we have only drawn uniform magnetic fields and considered their

�ux. But we can easily imagine a non-uniform field. We tackled non-uniform electric

field �uxes. We should take on non-uniform magnetic field �uxes as well. Suppose we

have the situation shown in the following figure.

B

dA

We have a loop of wire, and the loop is in a �ux that changes from left to right.

To find the �ux through such a loop of wire, we can envision a small element of area,
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
−→
 as shown. The �ux through this area element is

Φ =
−→
 · −→

We can integrate this to find the total �ux

Φ =

Z


−→
 · −→ (27.5)

But what could make such a varying -field? Consider a long straight wire again.

We know that the field due to the current-carrying wire will be

 =


2
where  is the distance from the wire and the direction is given by one of our right hand

rules.
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The �ux through the green rectangular area is almost constant. The little area is givenQuestion 223.43.4

Question 223.43.5 by

 = 

The area is perpendicular to the field, so the angle between  and  is 90 ◦ Then

Φ =


2
 (1)

and we can integrate this to find the total �ux

Φ =

Z =



Z 





2


=


2

Z +



1




=


2
(ln ( + )− ln ())

=


2
ln

µ
 + 



¶
We can even put in some numbers for this case. Suppose our loop has a height of

 = 005m and a width of  = 001m and that it is a distance  =  away from the

current carrying wire and that the current is  = 05A. Then

Φ =

¡
4 × 10−7 Tm

A

¢
(05A) (005m)

2
ln

µ
001m+ 001m

001m

¶
= 3 465 7× 10−9Wb

the unit of magnetic �ux is called the weber and it is given by :

Wb = Tm2 =
m2

A

kg

s2

We know now how to calculate magnetic �ux, but you should expect that we can do

something with this �ux to simplify problems. And your expectation would be right.

We used electric �ux in Gauss’ law. We will use magnetic �ux to find the induced emf.

An induced emf can create a current, and this is the basic idea behind a generator. The

law that governs this relationship between induced emf and magnetic �ux is called

Faraday’s law after the scientist that discovered it. We will study this law in our next

lecture.

Basic Equations
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Fundamental Concepts

We talked about an induced electric field created by a magnetic field last lecture. We

want to formalize that relationship in this lecture. Let’s go back to our motional emfQuestion 223.44.1

Question 223.44.2

Question 223.44.3

problem.

We have a sliding bar, and a u-shaped conductor and a magnetic field. The moving bar

makes the current �ow. But now we know another way to express this. We can see that

there is a magnetic �ux through the loop consisting of the u-shaped conductor and the

sliding bar. This �ux going through the loop is changing. The area is getting larger,

so the amount of field going through the loop is increasing. We can say the induced

current is due to the changing loop area in the presence of the magnetic field, or a

changing magnetic �ux.

An important thing we learned is that the moving bar feels a resistive force due to the

current and magnetic field. It seems like the magnetic field and current are resisting any

change in our set up. We will see in this lecture that this is true in general.

It turns out that there is more than one way to cause an induced current. Any change

in the magnetic �ux is found to make a current �ow. Remember in class we found that

putting a magnet into or pulling the magnet out of a coil makes a current. In this case,

the strength of the magnetic field changes, so the �ux changes. Really any change in
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magnetic �ux makes a current �ow.

Fundamental Concepts in the Lecture

• Changing magnetic �ux makes an electric field–which has an associated potential
difference or emf.

• The current caused by the induced emf travels in the direction that creates a
magnetic field with �ux opposing the change in the original �ux through the circuit.

• The emf (potential difference) generated by a changing magnetic field is given by
E = − ∆Φ

∆

Lenz

What we are saying is that if we change the magnetic �ux through a loop, we will get a

current. The direction of current �ow is not obvious. Lenz experimentally determined

which way it will go. Here is his rule

The current caused by the induced emf travels in the direction that creates a magnetic
field with �ux opposing the change in the original �ux through the circuit.

This takes a moment to digest. Let’s take an example

Consider the case shown in the picture. Suppose the -field gets smaller in time. If

that is the case, then the induced current will try to keep the same number of field lines
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going through the loop. To do this, it will have to add field lines, because our field that

is getting smaller will have fewer and fewer field lines. So in this case, the induced field

B̃ will be in the same direction as B̃ to try to keep the number of field lines the same.

We find the current using our current-carrying wire right hand rule for magnetism. We

imagine grabbing the wire such that our fingers curl into the loop the way B̃ goes

through the loop. Then our thumb is in the direction of the current.Question 223.44.4 -
223.44.11

Faraday

In our motional emf problem, the sliding bar in the magnetic field creates a potential

difference,∆ It becomes an emf. We can use the symbol E for our emf.

But then in considering Lenz’s law, it was experimentally found that any change in �ux

causes a current. Then any change in �ux must create an emf.

In this case the area is getting larger, and so the �ux is getting larger. The induced

current will oppose the change. So the induced magnetic field should go up through the

center of the loop. Imagine sticking your fingers through the loop out of the page, then

grabbing the loop (fingers still out of the page in the inside of the loop). Anywhere you

grab the wire, your thumb is in the induced current direction.

Faraday’s law of Magnetic Induction

Faraday wrote an equation to describe the emf that was given by changing a -field. It

combines what we know about magnetic �ux and current from Lenz’s law. Faraday did

not know the source of the emf, it is a purely empirical equation. Here it is
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E = −∆Φ
∆

(28.1)

The  is the number of turns in the coil (remember he used a coil, not just one loop).

Φ is the change in the magnetic �ux. Our definition of magnetic �ux is

Φ =

Z −→
B · −→A

but for simple open surfaces we can gain some insight by writing the �ux as

Φ =  cos 

Then the induced emf would be given by

E = − (22 cos 2 −11 cos 1)

∆
(28.2)

and we see that we get an emf if   or  change. We can write this as a differential

if we let∆ get very small.

E = − Φ


(28.3)

Suppose we have a simple �ux Φ =
−→
B ·−→A then for this simple case

E = − 



³−→
B ·−→A

´
= −

µ−→
B · 



−→
A +

−→
A · 



−→
B

¶
The first term shows our motional emf case. The area is changing in time. But the

second term shows that if the field changes, we get an emf. This is the moving magnet

in the coil case.

There are some great applications of induced emfs, from another design for circuit

breakers to electric guitar pickups!Question 223.44.12
- Question
223.44.17

Return to Lenz’s law

Remember that Lenz’s law says the current caused by the induced emf travels in the

direction that creates a magnetic field with �ux opposing the change in the original �ux

through the circuit. What if the current went the other way?

If that happened, then we could set up our bar on the rails, and give it a push to the

right. With the current going down instead of up (for positive charge carriers) then we
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would have a force on our bar-like segment of wire

 =  sin

here sin = 1 so

 = 

It will be directed to the right. So the bar would accelerate to the right. That would

increase the size of the loop, increasing the current. That would increase the force to

the right, and our bar would soon zip off at amazing speed. But that does not happen. It

would take ever more energy to make the bar go faster, with no input energy. So this

would violate conservation of energy. Really Lenz’s law just gives us conservation of

energy again.

Pulling a loop from a magnetic field.

Let’s try a problem. Suppose we have a wire loop. The loop is rectangular, with side

lengths  and  Further suppose that the loop is in a region with magnetic field, but that

it is on the edge of that field, so that if we pull it to the right, it will leave the field.

let’s see if we can find the induced emf and current.

The Magnetic �ux through the loop is changing. We can find an expression for the �ux

Φ =
−→
B ·−→A

or in this case

Φ = 

We know the emf from Faraday’s law

E = − Φ


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then

E = − (1) 

()

The field is not changing strength, and the length  is not changing. But along the 

side, we are losing field. Remember that  in our �ux equation is the area that actually

has field and we have less area that has field all the time. We can see that

E = − (1) 

() = −


= −

where  is the speed at which we are pulling the wire loop. That is the speed at which

our �ux changes.

We can use Ohm’s law to find the current,

 =
∆


=
E


or

 =




We could ask, how much work does it take to pull the wire out of the field? This is like

our capacitor problem where we pulled a dielectric out of the middle of the capacitor.

The net force on the loop is not zero, because the field is no longer uniform. The right

hand side of the loop is outside the field, and the left hand side is not. Of course, the top

and bottom of the loop have opposite forces that balance each other. So the net force is

due to the left hand side of the loop. Recall that
−→
F = 

−→
L ×−→B

We can see that in this case  is upward, and  is into the page. So there is a force to

the left resisting our change �ux. We must pull to overcome this force. The magnitude

of this force is

 = 

and we know  so

 =



 =

22



Now we need to find the work done.

 =

Z


or, since our force will be constant,

 = 

Z


which is not a hard integral to do. But instead of performing the integral, let’s look at

the integrand.

 = 
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if we divide both sides of our equation by  we have



= 





we know that  =  and 

=  and so we can write our equation as

 = 

=
222


which is how much power the magnetic field force provides in resisting. We must

provide and equal power to move the loop. It will take time

∆ =
∆


to pull the loop a distance ∆ If we define our coordinates such that  = 0 then to

pull out the loop, we will write this time as

∆ =



so the work is

 = ∆

=
222







=
22



Incidentally, we learned from our demonstrations that induced currents can take energy

out of a system, creating heat energy. From Ohm’s law the power lost due to resistive

heating would be

 = 2

=

µ




¶2


=
222


which is just the power we had to provide to make our loop move. So our work has

moved the loop and heated up the wire.

We have created a current in a wire. This is the first step in building a generator. It cost

us work to do this. In the next lecture, we will tackle more practical design and build

generators and transformers. Then we will pause to think philosophically about what it

means that a changing magnetic �ux creates an electric field.

Basic Equations





29 Induced Fields

Fundamental Concepts

• Changing the commutator for slip rings makes a motor into a Generators

• Using alternating current, we can build an inductive device that can change from
one voltage to another. This device is called a transformer.

• A more general form of Faraday’s law is
R
E · s = −Φ



Generators
Question 223.45.1

Whether you are just plugging in an appliance, or preparing for an emergency, you

likely would think of a generator as a source of electrical energy. Our studies so far

have strongly hinted on how we would build an electric generator. In this lecture, we

will fill in the details.

We can learn a lot by studying this device as an example. The figure shows the

important parts of the generator (and a light bulb, which is not an important part of a

generator, but just represents some device that will use the electrical current we make).
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The generator has at least one magnet. In the figure, there is one with a north end on

the left and a south end on the right. A generator also has a wire loop. Usually in real

generators, there are thousands of turns of wire forming the loop. In our picture, there is

just one. The wire loop is connected to two metal rings. The rings will turn as the loop

turns. Metal contacts (brushes) that can slip along the rings, but maintain an electrical

connection, are placed on the rings. So as the rings turn, current can still �ow through

the connected wires (to the light bulb in this case).Question 223.45.2

This should look familiar. This is the same basic setup as the motor, with a few

exceptions. An important exception is that the commutator has been replaced by the

set of rings. We will call these ring contacts slip rings because the wires can slip

along them while still maintaining electrical contact because of the brushes. We have a

current loop in a (nearly) uniform, constant field. If I look from the slip ring side of the

loop, I have the same geometry we had before when we considered motors. This time I

want to consider doing work to turn the loop, and find the induced emf in the loop. We

start with Faraday’s law

E = − Φ


(29.1)

since in our special case we only have one loop, this is just

E = −Φ


(29.2)

Here is a the view looking at the cross section of the loop facing toward the slip rings.
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Let’s consider the �ux through the loop. The definition we have for �ux is

Φ = B ·A
=  cos 

= 

where  is the angle between the loop area vector and the magnetic field direction.

I want to write the �ux in terms of the lengths of the wire. When the loop is standing up

straight along the -direction the projected area is just the area

 = 

Then the projected area is

 =  cos 

Let’s check to make sure this works. When the loop is standing up straight along the

-direction  = 0 ◦ and cos  = 1 so


 max =  cos  = 

so this works.

To find the emf generated, I need

E = −Φ


and only the projected area is changing (really, only the angle is changing). So

E = −Φ


= −


We realize that  must change in time. We remember from PH 121 or Dynamics that

we can use  =  where  is the angular speed of the rotating loop. Then

 =  cos

and

E = −Φ


= − 


 cos

We recognize that  changes as the loop turns Since  is not changing, the change in

�ux per unit time is just  times the change in area with time.

E =  sin ()

Look at what we got! it is a sinusoidal emf. This will make a sinusoidal current!

 =
E


=
 sin ()


for a circuit. Our emf looks like

E = Emax sin () (29.3)
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where

Emax =  (29.4)

Here is a plot of the function

t

EMF_max

Of course this sinusoidal emf will create what we call an alternating current. This is

how the current in the outlets in your house is generated.

Of course, our generator only has one coil. Actual generators have multiple coils.

Double Armature Generator (Public Domain Image)

and we need a source of work to turn the generator. A water turbine is an example,
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Water Turbine driven Generator (Public Domain Image courtesy U.S. Army Corps of

Engineers)

or for emergencies, you might have a gasoline powered generator, or in a nuclear

reactor you might have a steam driven generator. Still, the basic idea of a wire loop

moving relative to a magnetic field is common to all electric generators.

DC current from a generator

We can also make a non-alternating current with a generator, but we have to get tricky

to do it. We use the same idea we used to make a motor. We cut slots in the slip rings,

so the current will switch directions every half turn. We get a kind of poor quality

current from this because the emf still varies a lot.

t

EMF_max

Clever engineers design generators for non-alternating or direct current generators by

overlapping several current loops at different angles. Each loop has it’s own cut slip

rings. The combined currents smooth out the ripples we see in the previous figure. For

semiconductor devices, special circuits are used to make the current very smooth.
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Back emf

We can see that a motor is a DC generator run backwards. I just want to mention that

when we talk about motors, we have to realize that as we send current into the motor

coils, there will be an induced emf that will try to maintain the existing �ux as the

motor’s loops turn. This emf will be in the opposite direction of the applied current!

So it reduces the amount of work the motor can do. This is like the resistive force we

encountered when we pulled a loop from a magnetic field last lecture. This resistive

force is called the back emf and must be accounted for in motor design.

Transformers (not the movie)
Question 223.45.3

The power comes into our houses at about 120 . Your iPhone probably requires 3V

to 5V How do we get the voltage we want out of what the power company delivers?

You know the answer is to plug in your phone using a special adaptor. Lets see how it

works.

Let’s consider Faraday’s law again. We know that

E =∆ () = − Φ


Suppose we use Faraday’s idea and hook two coils up next to each other.

One side we will hook to an alternating emf. We will call this side coil 1. The other

side we will hook a second coil with some resistive load like a light bulb. We will call

this coil 2The iron core keeps the magnetic field inside, so the �ux through coil 1 ends

up going through coil 2 (think of all the little domains in the iron lining up along the

field lines, and enhancing the field lines with their own induced fields).

The alternating potential from the source will create a change in �ux in coil 1

∆1 = −1

Φ1


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if little �ux is lost in the iron, then we will retrieve most of the �ux in coil 2 and an emf

will be induced in the resister (light bulb in our case).

∆2 = −2

Φ2


we just convinced ourselves that

Φ1


≈ Φ2


so we can solve each equation for the change in �ux term, and set them equal.

∆1

1

= −Φ1


∆2

2

= −Φ2


so we have
∆1

1

=
∆2

2

(29.5)

If we solve for∆2 we can find the emf in coil 2
2

1

∆1 = ∆2 (29.6)

You have probably already guessed how we make ∆2 to be some emf amount weQuestion 223.45.4

want. We take, say, our wall current that has a value18 of ∆1 = 120V. We pass

it through this device we have built. We design the device so that 2

1
∆1 gives just

the potential that we want for ∆2 If we want a lower emf, say 12V then we make
2

1
= 01 so

2

1

∆1 = 01 (120V) = 12V (29.7)

This is part of what the wall adaptor does. Usually wall adapters also have some

circuitry to make the alternating current into direct current.

Note that there is a cost to doing this. The power must be the same on both sides (or a

little less on side 2). So

P = 1∆1 = 2∆2

We can change the emf, but it will effect our ability to supply current.

This device is called a transformer. Real transformers do lose power. Some loss is

due to the fact that not all the -field from coil 1 makes it inside coil 2 But real

transformers are not too bad with efficiencies ranging from 90% to 99%.Question 223.45.5

Induced Electric Fields

Consider again a magnetic field and a moving charge. If the field changes, the �ux

18 Really this should be an rms voltage, but we have not studied alternating current yet, so for now we will
just call it a voltage.
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changes. Say, for example, that the field is increasing in strength.

The charge will move in a circle within the wire. We now understand that this is

because we have induced an emf. But think again about a battery.

The battery makes an electric field inside a wire. Recall this figure

We must conclude that if we create an emf, we must have created an electric field.

