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Preface: How PH279 works

It seems that professors always have an agenda for each class. This class is no

exception. Not only will we learn about the universe, we will also try to get you ready

for your junior and senior level physics classes. Here are my goals for this class:

1. To help you understand relativity and quantum mechanics

2. To complete the picture of physics that you started with PH121.

3. To toughen up your math skills up to prepare you for junior level classes

4. To toughen up your reading skills so to prepare you for the rest of physics and life
in STEM

Relativity and Quantum mechanics are not intuitive like PH121.

• Trying to do as little as possible won’t meet that goal

• If you are overscheduled, you will have to change how you work to become more
efficient.

• Not doing the reading, the examples, and the homework is likely to leave you not
understanding the physics. (and to bad test scores)

• How PH279 works

We are now in a class that is just for physics majors (and minors). PH121 through

PH220 were designed to teach physics, but often were designed to help our fellow

scientists and engineers along the way to their majors. Now it is just us. The author

of our text book and your professor don’t have to care about whether the students can

build bridges after the class is done. We get to care about if you better understand the

universe and how it works. Understanding is now the goal. This means your professor

may act a little differently, and your professor may ask you to act a little differently.

Let’s look as some of those potential changes.

Problem Solving

We will still use the physics problem solving techniques. Some of your professors will

have called this the problem solving method, some D3BSNUB, and some might not

have given it a name. Here are the basic parts.



The change you might see is that we will become ever more unconcerned about the

number at the end. In PH332 and PH333 often there won’t be a number at the end. And

we will see less numbers and more equations as answers. This is just as it should be.

Equations tell us about how the universe works. Numbers usually don’t. So if our goal

is to understand the universe, equations are likely to be the goal of a problem rather

than a numeric answer. For some of the problems in our class, drawing a picture will be

harder. But we should draw the situation if we possibly can.

Reading

I was told by a former student who is now a professor (I won’t give a name, but his



initials are Matt Zachreson) that he got through my PH123 class without reading the

text book at all. This won’t work from here on out. The definition of “read” that I will

use in this and our higher level physics classes is as follows.

1. Turn to the assigned section of the book.

2. Read the words on the page until you get to a derivation or an example

3. If it is a derivation, work through the derivation, filling in all the missing parts that
the author didn’t give you

4. If it is an example, work through the example and make sure you get the same
answer as the author (or have a good reason why you are right and why the author
might be wrong).

5. Repeat this process until you are done with the assigned sections.

I didn’t discover that this is what my professors meant by “read” until I had spent a

year or so struggling in physics classes. They never told us. They just expected this of

us. I am telling you. And I will motivate you as well. The examples in the book and the

derivations will show up as homework problems. Let’s look at our first chapter to see

how this will go.

In the first chapter there is a snazzy diagram about the Cassini Interplanetary Trajectory

that the author understands and thinks is cool. I looked at this (and thought it was

cool). I read the caption in the blue box below the figure. It told me that I needed to go

beyond Newtonian physics to make cool space probe trajectories which intrigued me.

On the next page there was a brief history of what we call “classical physics” and what

we call “modern physics.” I read them. On the next page I read section 1.1 and was

relieved to find equations that I knew. And on the next page was an example. I worked

the example, and here is what I got.

Example 1.1: A helium atom ( m = 6.6456 × 10−27 kg) moving at a speed of

vHe = 1.518× 106m/ s collides with and atom of nitrogen
�
m = 2.3253× 10−26 kg

�

at rest. After the collision, the helium atom is found to be moving with a velocity of

v′He = 1.99 × 106m/ s at an angle of θHe = 78.75 ◦ relative to the direction of the

original motion of the helium atom.

a) Find the velocity (magnitude and direction) of the nitrogen atom after the collision.

b) Compare the kinetic energy before the collision with the total kinetic energy of the

atoms after the collision.

(Subsubsubsubsection head:)Solution



a) The word “collision” is a dead give away that this is a conservation of momentum

type problem. I always draw before and after pictures for conservation of momentum.

That is, before and after the collision.

We know the following:

mHe = 6.6465× 10−27 kg

mN = 2.3253× 10−26 kg

vHe = 1.518× 106m/ ŝı

vN = 0

v′He = 1.199× 106m/ s

θHe = 78.75 ◦

Our basic equations are

Pi = Pf

p = mv

and we can write this out as
−→
P i =

−→
P f

−→p iHe +
−→p iN = −→p fHe +

−→p fN

and of course we split this into components

px,iHe + px,iN = px,fHe + px,fN

py,iHe + py,iN = py,fHe + py,fN

then

mHevHe + 0 = mHev
′
He cos θHe +mNv′N cos θN

0 + 0 = mHev
′
He sin θHe +mNv′N sin θN



It is worth noting what we know

mHevHe = mHev
′
He cos θHe +mNv′N cos θN

0 = mHev
′
He sin θHe +mNv′N sin θN

This looks like two equations and two unknowns. We should be able to solve for

this. Of course there is more than one way to do this. Let’s solve for v′N cos θN and

mNv′N sin θN

mHevHe −mHev
′
He cos θHe = mNv′N cos θN

−mHev
′
He sin θHe = mNv′N sin θN

Let’s try dividing the two equations
−mHev′He sin θHe

mHevHe −mHev′He cos θHe
=

mNv′N sin θN

mNv′N cos θN
this gives

−mHev
′
He sin θHe

mHevHe −mHev′He cos θHe
=

sin θN
cos θN

= tan θN

which is a mess, but we know all the parts except θN . To fit this on the page I am going

to have to break it up a bit.

−mHev
′
He sin θHe = −

�
6.6465× 10−27 kg

� �
1.199× 106m/ s

�
sin (78.75 ◦)

= −7. 816 1× 10−21
m

s
kg

mHevHe −mHev
′
He cos θHe =

�
6.6465× 10−27 kg

� �
1.518× 106

m

s

�

−
�
6.6465× 10−27 kg

� �
1.199× 106

m

s

�
cos (78.75 ◦)

= 8. 534 7× 10−21
m

s
kg

so then

θN = tan−1

�
−mHev

′
He sin θHe

mHevHe −mHev′He cos θHe

�

= tan−1
�−7. 816 1× 10−21 m

s kg

8. 534 7× 10−21 m
s kg

�

�
6.6465× 10−27 kg

� �
1.518× 106

m

s

�
−

�
6.6465× 10−27 kg

� �
1.199× 106

m

s

�
cos (78.75 ◦)

�

= −− 0.741 48 rad

= −42. 5 ◦



Now we can use one of the two equations to solve for v′N . I want the shorter of the two

−mHev
′
He sin θHe = mNv′N sin θN

−mHev
′
He sin θHe

mN sin θN
= v′N

so

v′N =
−

�
6.6465× 10−27 kg

� �
1.199× 106m/ s

�
sin (78.75 ◦)

(2.3253× 10−26 kg) sin (−42. 483 33 ◦)
= 497693. 22

m

s
which is what they asked for

v′N = 497693. 22
m

s

m

s
θN = −42. 483 33 ◦

Note the annoying inconsistent use of the primes!

b) We know the kinetic energy is given by

k =
1

2
mv2

for the before case we have

ktotal,i =
1

2
mHev

2
Hei +

1

2
mNv2Ni

=
1

2
mHev

2
Hei + 0

=
1

2

�
6.6465× 10−27 kg

� �
1.518× 106m/ s

�2

= 7. 657 844 7× 10−15
m2

s2
kg

= 7. 658× 10−15 J

For the after case

ktotalf =
1

2
mHev

2
Hef +

1

2
mNv2Nf

=
1

2
mHev

′2
Hef +

1

2
mNv′2Nf

=
1

2

�
6.6465× 10−27 kg

� �
1.199× 106m/ s

�2

+
1

2

�
2.3253× 10−26 kg

��
4.977× 105

m

s

�2

= 7. 657 374 6× 10−15
m2

s2
kg

7. 657× 10−15
m2

s2
kg

To within the accuracy of our numbers, we seem to have conservation of kinetic energy

as well. But note that the book got another decimal place further than we did. I



don’t know how. I used Scientific Workplace, a TI calculator, and Excel to check my

numbers. All agreed with what I have here. Now it is time to check with my homework

group to see if they got what the book got!

There weren’t any words between this example and the next so I did the next as well.

Both show up as homework problems in our first homework assignment.

After Example 1.2 there were words with equations, but these words and equations

were intended as a review, they didn’t come up with anything new.

On the next page there is a carefully hidden example on the bottom of the page. It is a

transform of the initial velocities of Example 1.1 into another reference frame. I did

this as well.

a) Find the center of mass velocity for the initial state of the particles in Example 1.1.

b) Transform the initial velocities of the helium atom and the Nitrogen atom into the

reference frame of the center of mass of the system.

ANSWER:

This is a relative velocity problem

From Example 1.1 we know



and

mHe = 6.6465× 10−27 kg

mN = 2.3253× 10−26 kg

vHe = 1.518× 106m/ ŝı

v′He = 1.199× 106m/ s

θHe = 78.75 ◦

vN = 0

For part a) we want the center of mass velocity for the initial state of the particles

We “remember” that the equation for center of mass is

xCL =
xHemHe + xNmN

(mHe +mN)
We will find that the word “remember” means we look it up again, but hopefully you

have your old physics text book and can just look it up. Once we have our center of

mass equation, we can move on. We know that

v =
dx

dt
so we can find the center of mass speed with respect to the laboratory by taking a

derivative
dxCL
dt

=
dxHe
dt mHe +

dxN
dt mN

(mHe +mN)
because the masses are not changing. This is simply

vCL =
vHemHe + vNmN

(mHe +mN)
Notice that our author left it for us to figure this out. The numeric value is

vCL =

�
1.518× 106m/ s

� �
6.6465× 10−27 kg

�
+ 0

(6.6465× 10−27 kg + 2.3253× 10−26 kg)

= 337443. 34
m

s

For part b) we want to transform the initial velocities of the helium atom and the

Nitrogen atom into the reference frame of the center of mass of the system.

We can use the standard Galilean reference frame transform that we “remember”

vbA = vbB + vBA

For the helium atom

vHeC = vHeL − vLC

= 1.518× 106m/ s− 337443. 34
m

s

= 1. 180 556 7× 106
m

s



vNC = vNL − vLC

= 0− 337443. 34
m

s

= 3.3744334× 105
m

s

= 0.33744334× 106
m

s

U check

R check

There are pages of review with some new suggested notations that follow. I read these.

Section 1.3 was more difficult. It starts with a result that we will get in PH412

N (E) =
2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT (0.1)

You have to love a mysterious equation from a class you haven’t taken that has
√
π in

it. And since this is in the “review” chapter we learn that our author has a different

definition of “review” than we are used to. The author tells us this equation is the

number of molecules as a function of energy such that N (E) dE is the number of

molecules that have energies that are within a small delta energy (dE) centered about

the energy E. We can write this as

dN = N (E) dE

and then the total number of molecules, N would have to be the integral of this quantity

over all energies from zero energy to infinite energy

N =

	 ∞

0

dN =

	 ∞

0

2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT dE

and if you read carefully you will notice that the author totally expects us to do this

nasty integral because the author hints about how to do it. He says we should end up

looking up the form 	 ∞

0

x
1
2 e−xdx =

1

2

√
π

Often we will look up integrals in tables of integrals. You can solve them yourself, if

you want to. But more often we will work to get our integral to look like one in a table,

and just use the table result. Apparently we better do this now. We need to make our

integral look like this last one. We can do that

N =

	 ∞

0

2N√
π

�
1

kBT

� 2
2 E

1
2

√
kBT

e
− E
kBT dE

=
2N√
π

�
1

kBT

�	 ∞

0

�
E

kBT

� 1
2

e
− E
kBT dE



and define

x =
E

kBT

dx =
1

kBT
dE

N =
2N√
π

�
1

kBT

�
kBT

	 ∞

0

�
E

kBT

� 1
2

e
− E
kBT

dE

kBT

=
2N√
π

	 x=∞

x=0

(x)
1
2 e−xdx

=
2N√
π

�
1

2

√
π

�

= N

Which doesn’t seem to be super instructive, but it sets us up for the next derivation,

showing that

Eav =
3

2
kBT

and the next one that let’s us find the number of molecules that have energies in the

interval between E1 and E2.

You might be saying, “Whoa there hoss, this kind of reading is a lot more work than

just reading the words.” And you would be right. But this kind of reading gives you

the practice with the equations and the practice with the ideas that you will need to be

successful in understanding how the universe works.

Homework

You have been doing homework for a long time. You know how to do homework. But

even this is going to change. You should form homework groups. You should start

early. You should try the problems (many you will try as you read) and then collaborate

to finish the assignment. This is what real physicists do. Where your group is stuck,

you should find your instructor or one of the other professors to get help. The walkin

tutoring lab is likely not going to be a help anymore. Normally you would get a code to

the Major’s room. There are tables there (and into the labs across the hall) that you can

use for your groups to meet. This semester we will have a discussion board to help you

collaborate, but you might build your own group and your own way to communicate. It

is increasingly important to do the homework. Relativity and quantum mechanics are

often counter intuitive. Banding together is the way to make sure you are thinking right.

This is what physicists do.



• Work efficiently.

• Start early—start a homework assignment the day it is given, not the day it is due.

• Use professors and colleagues for help (the walkin lab is not much use from now
on).

Exams

Exams will still be exams. Normally they would in the testing center. Generally this is

one of the last physics classes that uses the testing center. In the upper division classes

exams are less likely to be short and are more likely to be take home exams. This

semester we will likely have mostly take home exams.

What will we learn?

A little about everything! We will build the universe (using the standard model).

Feedback

This class will be more collaborative than many past classes might have been. Our job

is to work together to make sure we all learn this material
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1 Mechanics and Thermo:

Where we left off in PH121

and PH123

Sections 1.1 through 1.2

Fundamental Concepts in the Lecture

• Galilean Newtonian Relativity

• Add in the idea of forces

• Tie the idea forces to potential energy as a way of solving problems

• Added in electric and magnetic forces and their potential energies

• Breakdown of the concept of space

• Breakdown of the concept of time.

• Classical Molecular Energies

• Equpartition of energy in molecules

• Heat capacities and ideal gasses

• Theory, experiment, and law

Galilean Relativity

Way back in your introductory mechanics class (PH121) we learned about reference

systems and relative motion. If you took PH121 from me, you used the Tutorials in

Physics and relative motion kept coming back in the later Tutorials. If you are normal,

you didn’t like that. But there was a purpose for all that relative motion stuff. Relative

motion is the underlying concept behind Einstein’s theories of relativity. Let’s review

relative motion and the Galilean transformation before we dive into Einstein’s work.



4 Chapter 1 Mechanics and Thermo: Where we left off in PH121 and PH123

Galilean Transformation

The Galilean Transformation is a name we give to a set of equations that allow us to

consider motion on one reference frame from the viewpoint of someone on a different

reference frame. Back in PH121 we used simple notation and in that notation our

situation might look like this

Hopefully you used a set of subscripts to keep things strait. For example, we could

write vx as vBA, the speed of frame B as viewed from frame A. Then the person on

platform A might be observing the motion of the person on platform B and find the

position of person b to be.

xA = xB + vABt

yA = yB

zA = zB

where the subscript A indicates a measured position in the Aframe and the subscript

B indicates a measured position in the Bframe. Note that the y and z components

don’t change because the relative motion is all in the xdirection. The velocities also

transform. Suppose something is moving in frame B as viewed by a person in frame B

with speed vbB, but we view the object from frame A. The speed the person in frame A

sees for this object is vbA. And we know from PH121 that we just add the velocities in

the direction of motion.

vbAx = vbBx + vBA

vbAxy = vbBy

vbAz = vbBz



Galilean Relativity 5

Note how nicely the subscripts tell us what is being viewed from what frame. But in

Einstein’s relativity there are some traditional ways we write this situation. You will

likely see this in other textbooks. Let’s see the same situation again, but with a new

notation.

We can see that our relative speed vBA is now written as u. And we can see that instead

of A and B labels, one reference frame has prime marks on the axis labels. We call

this reference frame the “primed frame” and the other reference frame the “unprimed

frame.” A location in the unprimed frame also has a location in the primed frame. The

difference will be how far the primed frame has moved from where we started the

experiment to some later time t when we wish to know the location. In the primed

frame, the location (x, y, z) would be given by

x′ = x− ut

y′ = y

z′ = z

And the speed of an object moving in the primed frame would have speed seen from the

unprimed frame given by.



6 Chapter 1 Mechanics and Thermo: Where we left off in PH121 and PH123

vx = v′x + u

vy = v′y

vz = v′z

Of course just like before, in these equations we have assumed the velocity u is all in

the xdirection. This system of notation requires us to remember much more in our

heads. I will try to use subscripts, but what you read in other books will often use the

prime notation. I suppose you could use both, if you want to keep the primes so you can

follow along with other books.

vbAx = v′bBx + vBA

vbAxy = v′bBy

vbAz = v′bBz

Let’s do an example from PH121.