This is really interesting. We now have a hint at how wireless chargers might work (we
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will return to this later). But now let’s ask ourselves, do we need the wire there for this

electric field to happen? Of course, the force on the charge is the same if there is no

wire, so the -field must be there whether or not there is a wire.

In fact, the electric field is there in every place the magnetic field exists so long as theQuestion 223.45.6

Question 223.45.7 magnetic field continues to increase.

This is quite a profound statement. We have said that a changing magnetic field creates

an electric field. Before, only charges could create electric fields, but in this case, the

magnetic field is creating the electric field. Of course, we know that moving charges are

making the magnetic field, so it is not totally surprising that the fields would be related.

This electric field is just like a field produced by charges in that it exerts a force

 = 

on a charge  But the electric field source is now very different.



384 Chapter 29 Induced Fields

Relationship between induced fields

+

I
r

+

I
r

It would be nice to have a relationship between the changing -field and the -field

that is created. It would be good to obtain the most general relationship we can thatQuestion 223.45.8

relates the electric field to the magnetic field. By understanding this relationship, we

can hope to gain insight into how to build things, and into how the universe works.

Let’s start with a thought experiment.

Suppose we have a uniform but time varying magnetic field into the paper. In this field,

we have a conducting ring. If the field strength is increasing, then the charges in the

conducting loop shown will feel an induced emf, and they will form a current that is

tangent to the ring.

Let’s find the work required to move a charge once around the loop. The amount of

potential energy difference is equal to the work done, so

|∆ | = | |
but in terms of the electric potential this is

∆ = ∆ = E
so

| | = |E|
Now let’s do this another way. Let’s use

 =

Z
F · s

The force making the current move is due to the induced potential difference. This is

just

 = 
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which will not change as we go around the loop. The path will be along the loop, so

 =

Z




and since the -field is uniform in space at any given time as we travel around the loop,

 = 

Z


 = 2

So we have two expressions for the work. Let’s set them equal to each other

E = 2

The electric field is then E
2

=  (29.8)

but

E = − Φ


so

 =
−
2

Φ



=
−1
2

Φ



So if we know how our -field varies in time, we can find the -field that the changing

-field induces. Let’s rewrite this one more time

2 = −Φ


Since the -field is constant in as we go around the loop, we can recognize the LHS as

2 =

Z −→
E · −→s

which should be little surprise, since we found

∆ =

Z −→
E · −→s

to be our basic definition of the electric potential. SoZ −→
E · −→s = −Φ


(29.9)

This is a more general form of Faraday’s law of induction.

This electric field is fundamentally different than the -fields we studied before. It is

not a static field. If it were, then
R −→
E · −→s would be zero around a ring of current.

Think of Kirchhoff’s loop rule. Around a closed loop∆ = 0 normally. Then

∆ =

Z −→
E · −→s = 0 no magnetic field

But since
R −→
E · −→s 6= 0 for our induced -field, we must recognize that this field is

different from those made by static charges. We call this field that does not return the

charge to the same energy state on traversing the loop a nonconservative field. It is still

just an electric field, but we are gaining energy from the magnetic field, so ∆ around
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the loop is not zero.

The equation Z −→
E · −→s = −Φ


(29.10)

is the most general form of Faraday’s equation, but it is hard to use in calculation for

normal circuits where there is no magnetic field or where the fields are weak. So we

won’t use it as we design normal circuits (we will use the idea of inductance instead,

which we will soon study). But it plays a large part in the electromagnetic theory of

optics (PH375). We will just get a taste of this here.

Electromagnetic waves
Question 223.45.9

Let’s return to the idea that a changing magnetic field makes an electric field.

But what about a changing electric field?

For the electric and magnetic field equations to be symmetric, the changing electric

field must create a magnetic field. There is no requirement that the universe displayQuestion 223.45.10
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such symmetry, but we have found that it usually does. Indeed, a changing electric field

creates a magnetic field.

This foreshadows our final study of light. We learned earlier that light is an

electromagnetic wave. What this means is that light is a wave in both the electric and

magnetic fields.

Maxwell first predicted that such a wave could exist. The electric field of the wave

changes in time like a sinusoid. But this change will produce a magnetic field that will

also change in time. This changing magnetic field recreates the electric field–which

recreates the magnetic field, etc. Thus the electromagnetic wave is self-sustaining. It

can break off from the charges that create it and keep going forever because the electric

field and magnetic field of the wave create each other. You often see the electromagnetic

wave drawn like this:

Where you can see the electric and magnetic fields being created and recreated to make

the wave self sustaining.

This is a direct result of Maxwell’s study of electromagnetic field theory. Our more

complete version of Faraday’s law is one of the fundamental equations describing

electromagnetic waves known as Maxwell’s Equations.Z −→
E · −→s = −Φ


You might guess that the symmetry we have observed would give another similar

equation relating the magnetic field and the electric �ux.Z −→
B · −→s = +Φ



and we will find that this is true! But we have yet to show that is so. Note that
R −→
B ·−→s

shows up in Ampere’s law, Z −→
B · −→s = μ
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so this last equation is not complete, but we are guessing that there is also the possibility

of an induced magnetic field from a changing electric field, so we can predict that we

need to modify Ampere’s law to beZ −→
B · −→s = μ +

Φ


but again we will have to show this later.

In the next lecture, we will take a break from this deep theoretical discussion, and learn

how to use induction to make useful circuit devices.

Basic Equations



30 Inductors

Fundamental Concepts

• The self inductance  has all the geometric and material properties of a coil or other
inductor an it can be found using  =  Φ



• The emf induced by an inductor is given by E ≡ −∆
∆

• For a solenoid, the inductance can be found to be  = 
2

• The energy stored in the magnetic field is  = 1
2
2 and the energy density in the

magnetic field is  = 1
2
1

2

• There is an apparent voltage drop across an inductor of∆ = −


• There is also a mutual inductance between two inductors given by 12 =
2Φ12
1

Self Inductance
Question 223.46.1

When we put capacitors and resisters in a circuit, we found that the current did not

jump to it’s ultimate current value all at once. There was a time dependence. But really,

even if we just have a resister (and we always have some resistance) the current does

not reach it’s full value instantaneously. Think of our circuits, they are current loops!

So as the current starts to �ow, Lenz’s law tells us that there will be an induced emf that

will oppose the �ow. The potential drop across the resister in a simple battery-resister

circuit is the potential drop due to the battery emf, minus the induced emf.

We can use this fact to control current in circuits. To see how, we can study a new case

Let’s take a coil of wire wound around an iron cylindrical core. We start with a current

as shown in the figure above. Using our right hand rule we can find the direction of the



390 Chapter 30 Inductors

-field. But we now will allow the current to change. As it gets larger, we know

E = − Φ



and we know that as the current changes, the magnitude of the -field will change, so

the �ux through the coil will change. We will have an induced emf. We could derive

this expression, but I think you can see that the induced emf is proportional to the rate

of change of the current.

E ≡ −∆
∆

You might ask if the number of loops in the coil matters. The answer is–yes. Does the

size and shape of the coil matter–yes. But we will include all these geometrical effects

in the constant  called the inductance. It will hold all the material properties of the

iron cored coil.

E = − Φ


≡ −


so for this case

− Φ






≡ −

or

 = 
Φ


If we start with no current (so no �ux), then our change in �ux is the current �ux minus

zero. We can then say that

 = 
Φ



It might be more useful to write the inductance as

 = −E



In designing circuits, we will usually just look up the inductance of the device we

choose, like we looked up the resistance of resisters or the capacitance of the capacitors

we use.

But for our special case of a simple coil, we can calculate the inductance, because we

know the induced emf using Faraday’s law

Inductance of a solenoid19

Question 223.46.2

Let’s extend our calculation for our coil. Really the only easy case we can do is that of a

19 Think of this like the special case of a capacitor made from two �at large plates, the parallel plate
capacitor. It was somewhat ideal in the way we treated it. Our treatment of the special case of a coil will
likewise be somewhat ideal.
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solenoid (that’s probably a hint for the test). So let’s do it! We will just fill our solenoid

with air instead of iron (if we have iron, we have to take into account the magnetization,

so it is not terribly hard, but this is not what we want to concentrate on now). If the

solenoid has  turns with length  and we assume that  is much bigger than the

radius  of the loops then we can use our solution for the -field created by a solenoid

 = 

= 





The �ux through each turn is then

Φ =  = 





where  is the area of one of the solenoid loops. Then we use our equation for

inductance for a coil

 = 
Φ



= 

¡





¢



=

¡


2
¢



=

¡


2
¢







=


2

2

=


2

2

= 
2

where we used the fact that the volume of the solenoid is  = 

Many inductors built for use in electronics are just this, air filled solenoids. So this

really is a somewhat practical solution.

Energy in a Magnetic Field
Question 223.46.3

An inductor, like a capacitor, stores energy in it’s field. We would like to know how

much energy an inductor can store. From basic circuit theory we know the power in a

circuit will be

P = ∆
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If we just have an inductor, then the power removed from the circuit is

P = ∆ = E
= 

µ
−



¶
= − 


As with a resistor, we are taking power from the circuit so the result is negative. But

unlike a resistor, this power is not being dissipated as heat. It is going into the magnetic

field of the inductor. Therefore, we expect the power stored in the inductor field to be

P = −P = 



Power is the time rate of change of energy , so we can write this power delivered to the

inductor as



= 




Multiplying by  gives

 = 

To find the total energy stored in the inductor we must integrate over 

 =

Z


=

Z 

0



= 

Z 

0



=
1

2
2

Thus,

 =
1

2
2

is the energy stored in the magnetic field of the inductor.

Suppose we have an inductor  = 300× 10−3H Plotting shows us the dependence of

 on 
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We should take a moment to see how our inductor compares to a capacitor as an energy

storage device. The energy stored in the electric field of a capacitor

 =
1

2
 ()

2

 =
1

2
 (∆ )

2

Notice that Remarkable similarity!

Energy Density in the magnetic field
Question 223.46.4

We found that there was energy stored in the electric field of a capacitor. Is the energy

stored in the inductor really stored in the magnetic field of the inductor? We believe

that this is just the case, the energy,  is stored in the field. We would like to have an

expression for the density of the energy in the field.

To see this, let’s start with the inductance of a solenoid.

 = 
2

The magnetic field is given by

 = 

then the energy in the field is given by

 =
1

2
2

=
1

2


22
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If we rearrange this, we can see the solenoid field is found in the expression twice

 =
1

2
()






=
1

2
2

and the energy density is

 =




=
1

2

1


2

Just like our energy density for the electric field, we derived this for a specific case, a

solenoid. But this expression is general. We should compare to the energy density in

the electric field.

 =
1

2


2

Again, note the similarity!

Oscillations in an LC Circuit

We introduce a new circuit symbol for inductors

It looks like a coil, for obvious reasons. We can place this new circuit element in a

circuit. But what will it do? To investigate this, let’s start with a simple case, a circuit

with a charged capacitor and an inductor and nothing else.

C LC L

Let us make two unrealistic assumptions (we will relax these assumptions later).

Assumption 1: There is no resistance in our LC circuit.
Assumption 2: There is no radiation emitted from the circuit.

Given these two assumptions, there is no mechanism for energy to escape the circuit.
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Energy must be conserved. Can we describe the charge on the capacitor, the current,

and the energy as a function of time?Question 223.46.5

It may pay off to recall some details of oscillators. Energy of the Simple Harmonic Os-

cillator

Remember from Dynamics or PH121 that a mass-spring system will oscillate. The

mass has kinetic energy because the mass is moving

 =
1

2
2 (30.1)

for our Simple Harmonic Oscillator we know that the position of the mass as a function

of time is given by

 () = max cos (+ )

and the speed as a function of time is

 () = −max sin (+ )

then the kinetic energy as a function of time is

 =
1

2
 (−max sin (+ ))

2

=
1

2
22max sin

2 (+ )

=
1

2





2max sin

2 (+ )

=
1

2
2max sin

2 (+ )

The spring has potential energy given by

 =
1

2
2 (30.2)

For our mechanical oscillator the potential as a function of time is

 =
1

2
2max cos

2 (+ )
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The total energy is given by

 =  + 

=
1

2
2max sin

2 (+ ) +
1

2
2max cos

2 (+ )

=
1

2
2max

¡
sin2 (+ ) + cos2 (+ )

¢
=

1

2
2max

If we plot the kinetic and potential energies it looks like this

We can see that the total energy won’t change, and the energy switches back and forth

from kinetic to potential as the mass moves back and forth. If we plot the kinetic and

potential energy at points along the mass’ path we get something like this.
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Question 223.46.6

One of the important uses of an inductor is to create electrical oscillations. Having

recalled what oscillations look like, we can see that a LC circuit will have an oscillating

current.

here is our circuit again.

C LC L

We will start with the switch open the capacitor charged to its maximum value max

For   0 the switch is closed. Recall that the energy stored in the capacitor is

 =
2

2
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and the energy stored in the inductor is

 =
1

2
2

The total energy (because of our assumptions) is

 =  + 

=
2

2
+
1

2
2

The change in energy over time must be zero (again because of our assumptions) so



= 0

=




µ
2

2
+
1

2
2

¶
=








+ 




We recall that

 =




0 =




µ




¶
+ 





0 =



() + 





0 =



 + 


³



´


0 =



+ 

2

2

or
2

2
= − 


This is a differential equation that we recognize from M316. It looks just like the

differential equation for oscillatory motion! We try a solution of the form

 =  cos (+ )

then



= − sin (+ )

and
2

2
= −2 cos (+ )

thus

2 cos (+ ) = − 1


 cos (+ )

This is indeed a solution if

 =
1√

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When cos (+ ) = 1,  = max thus

 = max cos (+ )

Now recall,

 =




=



(max cos (+ ))

= −max sin (+ )

We would like to determine  We use the initial conditions  = 0  = 0 and

 = max Then

0 = −max sin ()
This is true for  = 0 Then

 = max cos ()

 = −max sin ()
= −max sin ()

We can use the solution for the charge on the capacitor and the current in the inductor

as a function of time to expand our energy equation

 =  + 

=
2

2
+
1

2
2

=
1

2
2max cos

2 () +
1

2
2max sin

2 ()

This looks a lot like our kinetic and potential energy equation for a mass-spring system.

The energy shifts from the capacitor to the inductor and back like energy shifted from

kinetic to potential energy for our mass-spring, with the components out of phase by

90 ◦ By energy conservation, we know that
1

2
2max =

1

2
2max

that is, the maximum energy in the capacitor equals the maximum energy in the

inductor. Then the total energy

 =
1

2
2max cos

2 () +
1

2
2max sin

2 ()

=
1

2
2max cos

2 () +
1

2
2max sin

2 ()

=
2max
2
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which must be the case if energy is conserved. We can plot the capacitor and inductor

energies at points in time as the current switches back and forth.
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CL

CL
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CL
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CL

UEUB

UEUB

UEUB

UEUB

UEUB
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After Halliday and Resnick Figure 35-1

CL CL
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UEUB UEUB

UEUB UEUB
UEUB UEUB

UEUB UEUB

After Halliday and Resnick Figure 35-1

This is very much like our harmonic oscillator picture. We can see that we have, indeed

made an electronic oscillator.

This type of circuit is a major component of radios which need a local oscillatory circuit

to operate.

The RLC circuit

As fascinating as the last section was, we know there really is some resistance in the

wire. So the restriction of no resistance needs to be relaxed in our analysis.

We can use the circuit in the picture to imagine an LRC circuit. At first, we will keep

2 open and close 1 to charge up the capacitor. Then we will close 1 and open 2

What will happen?

It is easier to find the current and charge on the capacitor as a function of time by using
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energy arguments. The resistor will remove energy from the circuit by dissipation

(getting hot). The circuit has energy

 =
2

2
+
1

2
2 (30.3)

so from the work energy theorem,

 = ∆

the energy lost will be related to a change in the energy in the capacitor and the inductor.

Let’s look at the rate of energy loss again




=





µ
2

2
+
1

2
2

¶
(30.4)

=







+ 




but this must be equal to the loss rate. The power lost will be  = 2

−2 = 






+ 




(30.5)

This is a differential equation we can solve, let’s first rearrange, remembering that

 =



then

−2 =



 + 





− =



+ 





again using  = 


+
2

2
+




+




= 0 (30.6)

This is a good exercise for those of you who have taken math 316. This is just like the

equation governing a damped harmonic oscillator. The solution is

 = max
−
2 cos (30.7)

where the angular frequency,  is given by

 =

Ã
1


−
µ


2

¶2! 1
2

(30.8)

Remember that for a damped harmonic oscillator

 () = −

2

 cos (+ )

and

 =

Ã



−
µ



2

¶2! 1
2

The resistance acts like a damping coefficient! Suppose
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max = 005C

 = 5Ω

 = 50H

 = 002F

we have a graph that looks like this.

50 100 150 200

-0.04

-0.02

0.00

0.02

0.04

t

Q

The gray lines are

±max−
2 (30.9)

They describe how the amplitude changes. We call this the envelope of the curve.

Let’s look at

 =

Ã
1


−
µ


2

¶2! 1
2

(30.10)

If  = 0 then

0 =
1


−
µ


2

¶2
1


=

µ


2

¶2
2

r
1


= 

or

 =

r
4


(30.11)

We know that if  = 0 there is no oscillation. We will call this the critical resistance,

 When the resistance is  ≥  there will be no oscillation. These represent the

cases of being critically damped ( = ) and overdamped (  )  If    we

are underdamped, and the circuit will oscillate.

We don’t know how to make electromagnetic waves yet, but we will in a few lecture.

Those waves carry what we call radio signals. To make the waves, we often use circuits

with resisters, capacitors, and inductors to provide the oscillation. You can guess that if

 on the capacitor oscillates, so does the current. This oscillating current is what we
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use to drive the radio antenna.

Now that we have some resistance, we could consider a circuit with just an inductor and

a resistor and a battery.

This is a little harder than our author indicates. We will examine the difficulties in

thinking about such a circuit in the next section.

Return to Non-Conservative Fields

A few decades ago, we could have stopped here in an engineering class in considering

and LRC circuit. But as electrical devices become every more complicated, it might be

good if we examine circuits with inductors and resistors more carefully. A few lectures

ago we found that Z
E · s = −Φ


implies a non-conservative electric field. We should take a moment to see what this

means. We should also, if we have time, investigate mutual inductance, which has

become a major engineering technique for wireless power. First let’s consider the

following circuit.[?]

notice that there is no battery. If the field �ux changes, will there be a potential

difference measured by the voltmeters? Let’s use Kirchhoff’s rules to analyze the

circuit. I can draw in guesses for the currents.
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and now we use the junction and loop rules to find the voltages.

But recall that I
E ·  = 0

was the basis for Kirchhoff’s loop rule. And we learned that this is not true for induced

emfs. So in the middle loop Kirchhoff’s loop rule is not true! We now know that

because of the changing magnetic field,I
E ·  = E = −Φ



for this middle loop. Now then, E comes just from the changing external �ux. It does

not depend on 1 or on 2

We can write a Kirchhoff’s law-like equation for each loop.

1 − 1 = 0

−1 − 2 + E = 0

2 − 2 = 0

where  is the internal resistance of the voltmeters. If there were no E , then the volt

meters would certainly not read anything, but now we see that

|1| = 1 ≈ 1

|2| = 2 ≈ 2

This seems crazy. Each volt meter reads a different voltage.

To understand this, remember that our induced field is not a conservative field. As we

go around the loop we no longer expect to get back to our starting voltage. We have lost

some energy in making a magnetic field. And for non-conservative fields,
I
E ·  is

path dependent.

So as crazy as it seems, this is actually what we would find, each volt meter reads a

different voltage.

To try to make this idea of inductance make some sense, let’s take another strange
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circuit.

R

E

I

R

E

R

E

I

There is a battery, and resister, and a single loop inductor. When the switch is thrown,

the current will �ow as shown. The current will create a magnetic field that is out of the

page in the center of the loop. Since the loop, itself, is creating this field, let’s call this

field a self field.

R

E

I

B

ds

R

E

I

R

E

R

E

I

B

ds

Consider this self-field for a moment. When we studied charge, we found that charge

created an electric field. That electric field could make another charge accelerate. But

the electric field crated by a charge does not make the charge that created it accelerate.

This is an instance of a self-field, an electric self-field. Now with this background, let’s

return to our magnetic self-field.

Let’s take Faraday’s law and apply it to this circuit. Let me choose an area vector A

that is the area of the big loop and positive out of the page. Again, let’s use Kirchhoff’s

loop law. Let’s find
I
E ·  for the entire circuit. We can start with the battery. Since

there is an electric field inside the battery we will have a component of
I


E ·  as we

cross it. The battery field goes from positive to negative. If we go counter-clockwise,

our  direction traverses this from negative to positive, so the electric field is up and

the  direction is down, we haveI


E ·  = −E
for this section of the circuit. Suppose we have ideal wires. If the wire has no resistance,

then it takes no work to move the charges through the wire. In this case, an electron

launched by the electric in the battery just coasts from the battery to the resister. There

is no need to have an acceleration in the ideal wire. The electric potential won’t change

from the battery to the resister. So there won’t be a field in this ideal wire part. But let’s

next we consider the resister. There is a potential change as we go across it. And if

there is a change in potential, there must be an electric field. So the resister also has an

electric field inside of it. We have a component of
I


E ·  that is equal to E = 
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from this field. I


E ·  = 

Now we come to the big loop part. Since we have ideal wire, there is no resistance in

this part so there is no voltage drop for this part of the circuit. All the energy that was

given to the electrons by the battery was lost in the resister. They just coast back to the

other terminal of the battery. Since there is no voltage drop in the big loop,

Ebig loop = 0

there is no electric field in the big loop either. Along the big loop,  is certainly not

zero. so

Ebig loop =

I
big loop

E ·  = 0

For the total loop we would haveI
E ·  = −E + + 0 (30.12)

Normally, Kirchhoff’s loop rule would say that all this must be zero, since the sum of

the energy changes around the loop must be zero if no energy is lost. But now we know

energy is lost in making a magnetic field.

Consider the magnetic �ux through the circuit. The magnetic field is made by the

current in the circuit. Note that we arranged the circuit so the battery and resister are in

a part that has very little area, so we can ignore the �ux through that part of the circuit.

Most of the �ux will go through the big loop part. The magnetic field is out of the paper

inside of the loop. The �ux is

Φ =

I
B · A (30.13)

and B andA are in the same direction. Φ is positive.

Then from Biot-Savart

B =


4

I
s× r̂
2

(30.14)

Let me write this as

B = 

µ

4

I
s× r̂
2

¶
(30.15)

=  (geometry factor)

If the geometry of the situation does not change, then  and  are proportional. Since

 ∝  then Φ ∝  since the integral in Biot-Savart is the surface integral of B and

B is everywhere proportional to  Instead of using Biot-Savart, I wish to just define a

constant of proportionality that will contain all the geometric factors. I will simply say

that

Φ =  (30.16)
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where  is my geometry factor. This geometry factor is just our inductance! This is

what inductance is. It is all the geometry factors that make up our loop that will make

the magnetic field if we put a current through it.

Assuming I don’t change the geometry, then the inductance won’t change and we have
Φ


= 




(30.17)

and Faraday’s law gives us

E = −Φ


= −


(30.18)

Which says that we should not have expected
I
E ·  = 0 for our case as we traverse

the entire circuit. Integrating
I
E ·  around the whole circuit including the big loop

should not bring us back to zero voltage. We have lost energy in making the field.

Instead it gives I
E ·  = −


We are dealing with non-conservative fields. So we have some energy loss like we

would with a frictional force. It took some energy to make the magnetic field!

With this insight, we can now make a Kirchhoff-like loop like rule for such a situation.

Integrating around the whole circuit givesI
E ·  = −E + E

Which we now realize should give −


soI
E ·  = −E + E = −



or more succinctly

−E +  = −


Now I can take the RHS to the left and find

E − − 



= 0 (30.19)

which certainly looks like Kirchhoff’s rule with −


being a voltage drop across the

single loop inductor. Under most conditions we can just treat −


as a voltage drop

and it works fine. Most of the time thinking this way does not cause much of a problem.

But technically it is not right!

We should consider where our magnetic �ux came from. The magnetic �ux was created

by the current. It is a self-field. The current can’t make a magnetic �ux that would then

modify that current. This self-�ux won’t make an electric field So there is no electric

field in the big loop, so there is no potential drop in that part of the circuit. It is just
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that
I
E ·  6= 0 because our field is not conservative. We had to take some energy to

create the magnetic field.

Now, if you are doing simple circuit design, you can pretend you don’t know about

Faraday’s law and this complication and just treat −


as though it were a voltage

drop. But really it is just that going around the loop we should expectI
E ·  = −


not I

E ·  = 0
The danger is that if you are designing a complicated device that depends on there

being an electric field in the inductor, your device will not work. We have no external

magnetic field, our only magnetic field is the self-field which will not produce an

electric field (or at least will form a very small electric field compared to the electric

fields in the resistor and the battery, due to the small resistance in the real wire we use

to make the big loop).

This is very subtile, and I struggle to remember this! Fortunately in most circuit design

it does not matter. We just treat the inductor as though it were a true voltage drop.

I can make it even more exasperating by asking what you will see if you place a

voltmeter across the inductor. What I measure is a “voltage drop” of  so maybe

the there is a voltage drop after all! But no, that is not right. The problem is that in

introducing the voltmeter, we have created a new loop. For this loop, the field from our

big loop is an external field. .

R

E

I

B

ds

V

New Loop Area

So the changing magnetic field through this voltmeter loop will produce an emf that

will just match . And there will be an electric field–but it will be in the internal

resistor in the voltmeter. And that is what you will measure!Pick it up here

The bottom line is that for non-conservative fields you need to be careful. If you are just
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designing simple circuits, you can just treat  as though it were a voltage drop,

but you may be badly burned by this if your system is more complicated, depending on

the existence of a real electric field. You can see that if you are designing complicated

sensing devices, you may need to deeply understand the underlying physics to get them

to work.

RL Circuits: Solving for the current as a function of time

The equation we found from Faraday’s law or incorrectly from Kirchhoff’s rule is

E − − 



= 0 (30.20)

This is a differential equation. We can solve it for the current. To do so, let’s define a

variable

 =
E

− 

and then we see that

 = −
Then we can write our differential equation as

E

−  − 






= 0

+







= 0

and so

 = −






You might be able to guess the solution at this point from your M316 experience. But

let’s work it out as a review. We see that our  equation separates into



= −




Integration yields Z 






= −

Z 

0





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ln

µ




¶
= −




exponentiating both sides gives µ




¶
= −





Now we replace  with E

−  Ã E


− 

E

− 

!
= −





And because at  = 0,  = 0

Ã E

− 
E


!
= −





rearranging gives

 =
E


³
1− −




´
(30.21)

or, defining another time constant

 =



(30.22)

we have

 =
E


³
1− −




´
(30.23)

We can see that E

= max (30.24)

comes from Ohm’s law. So just like with our capacitor-resister circuit, we have a

current that grows in time, approaching the maximum value we get after a time  which

is much longer than  

0 10 20 30 40 50
0

1

2

3

t

I_max

You might expect that, like for a capacitor, there is an equation for an inductor who has

a maximum current �owing but for which the current source is shorted (disconnected,
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and replaced with a resistanceless wire). The equation is

 = 
− 
 (30.25)

Magnetic Field Energy in Circuits

We found last lecture that just like with a  circuit, we should expect there to be

energy stored in a  circuit.

 =
1

2
2 =

1

2
 (∆ )

2

Consider once again the  circuit shown below.

Recall that the current in the right-hand loop decays exponentially with time according

to the expression

 = 
− 


where  = E is the initial current in the circuit and  =  is the time constant.

As an example problem, let’s show that all the energy initially stored in the magnetic

field of the inductor appears as internal energy in the resistor as the current decays to

zero.

Recall that energy is delivered to the resister



=  = 2

where  is the instantaneous current.



= 2




=

³

− 


´2





= 2

−2 


To find the total energy delivered to the resister we integrate

 = 2
−2 


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 =

Z ∞
0

2
−2 



 =

Z ∞
0

2
−2 



 = 2

Z ∞
0

−2

 

Use your calculator, or an integral table, or Maple, or Scientific Workplace or your very

good memory to recall that Z
− = −1


−

If we let

 = −2


then we can obtain

 = − 

2
2

−2 


¯̄̄̄∞
0

 =
−
2

2 (0− 1)

 =
1

2
2 (30.26)

which is the initial energy stored in the magnetic field. All of the energy that started in

the inductor was delivered to the resistor.

Mutual Induction

Suppose we have two coils near each other. If either of the coils carries a current, will

there be an induced current in the other coil?

N1 N2



Coil 1 Coil 2

N1 N2



N1 N2



Coil 1 Coil 2

We define Φ12 as the �ux through coil 2 due to the current in coil 1. Likewise if the

battery is placed on coil 2 we would have Φ21 the �ux through coil 1 due to the current
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in coil 2.

We define the mutual inductance

12 =
2Φ12

1
(30.27)

BE CAREFUL! Not all books write the subscripts in the same order!

We can write the �ux as

Φ12 =
121

2
Then, using Faraday’s law, we find the induced emf in coil 2

E2 = −2

Φ



= −2





µ
121

2

¶
= −12




(1)

We state without proof the 12 =21 Then

E2 = −1



Example : "Wireless" battery charger

Rechargeable Toothbrush with an inductive charger (Public Domain Image courtesy

Jonas Bergsten)

A rechargeable toothbrush needs a connection that is not affected by water. We can use

induction to form this connection. We need two coils. One coil is the base, the other the

handle. The base carries current  The base has length  and area  and  turns.

The handle has  turns and completely covers the base solenoid. What is the mutual
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inductance?

Solution:

The magnetic field in the base solenoid isI
B·s = B ` = 

or

 =



Because the handle surrounds the base, the �ux through the handle is the interior field

of the base. The �ux is

Φ = 

The mutual inductance is

 =
Φ



=




=


³




´




= 




Example: Rectangular Loop and a coil

A rectangular loop of N close-packed turns is positioned near a long straight wire.

I

y

a

b

I

y

a

b

What is the coefficient of mutual inductance  for the loop-wire combination?

The basic equations are

12 =
2Φ12

1
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I
B·s = I
B·A = Φ

The field from the wire I
B·s = 

Take the path to be a circle surrounding the wire then B is constant along the path and

the direction ofB is tangent to the path.



I
 = 

2 = 

or

 =


2
The �ux through the rectangular loop is then perpendicular to the plane of the loopI

B·A = Φ

Φ =

Z


=

Z +





2


=


2
ln

+ 


then

 = 


2
ln

+ 


Suppose the loop has  = 100 turns,  = 1 cm,  = 8cm,  = 30 cm,

 = 4 × 10−7 TmA what is the value of the mutual inductance?

 = 


2
ln

+ 


=
1 318 3× 10−3

A
Tmcm =

1 318 3× 10−5
A2

m2

s2
kg

H =
1

A2
m2

s2
kg

Basic Equations





31 The Electromagnetic field

We started off this semester saying we would consider the environment made by a

charge and how that environment affected a mover charge. Then we found that moving

charges are affected by the environment created by other moving charges (currents). It

is time to consider the overall environment created by both electric and magnetic fields.

Fundamental Concepts

• The electric and magnetic fields are really different manifestations of the
electromagnetic field. Which is manifest depends on our relative motion.

• The Galilean field transformations are−→
E 0 =

−→
E charges +

−→
V0 ×−→Benvironment

−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 ×−→E environment

´
−→
E = E0charges −

−→
V0 ×−→B 0

environment

−→
B =

−→
B 0

magnet +
1

2

³−→
V0 ×−→E 0

environment

´
• Gauss’ law for magnetic fields is

H
B× A = 0

Relative motion and field theory

Long ago in your study of physics we talked about relative motion when we discussed

moving objects and Doppler shift. We considered two reference frames with a relative

velocity  ̂ We called them frame  and frame 

y

x

vx

A B
y

x

vxy

x

vxy

x

vx

A B

We need to return to relative motion, considering what happens when there are fields
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and charged particles involved. We will need to relabel our diagram to avoid confusion

because now  will represent a magnetic field. So let’s call the two reference frames 

and 0 We will label each axis with a prime in the 0 frame.

Question 223.47.1

Question
223.47.1.5

Question 223.47.2

Question 223.47.3

Now let’s assume we have a magnetic field in the region of space where our two

reference frames exist. Let’s say that the magnetic field is stationary in frame  This

will be our environment. Let’s also give a charge to the person in frame 0. This will be

our mover charge.

Is there a force on the charge?

If we are with the person in reference frame  then we must say yes. The charge is
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moving along with frame 0 with a velocity −→v =  ̂ so there will be a force
−→
F = −→v ×−→B

=  ̂×
³
−̂
´

=  ̂

in the b direction.

Now let’s ride along with the person in frame 0 From this frame, the charge looks

stationary. So  = 0 and

 =  (0)×−→B = 0

Both can’t be true! So which is it? Is there a force on the charge or not? Consider that

the existence of a force is something we can test. A force causes motion to change in

ways we can detect. (the person in frame 0 would feel the pull on the charge he is

holding). So ultimately we can perform the experiment and see that there really is a

force. But where does the force come from?

Let’s consider our fields. We have come to see fields as the source of electric

and magnetic forces. Electric forces come from electric fields which come from

environmental charges. Magnetic forces come from environmental magnetic fields

which come from moving charges.