Problem Statement: You have herd the fishing is great in Idaho and so you rent a boat

and take your FHE group out fishing on the river. Your heading is due north and your

speed with respect to the water is vBR = 10.0 km/h. The river goes by to the east with

a speed with respect to the Earth (shore) is vRE = 5.00 km/ h. How fast would a forest

ranger see the boat if the ranger is standing on the shore?

vBR

vRE

vBE

vBR

vRE

vBE

Let’s choose the y axis to be positive in the northern direction. The x axis will be

positive in the eastern direction.
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Variables:

�vBR = 10.0 km/ ĥ Velocity of the boat with respect to the river
�vRE = 5.00 km/ ĥı Velocity of the river with respect to the shore (Earth)
�vBE The velocity of the boat with respect to the shore

Basic Equations:

We will use our transformation equations

vbAx = vbBx + vBA
vbAxy = vbBy
vbAz = vbBz

v′x = vx − u
v′y = vy
v′z = vz

but we will also need our vector recombination set

v =



v2x + v2y

θ = tan−1
�
vy
vx

�

We identify

vy = �vBR = 10.0 km/ĥ Velocity of the boat with respect to the river
u = �vRE = 5.00 km/ ĥı Velocity of the river with respect to the shore (Earth)
v′ = �vBE The velocity of the boat with respect to the shore (Earth)

Note that we have to pick one of the frames to be the prime frame if we use the prime

notation, then stick with that choice. I have picked the A frame to be the prime frame in

our basic equations. We can put any zeros into our basic equations and to switch to the

right subscripts for our particular problem. We then have

vbAx = 0 + vBA
vbAxy = vBR = vbBy
vbAz = vbBz = 0

v′x = 0 + u
v′y = vBR = vy
v′z = vz = 0

Symbolic Solution:

We can see that our Galilean transformation becomes (using both notation systems)

vBEx = 0 + u
vBEy = vBR = vy
vBEz = 0

v′x = 0 + u
v′y = vBR = vy
v′z = 0

And using our vector component equations we can find vBE = v′

vBE =


(vBEx)

2
+

�
vBEy

�2

=



(u)

2
+ (vRE)

2

=


�
5.00 km

h

�2
+

�
10.0 km

h

�2

= 11. 18 km
h

v′ =


(v′x)

2 +
�
v′y

�2

=



(−u)

2
+ (vRE)

2

=


�
5.00 km

h

�2
+

�
10.0 km

h

�2

= 11. 18 km
h
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and of course we need a direction

φ′ = tan−1
�
vBEy
vBEx

�

= tan−1
�
(5.00 kmh )
(10.0 kmh )

�

= 26. 565 ◦

φ′ = tan−1
�
v′y
v′x

�

= tan−1
�
(5.00 kmh )
(10.0 kmh )

�

= 26. 565 ◦

The math is the same, the answer is the same, but with the prime notation you have to

keep in your head that the prime frame is the shore or earth frame and that the velocity

of the boat with respect to the shore is v′. The subscript method makes everything clear

without remembering as much.

Molecular Model of an Ideal Gas

We know from our second semester physics class (PH123) that the internal energy

of a system must be the energy associated with the atoms and molecules that make

the system. We used the Idea Gas Model in PH123, and we will continue to use it in

PH279. Here is a reminder of what the Ideal Gas Model contains.
Ideal Gas Model

The number of molecules in the gas is very large,
The average separation between molecules is large compared the their dimensions

The molecules obey Newton’s laws of motion,
On the whole the molecules move randomly

The molecules interact only by shortrange forces during elastic collisions
The molecules make elastic collisions with the walls

The gas under consideration is a pure substance; that is; all molecules are identical.

We will often say “molecule” but for an ideal gas atoms and molecules act alike.

Speed of molecules

We know from PH123 that thermal energy is associated with the motion of molecules,

but we don’t mean bulk motion of the molecules as a whole.

We mean the motion of the individual molecules in our sample of gas
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The molecule motions have random directions. So the average velocity is zero, but that

really doesn’t describe the situation well. All gasses would have an average molecular

velocity of zero over time. Instead we used the rms speed.

vrms =
�

v2

This quantity is like an average, and gives a representative value that is near the most

probable speeds.

Using this, we can get an expression that relates the temperature of our gas to the

speed of the molecules. But it would be better if we knew something about how

many molecules have what speed. Having the “average” is not enough. To find the

distribution of speeds, let’s remember the idea of number density

nV =
# of molecules

V–
We expressed the number of molecules this way assuming we knew the volume. From

this we worked to get the speed of the molecules (well some PH123 classes did). But

along the way we found a sort of “energy density,” that is, the density of molecules that

have energy between two amounts of energy, say, E1 and E2. We want E1 and E2 to

be quite close together. So let’s let E1 = E and E2 = E +∆E where ∆E is a small

amount of energy. Then the number of molecules with a particular energy between E1

and E2 could be written as

nV (E) dE =
# of molecules with energy between E and E +∆E

V–
(1.1)

This is called a distribution function. This might not be familiar to you. If not, don’t

panic. We will do much more with this later in our course. But for now, let’s use this
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Figure 1.1.

notation nV (E) dE to give the number of molecules with a particular energy between

E1 and E2.

We find distribution functions in statistics. They are associated with probabilities. The

standard “bell curve” used sometimes in grading is a distribution function. It tells the

total number of students that got a particular number of points in a class.

What we need is the probability that the molecules will have a particular energy (or

speed, since for molecules in an ideal gas, the molecular speed associated with the

kinetic energy). A function that gives the amount of molecules that have a particular

amount of energy also is called a distribution function. The distribution function that

we will use is written symbolically in this cryptic fashion, N (E) dE. It is the number

of molecules with a particular energy divided by the total number of molecules.

We will derive this function later in our class and in PH412, but for now let’s borrow

the result.

N (E) dE =
2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT dE

This distribution function is called the MaxwellBoltzmann distribution law. It tells

us that the probability of finding the molecules in a particular energy state varies

exponentially as the negative of the energy divided by kBT.

Distribution of Molecular Speeds

You might recall (but probably not) that we can use our energy distribution function to

find the distribution of molecular speeds assuming the gas was ideal. An ideal gas only
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has kinetic energy, so

E =
1

2
mv2

Since there is a distribution of energies, we expect our gas molecules to have a

distribution of speeds. That is, the molecules in the gas do not all go the same speed.

We can make the transition from E to v by substituting in mv2/2 for E. The number of

molecules with energy E that corresponds with the the speed v is just that, a number.

So

N (v) dv = N (E) dE

Then we can say that

N (v) = N (E)
dE

dv
or

N (v) =
2N

√
π (kBT )

3
2

√
Ee−E/(kBT )

dE

dv

=
2N

√
π (kBT )

3
2

�
1

2
mv2e−(

1
2mv

2)/(kBT ) (mv)

= N

�
2

π

�
m

kBT

� 3
2

v2e−(mv
2)/(2kBT )

= N
2
1
2

π
1
2

π
2
2

π
2
2

2
3
2

2
3
2

�
m

kBT

� 3
2

v2e−(mv
2)/(2kBT )

= 4Nπ
1

π
3
22

3
2

�
m

kBT

� 3
2

v2e−(mv
2)/(2kBT )

= 4Nπ

�
m

2πkBT

� 3
2

v2e−(mv
2)/(2kBT )

We will take this up again later. For now the important thing is that the distribution

should depend on temperature, T, since we know the internal energy is tied to

temperature. The distribution is as follows:

Nv = 4πN

�
m

2πkBT

� 3
2

v2e
− mv2

2kBT (1.2)

where m is the mass of the molecule.

If there are a small number dN molecules with speeds between v and v + dv then

dN = Nvdv (1.3)

where Nv is the number with speed v, so there should be

N =

	 ∞

0

Nvdv (1.4)
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total molecules.

N =

	 ∞

0

4πN

�
m

2πkBT

� 3
2

v2e
− mv2

2kBT dv (1.5)

If we plot Nv vs. v we get the figure below. The number of molecules with speeds be

tween v and v + dv is the area under the blue curve. The peak of the curve tells us the

most probable speed, that is, the speed the most molecules have, vmp. The curve is not

symmetric, so the most probable speed is not the average speed, v̄. There is also our

new speed estimate marked vrms.

If we plot Nv for different temperatures, we observe that the peak shifts, and the curve

broadens
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Temperature dependence of the MaxwellBoltsman distribution (Image in the Public

Domain couracy Fred Stober)

A motivated student could now find the most probably speed by finding the maximum

of Nv. To do this, we take a derivative

dNv

dv
=

d

dv

�

4πN

�
m

2πkBT

� 3
2

v2e
− mv2

2kBT

�

= 4πN

�
m

2πkBT

� 3
2 d

dv

�
v2e

− m
2kBT

v2
�

= 4πN

�
m

2πkBT

� 3
2
�
−2 m

2kBT
v3e

− m
2kBT

v2
+ 2ve

− m
2kBT

v2
�

= −2ve−
mv2

2kBT

�
mv2

2kBT
− 1

�
4πN

�
m

2πkBT

� 3
2

set this equal to zero

0 = −2ve−
mv2

2kBT

�
mv2

2kBT
− 1

�
4πN

�
m

2πkBT

� 3
2

mv2

2kBT
= 1

vmp =

�
2kBT

m

vmp =

�
2kBT

m
(1.6)

and this is great! We have related the temperature, T , to the most probable speed of the

molecules. But it is more convenient to use vrms, so let’s see if we can modify this
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expression to be in terms of vrms.

The average value of vn is given by

vn =
1

N

	 ∞

0

vnNvdv

The motivated student could also use this to find the average speed (not the average

velocity, which is zero). He or she will want the average value of v1

v1 =
1

N

	 ∞

0

v14πN

�
m

2πkBT

� 3
2

v2e
− mv2

2kBT dv

= 4π

�
m

2πkBT

� 3
2
	 ∞

0

v3e
− mv2

2kBT dv

= 4π

�
m

2πkBT

� 3
2




− 1

2
�

m
2kBT

�2

�
e
− mv2

2kBT +
m

2kBT
v2e

− mv2

2kBT

�





�������

∞

0

= 4π

�
m

2πkBT

� 3
2




−

1

2
�

m
2kBT

�2




 (0− (1 + 0))

= 2π

�
m

2πkBT

� 3
2






1
�

πm
2πkBT

�2






= 2π

�
m

2πkBT

� 3
2

��
m

2πkBT

�− 4
2

π−2

�

= 2π

�
m

2πkBT

�= 1
2 �

π−2
�

= 2

�
2πkBT

m

� 1
2 �

π−1
�

=

�
8kBT

πm
so

v̄ =

�
8kBT

πm
which is also great, but not what we wanted. But it is close. This time let’s find the

average value of v2. We hinted that the root mean squared value would be useful. that

is, v2 = vrms. We can find this like we found the average velocity
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v2 =
1

N

	 ∞

0

v24πN

�
m

2πkBT

� 3
2

v2e
− mv2

2kBT dv

= 4π

�
m

2πkBT

� 3
2
	 ∞

0

v4e
− mv2

2kBT dv

But the math is a bit more cumbersome. Let

a =
m

2kBT
and note (from a table of integrals)

	
x4e−ax

2

dx = − 1

8a
5
2

�
6
√
axe−ax

2 − 3
√
π erf

�√
ax

�
+ 4a

3
2x3e−ax

2
�����
∞

0

= − 1

8a
5
2

�
−3
√
π
�

The quantity erf (
√
ax) is called the “error function.” If you study this function in a

good mathematical book on integration you will find that

erf
�√

a∞
�
=

2√
π

	 ∞

0

e−t
2

dt = 1

and we used that to get the last result. For the other terms, we had to look at limits. At

any rate we are left with

v2 = 4π

�
m

2πkBT

� 3
2




−

1

8
�

m
2kBT

� 5
2

�
−3
√
π
�





4
�
π
2
2

��
1

π

� 3
2

π
1
2






1

8
�

m
2kBT

� 2
2

(3)




 (1.7)

or simply

v2 = 3
T

m
kB

now recognize that vrms =
�

v2 so

vrms =

�
3kBT

m
(1.8)

and this is what we wanted. We have an expression that relates the temperature of

the gas to the rms speed of the molecules of the gas. Returning to vrms we see that,

indeed, vrms is close to the average and most probable speeds. It will show up in the

next topic. So we will need to recognize it.

That we have some speeds higher than others explains why the molecules in a liquid
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don’t all evaporate or all boil away at once.

A few rms Speeds for Gasses

Gas Molar Mass ( kg/mol) vrms at 20 ◦C (m/ s)
H2 2.02× 10−3 1902
He 4.0× 10−3 1352

H2O 18× 10−3 637
N2 28× 10−3 511
O2 28× 10−3 478

CO2 44× 10−3 408

This gives us some insight into the energy distribution because for an ideal gas, we have

just kinetic energy. But for more realistic gasses, E might not be restricted to just ki

netic energy. In PH279 we will go back to our distribution of energies

MaxwellBoltzmann Energy Distribution

N (E) dE =
2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT dE

and work with this equation directly.

We should realize that an integration of dN = N (E) dE over all energies must give

the number of molecules, since every molecule must have some energy. We can easily

do this math by integrating from zero energy to infinite energy.

N =

	 ∞

0

dN =

	 ∞

0

2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT dE

We can do this by looking up the form	 ∞

0

x
1
2 e−xdx =

1

2

√
π
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We need to make our integral look like this last one from the table. We can do that

N =

	 ∞

0

2N√
π

�
1

kBT

� 2
2 E

1
2

√
kBT

e
− E
kBT dE

=
2N√
π

�
1

kBT

�	 ∞

0

�
E

kBT

� 1
2

e
− E
kBT dE

We can make this look like the standard integral form by defining

x =
E

kBT

dx =
1

kBT
dE

Then

N =
2N√
π

�
1

kBT

�
kBT

	 ∞

0

�
E

kBT

� 1
2

e
− E
kBT

dE

kBT

=
2N√
π

	 x=∞

x=0

(x)
1
2 e−xdx

=
2N√
π

�
1

2

√
π

�

= N

which is what we said should happen.

Just like we did with molecular speeds, we can find the average molecular energy. To

do this, we weigh each energy that the molecules can have by the number of molecules

that have that energy.

Eav =
1

N

	 ∞

0

(E)N (E) dE
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Then

Eav =
1

N

	 ∞

0

(E)
2N√
π

�
1

kBT

� 3
2

E
1
2 e
− E
kBT dE

=
1

N

	 ∞

0

2N√
π

�
1

kBT

� 3
2

E
2
2E

1
2 e
− E
kBT dE

=
1

N

	 ∞

0

2N√
π

�
1

kBT

� 3
2

E
3
2 e
− E
kBT dE

=
1

N

	 ∞

0

2N√
π

�
E

kBT

� 3
2

e
− E
kBT dE

=
2√
π

	 ∞

0

�
E

kBT

� 3
2

e
− E
kBT dE

=
2kBT√

π

	 ∞

0

�
E

kBT

� 3
2

e
− E
kBT

dE

kBT

=
2kBT√

π

	 ∞

0

(x)
3
2 e−xdx

Once again define

x =
E

kBT

dx =
1

kBT
dE

From your friendly neighborhood table of integrals we find another standard form	 ∞

0

x
3
2 e−xdx =

3

4

√
π

Using this we find

Eav =
2kBT√

π

�
3

4

√
π

�

=
3

2
kBT

The kB (written as just k in our textbook) is Boltzmann’s constant.

kB = 1.3806568× 10−23
J

K
and if the temperature in your room is about T = 293K we would have

v̄ =

�
8kBT

πm
=

�
8
�
1.3806568× 10−23 J

K

�
(293K)

π28 u

= 470. 70
m

s
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and

Eav =
3

2

�
1.3806568× 10−23

J

K

�
(293K)

= 6. 068 0× 10−21 J

The Equipartition of Energy

For ideal gasses we found the molar heat capacities

CV =
3

2
R

CP =
5

2
R

These equations work well for monotonic gasses, but fail badly for more complex

gasses. Our ideal gas formulation starts to break down with more complex gasses at this

point. To go farther, we would need to include the rotational and vibrational energy of

the molecules. These rotational and vibrational states are beyond the particle model of

classical physics and it turns out they are firmly in the region of quantum mechanics.

In PH123 we used a little quantum to extend our ideal gas model a little by using what

we know about degrees of freedom. Remember that we found that for each degree of

freedom the internal energy was

Ei =
1

2
kBT (1.9)

we found for an ideal monotonic gas that the internal energy was

Eint = 3Ei =
3

2
kBT (1.10)

where each Ei came from a translational degree of freedom. But a diatomic molecule

has several more degrees of freedom.

x

y

z

x

y

z

It can rotate about any of the axes.
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x

y

z

x

y

z

x

y

z

Here rotation about the y axis does not contribute significantly because the moment of

inertia of a sphere (we will take the atom to be roughly spherical) about it’s axis is

I =
2

5
mr2 (1.11)

where m is the mass of the atom. Most of the mass is centered in the nucleus (proton

mass = 1.67 × 10−27 kg, electron mass = 9.11 × 10−31 kg), which has a radius of

about r = 1.7× 10−5 Å is the radius of the atom. The moment of inertia for rotation

about the center of the two mass system is

I =
�

i

miR
2
i (1.12)

where R is the distance from the center of mass. For diatomic hydrogen, R = 1
21.06Å

so we can see that the rotation about the yaxis is not very important, so we are left with

three translational and two rotational degrees of freedom. This gives

Eint =

�
3

2
kBT

�

trans

+

�
2

2
kBT

�

rot

=
5

2
kBT (1.13)

Writing this in molar terms

Eint =
5

2
nRT (1.14)

then

CV =
1

n

dEint
dT

=
5

2
R (1.15)

and

CP = CV +R (1.16)

gives

CP =
7

2
R (1.17)

BUT WAIT, we did not include vibration! The atoms are bond together with an

electrical attraction that acts quite like a spring force. So vibration along the axis is

possible and we need to add in one more degree of freedom. We also have potential

energy involved for a spring force, so we expect an additional degree of freedom for
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vibration.

x

y

z

x

y

z

x

y

z

When we add all these up, we get

Eint =

�
3

2
kBT

�

trans

+

�
2

2
kBT

�

rot

+

�
2

2
kBT

�

vib

=
7

2
kBT (1.18)

which gives

CV =
7

2
R (1.19)

and

CP =
9

2
R (1.20)

We should pause to ask, what values do we use? for diatomic gasses, is CV = 7
2R all

the time?