And here is the difficulty, we are having trouble recognizing when the charge is moving.

We know from our consideration of relative motion that we could view this situation as

frame 0 moving to the right with frame  stationary, or frame  moving to the left

with frame 0 stationary. There is no way to say that only one of these views is correct.

Both are equally valid.

In our case, we are considering that person  sees a moving charge. We have learned

that moving charge will make both an electric field and a magnetic field. This is the
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situation from frame  But person 0 sees a static charge. This charge will only make

an electric field. We need a way to resolve this apparent contradiction.

Galilean transformation

To resolve this difficulty, let’s go back to forces. Here is our case of a constant magnetic

field that is stationary in frame  with a charge in frame 0 again.

We can’t see fields, but we can see acceleration of a particle. Since by Newton’s second

law

 = 

we will know if there is an acceleration and therefore we will know if there is a force!

So are the forces and accelerations of a charged particle the same in each frame? Let’s

find out.

Remember from Dynamics or PH121 that the speed of a particle transforms like this
−→v 0 = −→v −−→V0 (31.1)
−→v = −→v 0 +−→V0

where 0 is the relative speed between the two frames. What this means is that if we

have a particle moving with speed 0 in frame 0 and we observe this particle in frame

 the speed of that particle will seem to be −→v = −→v 0 +−→V0 . In our case,
−→
V0 = ̂

so −→v = −→v 0 +  ̂

A quick example might help. Suppose we have a person in the gym running on a
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treadmill.

The treadmill track belt has a relative speed
−→
V0 = −2 ms ̂ with respect to the room.

We will say that the room is frame . Then if we envision a reference frame riding

along the treadmill, that would be frame 0. A person standing on the treadmill in frame

0 sees themselves as not moving, and the rest of the room as moving the opposite

direction.

The notation 0 means the speed of the reference frame 0 with respect to frame  or

in our case the speed of the treadmill with respect to the room
−→
V0 = −2 ms ̂

Now suppose the person is running at speed −→v 0 = 19 m
s
̂0 on the tread mill in the tread

mill frame 0.

What is his/her speed with respect to the room? It seems obvious that we take the two
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speeds and add them.
−→v = 19 m

s
̂0 − 2 m

s
̂ = −01 m

s
̂

since the  and ̂0 directions are the same.

The person is going to fall off the end of the treadmill unless they pick up the pace!

This example just used the second equation in our transformation.
−→v = −→v 0 +−→V0

likewise, if we want to know how fast the person is walking with respect to the treadmill

frame, we take the room speed −→v = −01 m
s
̂ and subtract from it the treadmill/room

relative speed
−→
 0 = −2 ms ̂ to obtain
−→v 0 = −01 m

s
̂−

³
−2 m

s
̂
´
= 19

m

s
̂ = 19

m

s
̂0

Armed with the Galilean transform, we can find the acceleration by taking a derivative

−→v 0


=
−→v

− 
−→
V0



−→v


=
−→v 0


+

−→
V0


then

−→a 0 = −→a − 
−→
V0



−→a = −→a 0 + 
−→
V0


but we will only consider constant relative motion20, so


−→
V0


= 0

then both equations tell us
−→a 0 = −→a

so there must be a force −→
F = −→a = −→a 0

in both frame  and 0

We can gain some insight into finding the mysterious missing force in frame 0 by

considering the net force in the case of both an electric and a magnetic field
−→
F = 

−→
E + 

−→v ×−→B
This was first written by Lorentz, so it is called the Lorentz force, and is usually written

20 Accelerating reference frames are treated by General Relatively and are treated with the notation of
contravariant and covariant vectors, which are beyond this course. They are taken up in a graduate level
electricity and magnetism course.
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as −→
F = 

³−→
E +−→v ×−→B

´
Using this, let’s consider the view point of each frame.

Going back to our two guys on different frames, In frame  the person sees
−→
F = 

³
0 +
−→
V0 ×−→B

´
=  ̂×

³
−̂
´

=  ̂

and in frame 0 the person sees
−→
F 0 = 

³−→
E 0 + 0×−→B 0

´
= 
−→
E 0

It seems that the only way that
−→
F =

−→
F 0 is that

−→
E 0 6= 0 So in frame 0 our person must

conclude that there is an external electric field that produces the force
−→
F 0 In frame 

the person is convinced that the magnetic field,
−→
B  is making the force. In frame 0 the

person is convinced that the electric field
−→
E 0 is making the force.Question 223.47.4

We can find the strength of this electric field by setting the forces equal
−→
F =

−→
F 0


−→
V0 ×−→B = 

−→
E 0

so −→
E 0 =

−→
V0 ×−→B

and the direction must be −→
E 0 = 0̂Question 223.47.5

Question 223.47.6 Our interpretation of this result is mind-blowing. It seems that whether we see a

magnetic field or an electric field depends on our reference frame! The implication is

that the electric and magnetic fields are not really two different things. They are one

field viewed from different reference frames!

So far we have been talking about external fields only. The field
−→
B in our case study

is created by some outside agent. So the field
−→
E 0 observed in frame 0 is also an

environmental field. But the charge, itself, creates a field. So the total electric field in

frame 0 is the environmental field
−→
E 0 plus the field due to the charge, itself

−→
E self or

−→
E 0
 =

−→
E self +

−→
E 0

environment

=
−→
E self +

−→
V0 ×−→Benvironment

which we usually just write as
−→
E 0 =

−→
E self +

−→
V0 ×−→Benvironment

We would predict that if we had a charge that is stationary in frame  and we rode
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along with frame 0 that we would see a field
−→
E = E0self −

−→
V0 ×−→B 0

environment

Of course,
−→
E self can’t create a force on the charge, because it is a self-field. So we only

need to be concerned with
−→
E self if we have other charges that could move. We could

actually have other charges riding along with frame 0 In that case we would have an

additional field 0charge  We could write this as
−→
E = E0charges in 0 −

−→
V0 ×−→B 0

environment

or just −→
E = E0charges −

−→
V0 ×−→B 0

environment

What we have developed is important! We have an equation that let’s us determine the

electric field in a frame, given the fields measured in another frame.

We would expect that a similar thing would happen if we replaced the magnetic fields

with electric fields. Suppose we have an electric field in the region of our frames and

that this electric field is stationary with respect to frame 0 this time. Will frame  seeQuestion 223.47.7

a magnetic field?

To see that this is true, let’s examine the case where we have no external fields, and we

just have a charge moving along with frame 0 Then in frame 0 we have the fields
−→
E 0 =

1

4



2
r̂

−→
B 0 = 0
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in frame  the electric field is
−→
E =

−→
E 0

charges −
−→
V0 ×−→B 0

environment

=
1

4



2
r̂+
−→
V0 × 0

=
1

4



2
r̂

so −→
E =

−→
E 0 =

1

4



2
r̂

We see the same electric field due to the point charge being there in both frames.

But in frame  we are expecting the person to see a magnetic field because to person 

the charge is moving. Using the Biot-Savart law
−→
B =


4

−→v × r̂
2

since our charge is moving along with the 0 frame −→v = −→V0 so
−→
B =


4



2

³−→
V0 × r̂

´
but we can rewrite this by rearranging terms

−→
B =


4



2

³−→
V0 × r̂

´
=

³−→
V0 × 

4



2
r̂
´

which looks vaguely familiar. Let’s multiply top and bottom by 
−→
B =

µ−→
V0 × 

4



2
r̂

¶
=

µ−→
V0 × 

µ
1

4



2
r̂

¶¶
=

³−→
V0 × 

³−→
E 0
´´

= 

³−→
V0 ×−→E 0

´
which is really quite astounding! Our -fields have apparently always just been due to

moving electric fields after all!

Of course, we could have an additional magnet riding along with frame 0 To allow for

that case, let’s include a term
−→
B 0

magnet.
−→
B =

−→
B 0

magnets in 0 + 

³−→
V0 ×−→E 0

environment

´
or just −→

B =
−→
B 0

magnets + 

³−→
V0 ×−→E 0

environment

´
and we would expect that if we worked this problem from the other frame’s point of
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view we would likewise find
−→
B 0 =

−→
Bmagnet − 

³−→
V0 ×−→E environment

´
where the minus sign comes from the relative velocity being in the other direction.

Again
−→
Bmagnet is a self-field. It won’t move itself, but might be important if we have a

second magnet in our experiment. Then
−→
Bmagnet would cause a force on this second

magnet.

Once again we have found a way to find a field, the magnetic field this time, in

one frame if we know the fields on another frame! We call this sort of equation a

transformation.

We should take a moment to look at the constants  Let’s put in their values

 =

µ
885× 10−12 C2

Nm2

¶µ
4 × 10−7 Tm

A

¶
= 1 112 1× 10−17 s

2

m2

This is a very small number, and it may not appear to be interesting. We can see that

the additional magnetic fields due to the movement of the charges can be quite small

unless the electric field is large or the relative speed is large (or both). So much of the

time this additional field due to the moving charge is negligible. But let’s calculate
1√


=
1r³

885× 10−12 C2

Nm2

´ ¡
4 × 10−7 Tm

A

¢
= 2 998 6× 108 m

s
= 

This is the speed of light! It even has units of m s This seems an amazing

coincidence–too amazing. And this was one of the clues that Maxwell used to discover

that light is a wave in what we will now call (because they are different aspects of one

thing) the electromagnetic field.

We can write the transformation equations for the fields as
−→
E 0 =

−→
E charges +

−→
V0 ×−→Benvironment

−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 ×−→E environment

´
−→
E = E0charges −

−→
V0 ×−→B 0

environment

−→
B =

−→
B 0

magnet +
1

2

³−→
V0 ×−→E 0

environment

´
Let’s do a problem. Suppose we have a metal loop moving into an area where there is
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a magnetic field as shown. Let’s show that there is a force on charges in this loop no

matter what frame we consider. First, lets consider the frame where the magnetic field

is stationary and the loop moves.

There should be an upward force on the positive charge because the charge is moving

in a magnetic field. Let’s say that “up” is the ̂ direction and that “to the right” is the ̂

direction. Then The Lorentz force is
−→
F = 

³−→
E +−→v ×−→B

´
= 

³−→
E +

−→
V0 ×−→B

´
Now

−→
V0 means the speed of the reference frame 0 with respect to frame  That is

+ ̂ And there is no electric field in frame  so
−→
F = 

³−→
E +

−→
V0 ×−→B

´
= 

³
0 +  ̂×

³
−̂
´´

= 
³
 ̂×B

³
−̂
´´

=  ̂

Now suppose we change reference frames so we are riding along with the loop in

frame, 0 In this frame, the loop is not moving, and the magnetic field is moving by us

the opposite direction. We’ll call this the “prime frame.” We should get the same force

if we change frames to ride along with the loop.
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Let’s use our transformations to find the  and -fields in the new reference frame.

Then
−→
E 0 =

−→
E self-charge +

−→
V0 ×−→Benvironment

−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 ×−→E environment

´
so in the prime frame we have an electric field

−→
E 0 =

−→
E charges +

−→
V0 ×−→Benvironment

and in particular, we have an external field
−→
E 0

environment =
−→
V0 ×−→Benvironment

(we left off the
−→
E charge because it can’t move the charge that made it, so it is not part of

the force).

Note that
−→
V0 is the speed of the primed frame as viewed from the unprimed frame.

So
−→
V0 = + ̂

−→
E 0 =  (̂)×

³
−̂
´

=  ̂

That is our electric field in the primed frame.

The magnetic field in the primed frame is given by
−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 ×−→E environment

´
but there is no external electric field in the unprimed frame, so

−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 × 0

´
=
−→
Bmagnet

where here “magnet” means what ever is making the magnetic field in the unprimed

frame. Something must be there making the field, and it is not our charge. It could be

an electromagnet, or a permanent magnet, we have not been told). But it is not our

charge, so we know
−→
Bmagnet must be there and can act on our charge. So

−→
B 0 =

−→
B

The magnetic field in the primed frame is just the same as the magnetic field we see in

the unprimed frame. Then in the primed frame the Lorentz force is
−→
F 0 = 

³−→
E 0 +−→v ×−→B 0

´
= 

³
 ̂+ 0×−→B

´
=  ̂

Which is exactly the same force (magnitude and direction) as we got in the unprimed

frame.
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Field Laws

A “law” in physics is a mathematical statement of a physical principal or theory. We

have been collecting laws for what we will now call the electromagnetic field theory.

Let’s review:

Gauss’ law

We found that the electric �ux through an imaginary closed surface that incloses some

charge is

Φ =

I
E× A =




We called this Gauss’ law.

But consider the situation with a magnet. We can define a magnetic �ux just like weQuestion 223.47.8

defined the electric �ux. And now we know they must be related. Is there a Gauss’ law

for magnetism? Let’s consider the magnetic �ux.

Φ =

I
B× A

This should be proportional to the number of “magnetic charges” inclosed in the

surface.
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Closed Surface

r

We can see that every field line that leaves comes back in. That is how we defined zero

net �ux, so

Φ =

I
B× A = 0

Which would tell us that there are no free “magnetic charges” or no single magnetic

poles. A single magnetic pole is called amonopole and indeed we have never discovered

one. These two forms of Gauss’ law form the first two of our electromagnetic field

equations.

The differences between them have to do with the fact that magnetic fields are due to

moving charges.

We have a third electromagnetic field law, Ampere’s law. We found Ampere’s law by

integrating around a closed loop with a current penetrating the loop.I
B · s = 
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We also know Faraday’s law

E =
I
E · s = −Φ


which told us that changing magnetic fields created an electric field. We have found

that the opposite must be true, that a changing electric field must create a magnetic

field. We express this as I
B · s ∝ Φ


Which gives two expressions for

H
B · s. But we have yet to show that this equation

is true. That is the subject of our next lecture. If we can accomplish this, we will have

a complete set of field equations that describe how the electromagnetic field works. In

the following lecture we will complete the set of field equations, and then in the next

lecture we will show that we get electromagnetic waves from these equations.

Basic Equations

Rules for finding fields in different coordinate systems
−→
E 0 =

−→
E charges +

−→
V0 ×−→Benvironment

−→
B 0 =

−→
Bmagnet − 1

2

³−→
V0 ×−→E environment

´
−→
E = E0charges −

−→
V0 ×−→B 0

environment

−→
B =

−→
B 0

magnet +
1

2

³−→
V0 ×−→E 0

environment

´
Gauss’ law for magnetic fields

Φ =

I
B× A = 0





32 Field Equations and Waves in
the Field

We started this class with a study of waves. We learned about optics, and finally

electromagnetic field theory. In this lecture we will take on a case study that involves

all three. We will have come full circle and in the process, hopefully understand all

three topics a little better.

Fundamental Concepts

• Changing electric fields produce magnetic fields

• A changing electric �ux is described as a displacement current  = 
Φ


• The complete version of Ampere’s law is
I
B ·  =  ( + )

• Maxwell’s equations give a complete classical picture of electromagnetic fields

• Maxwell’s equations plus the Lorentz force describe all of electrodynamics.

• Maxwell’s equation lead directly to the liner wave equation for both the electric and
the magnetic field with the speed of light being the speed of the waves.

• The magnitude of the  and  fields are related in an electromagnetic wave by
max = max

Displacement Current

Last time we listed Ampere’s law as one of the basic field equations. But we did not

discuss it at all. That is because we were saving it for our discussion in this lecture We

need to look deeply into Ampere’s law. Here is what we have for Ampere’s law so farI
B · s = 

To see why we need to consider it further, let’s do a hard problem with Ampere’s law.

Let’s set up a circuit with a battery a switch and a circular plate capacitor in the wire.
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Using this circuit, let’s calculate the magnetic field using Ampere’s law. Here is a

detailed diagram of the capacitor.
P1 P2

I

P1 P2

I

I could find the magnetic field using the Biot-Savart equation, but that would be hard. I

don’t know how to solve the resulting integral. So let’s try Ampere’s law. Let’s start at

1 We add in an imaginary surface at 1 I will choose a simple circular surface.
P1 P2

I

We have done this before. If we choose 1 so that it is far from the capacitor, then we

know what the magnetic field will look like.

Right at 1 it will be out of the page. We also know that for a long straight wire, the

field magnitude does not change as we go around the wire, so we can write our integral

as I
B ·  = 

I
 = 2 = 

so

2 = 

so the field is

 =


2
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which is very familiar, just the equation for a field from a long straight wire.Question 223.48.1

Now Let’s try this at 2 What would we expect? Will the magnetic field change much

as we pass by the capacitor?
P1 P2

I

Again we could use Biot-Savart, but think about what the current does at the plate. It

would be very hard to do the integration!. So again let’s try Ampere’s law. If we use the

same size surface I
B ·  = 

I
 = 2

but this is equal to  There is no  going through the capacitor! so

2 = 0 (32.1)

and this would give  = 0 But, our wires are not really ideal and infinitely long. And

even if they were, would we really expect the field to be zero if we just have a small gap

in our capacitor? It get’s even worse!

P1
P2

I

S1

S2P1
P2

I

S1

S2

Ampere’s law tells us we need a surface, but it does not say it has to be a circular

surface. In fact, we could use the strange surface labeled 2 in the figure above. This is

a perfectly good surface to associate with the loop at 1 So this gives usI
B ·  =  = 0

at 1! So we have two different results with Ampere’s law for the same point. This

can’t be!Question 223.48.2

Ampere knew this was a problem, but did not find a solution. Maxwell solved this.

He asked himself, what was different inside the capacitor that might be making a

difference. Of course, there is an electric field inside the capacitor!
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P1 P2

I

E

R

We know that in the limit that the plates can be considered to be very big the field is

approximately

 =



=



2
but we know that the charge is changing in time once the switch is thrown. We can find

the rate of change of the field, then



=

1

2





By definition

 =



is a current, but what current? It must be the current that is supplying the charge to

the capacitor. That current is what is changing the  in the capacitor, and it is the 

separation that is making the field. So the time derivative of the electric field is



=



2
where  is the current in the wire, and only if the wire current is zero will there be no

change in the electric field.

This gives us an idea. A changing electric field creates a magnetic field. Suppose this

changing electric field created a magnetic field like the current does? It would be as

though there were a current with a value

 = 2



(32.2)

Note that in this we have the area of the plate,  = 2 multiplied by the time rate

of change of the electric field. Also note, that in our approximation for our capacitor,

there is only an electric field inside the plates. So, remembering electric �ux,

Φ =

Z
E · A

our �ux though the surface at 2 would be

Φ = 

= 2

so we can identify

2 =  = Φ
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as a small amount of electric �ux. Then our equivalent current will be

 = 
Φ


(32.3)

Maxwell decided that, since this looked like equivalent to a current, he would call it a

current and include it in Ampere’s law.I
B ·  =  ( + )

= 

µ
 + 

Φ



¶
but remember it is not really a current. What we have is a changing electric field

that is making a magnetic field as though there were a current  We can try this onQuestion 223.48.3

or capacitor problem. We have done our capacitor problem for 1 where we expect
Φ

≈ 0 so our original calculation stands

1 =


2

but now we know that if we use 2 we have Φ


6= 0, and we realize that at 2 the

current  = 0 so I
B ·  = 

µ
0 + 

Φ



¶
and for our geometry we foundΦ

I
B ·  = 

µ
0 + 2





¶
and we calculated 


so we can substitute it inI

B ·  = 

µ
0 + 2



2

¶
where we remember that the current  is the current making the electric field–the

current in the wire. Then we have

2 =  (0 + )

and our field is

 =


2
which is just what we found using 1 Maxwell seems to have saved the day! There is

no dip in the magnetic field magnitude.

There is one more fix we will have to do to Ampere’s law eventually. We found this

form of Ampere’s law with the capacitor empty–not even containing air. But we could

do the same derivation with a dielectric filled capacitor. We also could have magnetic

materials involved.

But what we have done so far is really a momentous result. We have shown that, indeed,

we should have an equation that provides symmetry with Faraday’s law. We suspected



438 Chapter 32 Field Equations and Waves in the Field

that I
B · s ∝ Φ


and we can write the constants of proportionality asI

B · s = 
Φ



but because we have
H
B · s also in Ampere’s law, we can combine the two to yieldI

B · s =  ( + )

= 

µ
 + 

Φ



¶
This is the last of our field equations. It is called the Maxwell-Ampere law.

Let’s use this to solve for the magnetic field inside the capacitor. A changing electric

field will make a magnetic field.

Take a surface inside the plates that is a circle of radius    ThenI
B · s =2

and from our modified Ampere’s equationI
B · s =  ( + )

= 

µ
 + 

Φ



¶
so

2 = 

µ
0 + 

Φ



¶
= 2





= 2


2

= 
2

2

so

 = 


22
(32.4)

We should pause to realize what we have just done. We have shown that, indeed, a

changing electric field can produce a magnetic field. This statement is a profound look

at the way the universe works!
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Maxwell Equations

We have developed a powerful set of understanding equations for electricity and

magnetism. Maxwell summarized our knowledge in a series of four equationsI
E · A =


Gauss’s law for electric fieldsI

B · A = 0 Gauss’s law for magnetic fieldsI
E · s =− Φ


Faraday’s lawI

B · s = μ + 
Φ


Ampere-Maxwell Law

(32.5)

If we have a dielectric, we might see these written as[?]

I
E · A =


Gauss’s law for electric fieldsI

B · A =0 Gauss’s law for magnetic fieldsI
E · s =− Φ


Faraday’s lawI

B · s =
¡
 + 

Φ


¢
Ampere-Maxwell Law

(32.6)

Since we have all had multivariate calculus, we may also see these written as
∇ ·E = 


Gauss’s law for electric fields

∇ ·B = 0 Gauss’s law for magnetic fields
∇×E =− B


Faraday’s law

2∇×B = J

+ E


Ampere-Maxwell Law

(32.7)

I’ll let you remember the process to do the translation from
I
B · A to∇ ·B

But we are familiar with all of these equations now. These four equations are the basis

of all of classical electrodynamics. In an electromagnetic problem, we find the fields

using the Maxwell equations to find the fields, and then apply the fields to find the

Lorentz forces

F = E+ v×B (32.8)

It turns out that these four equations strongly imply that there can be waves in the fields.

We will see this in our next lecture. We already know from our study of optics that

these waves are what we call light.
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Turning the Maxwell Equations into Differential Equations

Maxwell took the hint that  was related to  the speed of light and he thought that

light might be a wave in the electromagnetic field. We know about waves. We can de-

scribe a wave by looking for a surface of constant amplitude–a wave crest. A point

source will cause spherical surfaces of constant amplitude. A half-wave antenna makes

a toroidal shaped wave front. We will not deal with spherical or worse wave shapes.

Unfortunately, many antennas send out complicated wave patterns that take spherical

harmonics to describe well. That is beyond the math we want to do in this course.

A representation of a plane wave. Remember that the planes are really of infinite

extent. Image is public domain.

Instead, let’s picture our wave front far from the source. No matter what the total shape,

if we look at a small patch of the fields far away, they will look like the plane wave in

the last figure. Since this is a useful and common situation (except if you use lasers),

we will perform some calculations assuming plane wave geometry.

We will assume we are in empty space, so the charge  and current  will both be zero.
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Then our Maxwell Equations becomeI −→
E · −→A = 0 Gauss’s law for electric fieldsI −→
B · −→A = 0 Gauss’s law for magnetic fieldsI −→
E · −→s = −Φ


Faraday’s lawI −→

B · −→s = 
Φ


Ampere-Maxwell Law

(33.1)

Our goal is to show that these equations tell us that we can have waves in the field. To

do this, we will show that Maxwell’s equations really contain the linear wave equation

within them. As a reminder, here is the linear wave equationFar Board

2

2
=
1

2
2

2

it is a second order differential equation where the left side derivatives are take with

respect to position, and the right side derivatives are taken with respect to time. The

quantity,  is the wave speed. In this form of the equation  is the displacement of a

medium. Our medium will be the electromagnetic field.

Rewriting of Faraday’s law
Skip this

Let’s start with Faraday’s law I −→
E · −→s = −Φ


(33.2)

Given our geometry, we can say the wave is traveling in the  direction with the
−→
E field

positive in the  direction and the magnetic field is positive in the  direction.
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Let’s take a small rectangle of area to find
I −→
E · −→s

The top and bottom of the rectangle don’t contribute because
−→
E · −→s = 0 along these

paths. On the sides, the field is either in the −→s or it is in the opposite direction. SoI −→
E · −→s =

I


or I −→
E · −→s = −

I


along the sides. Let’s say we travel counter-clockwise along the loop. Then the left side

will be negative and the right side will be positive.
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I −→
E · −→s =

Z


−
Z




On the left side, we are at a position  away from the axis, and on the right side we are

a position +∆ away from the axis. Then the field of the left side is  ( ) and the

field on the right hand side is approximately

 (+∆ ) ≈  ( ) +



∆ (33.3)

so if our loop is small, then  is small and  won’t change much so we can write

approximately I −→
E · −→s =

Z


−
Z


 (33.4)

≈  (+∆ ) − ( )  (33.5)

=

µ
 ( ) +




∆

¶
− ( ) 

=

µ
 ( ) +




∆

¶
− ( ) 

= 



∆ (33.6)

So far then, Faraday’s law 21 I −→
E · −→s = −Φ



becomes





∆ = −Φ


Let’s move on to the right hand side of Faraday’s law. We need to find Φ so that we

can find the time rate of change of the �ux. We can say that  is nearly constant over

such a small area, so

Φ = B ·A
=  cos 

= 

= ∆

where here∆ means “a small distance” as it did above. Then
Φ


=




(∆)

= ∆




¯̄̄̄
 constant

= ∆



where we have held  constant because we are not changing our small area, so

21 We need  to be very small, much smaller than the wavelength of the wave.
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Faraday’s law I −→
E · −→s = −Φ


becomes





∆ = −∆





= −


(33.7)

We have made some progress, we have a differential equation relating the fields, but it

is a mixed equation containing both the electric and magnetic fields. We are only half

way there.

Rewriting of the Maxwell-Ampere Law

We have used one field equation so far and that took us part of the way. We have the

Maxwell-Ampere law as well. We can use this to modify our result from Faraday’s law

to find the linear wave equation that we expect. The Maxwell-Ampere law with no

sources (charges or currents) statesI −→
B · −→s = 

Φ



This time we must consider the magnetic field path integral

We can do the same thing we did with Faraday’s law with an area, but this time we will

use the area within the magnetic field (shown in the figure above). Again, let’s start with

the left hand side of the equation. We see that the sides of our area that are parallel to

the -axis do not matter because
−→
B · −→s = 0 along these sides, but the other two are in
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the direction (or opposite direction) of the field. They do contribute to the line integral.I −→
B · −→s =  ( ) − (+∆ )  (33.8)

≈ −

∆

Now for the left hand side, we need the electric �ux. For such a small area, the field is

nearly constant so

Φ ≈  cos 

= 

= ∆

so
Φ


= ∆




(33.9)

Combining both sides I −→
B · −→s = 

Φ



−

∆ = ∆







= −




(33.10)

We now have a second differential equation relating  and  But it is also a mixed

differential equation.

Wave equation for plane waves

This leaves us with two equations to work with




=− 


(33.11)




= −




(33.12)

Remember that these are all partial derivatives. Taking the derivative of the first

equation with respect to  gives







=





µ
−



¶
2

2
= − 



µ





¶
2

2
= − 



µ




¶
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In the last equation we swapped the order of differentiation for the right hand side. In

parenthesis, we have  on the right hand side. But we know what  is from

our second equation. We substitute from our second equation to obtain
2

2
=− 



µ
−





¶
2

2
=

2

2
(33.13)

We can do the same thing, but taking derivatives with respect to time to give
2

2
=

2

2
(33.14)

You will recognize both of these last equations as being in the form of the linear wave

equation.
2

2
=
1

2
2

2
This means that both the  field and the  field are governed by the linear wave

equation with the speed of the waves given by

 =
1√


(33.15)

We have studied waves, so we know the solution to this equation is a sine or cosine

function

 = max cos (− ) (33.16)

 = max cos (− ) (33.17)

with

 =
2


and

 = 2

then



=
2
2


= 

which is the wave speed.

We can show that the magnitude of  is related to .

Lets take derivatives of  and  with respect to  and 




= −max sin (− )




= max sin (− )

then we can use one of our half-way-point equations from above



=− 


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and by substitution obtain

−max sin (− ) = −max sin (− )

−max = −max
or

max

max
=




= 

The speed is the speed of light, , so
max

max
=  (33.18)

It is one of the odd things about the universe that speed of electromagnetic waves is a

constant. It does not vary in vacuum, and the in-vacuum value,  is the maximum speed.

It was a combination of Maxwell’s work in predicting  and the observations confirming

the predictions that launched Einstein to form the Special Theory of Relativity!

Note that the last equation shows why we often only deal with the electric field wave

when we do optics. Since the magnetic field is proportional to the electric field, we can

always find it from the electric field.

Properties of EM waves
Pick up here

Knowing that the electric and magnetic fields form plane waves, we can investigate

these plane wave solutions to see what they imply.

Energy in an EM wave

The electromagnetic (EM) wave is a wave. Waves transfer energy. It is customary find

a vector that describes the �ow of energy in the electromagnetic wave. This is like the

ray vectors we have been drawing for some time, but with the magnitude of the vector

giving the energy �ow rate.

The rate of at which energy travels with the EM wave is given the symbol S and is

called the Poynting vector after the person who thought of it. It is

S =
1


E×B (33.19)

Let’s deal with a dumb name first: The Poynting vector. It is named after a scientist with

the last name Poynting. The name is really meaningless. There is nothing particularly

“pointy” about this vector more than any other vector.

Instead of a formal derivation, let’s just see what we get from Poynting’s equation for a
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plane wave.

For our plane wave case,  and  are at 90 ◦ angles22. so

 =
1


 (33.20)

and  will be perpendicular to both. Notice from our preceding figures that this is also

the direction that the wave travels! That is comforting. That should be true for a EM

wave. The energy, indeed, goes the way the Poynting vector points.

Using



= 

we can write the magnitude of the Poynting vector as

 =
2


(33.21)

We could also express this in terms of  only.

You will remember that our eyes don’t track the oscillations of the electromagnetic

waves. Few detectors (if any) can. For visible light, the frequency is very high. We

usually see a time average. This time average of the Poynting vector is called the

intensity of the wave

 = 

Intensity of the waves

When we studied waves, we learned that waves have an intensity. The intensity of

electromagnetic waves must relate to the strength of the fields. We can write it as

 =


2
(can you remember where the “12” came from?)23. Again using

 = 

we can write the intensity as

 =
1

2
2 (33.22)

We remember that  is proportional to the square of the maximum electric field strength

from our previous consideration of light intensity. But before we only said that it was

proportional. Now we know the constant of proportionality. Of course we could also

22 For other fields this might not be true, but it is generally true for light.
23 This is because the average value of sin2 () over a period is given by 1



 
0
sin2 ()  =


2

 2

0 sin2 ()  = 1

2
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write the intensity as

 =


2
2 (33.23)

but this is less traditional. We have said already that the intensity, , is the magnitude of

the average Poynting vector 

Recall that we know the energy densities in the fields

 =
1

2


2

 =
1

2

2


again, since

 =  (33.24)

we can write

 =
1

2

2


(33.25)

=
1

2

2

2

=
1

2


2

so for a plane electromagnetic wave

 =  (33.26)

The total energy in the field is just the sum

 =  +  = 
2 (33.27)

But when we do the time average to find the intensity, we pick up a factor of a half

 =
1

2


2 (33.28)

Comparing this to our equation for intensity gives

 =
1

2
2max = 

and then

 =
1



1

2


2 (33.29)

=
1




=
1
1
2



= 

Remember when you studied thermodynamics you, learned that we could transfer

energy by radiation. This is our radiation! And we see that it does indeed transfer

energy. We learned about this by discussing solar heating and by talking about Army
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weapons that apply energy to crowds.

but we really use this every day when we microwave something. Microwaves are

electromagnetic waves!

Momentum of light

One of the strangest things is that there is also momentum in the electromagnetic waves.

If the waves are absorbed, the momentum is

 =



(33.30)

or if the waves are re�ected it is

 =
2


(33.31)

(think of balls bouncing off a wall, the change in momentum is always 2)

We can think of the light exerting a pressure on the surface. Force is given by

 = 

= 




=



then using this force, the pressure is

 =



=
1






(33.32)

then

 =



=

1






(33.33)

We found 1




to be the energy rate per unit area, which is the magnitude of the
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Poynting vector, . So our pressure due to light is

 =



(33.34)

for perfect absorption. If there is perfect re�ection

 =
2


(33.35)

This may seem a little strange. Water or sound waves would exert a pressure because

the water or air particles can strike a surface, exerting a force. But remember the

electromagnetic fields will create forces on the electrons in atoms24, and most of the

electrons are bound to the atoms in materials by the Coulomb force. So there really

is a force on the material due to the electromagnetic wave. Quantum mechanics tells

us about electrons being knocked out of shells into higher energy shells (absorbing

photons of light) and re-emitting the light when the electrons fall back down to lower

shells. This is a little like catching a frisbee, and then throwing it. Momentum is

transferred both at the catch and at the release.