It turns out that when energy is added to a collection of molecules, it does not pick

randomly from the degrees of freedom. We start at low temperatures with CV = 3
2R,

then with an increase of temperature we get Cv = 5
2R and with a higher temperature

we get CV = 7
2R

But why? Quantum mechanics will have to come to our rescue to explain why the

molecules act as they do.
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What to think of this “review”

You might be saying at this point, “I have never seen most of this stuff! and it is

supposed to be a review.” And you might be right. Depending on your introductory

physics professors, you might have done all of this or you might have missed large

parts. Not to worry. We will go through relative motion and the thermal stuff in this

class, so it should eventually make sense.

But what if you are saying that you have never done so much math in a problem before

and are worried? Well this will be a theme for this semester. Expect problems to be

more mathematical and to be longer than in the first three semesters of physics. It’s

really OK, it just is not what you may be used to. You just need to get used to longer

problems. And as a physics major, you knew that was coming. So it is all OK. Once

you are used to the longer math, it will become second nature.



2 Classical Relativity

Section 2.1

Fundamental Concepts in the Lecture

• Galilean Newtonian Relativity

• The MichelsonMorley Experiment

Relative Motion

Back in PH121 we studied relative motion. We ended up with a system of equations

that describe the velocity and position of an object moving in one reference frame from

the point of view of another reference frame.

Let’s assume a reference frame B in which a person, Bob, walks around. And further

let’s assume that frame B is moving with a speed vBA to the right (positive xdirection)

with respect to reference frame A. We could write the position of the person, Bob, in

reference frame B as xB and the position of Bob as viewed from frame A as xA. Then
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the position of Bob as viewed from the A frame would be

xA = xB + vBA∆t

yA = yB

zA = zB

and the velocity of Bob as viewed from frame A would be.

vbA = vbB + vBA

where the little b is for Bob. This set of equations is called the Galilean Transformation.

And you will remember from PH121 that there is not “right” reference frame. Both the

A perspective and the B perspective are valid.

Let’s review relative motion with a numeric example.

Relative motion example:

Two automobiles are traveling in the same direction toward Idaho Falls. One

automobile, A, is traveling in the left lane of a highway at 121.0 km
h with respect to

the highway frame of reference and the other car, B, is traveling in the right lane at

97 km
h with respect to the highway frame of reference.Using Galilean relativity, find the

velocity of car B in the reference frame of car A.

Variables:

In the highway frame,
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vBH = 121
km

h

vAH = 97
km

h
where here H stands for highway. Notice that we are using two subscripts. The first is

the object that is moving (car A or car B in this case) and the second is the reference

frame (like H for the highway reference frame).

In the frame of car A

vAA = 0
km

h
That is, car A is not moving in the A reference frame.

And vBA or the velocity of car B as viewed from the reference frame A is what we

want.

Equations:

The Galilean transformation is just

�vAB = �vAE − �vBE

Solution

We want to find the relative velocity between the frames of car A and car B. We can

write that from our PH121 experience as

vAB = vAE − vBE

or, since we are using the highway as a reference frame,

vAB = vAH − vBH

We find that

vAB = 121
km

h
− 97

km

h

= 24.0
km

h
This is the speed of police car (frame) A as viewed from SUV (frame) B, but we wanted

the speed of SUV (frame) B as viewed from police car (frame) A. We recognize that

in frame A car A has a velocity of vAA = 0 km
h . Since we know that car A is traveling

with speed vAB relative to frame B. So we can use our transformation again to find

vBA = vAA − vAB

= 0− 24.0
km

h
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or in other words, if we were riding in car A, we would see car B approaching us at

−24.0 km
h relative to our speed. Car B is coming toward us in our reference frame.

Reference frames

We have done this example by assuming that we could assume that each car carried it’s

own reference system or set of coordinate axes. There are three sets of coordinate axes

in this example. one in each car, and one attached to the highway (or to the earth)

We view each reference frame as a perfectly good set of coordinates for doing physics.

We expect the laws of physics to be the same no matter which frame we are in. This is

like saying that we expect the laws of physics to be the same no matter which car we

are in or if we are standing on the highway watching both cars go by. Einstein asked

I stand at the window of a railway carriage which is travelling uniformly, and
drop a stone on the embankment, without throwing it. Then, disregarding the
influence of the air resistance, I see the stone descend in a straight line. A
pedestrian who observes the misdeed from the footpath notices that the stone
falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the
stone lie “in reality” on a straight line or on a parabola?

The path we see depends on whether we are in the rail car, or whether we are standing

by the tracks, but are the laws of physics the same? Do we both agree that there is

gravity acting on the rock? Would the freebody diagram look the same? How can

both be paths be true at the same time? Curiously, the answer requires us to look more

deeply into what we mean by “the same time.”
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Galilean Relativity and boating on a River

Let’s take a new specific example that we will use later to describe Einstein’s theory of

Special Relativity. Let’s take a boat moving on a river. And let’s take two cases. One

in which the boat goes directly upstream, and then goes back downstream to where

it started. We’ll call this case UD (for updown). And a second case where the boat

crosses the river and comes back to where it started. We can call this case CS (for cross

stream).

In both cases the boat travels the distance 2L. Let’s start with the case where the boat

moves up stream and back. Let’s find the time it takes to make this trip for both cases.

Upstream downstream (UD) case

Let’s start analyzing the UD case by looking at basic motion. If the boat moves with a

constant velocity compared to the land we can write

vBL =
∆x

∆t
where B is for the boat, and L is for an observer on the land watching the boat move.

Using Galilean relativity we and find

vBL = vBR + vRL
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where R is for the reference frame of the river water flowing by. You might picture this

reference frame by considering an observer on a log floating by. This observer would

be at rest with respect to the river water. A person on the land would observe the water

of the river going by at a speed of vRL. Then as the boat goes upstream for the first leg

if its trip we would have

vBL1 = −vBR1 + vRL

(the negative sign on vBR1 is because the boat is going to the left). The time it takes the

boat to make this first leg of the trip would be

∆t1 =
∆x1
vBL1

=
−L

vBL1
and we know vBL1

∆t1 =
−L

−vBR1 + vRL

=
L

vBR1 − vRL
But this is just one leg of the trip. Let’s find the time for the second leg back to were the

boat started. Now

vBL2 = +vBR2 + vRL

so

∆t2 =
∆x2
vBL2

=
L

vBR2 + vRL
Since the boat is going with the current, we expect ∆t2 < ∆t1. If we compare our

expressions for ∆t1 and ∆t2 we see that this is true.

We also know that the boat speed with respect to the water is constant so

vBR1 = vBR2 ≡ vBR. The total time of the trip would then be

∆tUDtrip = ∆t1 +∆t2

=
L

vBR1 − vRL
+

L

vBR2 + vRL

= L

�
vBR + vRL

(vBR − vRL) (vBR + vRL)
+

vBR − vRL
(vBR + vRL) (vBR − vRL)

�

= L

�
vBR + vRL
v2BR − v2RL

+
vBR − vRL
v2BR − v2RL

�

= L
2vBR

v2BR − v2RL

=
2L

vBR

1�
1− v2RL

v2BR

�

This is the trip time for the upstreamdownstream trip.
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Cross Stream (CS) case

Now let’s compare this to the cross stream trip.

Now we have to be more careful because we have a two dimensional problem. We must

aim the boat upstream in order to cross the river directly. We don’t want to get washed

downstream. So we need to take x and ycomponents. Crossing to the other side we

have

vBL1x = vBR1x + vRLx

vBL1y = vBR1y + vRLy

We want vBL1x = 0. So

0 = vBR1x + vRLx
or

vBR1x = −vRLx

Now consider the ypart of the motion. We know

vBL1 =



v2BR1x + v2BR1y

we want vBL1y

v2BR1 = v2BR1x + v2BR1y

v2BR1 − v2BR1x = v2BR1y

vBR1y =



v2BR1 − v2BR1x
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but we know from above that vBR1x = −vRLx so

vBR1y =



v2BR1 − (−vRLx)
2

And the velocity of the river with respect to the land is all in the xdirection so

vBR1y =



v2BR1 − (−vRL)
2

As in our first case, we can find the time it takes for the boat to cross the river. This is

leg one

∆t1 =
∆y1
vBL1y

=
−L

−



v2BR1 − v2RL
and going back is similar, and of course vBR1 = vBR2 = vBR still

∆t1 =
−L

−
�

v2BR − v2RL

∆t2 =
∆y2
vBL2y

=
L

�
v2BR − v2RL

so the total trip time would be

∆tCStrip = ∆t1 +∆t2

=
2L

�
v2BR − v2RL

=
2L

vBR

1
�
1− v2RL

v2BR

Notice that the trip time for the two cases is very different. Even the form of the

equation for the total trip time is very different.

case UD updownstream case CS cross stream
∆tUD = 2L

vBR
1�

1− v2
RL
v2
BR

� ∆tCS = 2L
vBR

1�

1− v2
RL
v2
BR

We could compare the two by writing out ∆tUD

∆tUD =
2L

vBR

1
�
1− v2RL

v2BR

�
1− v2RL

v2BR

=






2L

vBR

1
�
1− v2RL

v2BR






1
�
1− v2RL

v2BR

= ∆tCS
1

�
1− v2RL

v2BR

And we can think that if vRL = 0 the relative speed of our land and river reference

frames, the two times will be exactly the same. But if vRL is not zero, the vRL/vBR is
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less than one, and 1 − v2RL/v
2
BR is slightly less than one so 1/

�
1− v2RL

v2BR
is slightly

greater than one. That is the updown stream trip takes a little longer than the cross

stream trip.

∆tUD = ∆tCS
1

�
1− v2RL

v2BR

Since we have assumed that the two trips cover the same distance, 2L then the two

boats must travel at different average speeds

vUD =
2L

∆tUD
=

2L

∆tCS
1�

1− v2
RL
v2
BR

=
2L

∆tCS

�

1− v2RL
v2BR

and

vCS =
2L

∆tCS
so that

vUD = vCS

�

1− v2RL
v2BR

This is just what we expect from relative motion.

We can envision this same experiment, except instead of launching boats, we could

replace the boats with lasers and launch pulses of light. We would need to install

mirrors at the turning points to reflect the light back. Using the Galilean transformation

equations we would expect to see the same result, just with c being a much higher speed

than a boat could achieve. This would represent the state of physics in the late 1800’s.

It was assumed that there was a material wave medium for light and that the wave

medium flowed past the Earth like a river. The name for this hypothesized material

wave medium was the ether. The Earth would be like an island in that river with the

ether flowing by.

Two researchers devised a clever way to find the speed of the Earth through the ether

using a device we met back in PH123, the Michelson Interferometer.
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Let’s review the interferometer. It has a coherent light source, a beam splitter, two

mirrors, and a detector. The beam is spit and the resulting beams travel different paths

to the mirrors. After reflection the beams recombine at the beam splitter and are sent off

to a detector. This is just two wave mixing where the waves are electromagnetic field

waves. We expect to see constructive and destructive interference. The math is familiar

to us

E1 = Emax sin (k1r1 − ω1t+ φ1)

E2 = Emax sin (k2r2 − ω2t+ φ2)

so the combined wave would be

Er = Emax sin (k1r1 − ω1t+ φ1) +Emax sin (k2r2 − ω2t+ φ2)

Using a trig identity, we can write this as

Er = 2Emax cos

�
(k2r2 − ω2t1 + φ2)− (k1r1 − ω1t2 + φ1)

2

�

+sin

�
(k2r2 − ω2t1 + φ2) + (k1r1 − ω1t2 + φ1)

2

�

If the waves travel through air or a vacuum, then k2 = k1 = k and ω2 = ω1 = ω so that

Er = 2Emax cos

�
(k (r2 − r1)− ω (t1 − t2) + (+ (φ2 − φ1))

2

�

+sin

�
k
(r2 + r2)

2
− ω (t1 + t2)

2
+

φ2 + φ1
2

�

The sine part is a wave. The cosine part is the amplitude. And if the amplitude is zero

we have total destructive interference and if it is 2Emax we have total constructive

interference. If you follow the reflections of the two waves through the interferometer
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you will find that φ2 = φ1 = π, so

Er = 2Emax cos

��
2π
λ (r2 − r1)

�
− 2π

T (t1 − t2)

2

�

+sin

�
k
(r2 + r2)

2
− ω (t1 + t2)

2
+ π

�

Because the interference depends on the ∆r and ∆t we expect that a change in the

path due to the motion of the device through the ether would have an effect on the

interference pattern. You could take the device and align one arm with the flow through

the fluid much like we did for our boat.

The other arm would cross the either fluid flow. This is just our updown stream case

and our cross stream case.

So we expect there to be an amplitude pattern shift because tUD will not be equal to

tCS. By measuring the pattern once, and then turning the device 90 ◦ and measuring

the pattern again we should be able to tell if the device is moving though the ether by

observing a pattern change (even if we are not perfectly precise on our measurements

of the distance between the mirror and the beam splitter L). In fact, we can tell how

different the two paths are by counting the reversals of the interference pattern as
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we turn the device. A reversal in the pattern gives a time difference of one quarter a

period (because the waves travel from the beam splitter to the mirrors and back). The

wavelength of light is about 500 nm, so the frequency would be

f =
v

λ
=

3× 108 m
s

500nm
= 6.0× 1014

1

s
and therefore the period would be

T =
1

f
=

1

6.0× 1014Hz
= 1. 666 7× 10−15 s

and therefore very small time differences should have been measurable.

Michelson and Morley didn’t find any shift in the pattern. None at all. And this was the

end of ether theory!

The result was startling. The Earth is clearly moving. So from the Galilean

transformation there should have been a shift. This failed result matched others that

hinted a very strange thing. The speed of light seems to be the same in any reference

frame. The physics we learned in PH121 doesn’t seem to work for light! We need a

new way of looking at motion that can include light (and other fast moving things).



3 The Postulates of Special

Relativity

2.1, 2.2 and 2.3

Fundamental Concepts in the Lecture

• Postulate 1: Galilean Newtonian Relativity

• Postulate 2: Invariance of the speed of light

• Postulate 3: spacetime consists of points with x, y, z, and t values and these values
are not invariant

In our last lecture, we found that Michelson and Morley did not find a difference in the

time for the two light paths in their instrument. The implication was that the speed of

the apparatus through the universe didn’t change the speed of light. The speed of light

is not relative! Let’s pause for a moment. It’s easy to not catch the full implication of

this. Many people do miss what this means (mostly news reporters and people who are

not physics students). Galileo told us that motion is relative. Michelson and Morley

showed that one motion is not relative. The speed of light is the same no matter the

reference frame. This is a very strange thing! Sometimes sociologists quote Einstein

as telling us that everything is relative. But this is not what special relativity tells us.

Galileo told us that speeds are relative. Einstein tells us that at least one speed is not

relative. That one speed is the speed of light. It is probably not proper to extrapolate

this to social science anyway, but social scientists who say everything is relative in their

field and blame it on physics are actually using a 370 plus year old theory of motion

due to Galileo. That makes it sound less cool. What we now know is that something is

not relative and thus we have a theory of special relativity.

The Two (3) Postulates

Einstein made two postulates to solve the problem of the speed of light in vacuum being
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invariant (not relative).

1. Galilean relativity is still true

2. The speed of light is invariant

Okay this doesn’t seem too profound. This is just what we got through saying in our last

lecture. But what Einstein did was to come up with a set of equations (and ideas) that

could make this set of seemingly contradictory postulates make sense. The Galilean

transformation couldn’t be exactly right because it does not work for light. Einstein’s

theory fixes this. But to do this he really made another postulate, and that postulate is

very profound.