A cool use of this phenomena is called laser levitation

Figure 33.8.Laser Levation (Skigh Lewis, Larry Baxter, Justin Peatross (BYU), Laser
Levitation: Determination of Particle Reactivity, ACERC Conference Presentation, Feb-
ruary 17, 2005)

In the picture you are seeing a single small particle that is �oating on a laser beam. the

laser beam is directed upward. The force due to gravity would make the particle fall,

24 Protons too, but the protons are more tightly bound due to the nuclear strong force and the nuclei are
bound in the material. their resonant frequencies are usually not assessable to visible light, so I will ignore
their effect in our treatment. But if you consider x-rays or gamma rays, they would be important.
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but the laser light keeps it up!

Antennas Revisited

We talked about antennas before. Let’s try to put all we have done together to make a

radio wave. First, we know from our analysis that we need changing fields. Neither

static charges, nor constant currents will do. If we think about this for a minute, we

will realize that the charges will accelerate. Fundamentally, this is the mechanism for

making EM waves.

The half wave antenna is simple to understand, so let’s take it as our example.

It is made from two long wires connected to an alternating current source (the radio

transmitter).The charges are separated in the antenna as shown. But the separation

switches as the alternating current changes direction. The charges accelerate back and

forth, like a dipole switching direction. Radio people call this antenna a simple dipole.

Note the direction of the  and  fields. The Poynting vector is to the right. The

antenna field sets up a situation far from the antenna, itself, where the changing electric

field continually induces a magnetic field and the changing magnetic field continually

induces a changing electric field. The wave becomes self sustaining! And the energy it

carries travels outward.

Below you can see a graph of the sort of toroidal angular dependence of the dipole

antenna emission pattern.
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From this you can see why we usually stand antennas straight up and down. Then the

transmission travels parallel to the Earth’s surface, where receivers are more likely to

be.

Speaking of receivers, of course the receiver works like a transmitter, only backwards.

The EM waves that hit the receiving antenna accelerate the electrons in the wire of

the antenna. The induced current passed through an LRC circuit who’s resonance

frequency allows amplification of just one small band of frequencies (the one your

favorite radio station is using) and then the amplified signal is sent to a speaker.

The Electromagnetic Spectrum

Maxwell predicted how fast his field waves would travel by finding the linear wave

equation from the fields and noticing the speed indicated by the result. We have seen

how he did this. The answer is

 =
1√


(33.36)

this speed is so special in physics that it get’s its own letter

 = 299792× 108 m
s

(33.37)

which is of course the speed of light. In fact, that this was the measured speed of light

was strong evidence leading us to conclude that light was really a type of these waves.

There are a few more types of electromagnetic waves. In the following chart you can

see that visible light is just a small part of what we call the electromagnetic spectrum.
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Electromagnetic Spectrum (Public Domain image courtesy NASA)

The speed of light is always a constant in vacuum. This is strange. It caused a lot of

problems when it was discovered.

 =  (33.38)

or

 =  (33.39)

where we can see that for light and electromagnetic waves, knowing the wavelength is

always enough to know the frequency as well (in a vacuum).

As an example of what problems can come, let’s consider a Doppler effect for light.

Remember for sound waves, we had a Doppler effect. We will have a Doppler effect for

electromagnetic waves too. But light does not change it’s speed relative to a reference

frame. This is really weird. The speed of light in a vacuum is always –no matter what

frame we measure it in.

Einstein’s theory of Special Relativity is required to deal with this constant speed of

light in every reference frame. From Relativity, the Doppler equation is

 0 = 

p
1 + 

p
1− 



(33.40)

or, if we let  be the relative velocity between the source and the detector, and insist

that ¿ 

 0 = 

µ
+ 



¶
(33.41)

Where of course  0 is the observed frequency and  is the frequency emitted by the

source. This is usually written as

 0 = 
³
1± 



´
(33.42)

but it is really the same equation25. Just like with sound, we use the positive sign when

the source and observer are approaching each other.

This means that if things are moving closer to each other the frequency increases. Think

of

 =



(33.43)

this means that as a source and emitter approach each other, then the light will have a

shorter wavelength. Think of our chart on the electromagnet spectrum. This means the

25 This equation is only really true for relative speeds  that are much less than the speed of light. Since is
is very hard to make something travel even close to to the speed of light, we will find it is nearly always true.
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light will get bluer. If they move farther apart, the light will get redder.

This is what gave us the hint that has lead to our cosmological theories like the big

bang. Although this theory is now much more complicated, the facts are that as we look

at far away objects, we see they are all red shifted. That is, they all show absorption

spectra for known elements, but at longer wavelengths that we expect from laboratory

experiments. We interpret this as meaning they are all going away from us!

Summary

Here is what we have learned so far about the properties of light

1. Electromagnetic waves travel at the speed of light

2. Electromagnetic waves are transverse electric and magnetic waves that are oriented
perpendicular to each other.

3.  = 

4. Electromagnetic waves carry energy and momentum

Photons

Our understanding of light is not complete yet. If you went on to take PH279 you would

find that light still operates much like a particle at times. This should not be a surprise,

since Newton and others explained much of optics (the study of light) assuming light

was a particle.

Einstein and others noticed that for some metals, light would strike the surface and

electrons would leave the surface. The energy of a wave is proportional to the amplitude

of the wave. It was expected that if the amplitude of the electromagnetic wave was

increased, the number of electrons leaving the surface would increase. This proved to

be true most of the time. But Hertz and others decided to try different frequencies of

light. It turns out that as you lower the frequency, all of a sudden no electrons leave no

matter how big the amplitude of the wave. Something was wrong with our wave theory

of light. The answer came from Einstein who used the idea of a “packet” of light to

explain this photoelectric effect. For now, we should know just that the waves of light

exist in quantized packets called photons. The energy of a photon is

 =  (33.44)
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where  is the energy,  is the frequency of the light wave, and  is a constant

 = 663× 10−34 J s (33.45)

A beam of light is many, many photons all superimposing. We know how waves

combine using superposition, so it is easy to see that we can get a big wave from many

little waves.

Knowing that light is made from electric and magnetic fields, and that these fields are

vector fields, we should expect some directional quality in light. And there is such a

directional quality that we will study next lecture.
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Fundamental Concepts

• The direction of the electric field in a plane wave is called the polarization direction.

• Natural light is usually a superposition of many waves with random polarization
directions. This light is called unpolarized light.

• Some materials allow light with one polarization to pass through, while stopping
other polarizations. The polaroid is one such material polaroids. will have a final
intensity that follows the relationship  = max cos

2 ()

• Light re�ecting off a surface may be polarized because of the absorption and
re-emission pattern of light interacting with the material atoms.

• Scattered light may be polarized because of anisotropies in the scatterers.

• Birefringent materials have different wave speeds in different directions. This
affects the polarization of light entering these materials.

Polarization of Light Waves

We said much earlier in our study of light that it was a transverse wave. Last lecture we

saw that we have an electric and magnetic field direction, and that these directions are

perpendicular to each other and the direction of energy �ow. We will now show some

implications of this fact. In a course in electromagnetic theory, we often draw light as

in the figure below.
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We will continue to ignore the magnetic field (marked in the figure as ). We will look

at the  field an notice that it goes up and down in the figure. But we could have light

in any orientation. If we look directly at an approaching beam of light we would “see”

many different orientations as shown in the next figure.

When light beams have waves with many orientations, we say they are unpolarized.

But suppose we were able to align all the light so that all the waves in the beam were

transverse waves in the same orientation. Say, the one in the next figure.
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E

Then we would describe the light as linearly polarized. The plane that contains the

-field is known as the polarization plane.

Polarization by removing all but one wave orientation

One way to make polarized light is to remove all but one orientation of an unpolarized

beam. A material that does this at visible wavelengths is called a polaroid. It is made of

long-chain hydrocarbons that have been treated with iodine to make them conductive.

The molecules are all oriented in one direction by stretching during the manufacturing

process. The molecules have electrons that can move when light hits them. They can

move farther in the long direction of the molecule, so in this direction the molecules act

like little antennas. The molecules’ electrons are driven into harmonic motion along the

length of the molecule. This takes energy (and therefore, light) out of the beam. Little

electron motion is possible in the short direction of the molecule, so light is given a

preferential orientation. The light is passed if it is perpendicular to the long direction of

the molecules. This direction is called the transmission axis.

We can take two pieces of polaroid material to study polarization.

Unpolarized light is initially polarized by the first piece of polaroid called the polarizer.

The second piece of polaroid then receives the light. This piece is called the analyzer. If
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there is an angular difference in the orientation of the transmission axes of the polarizer

and analyzer, there will be a reduction of light through the system. We expect that if the

transmission axes are separated by 90 ◦ no light will be seen. If they are separated by

0 ◦ then there will be a maximum. It is not hard to believe that the intensity will be

given by

 = max cos
2 () (34.1)

remembering that we must have a squared term because  ∝ 2

Polarization by re�ection

If we look at light re�ected off of a desk or table through a piece of polaroid, we can

see that at some angles of orientation, the re�ection diminishes or even disappears!

Light is often polarized on re�ection. Let’s consider a beam of light made of just two

polarizations. We will define a plane of incidence. This plane is the plane of the paper

or computer screen. This plane is perpendicular to the re�ective or refractive surface in

the figure below.

One of our polarizations is defined as parallel to this plane. This direction is represented

by orange (lighter grey in black and white) arrows in the figure. The other polarization

is perpendicular to the plane of incidence (the plane of the paper). This is represented

by the black dots in the figure. These dots are supposed to look like arrows coming out

of the paper.

When the light reaches the interface between 1 and 2 it drives the electrons in the

medium into SHM. The perpendicular polarization finds electrons that are free to move

in the perpendicular direction and re-radiate in that direction. Even for a dielectric, the
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electron orbitals change shape and oscillate with the incoming electromagnetic wave.

The parallel ray is also able to excite SHM, but a electromagnetic analysis tells us that

these little “antennas” will not radiate at an angle 90 ◦ from their excitation direction.

Think of little dipole radiators. We can plot the amplitude of the electric field as a func-

tion of direction around the antenna.
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Angular dependence of  for a dipole scatterer.

We see that along the antenna axis, the field amplitude is zero. This means that the

wave really does not go that direction. So in our case, the amount of polarization in the

parallel direction decreases with the angle between the re�ected and refracted rays until

at 90 ◦ there is no re�ected ray in the parallel direction.

The incidence angle that creates an angular difference between the refracted and

re�ected rays of 90 ◦ is called the Brewster’s angle after its discoverer. At this angle the

re�ected beam will be completely linearly polarized.
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We can predict this angle. Remember Snell’s law.

1 sin 1 = 2 sin 2

Let’s reliable the incidence angle 1 =  We take 1 = 1 and 2 =  so

 =
sin 

sin 2
Now notice that for Brewster’s angle, we have

 + 90
◦ + 2 = 180

◦

so

2 = 90
◦ − 

so we have

 =
sin 

sin (90 ◦ − )
ah, but we remember that sin (90 ◦ − ) = cos () so

 =
sin 

cos 
but again we remember that

tan  =
sin 

cos 
so

 = tan  (34.2)

which we can solve for 

 = tan
−1 ()

This phenomena is why we wear polarizing sunglasses to reduce glare.

Birefringence

Glass is an amorphic solid–that is–it has no crystal structure to speak of. But some

minerals do have definite order. Sometimes the difference in the crystal structure

creates a difference in the speed of propagation of light in the crystal. This is not to hard

to believe. We said before that the reason light slows down in a substance is because

it encounters atoms which absorb and re-emit the light. If there are more atoms in one

direction than another in a crystal, it makes sense that there could be a different speed

in each direction.

Calcite crystals exhibit this phenomena. We can describe what happens by defining two

polarizations. One parallel to the plane of the figure below, and one perpendicular.
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With a careful setup, we can arrange things so the perpendicular ray is propagated just

as we would expect for glass. We call this the -ray (for ordinary). The second ray is

polarized parallel to the incidence plane. It will have a different speed, and therefore a

different index of refraction. We call it the Extraordinary ray or -ray.

If we were to put a light source in a calcite crystal, we would see the -ray send out a

sphere of light as shown in the figure above. But the -ray would send out an ellipse.

The speed for the -ray depends on orientation. There is one direction where the

speeds are equal. This direction is called the optic axis of the crystal.
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If our light entering our calcite crystal is unpolarized, then we will have two images

leaving the other side that are slightly offset because the -rays and -rays both form

images.

Optical Stress Analysis

Some materials (notably plastics) become birefringent under stress. A plastic or other

stress birefringent material is molded in the form planned for a building or other object

(usually made to scale). The model is placed under a stress, and the system is placed

between to polaroids. When unstressed, no light is seen, but under stress, the model

changes the polarization state of the light, and bands of light are seen.

Polarization due to scattering

It is important to understand that light is also polarized by scattering. It really takes a

bit of electromagnetic theory to describe this. So for a moment, lets just comment that

blue light is scattered more than red light. In fact, the relative intensity of scattered light

goes like 14 This has nothing to do with polarization, but it is nice to know.

Now suppose we have long pieces of wire in the air, say, a few microns long. The pieces

of wire would have electrons that could be driven into SHM when light hits them. If the

wires were all oriented in a common direction, we would expect light to be absorbed

if it was polarized in the long direction of the particles and not absorbed in a direction

perpendicular to the orientation of the particles. This is exactly what happens when

long ice particles in the atmosphere orient in the wind (think of the moment of inertia).
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We often get impressive halo’s around the sun due to scattering from ice particles.

Rain drops also have a preferential scattering direction because they are shaped like

oblate spheroids (not “rain drop shape” like we were told in grade school).

It is also true that small molecules will act like tiny antennas and will scatter light

preferentially in some directions and not in others. This is called Rayleigh scattering

and is very like small dipole antennas.

Optical Activity

Some substances will rotate the polarization of a beam of light. This is called being

optically active. The polarization state of the light exiting the material depends on the

length of the path through the material. Your calculator display works this way. An

electric field changes the optical activity of the liquid crystal. There are polarizers over

the liquid crystal, so sometimes light passes through the display and sometimes it is

black.

Laser polarization

One last comment. Lasers are usually polarized. This is because the laser light is

generated in a cavity created by two mirrors. The mirror is tipped so light approaches

it at the Brewster angle. Light with the right polarization (parallel to the plane of the

drawing) is re�ected back nearly completely, but light with the opposite polarization is

not re�ected at all. This reduces the usual loss in re�ection from a mirror, because in

one polarization the light must be re�ected completely.
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Making alternating current

A few lectures ago, we studied the generator. But we found that a basic generator, we

got a sinusoidal potential difference

∆ () = ∆max cos () (34.3)

This sinusoidal potential will cause a sinusoidal current!

 () = max cos () (34.4)

Note that this  is just like the  from our oscillating RLC circuit. It is an angular

frequency.

 =


2
(34.5)

Question 220.35.1

This alternating voltage is really not like a battery, so we need a new symbol for a

source of alternating potential. We use a circle with a squiggle in it

We also need a way to write a current or potential that varies. It is traditional to use

small letters to symbolize instantaneous values. We will do this, and we will explicitly

write The dependence on . So

∆ () = ∆max cos () (34.6)

is the instantaneous electric potential from our alternating potential source. We can plot

the current and the potential difference to compare them.

Notice that they have different amplitudes, but they are in phase (remember that phase

tells us when they rise and fall, relative to each other).Thinking of Ohm’s law, we would
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expect the two curves to be proportional to each other. But we should be cautious. The

current and voltage both change in time. So we can’t just write

∆ = 

we need to specify which ∆ and which  since each constantly change. We will

investigate a solution to this problem in our next lecture.





35 Alternating Currents and
Potentials

Question 220.35.1

Question 220.35.2

Question 220.35.3
We found in our last lecture that Ohm’s law might need some modification for circuits

with alternating emfs. We will find a convenient way to solve this problem in this

lecture. We will also set the groundwork for dealing with more complicated circuit

elements that change the relative phase between the current and electric potential.

Fundamental Concepts

• We use  values for the current and potential for alternating currents

• We use phasor diagrams to describe the relative between the current and electric
potential

Instantaneous current and potential

To introduce alternating potentials, let’s take a simple circuit as shown.

Kirchhoff’s rule applies here (no mysterious B-fields). But now our currents and

potential differences are time dependent. So Kirchhof’s rules must apply for each
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instant of time. Let’s review Kirchhoff’s rules. Recall that

∆ = −
I
E · s = 





The loop rule says that if we add up all the changes in electric potential we get

(assuming the inductance,  is small enought that we can ignore it)I
E · s ≈ 0 (35.1)

And this is just X
∆ ≈ 0

We find for our simple circuit that

∆ () +∆ () = 0 (35.2)

note that these are instantaneous values. We recall that for the 

∆ () = ∆max cos ()

So, the magnitude of∆ is also

∆ = ∆max cos ()

Now, using these instantaneous values, we can use Ohm’s law

∆ () =  ()

where  is the instantaneous current.