The third Postulate

Let’s go back to our Galilean relativity study of the motion of two boats. We assumed

that our boats traveled at the same speed, vBR. But let’s say that instead of boats, we

have light beams with vBR = c. Then we would have

∆tUD = ∆tCS
1



1− v2RL

c2

This is just due to normal Galilean relative motion. We could find a sort of average

speed of our two boats, for our two cases, We know the times,

case UD case CS
∆tUD = 2L

c
1

1− v2
RL
c2

∆tCS = 2L
c

1�

1− v2
RL
c2

and so far we think that in both cases v = d
∆t should work, where d is still the round

trip distance. For case UD

vUD =
dUD
∆tUD

=
dUD

2L
c

1

1− v2
RL
c2

and for case CS

vCS =
dCS
∆tCS

=
dCS

2L
c

1�

1− v2
RL
c2
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if we demand this crazy idea that for light vUD = vCS then we find

vUD = vCS
dUD

2L
c

1�
1−v2

RL
c2

�
=

dCS
2L
c

1�

1− v2
RL
c2

dUD
1�

1−u2

c2

�
=

dCS
1�

1− v2
RL
c2

dUD

�
1− v2RL

c2

�
= dCS

�

1− v2RL
c2

dUD

�

1− v2RL
c2

= dCS

dUD = dCS
1



1− v2RL

c2

What we have found is that we can make the speeds match, if we allow the distances

dUD and dCS to be different and the times tUD and tCS to be different. That is, if we

can say that the distances are really somehow different in the cross motion and updown

motion directions just because of the motion of our reference frame (apparatus moving

thought the Ether, or river flow) we could adjust our theory of motion to account for

the result of Michelson and Morley experiment (and many other experiments that

confirmed their result). This idea is the heart of Einstein’s theory of Special Relativity.

Let’s summarize what we have just said. We have said that in any reference frame the

speed of light is the same. Since speed is

v =
d

∆t
we conclude that either ∆t is different, based on the motion of our object (which is true

by Galilean relativity, see last lecture), or d is different to preserve the invariance of the

speed of light, or both such that v for light never changes. What we are saying is that

space and time change rather than the speed of light, and they change such that they

make the speed of light always constant in any reference frame.

The third postulate is that spatial position and spatial time are not invariant.

Simultaneity

The third postulate is a little hard to imagine. To adjust the speeds so they are the same

for light, we can either adjust the distance, d, or the time ∆t or both. It remains to be

seen which adjustments we need to make. Before we proceed to find out if d or ∆t need
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adjustment, Let’s look at our concept of time more carefully. We should ask ourselves

how we know if something happens “at the same time” as something else.

Einstein suggested that to answer this question we think of the example of a train track

(he likes trains) that is struck by lightning in two places, A and B at the same time. He

asks us what that means.

A C BA C BA C B

It turns out that this is a little bit hard to explain. How could you tell if the lightning

bolts struck “at the same time?”

How about this, we measure along the rails to a midpoint C. We place a person at the

midpoint. We give the observer a set of mirrors inclined at 90◦ which allows him or her

to visually observe both places A and B at the same time. If the observer perceives the

two flashes of lightning at the same time, then they are simultaneous.

This seems to work, provided light travels at the same rate along AC and BC. And

we know that it does, but even if it does not, we really won’t know the difference. We

will use this definition of being “at the same time” as seeing the flashes in the mirrors

together. Now we set up a series of clocks at A and B and C. The clocks are identical

(all work at the same rate). And let’s set up our experiment so we can see the clocks

when we see the lightning. We can compare the clocks and say we see things happening

“at the same time.”

Whenever we do an experiment to try to see if things are simultaneous, we have a

situation analogous to this.

Now let’s place an observer on the train as well.
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The train is moving. The observer on the train also sees the lightning flashes through

windows in the ends of the train car. But does the observer on the train see them “at the

same time?”

Following Einstein, we say that the lightning strikes at A and B are simultaneous with

respect to the observer standing by the tracks. What we mean by this is that the rays of

light emitted at the places A and B, where the lightning occurs, meet each other at the

midpoint C of the length AB along the tracks. But the events A and B also correspond

to positions A′ and B′ on the train. Let C ′ be the midpoint of the distance A′B′ on the

travelling train. Just when the flashes (as judged from the embankment) of lightning

occur, this point C ′ happens to be passing the point C but it moves towards the right in

the diagram with the velocity v of the train. If an observer sitting in the position C′ in

the train did not possess this velocity, then he would remain permanently at C (until

he collided with the back of the train car!), and the light rays emitted by the flashes of

lightning A and B would reach him just where he is situated.

Now more probably the passenger is moving towards the beam of light coming from

B, while he is riding on ahead of the beam of light coming from A. So he will see the

beam of light emitted from B earlier than he will see that emitted from A.
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Observers who take the railway train as their referencebody must therefore come to the

conclusion that the lightning flash B took place earlier than the lightning flash A. We

thus arrive at the important result:

Events which are simultaneous with reference to the embankment are not
simultaneous with respect to the train, and vice versa. This is known as
the relativity of simultaneity. Every referenceframe has its own particular
time; unless we are told the referenceframe to which the statement of time
refers, there is no meaning in a statement of the time of an event.1

This is true no matter what we use to measure the two events. It turns out that in all

of PH121 through PH220 we have assumed that the speeds of our reference frames

were so slow that the simultaneity problem was never noticed. We could just assume

things in our problems happened “at the same time” and not worry about it. But now

we see that this is not enough. With this new expanded version of time, let’s go back to

our speedoflight problem and consider what might happen if we let ∆t change with

speed.

A more detailed look at simultaneity

We used Einstein’s words to describe the relativity of simultaneity, but I want to go

beyond Einstein’s example. Let’s start with just the first of Einstein’s postulates, and

look at Galilean relativity. And let’s envision a new observation device that can tell you

it’s position (like a GPS positioning device) and the time of an event at that location. I

1 Einstein, Albert, Relativity: The Special and General Theory,

http://www.gutenberg.org/files/5001/5001h/5001h.htm



A more detailed look at simultaneity 41

will call it a geoclock. We really envisioned geoclocks in our train example. But let’s

take our study of relativity into an imaginary laboratory and build a device that can

launch balls with the same velocity in opposite directions. This device can then be

used to launch balls into two geoclocks which would record the impact, recording the

geoclocks location and the time of the impact. Here is a depiction of two such setups

where the subscript system used is complicated. The subscripts on the times gives

which system (A or B) we are using. And and the parameters in the curly braces give

the time and then the location of the geoclock that makes the measurement. These

could also be subscripts, but the number of subscripts started to get too big to easily

write. So I have moved the rest of the subscripts up and placed them in curly brackets.

In this initial experiment there are no surprises. Both systems A and B act exactly the

same. But now let’s let system B move. And let’s put a geoclock at every point in

reference frame A. And let’s synchronize all the frame A clocks so they all read the

same time (so long as we view them from reference frame A).
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Note what happens with our balls. The one going to the left will travel to the left

geoclock at xB = −L with a speed v − u where U is the speed of the ball. The ball

going to the right will travel with a speed of v + u toward a geoclock at xB = L. And

so the balls will hit “at the same time” as viewed from both reference frame A and

reference frame B. This is just what the Galilean relativity equations say should happen.

No surprise.

But now suppose we replace the apparatus that throws balls with one that shoots

pulses of light. And now let’s look at this new case from the B reference frame. Let’s

introduce a person riding along in the B reference frame. We’ll call him Bob. Bob

would see the light pulses hit the geoclocks and be detected at the same time. To Bob

there is no surprise. Everything works just the same as with the balls.

We will designate Bob’s clocks with a small b because “Bob’s clock” is too long to be

a subscript and we will let the details in the curly braces {} be the details of which of

Bob’s clocks we are talking about. So

tbB{0,−L}
means the zeroth measurement of Bob’s (b) clock that is at location −L as viewed from

the B reference frame. We added an additional subscript to tell us our view point.

Here is our experiment as viewed from the B reference frame. Bob, of course, has

synchronized all the clocks (b) in his reference frame (B).
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Bob’s view of the experiment from the B reference frame.

But now let’s consider a person standing in the A reference frame. Let’s call her Al

ice. Alice sees all the clocks in the A frame as synchronized. Alice observes the B

reference frame moving by with speed vBA. So the first postulate of Galilean relativity

applies. But we are dealing with light, so the second postulate also applies.

Alice’s view of Bob’s experiment from the A reference frame.
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We see that Alice sees the (b) geoclocks moving, and the speed of the light pulses

is not relative, so it is always the speed of light (c) . Then Alice sees the left light

pulse hit Bob’s left geoclock (tbA{1,−L}) when her geoclock at that position reads

taA{1, 2} = TA1 and she sees Bob’s geoclock at that position read tbA{1,−L} = TB1.

Then at a later time, taA{2, 5} = TA2 (and a different location, location 5) Alice sees

the right light pulse hit Bob’s geoclock at tbA{2, L} = TB2 and she sees her own

geoclock at that position reads taA{2, 5} = TA2.

Note that Alice does not see the flashes hit Bob’s geoclocks at the same time! In fact,

She sees Bob’s left clock running faster than his right clock. This must be the case

because Bob’s geoclocks record the time. And Alice can know that time by, say, taking

a photograph when the light hits. That photograph will be the same no matter who

looks at. They can even gather the photographs and look at them together later when

Bob get’s back to Alice’s spot in the lab. So the photographic geoclock evidence must

agree no matter what perspective we use to look at it. Here are the A and B frame

situations side by side.

So then Bob’s left clock as he sees it must record the same time for the left pulse to hit

as Alice sees on Bob’s clock.

tbB{2,−L} = tbA{1,−L} = TB1

That is, tbB is the time on Bob’s clock as viewed by Bob and tbA is the time on Bob’s

clock as viewed by Alice and these two readings must be the same for a single event

(like the left pulse striking the Bob’s geoclock). So we really could write this time

coordinate as just

tb{2,−L} = tb{1,−L} = TB1
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that is, the tb coordinates at location xb = −L are the same regardless of the frame

from which we view them. Now let’s look at the right pulse hitting the right geoclock.

tbB{2, L} = tbA{1, L} = TB2

So it is also true that the tb coordinates at location xb = L are the same.

tb{2, L} = tb{1, L} = TB2

But I find it helpful to think about our reference frame view point as we do problems.

Bob’s clocks didn’t stop at any point, so since the light hit the left clock at xB = −L

first, and kept running, then from Alice’s point of view

TB1 > TB2

so we can write

tbA{2,−L} > tbA{2, L}
That is, Alice doesn’t see the light pulses hit at the same time and the trailing end of

Bob’s apparatus will read a longer time than the leading edge clock Bob’s apparatus

moves. You might find this described as “leading clocks lag.”

It’s important to ask the question, “does Bob see his clocks as synchronized?” And the

answer is “yes!” Remember from Bob’s point of view, the light pulses hit Bob’s left

and right geoclocks “at the same time.” But Alice does not see the light pulses hit Bob’s

clocks at the same time. Who is right? And that is the nature of relativity, both are right.

Simultaneity is relative.

Third Postulate again

Let’s add a mental image to our third postulate We can envision reference frames as

having a “lattice” of geoclocks that describe the positions and times for those positions.
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In relativity we will consider a location in spacetime as having four coordinates, x, y, z,

and t and we acknowledge that as we view one reference frame from another, we might

see different times at each position in the lattice of geoclocks from different reference

frames. We expect the value of x, y, and z to change when viewed from another

reference frame. Now we know that t changes as well. Of course we could envision

our lattice to be as finely spaced as we need. In my notation I will use subscripts and

extended subscripts in curly braces to designate what is being viewed

tbA{1, 3}
in this case the b says we are viewing something in the B reference frame (i.e. Bob’s B

frame geoclocks, or a flash of light, etc.). The second subscript tells us from what frame

we are viewing. In this case we are viewing the b event from the A reference frame.

The curly braces tell us the details of our event. Usually we will put the time details

first (in this case the first tbA1) and the position second (in this case the xbA3). But think

of the curly brace stuff like subscripts. We might at times leave off one or more types of

subscripts or even add more. So it will be important as we go to give descriptions of the

subscripts.

Because we can only have one clock reading for an event, we can write this as just

tb{1, 3}

Whether we use subscripts or primes (as most books do), this is a very different view of

space and time than we used in the first three classes of introductory physics!



4 Special Relativity

Sections 2.4 and 2.5

Fundamental Concepts in the Lecture

• Time Dilation

• Length Contraction

• Lorentz Transformation

Time dilation

To see how this timechangewithspeed works, let’s start with our boats again.

Consider our river and land reference frames. We found that the time of travel was

different if we considered the cross and updown stream paths. But how about if we

switch from the land reference frame to the river reference frame? Let’s picture a

person (Bob) in the boat that has a very special clock. The clock is made from a pulsed

laser and a mirror. The mirror is placed on a stand on the back of the boat (stand not

shown in the figure below). The boat reference frame, B, is fixed to the boat. So in

the boat reference frame there is no motion except for the light bouncing off of the

mirror. Further suppose that our boat is just sitting on the water (engines are not on).

The person points the laser straight up at the mirror.
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Inside the boat (that is, in the boat’s reference frame, B) we know that if we aim the

laser at the mirror that the pulse will bounce back. The path will be a straight line. The

time of flight (time it takes to go to the mirror and back) is

δtbB =
2d

c
(4.1)

where now c is the speed of light and d is the distance between the source and the

mirror. Let’s say that δtbB is the time it takes for our new clock to “tick” once. So

we will call this a “tick time.” We do need two subscripts, because δt, a duration or

interval, does depend on which reference frame we use.

Now let’s view this from out side the boat standing on the shore. Let’s put another

person on the shore called Alice. From our shore reference frame (now called A for

Alice) the boat is moving with speed vBA (the speed of the river with respect to the

land).

The observer near the river bank sees the light travel in a triangle.

Before we even start any math, we can see the change in time that we experienced

before. The light path as viewed from the shore (A reference frame) is a longer path

that as viewed from the boat (B reference frame). But from postulate 2, the speed of the

light is the same, (c). Then the time of flight as viewed from the shore must be longer
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than the time of flight as viewed from the boat in order to keep c constant! And this

time δtbA is still the tick duration. So the tick time got bigger when we view the clock

from the shore. This is the effect that is known as time dilation.

Let’s calculate how different the times will be. If we draw just the light path it is easier

to see the triangle path as seen from the A reference frame. For our calculations, let’s

look at just half that triangle (the part marked in blue in the next figure).

we can see that the sides are of length
cδtbA
2

where recall that ∆tbA is the time it takes on Bob’s clock as viewed by Alice, and
vBAδtbA

2
where vBAδtbA

2 < cδtbA
2 because the boat floating along with the river current is much

slower than the light. We can use the Pythagorean theorem to form an expression using

these lengths �
cδtbA
2

�2

=

�
vBAδtbA

2

�2

+ d2 (4.2)

Now let’s solve for δtbA
c2δt2bA

4
=

v2BAδt
2
bA

4
+ d2 (4.3)

c2δt2bA
4

− v2BAδt
2
bA

4
= d2 (4.4)

δt2bA

�
c2

4
− v2BA

4

�
= d2 (4.5)

δt2bA =
4d2

(c2 − v2BA)
(4.6)

so

δtbA =
2d

�
(c2 − v2BA)

(4.7)

or

δtbA =
2d

c

��
1− v2BA

c2

� (4.8)
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I want to break this into two pieces

δtbA =

�
2d

c

�





1
��

1− v2BA
c2

�




 (4.9)

The first piece is just the time it took in the reference frame on the boat, δtbB.

Sometimes this is called the proper time

δtbB = δtp =
2d

c
although it is not a good name because there is nothing more “proper” about this time

than any other time. It is the time we would get by measuring the clock tick from any

reference frame in which the clock is sitting still in that reference frame. So it is also

true that

δtaA = δtbB = δtp

Notice that in my notation the b indicates a clock in the B reference frame and the B

subscript tells us we are viewing the clock from the same, B, reference frame. Proper

times are found in a reference frame where the clock is stationary with respect to that

reference frame. If we moved the clock to the A reference frame and let it be stationary

there then we would measure δtaA and we would find that this would also be a proper

time because it is a clock tick time measured in it’s own reference frame.

Then our b clock tick time as viewed by A is

δtbA = δtbB






1
��

1− v2BA
c2

�




 (4.10)

The second term is long so I also want to give it its own symbol, γBA.

γBA =
1

��
1− v2BA

c2

�

Then the time as viewed from the shore would be

δtbA = δtbBγBA (4.11)

or maybe

δtbA = δtpγBA (4.12)

This is just what we expected from thinking about our boat trips. We now expect the

motion of the river to cause there to be a time difference when we switch reference

frames, and this is just what we see. On the shore, we see the clock tick time δtbA that

is bigger by a factor γ than the clock tick time δtp = δtbB that people on the boat saw.

But what is this γBA? Suppose that vBA ≪ c, then
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γBA =






1
��

1− v2BA
c2

�




 (4.13)

≈
�

1
�
(1− 0)

�

(4.14)

= 1 (4.15)

so for small river velocities we just have the same time as we would see if we were in

the boat frame. This is why we never noticed the time difference before.

Suppose vBA is large, say c
2

γ =






1
��

1− v2BA
c2

�




 (4.16)

=






1
��

1−
�
c2

4

�

c2

�






(4.17)

=



 1

�

1− 1
4

�



 (4.18)

=



 1

�

3
4

�



 (4.19)

=

�
2√
3

�
(4.20)

= 1. 154 7 (4.21)

This is greater than 1! So what this tells us is that it seems to take longer for the light

to travel and make the clock tick in the river bank frame than in the boat frame. As we

said before, we call the time ∆tp the proper time. It is always the time difference

between two events for a person who sees the object (clock) experiencing the events

at the same position in their reference frame (not moving). This is like our person in

the boat, Bob. He sees the strange optical clock as not moving in his reference frame.

A person on the shore (Alice) would see the clock measurements taken at different

positions in the shore reference frame.
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Note that the time we measured from the observer on the bank is a longer tick time than

the proper time. It is as though the time units got bigger. This will be true no matter

the sign of vBA and c because of the squares in γ. Because the measured b clock tick

duration is longer when measured from the A frame than the proper time, this effect is

known as time dilation. It is like the tick times got wider.

δtbA = δtpγBA (4.22)

But so far we have just looked at the clock tick times. Now let’s consider what the

clocks on the boat and on the land read. The elapsed clock time ∆taA = taf − tai for a

clock on the shore (clock set a, viewed from frame A) is shown in the top of the next

figure as a series of ticks. This is a clock that is not moving in it’s reference frame. So

remember that δtaA = δtbB = δtp. The clock time on the boat as observed from the

shore is also shown (bottom set of ticks) for the case of vBA = 0.866 03c which gives

us γBA = 2. As you can see, the δtbA are twice as fat as the δtaA (or δtbB) ticks.

This means that the b clock on the boat as observed from the A frame (shore) will read

only 4 units when the clock a in the A frame (shore frame) as viewed from the shore

frame will read 8 units. Of course a relative speed of vBA = 0.866 03c would be hard

to achieve with a floating boat, or even with a space craft. But we can achieve such

speeds for small particles with particle accelerators.

We could summarize this by saying moving clocks run slow. And we could write the

elapsed time as

∆tbA =
∆taA
γBA

Now you might say that this seems wrong. How do we know that it was the boat that

was moving, It might be the boat is stationary and the Earth is moving under it! From
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the B frame it looks like the A frame goes to the left with speed vAB = −vBA. So

δtaB = γABδtaA (4.23)

and

∆taB =
∆tbB
γAB

(4.24)

That is, would a person on the boat see a clock sitting on the shore as running slow?

And the answer is yes! But for now, we will stick with the boat being the object that is

moving.

Nice gamma values

We used our gamma factor in a nice unit of γBA = 2. It will prove useful to have a few

more nice values of γBA. We can easily solve for vBA for nice γBA values.

γBA =






1
��

1− v2BA
c2

�






γ2BA =
1�

1− v2BA
c2

�

�
1− v2BA

c2

�
=

1

γ2BA

1− 1

γ2BA
=

v2BA
c2

c2
�
1− 1

γ2BA

�
= v2BA

c

�

1− 1

γ2BA
= vBA

We can get
vBA γBA
0 1

0.06c 1.25
0.866 03c 2
0.942 81c 3
0.968 25c 4
0.979 80c 5
0.993 81c 9
0.998 75c 20
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Length Contraction

In studying the Galilean transformation we said that we would need to choose either

time or length as changing from one reference frame to another, or maybe both. Let’s

look at length now.

Suppose that I give you a 4 meter stick and ask you to measure a moving boat. How

would you do it?Pause and think of
what you might do
to measure the mov
ing boat.

Most of the time we measure things that are standing still in our own reference frame.

But now I want to measure the length of a moving object. This is hard to do. I can place

one end of the meter stick on the front of the boat, but before I can align the end of the

4 meter stick with the back of the boat, the boat has moved!

To measure the boat length, we must take both the front position and the back position

“at the same time.” But oh no! we have learned that “at the same time” depends on

which reference frame you are in! We should expect some trouble with this.

Suppose our observer is in the boat holding a rod horizontally so it is parallel to the boat

xaxis. Our boat person can measure the length of the rod as ∆xbB = Lp by simply

marking both ends of the rod along the bottom of the boat “simultaneously,” That will

give the distance. Observers along the river bank do the same, they mark the ends of

the rod “simultaneously” on their coordinate system along the bank as the boat goes by.

This measurement will be ∆xbA.

But now think of our lightning experiment with the train. The boat is like the train car.

The boat observer would sees a flash of light from the right ahead of a flash of light

from the left because the boat is moving. So as the boat person aligns the rod with a

mark on the deck, the light travels toward the person. But the person on the bank sees

the flashes at the different times. They don’t agree on what “at the same time” means.

The person on the boat thinks the person on the ground marked the right hand side

of the rod before he marked the left hand side! And in that time difference the boat

moves. So the person on the shore would measure a shorter distance because she didn’t

measure the beginning of the rod and the end of the rod “at the same time.” Of course,

she thinks she did measure the ends of the rod at the same time, and she thinks the

boat person measured at different times. We can see that observers in the two reference

frames won’t agree on the length of the boat.

To make this computational, lets envision modifying our clock by turning the system
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90 ◦.

Now the light is traveling in the xdirection and the boat might move in that direction

if we view it from the shore reference frame. Again the engines are not going, but the

boat will float downstream with speed vBA. The light travels at speed c.

If we let the clock pulse go, it will hit the mirror a time δtbA{1} later, which is about

half a “tick” later

During that time, The boat would float a distance vBAδtbA{1}
∆xbA{1} = vBAδtbA{1}

Let’s call the distance from the source to the mirror ∆xbB = LbB. In the last section,

we said the clock had height d. But let’s now relabel this distance LbA, the length of

the clock device on the boat as viewed form the shore (A) reference frame so we can

be sure we understand our viewpoint. The light must go the distance LbA, but because

boat moves due to the moving water, it must go a little farther.

∆xbA{1} = cδtbA{1} = LbA + vBAδtbA{1}
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We could be tempted again to substitute in d, the length of the device in the boat frame,

for LbA but let’s not. Let’s just stick with LbA as the sourcemirror distance as viewed

from the shore.

On the trip back, we have the same sort of thing, but this time the water and light are

going opposite directions.

The boat still floats a distance xbA{2} = vBAδtbA{2} in the time the photon goes from

the mirror to the detector.

The light must travel a distance

xba{2} = cδtbA{2} = LbA − vBAδtbA{2}
We can solve for the time it takes for both legs of the trip by solving for δtbA{1} and

δtbA{2} and adding them together.

cδtbA{1} − vBAδtbA{1} = LbA

δtBA{1} (c− vBA) = LbA

δtbA{1} =
LbA

(c− vBA)
and likewise

cδtbA{2}+ vBAδtbA{2} = LbA

gives

δtbA{2} =
LbA

(c+ vBA)
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then the total tick time should be

δtUD = δtbA{1}+ δ∆tbA{2}

=
LbA

(c− vBA)
+

LbA
(c+ vBA)

=
LbA (c+ vBA)

(c− vBA) (c+ vBA)
+

LbA (c− vBA)

(c+ vBA) (c− vBA)

=
2LbAc

c2 − v2BA

=
2LbAc

c2
�
1− v2BA

c2

�

=
2LbA

c
�
1− v2BA

c2

�

=
2LbA
c

γ2BA

as viewed from the shore.

Now here is the thing. The person on the boat in their reference frame, B, and the

person on the shore in their reference frame, B, will see different durations for this

same light reflection and detection “tick.” We know that from our previous calculation

that lead to time dilation. In the boat frame, where the beginning and ending interval

happen with the clock at the same boat frame coordinate, we have

δtbB = δtp =
2LbB
c

where LbB is the length of the clock as seen on the boat. That is, in the boat frame there

doesn’t seem to have been any motion of the clock apparatus, so the light just travels

the path 2LbB. This tick time δtbB must be related to our tick time as viewed from the

shore, δtbA, using the time dilation equation

δtbA = γBAδtaA = γBAδtbB

and we called our total tick time δtbA just δtUD so

δtUD = γBAδtbB (4.25)

or

δtUD =
2LbB
c

γBA (4.26)

We have two expressions for the duration of the light pulse flight as viewed from the

shore, δtUD. Setting them equal gives
2LbB
c

γBA =
2LbA
c

γ2BA

LbB = LbAγBA

LbA =
LbB
γBA
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We remember that LbB is the length of the device in it’s own rest frame (on the boat).

and LbA is the length of the device as viewed from the shore.

LbA = LbB

�

1− v2BA
c2

A person on the shore sees the clock with a length different than a person on the boat

by a factor of 1/γ!

And this is wonderful, it tells us how the perception of the length of our clock changed

due to the motion of the clock apparatus. Notice that γ is generally greater than 1, so 1
γ

is generally smaller than one. The length of the clock (and everything on the the boat)

measured from the river bank is shorter than the length of the clock (and everything on

the boat) measured by a person on the bank. This effect is called length contraction.

Notice that when vBA → 0 that LbA = LbB = d. When it is not moving, a person on

the shore and a person on the boat agree on the size of the clock.

We can now see that the way to reconcile the Michelson and Morley results is to allow

both δt and ∆x (or L as we have been calling it in the last equation) to change. We can

expect both time dilation and length contraction. Let’s define the proper length Lp as

the length that would be measured in a reference frame where the object is at rest in

the reference frame. This is called the proper length. That would be the boat reference

frame. So

LbA = Lp

�

1− v2BA
c2

In our class notation, this would again be when the subscripts match

Lp = LbB

The Invariant Interval

So far we have said that the speed of light is invariant under transformation. This means

that we see the same speed of light (in a vacuum) is always the same. But is there any

thing else that is invariant? Let’s go back to our light clock.
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For the light clock that is in frame B as observed in that frame the light travels a

distance of 2d up and down. And the distance d can be written as

d =
c∆tbB

2

So the total distance the light travels is

2d = c∆tbB

which can be written (though it is not apparent why yet) as

4d2 = c2∆t2bB + 0

Now let’s look at the light clock b in B from frame A. We see that the light travels a

path that looks like a triangle. The distance traveled from the source to the first mirror is

dbA{1} =
c∆tbA

2
and likewise from the mirror to the detector

dbA{2} =
c∆tbA

2
We can form a right triangle using d and using the Pythagorean theorem

�
c∆tbA

2

�2

= (d)2 +

�
∆xbA
2

�2

so then
c2∆t2bA

4
= d2 +

∆x2bA
4

c2∆t2bA = 4d2 +∆x2bA
4d2 = c2∆t2bA −∆x2bA

We once again have 4d2 and once again we have a term like c2∆t2 and now we have

an x2 term. If we think about what xbA means, it is how far the light clock moved in

∆tbA. In the bB frame the light clock moved xbB = 0 so we actually see the same for
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for our bB view and our bA view. It turns out that the quantity

c2∆t2bB −∆x2bB = c2∆t2bA −∆x2bA = constant

for any object, b, in any reference frame (A, B, Q or what have you) viewed from any

reference frame (A, B, Q or what have you). This is a second quantity that is invariant

in special relativity like the speed of light in vacuum. And it works for any reference

frame.

Lorentz Transformation

What we have done was to find a change in position and a change in time and how

the displacement and duration are different when observed from a different reference

frame. But a displacement is a difference between two positions, and a duration is a

difference between two times. What of the positions and times themselves? Are then

invariant? A quick thought back to the Galilean transformation tells us they must not be

invariant. If we have our person in reference frame A observing a person in reference

frame B we could describe the location of that person

xa = xb + vBAt

and this is profound. The position of person in our coordinate system in frame A

depends on when we ask the question. This makes sense, because reference frame

B is moving. We need something like this for special relativity, a special relativity

transformation.

Lorentz Transformation method 1

As we just said, let’s think again about our Galilean relativity. If we have our person

in reference frame A observing a person in reference frame B we could describe the

location of that person

xbA = xbB + vBA∆t

and this is profound. The position of person b in our coordinate system in frame A

depends on when we ask the question. This makes sense, because reference frame B is

moving. We could now write this as

xa = xb + vBA∆t

ya = yb

za = zb

in our subscript system. We only need one subscript. These are locations measured
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within the A frame or the B frame. They don’t really depend on an object. But we do

need to modify this. We know that lengths contract, and a length is defined using two

positions. We expect that the length represented by the position xb and the origin will

also be contracted. Let’s write this as

xa = G (xb + vBAtb)

where we assume that G is a number that is dimensionless but depends on vBA. This

G is the fraction that the position changes due to our high speed motion so that the

speed of light can stay constant. This number must go to one as vBA approaches c, the

speed of light. Note also that we wrote ∆t as tb. We know in special relativity that time

coordinates are not invariant, so we need to be specific about which time we are using.

This tb is the time recorded at the xb geoclock in the B reference frame. The reference

frames B and A are equivalent so this transformation should work the other way around

xb = G (xa − vBAta)

We want to find this G so we know how to accurately transform positions. There is a G

in both of the last two equations, let’s try to use them to solve for G. Substituting the

pervious equation into the last equation gives.

xa = G (G (xa − vBAta) + vBAtb)

and now let’s solve for tb

xa = G2 (xa − vBAta) +GvBAtb

xa = G2xa −G2vBAta +GvBAtb

xa −G2xa +G2vBAta = GvBAtb�
1−G2

�
xa +G2vBAta = GvBAtb�

1−G2
�

G
xa +GvBAta = vBAtb

�
1−G2

�

G

xa
vBA

+Gta = tb

tb =

�
1−G2

�

G

xa
vBA

+Gta

This is not illuminating, but we will need it later. It is not immediately clear how to

proceed. But it might help to take the derivatives

dxb = G (dxa − vBAdta)

and let’s take a derivative of tb

dta =

�
1−G2

�

G

dxa
vBA

+Gdta

and we can form vbx = dxb/dtb

vb =
dxb
dtb

=
G (dxa − vBAdta)
(1−G2)

G
dxa
vBA

+Gdta
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vb =
dtaG

�
dxa
dta

− vBA

�

dta
(1−G2)
GvBA

dxa
dta

+G

vb =
G

�
dxa
dta

− vBA
�

(1−G2)
GvBA

dxa
dta

+G

vb =
G (va − vBA)
(1−G2)
GvBA

va +G
Now from postulate 2 we require that for light vax = vbx = c

c =
G (c− vBA)
(1−G2)
GvBA

c+G

and solve for G

c

��
1−G2

�

GvBA
c+G

�

= G (c− vBA)

�
1−G2

�

GvBA
c+G = G− vBA

c
G

�
1−G2

�

GvBA
c = −vBA

c
G

�
1−G2

�

G2
= −v2BA

c2
1

G2
− 1 = −v2BA

c2
1

G2
= 1− v2BA

c2

G2 =
1

1− v2BA
c2

G =
1



1− v2BA

c2

Which is great! G is just γ! So our coordinate transformation should look like

xb =
(xa − vBAta)


1− v2BA
c2

= γBA (xa − vBAta)

xa =
(xb + vBAtb)


1− v2BA
c2

= γBA (xb + vBAtb)

and of course

ya = yb

za = zb

This makes a lot of sense. If our coordinate xb is part of a length, we expect the length

to contract. We should see length contraction in our transformation. And we do!

xb =
xa


1− v2BA
c2

− vBAta

1− v2BA

c2
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The first term is just our expression for length contraction provided we have the special

case where in both the A and B reference frames we have the other end of the length

at xa{1} = xb{1} = 0. But of course such a special case could only last a moment

because the xb frame is moving relative to the xa frame. Just like with our Galilean

transformation, the xb coordinate must depend on ta. The quantity vBAta is a length

as well, and it must be contracted as well. So this transformation for xb is just what we

should expect.

But in special relativity, we know that time changes as well. We need to also transform

t. We can do this with our equation for ta, but now we know G is γBA

ta = γBA

��
1

γ2BA
− 1

�
xb
vBA

+ tb

�

and putting in what γBA is yields

ta = γBA

��
1

1− v2BA
c2

− 1

�
xb
vBA

+ tb

�

ta = γBA

��
1− v2BA

c2
− 1

�
xb
vBA

+ tb

�

ta = γBA

��
v2BA
c2

�
xb
vBA

+ tb

�

ta = γBA

��vBA
c2

�
xb + tb

�

= γBA

�
tb +

vBA
c2

xb
�

This is also something we should expect

ta = γBAtb + γBA
vBA
c2

xb

Again the first part looks like time dilation. But the second term might be a surprise.

Notice it’s units.
m m

s
m2

s2

= s

It is an amount of time measured in the A frame. But it is an amount of time that

depends on where the position of the geoclock is in the B frame. Like our position in

the A frame depends on time in the B frame, our time in the A frame depends on our

position of our object in the B frame.

We found xb in terms of xa and ta but we found ta in terms of xb and tb. We would like

tb in terms of ta and xa. We can find this by solving for tb
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ta = γBAtb + γBA
vBA
c2

xb

ta − γBA
vBA
c2

xb = γBAtb

tb =
1

γBA

�
ta − γBA

vBA
c2

xb

�

but we need to turn our xb into a xa. We know

xb = γBA (xa − vBAta)

so then

tb =
1

γBA

�
ta − γBA

vBA
c2

xb
�

=
1

γBA

�
ta − γBA

vBA
c2

(γBA (xa − vBAta))
�

=
1

γBA

�
ta − γBA

�
γBA

vBA
c2

xa − γBA
vBA
c2

vBAta

��

=
1

γBA

�
ta − γ2BA

vBA
c2

xa + γ2BA
v2BA
c2

ta

�

=
1

γBA

�
ta + γ2BA

v2BA
c2

ta − γ2BA
vBA
c2

xa

�

=
1

γBA

��

1 +
1

1− v2BA
c2

v2BA
c2

�

ta − γ2BA
vBA
c2

xa

�

=
1

γBA








c2

�
1− v2BA

c2

�

c2
�
1− v2BA

c2

� +
1

1− v2BA
c2

v2BA
c2



 ta − γ2BA
vBA
c2

xa





=
1

γBA







 1�
1− v2BA

c2

�



 ta − γ2BA
vBA
c2

xa





=
1

γBA

�
γ2BAta − γ2BA

vBA
c2

xa

�

= γBA

�
ta −

vBA
c2

xa
�

and after all that we see that we just changed the minus sign in the second term. Our

transform is

xb = γBA (xa − vBAta)

yb = ya

zb = za

tb = γBA

�
ta −

vBA
c2

xa
�
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and as we saw, we can make the inverse transform

xa = γBA (xb + vBAtb)

ya = yb

za = zb

ta = γBA

�
tb +

vBA
c2

xb
�

Lorentz Transformation method 2

We have the Lorentz transformation, and a reasonable person would let this be good

enough. But we also learned about the invariant interval. We can find the Lorentz

transformation using the invariant interval. Let’s try it.