 () =
∆ ()



=
∆max


cos () (35.3)

we recognize∆max as a current, the maximum current.

 () = max cos () (35.4)

This gives us an idea. If we use the maximum value for the potential and current, thenQuestion 220.35.4

we can just use Ohm’s law.

∆max = max (35.5)

Now this does work, but we should realize that the current is not at it’s maximum value

for most of the time. We will want to choose a more representative value. Note that thisQuestion 220.35.5

cannot be the average current, that is zero! We choose to take the average of the squareQuestion 220.35.6
of the current and square root it. You may already know this process! It is taking the

 of the current.

Let’s see how it works. If I take the average of a sine function I get zero because it

spends as much time below the axis as above

sin ()



Instantaneous current and potential 473
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but the square of a sine function is always positive.
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it is kind of believable that the average of this sine squared function would be 12
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-1

0

1

x

y

Then our average value of the current squared is
1

2
2max (35.6)

We said we would take the square root of the average of the square of the current. WeQuestion 220.35.7

just convinced ourselves that the average of the square of the current is 12 its original

value because the average of the square of the sine function is 12. So all we have to do

now is take a square root.

 =

r
1

2
2max =

max√
2

(35.7)

We can do the same thing for the potential

∆ =
∆max√

2
(35.8)

and the  current and potential difference will obey Ohm’s laws and all our former

equations.

∆ =  (35.9)

Question 220.35.8

Question 220.35.9

Question 220.35.10
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Power dissipated

For example, we used to say that

P = 2 (35.10)

now that is not true for alternating currents, but we can say

P = 2 (35.11)

Note that this makes sense. The resister does not care which direction the current �ows

( is squared in the power equation), but it does care that there is less current than if we

had a steady �ow at max

Phasor Addition
Question 220.35.11

Let’s return to our graph of the instantaneous current and potential. We can use

the connection we made in PH123 (or will make now) between circular motion and

oscillatory (sinusoidal) motion. Let’s take a generic set of variables,  and  Then

tan  =



(35.12)

cos  =



(35.13)

sin  =



(35.14)

Let’s relate these trig functions to their projections onto the axis
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The projection of circular motion onto the -axis gives simple harmonic motion.

Look at the projection  of the point  on the  axis. Lets follow this projection as Question 220.35.12

travels around the circle. We find it ranges from −max to max If we watch closely

we how  () varies as a function of time, we find that it’s rate of change with respect to

time is zero at the extreme points and is a maximum in the middle. This projection is

given as the cosine of the vector from the origin to 

 () = max cos  (35.15)

This model, indeed fits our description of our instantaneous potential if we have  = Question 220.35.13

as the time dependence of 

A phasor is a representation of our time varying quantity as a vector projection on

an axis (the -axis in this case) of a vector that rotates around the axis with angular

velocity equal to the angular frequency.

As the large vector of length ∆max rotates, the projection moves from it’s maximumQuestion 220.35.14

Question 220.35.15 at  = 0 rad and is zero at  = ± 2

Question 220.35.16
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We can draw a similar phasor diagram for the current

If we share -axes, we will note that the two phasors (∆ and  phasors) rotate together.

they are in phase.

Note that the magnitudes are not the same, and there is no reason we would expect themQuestion 220.35.16

to be. They are different quantities.

But we see that the phasors traveling together means that the voltage and the current

rise and fall at the same time. This is what being in phase means.
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Of course, all this assumed that I
E · s ≈ 0

but what if the inductance is not small enough that we can ignore it?I
E · s = −



We will find that if we have a circuit element that slows the current, the potential and

current may be out of phase. We will take this problem up next lecture.





36 AC circuits with Capacitors
and Resistors

Fundamental Concepts

• In AC RC circuits, the capacitor voltage lags the current with a phase difference of
2

• Reactance is like resistance in AC circuits

• The capacitive reactance is given by  =
1


AC Circuits and Capacitors

Now let’s consider what an AC circuit will do to a capacitor. Recall that a capacitor

will, after a time, stop a direct current. Recall that the reason for this is that as charge

builds up on the capacitor, new charges coming to the capacitor are repelled by the

charges already on the capacitor plates. The charges on the plates form an electric

field in the capacitor, so there is an electric potential across the plates in the capacitor.



480 Chapter 36 AC circuits with Capacitors and Resistors

This electric potential grows with more charge (think of our water tank analogy). The

building potential difference across the capacitor opposes the �ow of more charge to

the capacitor. Eventually the current just stops.

But now we have a potential due to our alternating emf that changes. Charge starts

to build on the capacitor, but then the emf potential switches. This makes charge

rush away from the capacitor. Again the potential switches at the emf. So again the

charge rushes to the capacitor. Current �ows through the whole circuit and never stops

because we keep switching the direction of the emf. Notice how different this is from a

battery-capacitor circuit. Eventually the current stops for the battery circuit. But for our

alternating emf, we really don’t stop an alternating current with a capacitor!

But the building and unbuilding of a potential difference in the capacitor does slow the

current some. If we plot the capacitor potential,  () and current,  ()  we get a graph

that looks like this

Let’s analyze this graph starting when the potential across the capacitor is maximum.

The capacitor is fully charged. So at this split instant of time no current will �ow.

But then the source emf voltage starts to decrease. So charge will �ow from the higher

capacitor potential back to the emf source because the source now has a lower potential.
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In the graph you see that as we move from  = 0 the capacitor voltage decreases and

the current increases, but it increases negatively.

The charge is going toward the emf source.

At some point the capacitor is completely drained. So it has a potential of zero volts.

But by now the source emf has totally reversed direction and is increasing in magnitude.

So charge will rush from the higher potential in the emf source to the capacitor.

And we will fill the capacitor the opposite way we had it before. Where the negative

charge was, we will fill with positive charge and vice versa. At some point, the

capacitor will be full again
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and the current will stop for an instant. This is when the capacitor potential is once

again equal to the source emf. But at this point the source emf again loses potential and

current begins to �ow, but this time the other direction.

This process just keeps repeating itself.

Note that really what we are seeing is normal behavior for an  circuit. It takes time

for a capacitor to charge or discharge in an RC circuit. And that is what is happening

here. Let’s apply our equations for the alternating potential for this situation. The

capacitor instantaneous potential will be

∆ () = ∆max cos (36.1)

and we know from our study of capacitors

 = ∆ (36.2)

so

 () = ∆max cos (36.3)

Of course we take a derivative to find the current

 () =
 ()


= −∆max sin (36.4)

It is traditional to rewrite this as

 () = −∆max cos
³
+



2

´
(36.5)

= max cos
³
+



2

´
(36.6)

If you have taken PH123 you immediately notice that the current, and the potential

difference across the capacitor are out of phase. Remember that this means that they

are both cosine functions, but one starts later than the other. Since the shift is a positive
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+2 the current is shifted to the left, and that means that current is the one that starts

earlier.

And that is just what our analysis of the circuit has found. The cosine function for the

current seems to start earlier than the cosine function for potential (it is already a quar-

ter of a cycle ahead when our graph starts!). If these two cosine functions were angular

measures, they would have a phase difference of 90 ◦ So we say that they are 90 ◦ out

of phase. We can use our idea of phasors to draw this situation.

The voltage across a capacitor always lags the current by 90 ◦ for AC currents.

Since the capacitor is slowing the current, we can say that it acts much like a resister

for alternating currents. In fact, let’s consider how the capacitor slows the current. First,

we can guess that as the capacitance gets larger it takes longer to fill the capacitor, so

there is less charge build up for a given cycle, and therefore less potential difference in

the capacitor. It is the potential difference that slows down or impedes the current, so

we can see that our new resistance-like-effect should be inversely proportional to the

capacitance. Let’s give this new resistance to alternating current the symbol   so we

can write

 ∝ 1


(36.7)

We can also reason that the faster the potential swaps happen at the source, the less the

charge build-up will happen on the capacitor, so there will be less potential to slow

the current. Then the resistance like property of the capacitor should be inversely

proportional to the frequency of the alternating voltage source

 ∝ 1


(36.8)
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We usually combine these two effects into one equation for 

 =
1

2
=

1


(36.9)

The name given to this resistance like quantity,   is the capacitive reactance.

The wonderful thing about this new quantity is that it obeys Ohm’s law like a

resistance!

∆ =  (36.10)

well, OK we had to use the  value of∆ and , but that is what our voltmeters and

ammeters read for AC currents! so it is great that it works out so simply!

Rectifiers and Filters

We mentioned in class that you would not want to plug your iPad into the “dirty”

current provided by a standard generator. Our generator design in the book is even

worse. Remember we had alternating current like this

 () = max sin () (36.11)

t

i
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but our iPad can’t handle alternating current, so we need to remove the negative current.

We can do this with a diode (a device that has a high resistance when current �ows one

way, and a low resistance when current �ows the other way). Then our current would

look something like this

Usually for our iPad we have a transformer involved, so we place the diode on the iPad

side of the transformer.

Our iPad is not happy though. Half the time it is getting no current at all! So we add in

a resister and a capacitor as shown in the next figure

Now we know what happens when we plug this in. The capacitor charges when

the current starts to �ow. But the current from the transformer and diode will reach

a peak and start to fall off. When this happens, the capacitive circuit will start to

discharge, making the current drop much more slowly that it did on the wall side of the

transformer. We get something like thiswhere the heavy (green) curve is the resulting

current.

This current is much better, but still not great for audio systems. You would hear an

annoying hum on top of your beautiful Mormon Tabernacle Choir music. A good audio

system will have additional filter circuits to remove the “ripple” in the current that

remains from our power plug. But we have described what is usually in the little box

that you plug into the wall to power your electronics. The additional filtering is often in

the device.
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Figure 36.9.

We have learned that the capacitive reactance depends on the frequency of the

oscillation. If the frequency was very small, we would still get to zero current in

between current peaks. If the frequency is very large, then there would be barely any

time for decay, so the ripple would be small. This implies that we can change the filter

effect on AC if we change the frequency. Alternately, we can leave the frequency

at 60Hz and change the capacitor to get different response. We can pick out which

frequencies are left in the ripple.

Take for example this circuit

We would expect current to �ow in the circuit, and the resistance, , will slow that

�ow. The capacitor will also slow this �ow because it has a capacitive reactance. The

combined effect would be a little like having two resisters in series, but where one

resister’s resistance depends on the frequency of the alternating current.

Recall that if we have two resistances in series each has a voltage drop of 
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The two resister voltage drops must equal the source voltage

∆ = 1 + 2

and we can see that if we lower the resistance of 1 then the voltage across 2 will be

larger.

Since  = 1 () the reactance goes down as the frequency increases. So as

we measure the voltage across the capacitor, it is like the resistance is lower for the

capacitor at higher frequencies. The voltage across the capacitor is

∆ = 

so as  goes down, so does the voltage. We have a higher voltage for lower

frequencies and a lower voltage for higher frequencies.

We can plot the voltage that leaves the circuit divided by the voltage that we input into

the circuit as a function of the frequency of the input AC. We see that low frequencies

get through the circuit just fine, but large frequencies don’t get through.

The capacitive circuit is not able to discharge and charge fast enough to keep up.

Here is another circuit

Note that we have switched the capacitor and resistor positions. It is still like a series

circuit with a reactance and a resistance. But now the reactance comes first and we are

measuring the voltage across the resistor. As the frequency increases,  decreases, so

∆ will get larger.
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Since we are measuring ∆ as our output, then we get a larger voltage for higher

frequencies. Thus, the circuit passes all the high frequencies (like those high notes from

the sisters in the MoTab) but removes low frequencies (like our 60Hz hum).

Filter design can be very complicated. Notch filters pass a narrow band of frequencies.

Electrical engineers usually have course work in filter design. Now days filtering is

often done digitally by transforming the signal into the Fourier domain, removing

unwanted frequencies, and inverse transforming back to the signal domain. This is

great when you can, but if you want to remove the annoying interference from the local

business’s radio signals, a good hardware filter on your TV input is a wonderful thing.

This is something to think about as you design experiments. What electronic noise

may exist. What filter is built into your test equipment. You may want to add a filter to

eliminate the noise. Conversely, you may find that your equipment’s filter has removed

the signal you wanted!



37 Inductive AC Circuits, and
the LRC AC circuit

So far we have allowed resistors and capacitors in our AC circuits. It is time to include

inductors.

Fundamental Concepts

• The inductive reactance  = 2 = 

AC Circuits and Inductors
Question 220.37.1

When we learned about inductors a few lectures ago, we found that we can pretend that

there is an emf induced in the inductor

E = −∆
∆

(37.1)

really there is an amount of energy tied up in making the magnetic field in the inductor.

But in this lecture, we will treat this just as though it were a normal voltage.
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We do need to rewrite this to match our AC notation

∆ () = −∆ ()
∆

(37.2)

to show time dependence. And we can use Kirchhoff’s rules to find the current and

voltage as a function of time. Because of the inductor, this is a little more difficult than

the purely conductive circuit. But in going around the loop we still have

∆ () +∆ () = 0

and we can write out∆ () so that

∆ ()− 
 ()


= 0 (37.3)

Using our equation for∆ ()  we see that

∆max cos () = 
 ()


(37.4)

this tells us that
∆max


cos ()  =  () (37.5)

and of course we can integrate both sides of the equationZ 

0

∆max


cos ()  =

Z 

0

 (37.6)

The right hand side is just  So that

 =
∆max



Z 

0

cos ()  =
∆max


sin (37.7)

Again we will write this in terms of the cosine function so we can compare our

inductive circuit current to the resistive and capacitive circuit currents.

 =
∆max


cos
³
− 

2

´
(37.8)

Note again that the current has a phase constant, this time −2

We should also remember that the induced emf will oppose the current, so it slows

down the current (it is a back emf). We immediately think of our capacitive reactance

and wonder if we can define an inductive reactance! And indeed we canQuestion 220.37.2

 = 2 =  (37.9)

Let’s see if it makes sense. We expect the back emf to increase as  increases. This

is like placing a small battery in the circuit backwards. It will slow the current. The

back emf increases with , so having the resistance-like property increase with 

makes sense. Since the back emf goes like −∆
∆

we expect that the faster the current

changes, the more resistance-like behavior we will get, so our reactance should increase

with frequency. So this equation makes sense. Now we can write an  version of

Ohm’s law for inductors

∆ =  (37.10)
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and we can immediately see that

∆ = max cos (37.11)

which shows us the phase relationship between  () and∆ ()  The phase difference

of −2 says that the current will now lag the voltage.

we can plot both  () and∆ () as a function of time.

To see why the current and potential are out of phase, consider point right at  = 0 The

potential of the inductor is largest when the change in  is largest. When the change is

zero, we expect the potential to be zero.

For an inductor, the current lags the potential by 90 ◦ for  currents
Question 220.37.3

RLC Series circuits
Question 220.37.4

Question 220.37.5
Of course, we can have both capacitors and inductors in our circuits.
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It is tempting to treat all these circuit elements as reactances, and just use our normal

circuit theory to find the current or potential drops. We can almost do this. If they were

all resisters we would just add the resistances

 = 1 +2 +3

but resisters do not alter the phase relationship between ∆ and  Capacitors and

inductors do. So our alternating voltage drops won’t all be low or high at the same time.

So we need a clever trick to find the total reactance. This is where the idea of a phasor

becomes useful. We can use our knowledge of vector addition, and treat the potential

drops like vectors!

Let’s start with  () and∆ () as a function of time.

∆ () = ∆max cos ()

 () = max cos (+ )

where  is the phase constant. So far  has been ±2 or 0 depending on which circuit

element we have.

Let’s draw a phasor diagram for  () and∆ ()

The  for a resister is zero. For a capacitor it is +90 ◦ That is, the current leads the
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voltage. We already know where the current is on our phasor diagram, It has to be in

the same place for the whole circuit because we have a series circuit. Therefore, the

current must be in the same spot on the phasor diagram for the capacitor as it is for the

resistor. So now we need to draw the voltage 90 ◦ behind the current for the capacitor.

It looks like this.

For our inductor,  = −90 ◦ The current must still be in the same place on the diagram.

But this time the potential will be 90 ◦ ahead of the current. The phasor diagram looks

like this:

If we put all the phasors on the same diagram we get the following figure.

and this is for a particular  At some later time the figure would look like this
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and at a still later time it would look like this

All the phasors circle at a rate  together. Let’s look at our phasor diagram at a

particular time,  = 0 Then our figure would look like this

From this view, we can see how we might find the total reactance of the circuit. The

phasors look just like vectors. We can find a resultant vector that would represent what

you would get by adding all the potential phasors together as though they were vectors.