Suppose we have two reference frames, A and B. And suppose frame B is moving to

the right with speed vBA. We can put Bob in frame B in a space ship, for example. And

we could have Alice observing Bob’s ship go by.

We could imagine a special case where Bob’s space ship makes a flash at position

xB{f} = 0. In Galilean relativity we would find the position of this flash in the A

coordinates to be

xa{f} = xb{f}+ vBAta{f}
= vBAta{f}

and we expect something similar in the special relativity. Since we are trying to find

a coordinate in one reference frame and transform it into a coordinate in another

reference frame we won’t need to keep our subscripts that tell us from which frame we

are viewing. So we will drop the capital subscripts for now. But we know that in special

relativity we have to be careful about time. Our time coordinates are elapsed times. So
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we start with

tbA{f} =
taA{f}
γBA

and removing the view point subscript (because we are doing that)

tb{f} =
ta{f}
γBA

This tells us that a time on a geoclock in reference frame A will transform to a different

time on a geoclock in frame B. We could write this as

ta{f} = tb{f}γBA
So from our transformation equation we expect

xa{f} = vbAtb{f}γBA

But this was for the special case of a flash right at xb{f} = 0. What if the flash is ahead

of the space ship at xb{f : xb2}? We want any xb to transform into an xa and and tb to

transform into a ta.

Let’s say that we start our experiment again just as Bob passes Alice and that we

synchronized our clocks and choose our reference frame origins such that just as they

pass

tb{1} = 0

ta{1} = 0

xa{1} = 0

xb{1} = 0

which doesn’t sound less restrictive, but the generality of this derivation comes from

assuming a form for our transform. Let’s assume that our relativistic transformation

should be something like our Galilean transformation. It should not have x2 or t2 terms

or the units would be difficult. Let’s try

xa = Mxb +Ntb

ta = Gxb +Htb

where G, H, M, and N are functions to be found.

We can use what we did before for the special xb{1} = 0 case to help find H and N

xa{1} = M (0) +Ntb{1}
ta{1} = G (0) +Htb{1}

then

xa{1} = Ntb{1}
ta{1} = Htb{1}
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and from what we did before we know

ta = tbγBA

xa = vbAtbγBA
and let’s say we have two geoevents and we will mark them as {1} and {2}, then, using

our time equation from our special case (because it still applies so far)

∆ta = ta{2} − ta{1} = γBA (tbB{2} − tbB{1})
or

∆ta = ta{2} − 0 = γBA (tb{2} − 0)

ta{2} = γBAtb{2}
where our second point could be any ta (we didn’t specify exactly when {2} is so long

as it is not {1}), so we can drop the {2}
ta = γBAtb

Matching with our transform equations above we can see that

H = γBA

We can do this for position as well to see that

xa = vbAtbγBA

leads to

xa{2} = vBAγBA (tb{2} − tb{1})
= vBAγBAtb{2} − 0

= vBAγBAtb{2}
or for any second value

xa = vBAγBAtb

which implies that

N = vBAγBA

Our transform so far is

xa = Mxb + vBAγBAtb

ta = Gxb + γBAtb

But we still need to find M and G. There are many ways to do this, but let’s do it a

simple way by utilizing our invariant interval.

c2∆t2b −∆x2b = c2∆t2a −∆x2a = constant

and for our case

c2t2b{2} −∆x2b{2} = c2∆t2a{2} −∆x2a{2} = constant
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and since we are doing this for any {2} we can drop the {2} designation.

c2t2b −∆x2b = c2∆t2a −∆x2a = constant

And let’s plug in our xa and ta.

c2 (Gxb + γBAtb)
2 − (Mxb + vBAγBAtb)

2 = c2∆t2b − x2b
and hopefully we can use this to solve for M and G (this is not obvious, but it will

work, keep reading). Let’s expand out the squares

c2
�
G2x2b + 2GxbγBAtb + γ2BAt

2
b

�
−
�
M2x2b + 2MxbvBAγBAtb + v2BAγ

2
BAt

2
b

�
= c2∆t2b−x2b

and rearranging

c2G2x2b+2c2GxbγBAtb+c2γ2BAt
2
b−M2x2b−2MxbvBAγBAtb−v2BAγ

2
BAt

2
b = c2∆t2b−x2b

and combining like terms

c2G2x2b+x2b−M2x2b+c2γ2BAt
2
b−c2∆t2b−v2BAγ

2
BAt

2
b+2c2GxbγBAtb−2MxbvBAγBAtb = 0

or

�
c2G2 + 1−M2

�
x2b+

�
c2γ2BA − c2 − v2BAγ

2
BA

�
t2b+

�
2c2GγBA − 2MvBAγBA

�
xbtb = 0

and here is our first time in this class that we will use a clever idea. For the whole

equation to be equal to zero, each part must be also, so we can say
�
c2G2 + 1−M2

�
x2b = 0

�
c2γ2BA − c2 − v2BAγ

2
BA

�
t2b = 0

�
2c2GγBA − 2MvBAγBA

�
xbtb = 0

and if xbB and tbB are not zero, then the stuff in parenthesis must be. Then, taking the

first

c2G2 + 1−M2 = 0

c2G2 + 1 = M2

so that

M =
�

c2G2 + 1
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Now let’s take the second

c2γ2BA − c2 − v2BAγ
2
BA = 0

c2γ2BA − v2BAγ
2
BA = c2

�
c2 − v2BA

�
γ2BA = c2

γ2BA =
c2

(c2 − v2BA)

γBA =
1



1− v2BA

c2

which is nice, but not helpful.

2c2GγBA − 2MvBAγBA = 0

2c2GγBA = 2MvBAγBA

c2G = MvBA

G =
MvBA

c2

Now let’s substitute this into our equation for M

M =
�

c2G2 + 1

M =

�

c2
�
MvBA

c2

�2

+ 1

M =

�

c2
M2v2BA

c4
+ 1

M =

�
M2v2BA

c2
+ 1

M2 =
M2v2BA

c2
+ 1

M2 − M2v2BA
c2

= 1

M2

�
1− v2BA

c2

�
= 1

M2 =
1�

1− v2BA
c2

�

M =
1



1− v2BA

c2

= γBA

so then

G =
γBAvBA

c2

So our transformation.
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xa = γBAxb + vBAγBAtb

ta =
γBAvBA

c2
xb + γBAtb

or

xa = γBA (xb + vBAtb)

ta = γBA

�
tb +

vBA
c2

xb
�

We can add in to this a transform for y and z parts which don’t change, so

xa = γBA (xb + vBAtb)

ya = yb

za = zb

ta = γBA

�
tb +

vBA
c2

xb
�

We called this the special relativity transform, but it has a name. It is called the

Lorentz Transformation after a scientist that actually derived this from electrodynamics

before Einstein figured out why it worked. Of course we could do all this from Bob’s

perspective, Bob sees Alice going to the left with speed vAB = −vBA so

xb = γBA (xa − vBAta)

yb = ya

zb = za

tb = γBA

�
ta −

vBA
c2

xa

�

And of course this is just the same thing we got with our first method.

We should try an example to see how this works.



5 Using the Lorentz Transfor

mation (and Time Dilation

and Length Contraction)

No new sections

Fundamental Concepts in the Lecture

• Time Dilation

• Length Contraction

• Lorentz Transformation

How much do leading clocks lag trailing clocks?

We found earlier that when geoclocks are observed in a reference frame that is seen to

move from the perspective of another reference frame, the leading clocks trail or run

behind the clocks that follow them. We could use the Lorentz transformation to dis

cover what the observed time difference is between leading and trailing clocks (it will

come in handy later).
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Let’s start with a spaceship being piloted by Bob with his B reference frame moving to

the right past frame A where Alice is looking at Bob pass. Bob measures his ship which

is at rest in his reference frame to have a length

∆xbB = LbB = xb{1, F} − xb{1, R}
where F and R stand for the front and rear of the ship. And this is a proper time

because the measurement is made with the b ship stationary in the B reference frame.

Bob also sees all his geoclocks as synchronized

tbB{1, R} = tbB{1, F} = 0

Alice, of course, sees a different length for Bob’s ship.

∆xbA = LbA = xa{1, F} − xa{1,R}
And what we want to know is what times does Alice see on Bob’s clocks?

Knowing the time on the front an rear clock will allow us to calculate the time

difference

∆tbA{FR} = tbA{R} − tbA{F}

Let’s make things easier by choosing the situation where as Bob passes Alice his front

clock reads zero

tbB{1, F} = 0

and as they pass for that split second Alice’s clocks also read zero

taA{1, i} = 0

Note we can always synchronize one clock in each reference frame with one clock

in the other reference frame by carefully choosing how we set up our experiment.

But we can never synchronize more than one clock across reference frames. That is

because leading clocks will lag trailing clocks. We will see all the clocks in the moving

reference frame as not synchronized with each other.

Recall that we want to know what Alice see’s on Bob’s clocks. We can start by finding

out what Alice’s clock’s values would be in Alice’s frame. Then, this will be a job for

the Lorentz transformation to transform Alice’s times to Bob’s frame. Here is the basic

set of transform equations:

xb = γBA (xa − vBAta)

yb = ya

zb = za

tb = γBA

�
ta −

vBA
c2

xa
�

and we fill in the details, say, for the front of the ship.
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xb{1, F} = γBA (xa{1, F} − vBAta{1, F})
yb{1, F} = ya{1, F}
zb{1, F} = za{1, F}
tb{1, F} = γBA

�
ta{1, F} −

vBA
c2

xa{1, F}
�

where it bears repeating that we are looking at the geoclock event time from one of

Alice’s geoclocks (ta) and working to find what that geoclock event time it would

correspond with in the reference Frame B (tb).

We just want the time difference between the front and the rear of the ship, so let’s start

with the last of the set of Lorentz equations

tb{1, F} = γBA

�
ta{1, F} −

vBA
c2

xa{1, F}
�

and what we want is the time difference from the front to the rear. So we also need the

time on the rear clock.

tb{1, R} = γBA

�
ta{1, R} −

vBA
c2

xa{1, R}
�

Remember that we expect our leading clock to lag behind the trailing clock. So

tb{1, F} < tb{1, R}
so let’s define the difference in time on Bob’s clocks as seen by Alice as

∆tbA{FR} = tb{1, R} − tb{1, F}
to keep things positive. Let’s use the “subscript” FR to tell us that the ∆tbA is the

change in time from the front to the rear. Writing it all out gives

∆tbA{FR} = γBA

�
ta{1, R} −

vBA
c2

xa{1,R}
�
− γBA

�
ta{1, F} −

vBA
c2

xa{1, F}
�

= γBAta{1, R} − γBA
vBA
c2

xa{1, R} − γBAta{1, F}+ γBA
vBA
c2

xa{1, F}

= γBAta{1, R} − γBAta{1, F}+ γBA
vBA
c2

xa{1, F} − γBA
vBA
c2

xa{1, R}
But of course Alice sees all her clocks as synchronized so Alice’s clock events

ta{1, F} = ta{1,R} so the first two terms cancel

∆tbA{FR} = γBA
vBA
c2

xa{1, F} − γBA
vBA
c2

xa{1, R}

∆tbA{FR} = γBA
vBA
c2

(−xa{1, F} − xa{1, R})

∆tbA{FR} = γBA
vBA
c2

(xa{1, F} − xa{1,R})
Looking at the part in parenthesis, we can say that this must be the length of Bob’s ship
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as measured by Alice

∆xbA = LbA = xa{1, F} − xa{1,R}
then

∆tbA{FR} = γBA
vBA
c2

(LbA)

When Bob’s ship is stationary, it has a length LaA = LbB because we would measure

the ship to be the same length in any stationary reference frame (that is, when the ship

is sitting still in that frame). This is a proper length. But we know that lengths are not

invariant. So the length of the ship measured by Alice, LbA is shorter than the proper

length, LbB.

LbA =
LbB
γBA

It would be more convenient to measure Bob’s ship when it isn’t moving. So let’s say

we do that. Then we know LbB = LaA = Lp. Then our time difference is

∆tbA{FR} = γBA
vBA
c2

�
LbB
γBA

�

=
vBALbB

c2

So Alice sees Bob’s trailing clock as

∆tbA{FR} = vBALbB
c2

seconds ahead of the leading clock. Or said another way, if Alice takes a picture of

Bob’s ship as it goes by, in the picture the front clock will be read ∆tbA{FR} seconds

behind the rear clock (so long as Bob is flying forward). The “leading” and “trailing”

only correspond to “front” and “back” if the ship is flying forward.

Of course Bob sees his clocks as synchronized. But Alice sees this time difference

between his clocks. The subscripts are still a little hard. Think of ∆tbA{FR} as the

difference of the clock times on Bob’s clocks as observed by Alice in the A frame.

Putting it all together

We should do a more difficult example.

Suppose we have Bob in a spaceship again and Alice on the Earth. Bob’s space ship

passes Alice with a relative speed of vBA = 0.9428c (so that γBA = 3). Bob is to travel

to a distant star that Alice sees as 5 light years (5ly) from the Earth. Further suppose

that one of Bob’s clocks and and one of Alice’s clocks are zero when Bob passes the

Earth (tbB{1, E} = 0 and taA{1,E} = 0). The particular clocks are shown on the

figure by making them orange.
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a) from Alice’s perspective, how long does Bob’s trip to the star take?

b) Bob sends back data from his geoclock when he arrives at the star. What does Alice

see on Bob’s geoclock when the photo evidence from Bob’s geoclock arrives?

c) Bob sees himself as stationary in the B reference frame, and he sees the star moving

at −vBA toward him. From Bob’s perspective, how far away is the star as the Earth

begins to move away from Bob? That is, what is the EarthStar distance as viewed by

Bob?

d) What is the time on Alice’s A frame clock at the star location when the star passes

Bob?

e) Alice see’s Bob’s trip take 5.3 y. Bob see’s the star’s trip take 0.589 y. But we use

geoclocks and their photo evidence as observations, so both Bob and Alice must agree

on what the clocks read. Use the results of our analysis of leading clocks to explain

how these trip times are consistent.

a) From Alice’s perspective, how long does Bob’s trip take?
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We know

vBA = 0.9428c

γBA = 3

∆xaA{ES} = 5ly

tb{1, E} = 0

ta{1, E} = 0

It is important to note any distances and time intervals by what their reference frame

is and form which reference frame we view them. So ∆xaA{ES} is marked with an

A because we are viewing this distance from the A frame, and it is marked with an a

because the objects (a geoclocks) are stationary in the A frame. So we immediately see

this as a proper distance.

Within a reference frame, velocity is easy. It is just ∆x/∆t in that frame. If you

are using my subscripts, you just need to check that the subscripts match. If you are

using primes, you need to check that the primes match and mentally think if the view

reference frames also match. For our case, if we view the space ship frame as an object

moving in the A frame we can say write

vBA =
∆xaA{ES}
∆taA{ES}

where ∆xaA{S} is the distance from Alice to the star as viewed from the A frame

and taA{S} is the trip time to the star also viewed from the A reference frame. These

subscripts match. So we have just v = ∆x/∆t because it is all in one frame. So the trip

time can be written as

∆taA{ES} = ∆xaA{ES}
vBA

and we know all the parts

∆taA{ES} = 5ly

0.9428c
And now we can choose our units for c. Let’s use some convenient units. Let’s say that

c = 1
ly

y
A light year is how far light travels in a year (it is a distance) and so light will travel one

light year in a year’s time. Then c has a value of 1 ly/y and we have

∆taA{ES} = 5ly

0.9428
�
1 lyy

� = 5. 303 4 y

and since we said taA{1, E} = 0) we expect the elapsed time to be just
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∆taA{ES} = ta{2, S} − ta{1, E}
∆taA{ES} = ta{2, S} − 0

ta{2, S} = ∆taA{ES}
so Alice’s star clock should read

ta{2, S} = 5. 303 4 y

as Bob flies by the star.

b) Bob sends back data from his geoclock when he arrives at the star. What does Alice

see on Bob’s geoclock when the photo evidence from Bob’s geoclock arrives?

When Bob arrives, we know that Alice will see Bob’s clock as slow. Elapsed time

changes due to time dilation (tick size expansion). We can write the elapsed time as

∆tb{2, S} =
1

γBA
∆ta{2, S}

and since tb{1,E} = 0 we can say that

tb{2, S} = ∆tb{2, S} − tb{1, E} = ∆tb{2, S} − 0

must the time on Bob’s clock as he arrives at the star. We have these pieces so let’s

write

tb{2, S} =
1

3
(5. 303 4 y) = 1. 767 8 y

But you might worry about this. This is what Alice says Bob’s clock should read. But

the clock reads what it reads. Alice and Bob can’t disagree on this. They can disagree

on why the clock reads what it reads, but not on the reading, itself. So the reading on

Bob’s clock as he passes the star has to be 1. 767 8 y as viewed by Bob as well. And

this seems a little strange. But we will resolve the strangeness in the next part of the

problem.

c) Bob sees himself as stationary in the B reference frame, and he sees the star mov

ing at −vBA toward him. From Bob’s perspective, how far away is the star as the Earth

begins to move away from Bob? That is, what is the EarthStar distance as viewed by

Bob?
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We know that objects in moving reference frames as viewed from other frames will

experience length contraction. Bob sees the Earth  Star distance of Alice’s frame to

be moving relative to him with a speed vAB = −vBA. So Bob will see the distance

contracted.

∆xaB{ES} =
1

γBA
∆xaA{ES}

=
1

3
(5ly)

= 1. 666 7ly

And now we see why Bob sees his geoclock read only tbB{2, S} = 1. 767 8 y. Bob sees

the star travel only 1.6667ly and he sees the star come toward him at vAB = −0.9428c.
So he sees the time of the trip to be (note the matching subscripts).

∆tbB{ES} = ∆xaB{ES}
vAB

=
−1. 666 7ly

−0.9428
�
1 lyy

� = 1. 767 8 y

So indeed Bob and Alice agree on the time reading of Bob’s clock. But Bob would

say this reading is due to a smaller distance traveled and Alice would say it is because

Bob’s clocks run slow.

d)How much time has passed on Alice’s A frame clock at the star location from the

start of our experiment until when the star passes Bob?

Bob’s geoclock took a photograph with Bob next to the star 1. 767 8 y after the trip

started. Both Alice and Bob must agree on this. The photo can’t be wrong or read two

different things. So we know Bob sees the star travel for just 1. 767 8 y to get to him.
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And this is possible because he sees the star as only 1. 666 7ly away. So it works.

vAB =
∆xaB{ES}
∆tbB{2, S}

=
1. 666 7ly

1. 767 8 y
= 0.942 81

ly

y
which is just right in our new units for c. We can use time dilation again to find out

what Alice’s A frame clock at the star location will read when it passes Bob. This is an

elapsed time, so

∆taB{2, S} =
1

γBA
∆tbB{2, S}

=
1

3
(1. 767 8 y)

= 0.589 27 y

So the A frame geoclock at the star will have an elapsed time of 0.589 27 y past it’s

start time since the star’s voyage to Bob. Of course, Bob doesn’t see Alice’s clocks as

synchronized. So we should probably worry about what that start time was for Alice’s

star location clock.

e) Alice see’s Bob’s trip take 5.3 y. Bob see’s the star’s trip take 0.589 y. But we use

geoclocks and their photo evidence as observations, so both Bob and Alice must agree

on what the clocks read. Bob must agree that Alice’s clock reads 5.3 y when the star

reaches him. Use the results of our analysis of leading clocks to explain how these trip

times are consistent.

Our notation and postulate 3 can help us here. First note that

taA{2, S} = 5. 303 4 y

This is the time in the A frame at the star. But for Alice in the A frame, all A frame

clocks are synchronized, so she sees the clock at the star and the clock on the Earth to

both read 5. 303 4 y when Bob passes the star. But Bob won’t see the clocks in the A

frame as synchronized. This seems like a job for the Lorentz transformation. But we

did this Lorentz problem in our last example so we know that the clocks will be off by

∆tbA{FR} = vBALbB
c2

where LbB was a proper distance. In our case, we want the proper distance between the

Earth and the star. That would be the distance measured in the A frame because in that

frame the Earth and the star are not moving.

LbB = LaA = ∆xaA{ES}
so we expect there to be a time difference between the star’s clock and the Earth’s clock
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of

∆tbA{FR} =
vBA∆xaA{ES}

c2

=

�
0.9428

�
1 lyy

��
(5ly)

�
1 lyy

�2

= 4. 714 y

but we need to think about how to apply this ∆tbA{FR}. From Bob’s perspective, the

Earth’s clock will be the leading clock because everything in the A frame is moving to

the left. The star location clock will be the trailing clock. We said that at the Earth,

Alice’s clock starts at zero taA{1, E} = 0. But since it is leading clock from Bob’s

perspective, then the Star’s clock will already be ahead of the Earth’s clock by an

amount ∆tbA{FR}. The star’s clock didn’t start at zero according to Bob. So from the

B frame perspective, the a star clock reading when our experiment started must have

been.

taB{1, S} = 4. 714 y

Then the reading on the start’s clock as is passes Bob would be

taB{2, S} = taB{1, S}+ taB{2, S}
= ∆tbA{FR}+∆taB{2, S}
= 4. 714 y + 0.589 27 y

= 5. 303 3 y

So Bob does see the star’s geoclock with 5. 303 3 y on it as he passes. All is consistent.

But Alice and Bob disagree on why the clocks read what they do. Alice sees her clocks

as synchronized and sees Bob travel 5ly at 0.9428c so her clock at the Earth and her

clock at the star will read 5.3 y. Bob sees the star travel just 1. 666 7ly at 0.9428c so he

says the trip takes 0.589 27 y, but he sees Alice’s clocks as not synchronized. He sees

Alice’s clock at the star location as running ahead so when our experiment starts her

star location clock already reads 4.7 y. So at the end of the experiment Bob sees Alice’s

star location clock read 5.3 y, but only because it was running ahead.

The observations are the same, the interpretations different, and all just because Alice

and Bob use different reference frames. This is another cherished idea we give up in

special relativity. The invariance of explanation for events! But really this is just a

special form of the idea of the noninvariance of simultaneity.

Technically we used the Lorentz transformation in part e, but we did it borrowing a

result from a previous problem.
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As you can see, special relativity problems are tricky and take some careful thinking

through.





6 Special Relativity Dynamics

Sections 2.6 and 2.7

Fundamental Concepts in the Lecture

• Time Dilation and the Twin Paradox

• Spacetime Diagrams

• Velocity addition

Spacetime Diagrams and the Twin Paradox

As we have derived the Lorentz transformations, you may have noticed that we placed

the direction of motion along the xaxis for convenience. And that the transformation

equations were different for the xdirection than for the y and zdirections. Often we

reduce relativistic problems to onedimensional problems with our one dimension in

the direction of the motion because it is the direction that is effected most by the mo

tion. We are used to doing this, we have been doing this since PH121.

where we put the x axis as vertical and the time axis as horizontal. It turns out that this

kind of graph will be helpful in special relativity. But we will switch the position of the

graphs (because it is traditional). It is called a spacetime diagram and it looks like this.
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Time is on the vertical access and distance (along the direction of motion) is on the

horizontal access. And let’s set the units for this graph to be distance in light years

and time in years. Then the path of a light beam would be a horizontal path at 45 ◦. A

stationary object would have a path on the diagram that looks like this.

The distance doesn’t change with time. A path on a spacetime diagram is called a world

line. The red line is the world line for a stationary particle. If the object has a speed v

that is less than c.
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Let’s analyze an example using spacetime diagrams. Let’s take a specific example.

Two twins are involved in an experiment. One stays on Earth. The other travels in a

space ship at a high speed, say, 0.6c to a star 3ly away. The Earthbound twin we call

Goslo and the traveler we call Speedo (no swim suit jokes please). We would expect

that Goslo will see Speedo’s clocks as runing slow. And from what we have done

before we know that Speedo will see Goslo’s clocks as running slow. But when the

experiment is run, we find that when Speedo and Goslo meet again, Speedo seems to

have aged less than Goslo. How do we resolve this apparent contradiction.

We can use such a diagram to show an asymmetry for our twins Speedo and Goslo.
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Say Speedo goes 3ly and then comes back. Goslo would watch Speedo travel with a

powerful telescope. He would conclude that the time of the trip to the star was

∆tsG{E,S} =
2∆xgG{E,S}

vGS

=
3ly

0.6
�
1 lyy

�

= 5.0 y

But to Speedo the Earth and Star are what are moving. Speedo sees himself as

stationary in his reference frame. And we know that moving lengths shorten. So the

Earthstar distance is shorter for Speedo.

∆xgS{E,S} =
1

γSG
∆xgG{E,S}

=
1

(1.25)
(3ly)

= 2. 4ly

So Speedo doesn’t think the distance between the Earth and the star is all that far. Let’s
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put this into our time equation for the EarthStar movement for Speedo.

∆tgS{S,E} =
∆xgS{S,E}

vSG

=

1
γSG

∆xgG{E,S}
vSG

=
1

γSG

∆xgG{E,S}
vSG

=
1

(1.25)

− (3ly)

−0.6
�
1 lyy

�

= 4.0 y

Thus, Speedo thinks the star comes to meet him in just 4 y. And since we started

Speedo’s clocks with ts{1, E} = 0 this last value is just what should show up on

Speedo’s clock when he gets to the star.

Now if half the trip takes 5 y we might guess that the whole trip would take 10 y as

viewed by Goslo and if half the trip takes 4 y then the whole trip should take 8 y as

viewed by Speedo. And so Speedo will be younger than his brother when they get back

together. And this is what we see on the spacetime diagram. The diagram we drew was

Goslo’s reference frame. From Goslo’s perspective Speedo’s moving clock should run

slow.

But when Speedo observes Goslo’s clocks he sees Goslo as moving. So Speedo sees

Goslo’s clocks as running slower. So

∆tgS{E,S} =
1

γGS
∆tsS{ES}

=
1

1.25
(4.0 y)

= 3. 2 y

So Speedo thinks only 3.2 y have passed on Goslo’s star geoclock.

So Goslo thinks Speedo’s clocks are slow, and Speedo thinks Goslo’s clocks are slow.

Special relativity says both are right. But when Speedo get’s back to Earth, it is clear

that he is younger (and so would be any living things or any objects, like radioactive

elements, etc.–we can do this kind of experiments, we just don’t really do them on

people).

So how can this work?

Let’s use the power of spacetime diagrams to illustrate what his happening. We can

start with a spacetime diagram for the outbound trip. From Goslo’s reference frame we
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have

where the red thick line is Speedo’s world line as viewed from the G frame. Note that

in the G frame horizontal lines are lines of constant time. All events on this line are “at

the same time.” We call these lines of simultaneity.

We could also add lines of constant position.
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but this graph is all from Goslo’s view point. Speedo would see the star moving. For

the star’s “outbound” trip Speedo’s reference frame diagram would look like this.

It is a little hard to compare the two reference frames. So let’s do something very

strange. Let’s use the Lorentz Transformation to transform Speedo’s coordinate axes

onto Goslo’s spacetime diagram. This would let us see what both viewpoints observe

with just one diagram. We can start with Speedo’s time axes. Speedo is at rest in his

reference frame. So his time axis in on his graph will have to be the world line on

Goslo’s graph.
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We should transform a few points to mark whole year values on the line. We know for

the ts axis this is where xs = 0. We can use our Lorentz Transformation

xg = γSG (xs − vSGts)

yg = ys

zg = zs

tg = γSG

�
ts −

vSG
c2

xs
�

Then, using the last of the set of equations

tg = γSG

�
ts −

vSG
c2

(0)
�

= (1.25) (ts)

and we can transform a few values

tg = 1.25 (1) = 1. 25

tg = 1.25 (2) = 2. 5

tg = 1.25 (3) = 3. 75

tg = 1.25 (4) = 5.0

We can mark these points on our line for ts{1} through ts{4}



Spacetime Diagrams and the Twin Paradox 91

The time axis was easy. Let’s try the position axis. Let’s write our Lorentz

transformation for position

xg = γSG (xs − vSGts)

and since we know that the xS axis is at tS = 0 we can put this in

xg = γSG (xs − vSGt (0))

= γSGxs

= 1.25xs

which is a line with slope of 1.25 and horizontal intercept of 0. Calculating a few values

gives the picture

xg = 1.25 (1) = 1. 25

xg = 1.25 (2) = 2. 5

xg = 1.25 (3) = 3. 75

xg = 1.25 (4) = 5.0

Here is the graph
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Note that the transformed xs and ts axes are symmetric about the worldline for light.

We can add in S frame lines of simultaneity and constant position. the lines of simul

taneity will be parallel to the xs axis and the lines of constant position will be parallel

to the ts axis.

And look at the point with the red circle around it. This is when and where Goslo sees

Speedo reach the star. It is as xg = 3ly and tg = 5y. But if we use the skewed S frame

axes we can see that it is at xs = 0 (because the star has come to Speedo, who is at

xs = 0) and ts = 4y. This is just what we calculated! And if we follow one of the

slightly orange lines of S frame simultaneity to the tG axis, we see that Speedo indeed

sees Goslo’s elapsed time as just about 3.2 y. This graph shows just what we calculated

in a fairly understandable way.

Now let’s take on the return trip. And here is the important part, Speedo has to change
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reference frames! This might be a quick deceleration followed by an acceleration. But

he does change reference frames for the return trip. Let’s draw a new diagram from the

G frame perspective for the return trip.

The world line in the G frame must go from 3ly back to 0ly. And we already guessed

that this will take 5 y. Once again we can use the lorentz transform to find ts2 points on

this line and to transform them into our diagram. We can use the Lorentz transform,

or use the fact that the axes must be symmetric across the c world line to find the xs2

axis. I won’t calculate points along this axes (though we could) because I just need the

lines of simultaneity to finish this particular problem. But those lines of simultaneity

are parallel to the transformed xs axis. So we need at least the axis.

But notice! Something momentous has happened. The lines of simultaneity are very

different than for the outbound trip. Let’s put the two graphs together.
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Now we see something spectacular. Notice that for the return trip we can see that

Speedo sees 4 y elapse on his clock on the return trip (count the year dots on the line)

but by following the lines of simultaneity we see that Speedo sees Goslo age just 3.2 y.

He sees Speedo’s clock going slower. Also notice that Goslo sees Speedo’s clock tick

off only 4 y (again count the dots) while his own ticks off 5 y for the whole return trip.

So once again Goslo sees Speedo’s clock tick slow. For the legs of the trip the situation

is absolutely symmetric. But there is a big difference between Goslo and Speedo’s

trips. At the turnaround point just Speedo switches reference frame.

Let’s think about this switch. Speedo sees Goslo’s clock located at the star tg{S} as

being ahead of Goslo’s clock located at the Earth tg{E} by an amount

∆t =
∆xgG{E,S}vSG

c2

due to leading clocks lagging trailing clocks. The Earth clock is first as Speedo sees the

EarthStar system move to the left. So the Earth clock will be behind by.

∆t =
(3ly) 0.6

�
1 lyy

�

�
1 lyy

�2

= 1. 8 y

So Speedo does indeed see Goslo’s star clock tick off 3.2 y as the star travels to him.

But Speedo sees the star’s clock start at tg{1, S} = 1.8 y. So the clock reading as
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Speedo and the star are collocated is

tg{2, S} = 1.8 y + 3.2 y = 5.0 y

and both Speedo and Goslo agree on the clock reading as Speedo reaches the star.

(Remember, Goslo sees all his clocks as synchronized in his reference frame, so if the

star clock says 5 y, so does the Earth clock in Goslo’s frame.)

Now for the return trip we see that the direction has changed, so Speedo now sees

the star clock leading and the Earth clock trailing. Once again there will be a 1.8 y

difference, but it will be the other way. As soon as Speedo is back up to speed after the

turn around he sees a jump in Goslo’s clock because the leading clock has switched to

the star clock so the “lag” has to switch clocks.

So as Spedo changes direction he sees Goslo’s clock go from 3.2 y to 3.2 y+2×1.8 y =

6. 8 y! And it is Speedo that fires rockets to change direction. So we know it is Speedo

that has this reference frame change, not Goslo. The 2× 1.8 y = 3. 6 y clock shift is a

product of changing reference frames, and it makes all the difference.

This illustrates one of the important steps in doing relativity problems. You must go
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through the process of determining the reference frames, which times are proper times,

and which lengths are proper lengths. Mentally setting up the problem is often more

work than the math to get an answer. In our twin paradox problem, we need to know

which twin is the stationary twin before we can use math to do any calculations. This is

going to be a necessary step in our problems.

I’m sure you have noticed, we have a transformation for position, but not yet for

velocities. We had a Galilean transformation for velocities. We need to complete our

Lorentz transformation. We will take this up next.

Velocity Transforms

Let’s review the Galilean Transformation for a minute

For position we have the transform

xA = xB + vABt

yA = yB

zA = zB

where the subscript a indicates a measured position in the Aframe and the subscript b

indicates a measured position in the Bframe. The velocities also transform. Suppose

something is moving in frame B as viewed by a person in frame B with speed vbB, but

we view the object from frame A. The speed the person in frame A sees for this object

is vbA. For the Galilean transformation we just add the velocities in the direction of
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motion.

vbAx = vbBx + vBA

vbAxy = vbBy

vbAz = vbBz

where in this case the first subscript told us what object was moving and the second

subscript told us what reference frame we were using as our view point. We can get the

velocity transform from the position transform. First let’s identify an object b that is in

the B reference frame. Then we can write

xbA = xbB + vABt

and now take a derivative with respect to time

vbAx =
dxbA
dt

=
dxbB − vABdt

dt

=
dxbB
dt

+ vAB

= vbBx + vAB

We want something like this for special relativity. And we have part of it already. We

have the coordinate transform part.

xa = γBA (xb + vBAtb) xb = γBA (xa − vBAta)
ya = yb yb = ya
za = zb zb = za
ta = γBA

�
tb +

vBA
c2 xb

�
tb = γBA

�
ta − vBA

c2 xa
�

where here the small letter subscripts tell which reference frame is used to measure the

coordinate and the capital subscripts (BA) show the reference frames. But we don’t

have the velocity transform yet. These equations tell us how to find the position in one

reference frame of an object that is in a different reference frame. We called them the

Lorentz transformation. Our goal was to find the new equations for special relativity

that allow us to find the velocity of an object in one reference frame for an object that

is moving in a different reference frame. To do this we will take our Lorentz transform

equations and take a derivative. But we know from the Galilean transformation we need

two subscripts, one to identify what is moving and one to identify the reference frame.