We know that to add vectors we take components. In the -direction we would get

∆ () = ∆ −∆
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and in the -direction we would have only

∆ = ∆

Then the magnitude of the potential would be

∆max =
q
∆2 +∆

2


=

q
∆2 + (∆ −∆)2

The direction (in the phasor diagram) is given by

 = tan−1
µ
∆

∆

¶
(37.12)

= tan−1
µ
∆ −∆
∆

¶
(37.13)

Note that in the figure we have ∆ called ∆max  This is the length of our resultant

phasor Of course as the phasors rotate, the actual potential difference for the circuit

will be

∆ () = ∆max  sin (+ )
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so at some later time,  the potential drop could be less.

We would still like to use Ohm’s law for LRC circuits. We would need to give a symbol

for the resistance like quantity due to the inductor, resistor, and capacitor. Let’s use 

Then Ohm’s law would look like

∆max = max (37.14)

where this  is like the total resistance. We can do this by taking the magnitude of the

resulting vector

∆max =

q
∆2 + (∆ −∆)2 (37.15)

and using it in Ohm’s law

max =

q
∆2 + (∆ −∆)2 (37.16)

We know that the same current must �ow through the entire series circuit. So we can

write this as

max =

q
(max)

2
+ (max − max)

2

max =

r
2max

³
()

2
+ ( −)

2
´

max = max

r³
()

2
+ ( −)

2
´

 =

q
()

2
+ ( −)

2

so we can “add” all the reactances together! It is just a little bit harder than adding

numbers! Since this is the magnitude of the combined reactance we should also worry
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about a phase.

 = tan−1
µ
∆ −∆
∆

¶
(37.17)

= tan−1
µ
max − max

max

¶
(37.18)

= tan−1
µ
 −



¶
(37.19)

and we see that the phase is just the same as the phase of the potential.

We call this combined reactance the impedance, because it impedes or opposes the AC

current. Now suppose we don’t have all three types of circuit elements, can we describe

an impedance? Sure! The following figure gives the circuit elements present in a series

circuit, their impedance, and the phase.

Resonance and LRC circuits again

Remember that when a driven harmonic oscillator was driven at the natural frequency

we had resonance. Let’s look at the current of our  circuit. It has an equation very

like a harmonic oscillator. The current is given by

 =
∆


(37.20)

or

 =
∆q

()
2
+ ( −)

2
(37.21)

When  =  this will be a maximum. This is a form of resonance. Starting with
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 =  , we can find the frequency that will be the resonant frequency.

 = 

2 =
1

2

then

2 =
1

42
or

 =

r
1

42

=
1

2
√


(37.22)

Why do we care? This is a tuning circuit used in radios! We can include a variable

capacitor or a variable inductor in the circuit, and make it resonate with a desired

frequency. Usually a variable capacitor is used. So when you turn the dial on your radio

to adjust the frequency, you are changing the capacitance of a variable capacitor!

first we write the current as

 =
∆q

()
2
+ ( −)

2
(37.23)

=
∆q

()
2
+
¡
− 1



¢2
=

∆q
()

2
+ 2

¡
 − 1



¢2 (37.24)

∆q
()

2
+ 2

2

¡
2 − 1



¢2 (37.25)

and remember that

 =
1√


(37.26)

is the natural frequency of oscillation for a RLC circuit. so

 =
∆q

()
2
+ 2

2
(2 − 2)

2
(37.27)

Let’s plot this for a few values
 = 50× 10−6H
 = 20× 10−9 F
∆ = 5× 10−3V
 = 1× 107 rads

 =
5× 10−3r

()
2
+

(50×10−6)2
2

³
2 − (1× 107)2

´2
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I have included plots for three different resistances,  = 10Ω 5Ω and 25Ω

Power in an AC Circuit

Ideal capacitors and inductors store energy, but don’t loose or dissipate it. So they do

not have a power output. Real capacitors and inductors will have some resistance in

their parts. But for now we will assume this is small.

To find the average power loss in our LRC circuit, we will take

P = 2 (37.28)

which is great because we can measure  directly from our  ammeter. Remember

we also had a  power equation that had potential drop in it. We got it by using

Ohm’s law

∆ = 

or

 =
∆

∆
then

P = 2

∆

∆

(37.29)

= ∆ (37.30)

We will write this equation in a funny way.
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In our diagram, we see that ∆ is just the −component of ∆max This is true for

our rms voltage as well (same triangle) so we can write

∆
= ∆ cos (37.31)

then

P = ∆
cos (37.32)

if you work with  circuits you might find cos called the power factor.

Note that I did not define the instantaneous power. We can certainly do that

P = ∆ = max cos (− )∆max cos (37.33)

= max∆max cos (− ) cos

which is messy. With a trig identity,

 (− ) = cos cos + sin sin

we can show that this is

P = max∆max (cos cos + sin sin) cos

P = max∆max cos
2 () cos − max∆max sin cos sin

But we often are not able to view this because it changes so rapidly. Our meters usually

only take a time average.

P̄ =
Z

many T
max∆max cos

2 () cos−
Z

many T
max∆max sin cos sin

P̄ = 1

2
max∆max cos − 0

or just

P̄ = 1

2
max∆max cos + 0 (37.34)

This is what a power meter would see.

Question 33.13

Power for an LRC circuit

Now that we know about power in AC circuits, let’s look at the power in an LRC circuit

as a function of  We just found that

P = 2 (37.35)

=
∆ 2



()
2
+ 2

2
(2 − 2)

2

It is convenient to rewrite this as

P = ∆ 2


2

22 + 2 (2 − 2)
2
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If we plot the same values for the components in our LRC circuit,
 = 50× 10−6H
 = 20× 10−9 F
∆ = 5× 10−3V
 = 1× 107 rads

we find that the power looks like this

P =
¡
5× 10−3V¢2

22 + (50× 10−6H)2
³
2 − ¡1× 107 rad

s

¢2´2

0 5 10 15 20
0

2

4

6

8

10

w(x10^6 rad/s)

P_ave (x10^-6 W)

Note that the width of the power curve changes as a function of the resistance. The

“sharpness” of the curve is described by the quality factor

 =


∆
(37.36)

This is often just called the “Q” of the curve. The ∆ is measured at the half power

points. We can find them

P
2

=
1
2
∆ 2


2


2
2 + 2 (2 − 2)

2

=
∆ 2



2
(37.37)

so we find  when
∆ 2



2
=

∆ 2


2

22 + 2 (2 − 2)
2

(37.38)

1

22
=

2

22 + 2 (2 − 2)
2

(37.39)

1

22

³
22 + 2

¡
2 − 2

¢2´
= 2 (37.40)

22
1

22
+

1

22
2
¡
2 − 2

¢2
= 2 (37.41)
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2

2
+

2

22

¡
4 − 222 + 4

¢
= 2 (37.42)

−
2

2
+

2

22

¡
4 − 222 + 4

¢
= 0 (37.43)

−2 + 2

2

¡
4 − 222 + 4

¢
= 0 (37.44)

−2 + 2

2
4 − 2

2

2
22 +

2

2
4 = 0 (37.45)

2

2
4 − 2

µ
2
2

2
2 + 1

¶
+

2

2
4 = 0 (37.46)

There are four solutions,

1 = − 1

2

³
−

p
422 +2

´
(37.47)

2 =
1

2

³
−

p
422 +2

´
(37.48)

3 = − 1

2

³
+

p
422 +2

´
(37.49)

4 =
1

2

³
+

p
422 +2

´
(37.50)

We can see where these lie on our graph of P

1 = −

µ
10Ω−

q
4 (50× 10−6H)2 ¡1× 107 rad

s

¢2
+ (10Ω)

2

¶
2 (50× 10−6H) = 9900499 99

rad

s
(37.51)

2 =

µ
10Ω−

q
4 (50× 10−6H)2 ¡1× 107 rad

s

¢2
+ (10Ω)

2

¶
2 (50× 10−6H) = −9900499 99 rad

s
(37.52)

3 = −

µ
10Ω+

q
4 (50× 10−6H)2 ¡1× 107 rad

s

¢2
+ (10Ω)

2

¶
2 (50× 10−6H) = −10100500 0 rad

s
(37.53)

4 =

µ
10Ω+

q
4 (50× 10−6H)2 ¡1× 107 rad

s

¢2
+ (10Ω)

2

¶
2 (50× 10−6H) = 10100500 0

rad

s
(37.54)

Two of which are negative, so we will ignore them. The other two are centered around
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 = 1× 107 rads as we would expect. If we find the difference between the two

∆ = 4 − 1 (37.55)
1

2

³
+

p
422 +2

´
−
µ
− 1

2

³
−

p
422 +2

´¶
(37.56)

=
1

2
− 1

2

p
422 +2 −

µ
− 1

2
− 1

2

p
422 +2

¶
(37.57)

=
1

2
− 1

2

p
422 +2 +

1

2
+

1

2

p
422 +2 (37.58)

=



(37.59)

Now let’s remember why we started this long mathematical mess. We wanted to know

the “Q-factor” for our LRC power curve. Since

 =


∆
then

 =




For a radio, we want to adjust the resistance to be high and the inductance to be low

enough that only one radio station frequency can be heard at a time. Because of this,

the LRC circuit in a radio tuner is usually tuned by changing the capacitance.

Retrospective

We have thought about many things in this class. It has been a class about science.

It has not been a class where we have tried to discover new science, or practiced the

scientific method. This is on purpose, this being an engineering class designed to teach

the principles of physics for use in designing machines.

But we should pause to think, just for a moment, about the philosophy of science.

Is everything in these lectures true? We did not perform experiments to show every

principle we learned. So does it all work?

The answer is–maybe. Experiments have been done to show that the equations we

have learned work at least sometimes. But science is an inductive process. We can’t

prove anything true with science. We can only prove things false. So what we have

studied is what has not been proven false, yet. Of course, even then, we have taken

approximations from time to time, but we pointed these out along the way. You will

know when the approximations will fail, because we talked about their valid ranges.

It is important to remember that we are not done discovering new things, and proving
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old things false. The laws of Newton are approximations that work at low speeds.

Relativity provides mechanical equations for very high speeds (e.g. the satellite motion

involved in the GPS system). But is Relativity correct? We think it works pretty well,

but really we don’t know. We may never know for sure. But we know it works within

the range of things we have tried.

There are physicists today that are working on a fundamentally new model of the

universe. It is called “String Theory” and it would replace most of our thoughts about

how matter is made and how it interacts. The equations would reduce to the ones we

used in class for the conditions we considered. That is because the new equations have

to match the results of the experiments that we have already done or they can’t be

correct. But the explanations might be very different.

Often, it is in using physics to build something that we learn about the limitations

of physical theory. You may be part of that process. It is a happy process because

extending our understanding allows us to build new things. But don’t be surprised if

some of the things we learned in this class are different by the time your children take

their engineering physics course. That is what we should expect of an inductive process.

It is also important to note that revealed truth is not an inductive process. It is still not

static (see article of faith 9), but it can prove something true as well as prove things

false. I hope your FDSCI 101 experience gave you some insight into doing science as

well as learning about science.

Some members view science and revelation as in opposition. But I think they are

complementary. The scientific process allows us to eliminate things that are not true,

allowing us to follow D&C 9:8 in preparation for seeking revelation. During a recent

convocation speech, Elder Scott described using this process as a nuclear engineer

during his engineering career . We can use this combination in our personal lives as

well. I hope you will consider this in your careers and lives.

I have tried to give at least equal time to conceptual understanding and mathematical

solving. I hope you review and refresh the conceptual understanding of the physics of

what you build. Most of my industrial career, we built what we designed very well.

We always did our calculations well. But we did, at times, build the wrong thing

because the conceptual basis of the design was wrong. Such mistakes are difficult to

fix. Conceptual understanding is a guiding principle for a successful design career. I

hope this class has contributed to that conceptual understanding.



Summary of Right Hand
Rules

PH121 or Dynamics Right Hand Rules

We had two right hand rules on PH121 We didn’t give them numbers back then, so we

will do that now.

Right hand rule #0:

We found that angular velocity had a direction that was given by imagining you grab

the axis of rotation with your right hand so that your fingers seem to curl the same way

the object is rotating. Then your thumb gives the direction of −→ω

You curl the fingers of your right hand (sorry left handed people, you have to use your

right hand for this) in the direction of rotation. Then your thumb points in the direction

of the vector.

Right hand rule #0.5:

To find the direction of torque, we used the following procedure



1. Put your fingers of your right hand in the direction of r̃

2. Curl them toward F̃

3. The direction of your thumb is the torque direction

4. The angle  is the angle between r̃ and F̃



The magnitude of the torque is

 =  sin 

PH223 Right Hand Rules

We have four more right hand rules this semester having to do with charges and fields.

Right hand rule #1:

From this rule we get the direction of the force on a moving charged particle as it

travels thorough a magnetic field.

This rule is very like torque. We start with our hand pointing in the direction of ṽ Curl

your fingers in the direction of B̃ And your thumb will point in the direction of the

force. The magnitude of the force is given by

 =  sin  (37.60)



Right hand rule #2:

From this rule we get the direction of the force on current carrying wire that is in a

magnetic field.

This rule is very like right hand rule #1 above. We start with our hand pointing in the

direction of I Curl your fingers in the direction of B̃ And your thumb will point in the

direction of the force. The magnitude of the force is given by

 =  sin  (37.61)

Right hand rule #3:

From this rule we get the direction of the magnetic field that surrounds a long

current carrying wire.

This rule is quite different. It is reminiscent of the rule for angular velocity, but there

are some major differences as well. The field is a magnitude and a direction at every

point in space. We can envision drawing surfaces of constant field strength. They will

form concentric circles (really cylinders) centered on the wire. At any one point on the

circle the field direction will be along a tangent to the circle. The direction of the vector

is given by imaging you grab the wire with your right hand (don’t really do it). Grab

such that your right thumb is in the direction of the current. Your fingers will naturally

curl in the direction of the field.

Right Hand Rule #4:

From this rule we get the direction of the induced current when a loop is in a



changing magnetic field.

This rule is only used when we have a loop with a changing external magnetic field.

The rule gives the direction of the induced current. The induced magnetic field will

oppose the change in the external field, trying to prevent a change in the �ux. The

current direction is found by imagining we stick our right hand into the loop in the

direction of the induced field. Keeping our hand inside the loop we grab a side of the

loop. The current goes in the direction indicated by our thumb.

In the figure above, the external field is upward but decreasing. So the induced field is

upward. The current �ows because there is an induced  given by

E = −∆Φ
∆

= − (22 cos 2 −11 cos 1)

∆





Integral Table

Some Helpful Integrals

Z
√
2 + 2

=
p
2 + 2

Z


(2 ± 2)
3
2

=
±

2
√
2 ± 2Z



(2 ± 2)
3
2

=
−1√

2 ± 2Z



= ln

Z


2
= − 1

Z 2

0

Z 

0

sin  = 4Z 2

0

Z 

0

Z 

0

2 sin  =
4

3
3Z 2

0

Z 

0

 = 2





Table of Physical Constants
Charge and mass of elementary particles

Proton Mass  = 16726231× 10−27 kg
Neutron Mass  = 16749286× 10−27 kg
Electron Mass  = 91093897× 10−31 kg
Electron Charge  = −160217733× 10−19C
Proton Charge  = 160217733× 10−19 C

-particle mass26  = 664465675(29)× 10−27 kg
-particle charge  = 2

Fundamental constants

Permitivity of free space  = 8854187817× 10−12 C2

Nm2

Permiability of free space  = 4 × 10−7 TmA
Colomb Constant  = 1

4
= 898755× 109Nm2C−2

Gravitational Constant  = 667259× 10−11m3 kg−1 s−2
Speed of light  = 299792458× 108ms−1
Avagadro’s Number 60221367× 1023mol−1
Fundamental unit of charge  = 160217733× 10−19C

Astronomical numbers

Mass of the Earth27 59726× 1024 kg
Mass of the Moon28 007342× 1024 kg
Earth-Moon distance (mean)29 384400 km

Mass of the Sun30 1 988 500× 1024 kg
Earth-Sun distance31 1496× 106 kg

Condtivity and resistivity of various metals

26 http://physics.nist.gov/cgi-bin/cuu/Value?mal
27 http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
28 http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
29 http://solarsystem.nasa.gov/planets/profile.cfm?Display=Facts&Object=Moon
30 http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
31 http://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html



Material
Conductivity¡
Ω−1m−1

¢ Resistivity
(Ωm)

Temp. Coeff.¡
K−1

¢
Aluminum 35× 107 28× 10−8 39× 10−3

Copper 60× 107 17× 10−8 39× 10−3
Gold 41× 107 24× 10−8 34× 10−3
Iron 10× 107 97× 10−8 50× 10−3

Silver 62× 107 16× 10−8 38× 10−3
Tungsten 18× 107 56× 10−8 45× 10−3
Nichrome 67× 105 15× 10−6 04× 10−3

Carbon 29× 104 35× 10−5 −05× 10−3