So we might have an object b (maybe Bob walking around in his space ship) moving in

reference frame B. We want to know what speed we see when we look from reference

frame A. In reference frame A, Bob’s speed would still be

vbAx =
dxbA
dtbA
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and we know how to find dxbA

dxbA = γBA (dxbA + vBAdtbA)

Note that in taking the derivative we now have a displacement and a duration and we

are smart enough at this point in our study of special relativity to know that we need

to label the viewing reference frame for these. So now the first subscript is telling

us the object (b for Bob) that is moving and the capital letter subscripts are telling us

which frame we are using to view the moving object (A). In the Lorentz coordinate

transformation small letters told us about which reference frame we were measuring

in. That is like where Bob is in the reference frame. The coordinate transformation

did not need a viewpoint subscript, but changes in position and time do (think length

contraction and time dilation). And velocity is made from changes in position and time

(dx and dt are just small ∆x and ∆t values, so they will need a viewpoint) so we

should use the viewpoint subscript.

We have dxbA, we will also need

dtbA = γBA

�
tbB +

vBA
c2

xbB

�

Putting together our dxbA and our dtbA we get

vbAx =
γBA (dxbB + vBAdtbB)

γBA
�
dtbB + vBA

c2 dxbB
�

=
dtbB

�
dxbB
dtbB

+ vBA
�

dtbB
�
1 + vBA

c2
dxbB
dtbB

�

=
(vbBx + vBA)�
1 + vBA

c2 vbBx
�

so

vbAx =
(vbBx + vBA)�
1 + vBA

c2 vbBx
�

This notation matches our Galilean subscript system

vbAx = vbBx + vBA Galilean

vbAx =
(vbBx + vBA)�
1 + vBA

c2 vbBx
� Special Relativity

Of course we could reverse this. Suppose we let the person in reference frame B stand

still and we let the person in reference frame A move. We would find

vaBx =
(vaAx − vBA)�
1− vBA

c2 vaAx
�
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For low frame speeds vBA this velocity transform equation has to reduce to the Galilean

velocity transformation. At low speeds, vBAxc2 vaA ≈ 0 so

vaBx ≈
(vaAx − vBA)

(1− 0)
= (vaAx − vBA)

which is, indeed, our Galilean velocity transformation.

We found the velocity transformation only for the xdirection so far. We will need the

y and zdirections as well. You might think that the velocities might be the same in

the y and zdirections. But let’s repeat what we have done for the ydirection to check

this. We know that yb = ya because the y positions don’t change under the Lorentz

transformation. Ah but the time does change! And we know how the time changes

because we know dtbA from above so

vbAy =
dybA
dtbA

vbAy =
dybB

γBA
�
dtbB + vBA

c2 dxbB
�

=
dybB

dtbBγBA

�
1 + vBA

c2
dxbB
dtbB

�

=

dybB
dtbB

γBA

�
1 + vBA

c2
dxbB
dtbB

�

=
vbBy

γBA
�
1 + vBA

c2 vbBx
�

so

vbAy =
vbBy

γBA
�
1 + vBA

c2 vbBx
�
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and we could do the same thing for the z component

vbAz =
vbBz

γBA
�
1 + vBA

c2 vbBx
�

To summarize, the Lorentz velocity transformation is

vbAx =
(vbBx + vBA)�
1 + vBA

c2 vbBx
�

vbAy =
vbBy

γBA
�
1 + vBA

c2 vbBx
�

vbAz =
vbBz

γBA
�
1 + vBA

c2 vbBx
�

and the inverse transform is

vaBx =
(vaAx − vBA)�
1− vBA

c2 vaAx
�

vaBy =
vaAy

γBA
�
1 + vBA

c2 vaAx
�

vaBz =
vbBz

γBA
�
1 + vBA

c2 vaAx
�

Notice that the xcomponent of the an object’s velocity does effect the y and

zcomponents of the transformed velocity.

Let’s try a problem. Suppose we have a rocket ship going vBA = 0.8cı̂ and we have an

object, b, in reference frame B that we launch from the space ship (say a “probe”) with

velocity vbB = 0.7ĉı. What is the speed of the probe as viewed from reference frame

A?

The Galilean transformation would give

vpAx = (vpBx + vBA) = 0.7c+ 0.8c = 1. 5c

but we are suspicious. We have heard that nothing can go faster than the speed of light

in vacuum (something that we will soon show to be true). But it is no surprise that our

Galilean transformation failed. Let’s try the Lorentz velocity transformation

vpAx =
(vpBx + vBA)�
1 + vBA

c2 vpBx
�

=
0.7c+ 0.8c

1 + (0.7c)(0.8c)
c2

=
0.7c+ 0.8c

1 + (0.7) (0.8)

= 0.961 54c

This is in keeping with our statement that nothing can go faster than the speed of light.
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Doppler shift

Let’s think about wave motion and the Doppler shift. In our relativistic world, we can’t

have a distinction between reference frames like we did when we derived Doppler shift

back in PH123. But we know from experiment that Doppler shift happens with light.

Let’s try this using our understanding of time dilation to see if we can find how this

works.

Our situation is a light source at position E (for emitter) that is stationary in reference

to frame A. In frame A we have a moving detector, D, with velocity vDA. The light

has made some N waves between E and D of frequency f . In frame A it took (a clock

viewed from the A fame) ∆taA = NT = N/fA to create these N waves. This is a

proper time because the light emitter (the timing device) is at rest in the A frame. Now

let’s change reference frames to the B frame where D is stationary and E is moving

with velocity −vBA from the perspective of D. In frame B, E has moved to the left.

The wavelength of the waves can be found by taking the distance between E and D and

dividing by N (regardless from which view point we choose, there are still N waves).

λB =
LN waves

N
The distance LN will be larger viewed from the B frame by the amount vBA∆taB

because E is moving in frame B. So the wavelength will be larger than just the speed

of the waves (c) times the time ∆taA. We can say that the B frame is moving with

velocity vBA = −vDA so the light travels a distance

LN = c∆taB + vBA∆taB



102 Chapter 6 Special Relativity Dynamics

in making N waves. Then the wavelength in the B frame will be

λB =
c∆taB + vBA∆taB

N
And in frame B the frequency must be

fB =
c

λB
where of course c is the same in both frames. We know λB so we can just substitute

fB =
c

c∆taB+vBA∆taB
N

and we know that ∆taA = N/fA so

N = ∆taAfA

and we can put this into our formula for fB

fB =
c

c∆taB+vBA∆taB
∆taAf

=
c∆taAfA

c∆taB + vBA∆taB

=
cfA∆taA

(c+ vBA)∆taB

=
fA�

1 + vBA
c

� ∆taA
∆taB

But now we have both ∆tbA and ∆tbB in the same equation. We know how these two

relate (time dilation)

∆taB = γBA∆taA

Then fB would be

fB =
fA�

1 + vBA
c

� ∆taA
γBA∆taA

=
fA�

1 + vBA
c

�
∆taA

��
1− v2BA

c2

�

∆taA

=

fA

��
1− v2BA

c2

�

�
1 + vBA

c

�

=
fA


�
1− vBA

c

� �
1 + vBA

c

�

�
1 + vBA

c

�

= fA


�
1− vBA

c

�


�
1 + vBA

c

�
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So the frequency we would see in frame B is

fB = fA


�
1− vBA

c

�


�
1 + vBA

c

�

This is the equation for Doppler shift for light. We will need this for building the

universe later.





7 Relativistic Conservation

Laws

Section 2.8 and 2.9

Fundamental Concepts in the Lecture

• Relativistic momentum

• Relativistic kinetic energy

• Relativistic total energy

We know from PH121 that momentum is conserved in collisions. We also know that

the values of the momenta depend on reference frame. We want the laws of physics,

like conservation of momentum, to still work in any reference frame. We could check

this with our new Lorentz transformation. Let’s take a very specific particle collision.

Two identical particles, each of mass m, move toward each other with speed v. They

collide totally inelastically. We can envision doing this experiment in one of our labs,

so we could call it the lab frame. But notice that the combined particle cc isn’t moving

in this frame. In the past we have named frames where an object is stationary in that

frame after the object. In this case c is stationary in the frame so let’s call the frame C.

Now let’s observe this interaction from a frame that moves along with particle a. The a

particle will be stationary in this new frame, so let’s call it the A frame.
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We expect that the values of the momenta would change when we change frames, but

that momentum would still be conserved.

In the C frame we know

vaC i = v

vbC i = −v

vcCf = 0

and classically we have momentum

Pi = paC i + pbC i

= mvaC i +mvbC i

= mv +m (−v)

= 0

and

Pf = 2m (0)

= 0

and momentum is conserved.

Now let’s try the A frame. We know our Lorentz velocity transform,

vbAx =
(vbBx + vBA)�
1 + vBA

c2 vbBx
�

vbAy =
vbBy

γBA
�
1 + vBA

c2 vbBx
�

vbAz =
vbBz

γBA
�
1 + vBA

c2 vbBx
�

so let’s use it for our momentum problem. Let’s write these for our C and A reference
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frames.

voAx =
(voCx − vAC)�
1− vAC

c2 voAx
�

voAy =
voCy

γAC
�
1− vAC

c2 voCy
�

voAz =
voCz

γAC
�
1− vAC

c2 voCz
�

where I have used an nice generic “o” as the object subscript. But we have three

particles so we will have to put in their subscripts as we go. Let’s write the first one of

these for particle a the x direction with lab and A frame subscripts.

vaAi =
vaCxi − vAC�
1− vAC

c2 vaCxi
In this particular example, we ride with particle a so vaCxi = vAC = v

vaAi =
v − v



1− v2

c2

= 0

and for particle b

vbAi =
vbCi − vAC�
1− vAC

c2 vbCxi

vbAi =
−v − v



1− −vv

c2

=
−2v



1 + v2

c2

and for the combined particle C

vcAxf =
(vcCx − vAC)�
1− vAC

c2 vcCxi
�

=
0− v



1− (0)v

c2

= −v

Now let’s try our classical momentum equations
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PCxi = paCxi + pbCxi

= mvaCxi +mvbCxi

= m (0) +m



 −2v


1 + v2

c2





=
−2vm



1 + v2

c2

and

Pcxf = 2m (−v)

= −2mv

which are not the same. We have a problem. We will need to do more work in

developing our theory of special relativity to rescue conservation of momentum.

Relativistic momentum

To remedy our momentum problem, let’s hypothesize that the momentum changes in

a similar way to our position transform. The relativistic momentum will be larger or

smaller by some factor that we will once again call G.

−→p = Gm−→v
Our job would be to find a G that allows the postulates of special relativity to hold, and

that reduces to the classical case when speeds are slow. To find G let’s take another

very specifically chosen particle interaction. Two identical particles with mass m ap

proach with the same velocity, but now the interaction is two dimensional.
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Conservation of momentum tells us that the change in momentum for particle a must

be the same as the change in momentum for particle b. Let’s call our reference frame

frame C. Then

∆paCy = ∆pbCy

∆paCx = ∆pbCx

and for our current problem of finding G, let’s look at just the ypart.

paCyi = GaCmAvaCyi

= GaCm

� 1
2yC
∆taci

�

and after the collision in our very special case the speed of particle a is the same only

negative

paCyf = GaCmavaCyf

= −GaCm

� 1
2yC

∆taCf

�

because we assume the mass doesn’t change, and because the times ∆taci and ∆tacf

will be the same

∆paCy = paCyf − paCyi

= GaCm

� 1
2yC

∆taC i

�
−

�
−GA1m

� 1
2yC

∆taCf

��

= 2GaCm

� 1
2yC

∆taC i

�

= 2GaCm

�
yC

∆tac{total}

�

Likewise,

∆pbCy = 2GbCm

�
yC

∆tbc{total}

�

Because ∆taC{total} = ∆tbC{total} due to the symmetry of the case we chose to

study,

∆paCy = ∆pbCy

becomes

2GaCm

�
yC

∆taC{total}

�
= 2GaCm

�
yC

∆tbC{total}

�

GaC = GbC

in the C frame.

But now let’s consider a frame, A, where we ride along with vAC = vaCx. That is, the

A reference frame moves at the speed of the particle a xcomponent as viewed from
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frame C. In this frame particle a is not moving in the x direction (which is why we will

name this frame A, it is the frame where a is stationary in x).We would see our colli

sion like this

In this frame we have

∆paAy = −2GaAm

�
yA

∆taA{total}

�

we don’t expect the y distance to change because all of our relative motion is in the

xdirection, so yC = yA

∆paAy = −2GaAm

�
yC

∆taA{total}

�

and likewise

∆pbAy = −2GbAm

�
yC

∆tbA{total}

�

but just looking at the figure reminds us of our boat example that we used to

derive time dilation. We expect this case won’t be different. We expect that

∆taA{total} = ∆tbA{total} so

∆paAy = ∆pbAy

becomes

−2GaAm

�
yC

∆taA{total}

�
= −2GbAm

�
yC

∆tbA{total}

�

GaA

∆taA{total}
=

GbA

∆tbA{total}
and remember that ∆taA{total} = taAf − taAi and we might try to use the Lorentz

transformation to find these times, but we quickly realize that we don’t know the actual

locations xaAi, xaAf and this will be a problem in using the transformation equations.

We can get around this by considering something. The time ∆taA{total} has both

taAf and taAi measured in the same location. Particle A does move in the ydirection,

but not at all in the direction of the relative motion. This is like the clock ticks on the
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boat in the boat frame. This meets our criteria for begin a proper time

∆taA{total} = ∆tap

By knowing the proper time, we might use the time dilation equation. We would like

to do that. But we realize that in our comparison of frame A to frame C, there is the

possibility of using a proper time for A, but not for B

∆taC =
∆taA


1−
�
vAC
c

�2 = γAC∆taA

where a is not moving in the x direction in frame A. But it is not true that B is at rest

in either frame. We need a different reference frame if we are going to find the proper

time for particle b. That’s fine, let’s consider another reference frame, this time riding

along with a frame speed vBC = vbCx. We will call this frame B because particle b

won’t move (in the x direction) in this frame.

We immediately recognize that ∆tbB{total} is the proper time in this frame because in

the B primed frame particle b is not moving in the direction of the relative motion, so it

is like the clock situation on the boat frame.

∆tbB{total} = ∆tbp

and due to symmetry of our carefully designed experiment we can see that for this case

∆tbp = ∆tap. We could write time dilation for b as we move from frame B to frame A

∆tbA{total} =
∆tbp�

1−
�
v2BA
c2

�

where the speed vBA is still the vAC = vBx = vAx. This fills in our missing piece from
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our prime frame so we can write
GaA

∆taA{total}
=

GbA

∆tbA{total}
GaA

∆tap
=

GbA

∆tbp�

1−
�
v2
BA
c2

�

and due to symmetry we can see that it must be true that ∆tap = ∆tbp for our carefully

designed situation.
GaA

∆tbp
=

GbA

∆tbp�

1−
�
v2
BA
c2

�

This gives

GbA =
GaA�

1−
�
v2BA
c2

�

which is a positive step forward. We can relate the G terms from a and b. But we want

an actual solution for the G′s. So let’s change our situation slightly. Let’s say that we

reduce the ydistance between the two particles, and let’s reduce the ycomponent of

the velocities so that a is stationary and b moves only in the xdirection.

With this modification we can use the requirement that at low speeds our GaA must go

to 1. And particle b moves with speed vbA = vBA in the −x direction so

GbA =
1

�
1−

�
v2bA
c2

�

and this is what we wanted! We can write
−→p bA = GbAm

−→v bA

=
1

�
1−

�
v2bA
c2

�m−→v bA

and we can generalize this to any particle in any frame
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−→p =
1



1−

�
v2

c2

�m
−→v

Often you will see this written as
−→p = γm−→v

But there is one big caveat. Here γ is a function of vbA the particle speed. In the

Lorentz transformation γ is as function of the relative frame speed, vBA. We might

do well to keep our subscripts to show the difference when we use γ as a symbol for

1/


1−

�
v2

c2

�
.

γbA =
1

�
1−

�
v2bA
c2

�

or

γBA =
1

�
1−

�
v2BA
c2

�

so as not to risk confusion.

Relativistic Kinetic Energy

Our Lorentz transformation broke conservation of momentum. We should be worried

about conservation of energy. But rather than test with a particle interaction, lets just

rederive our expression for kinetic energy and see if it is the same using the relativistic

quantities that we know so far. We derived the change in kinetic energy back in PH121

as

∆K = w

and we know that work is

w =

	 −→
F · d−→x

for a classical universe this would give just

w = m

	
d−→v
dt

· d−→x

= m

	
d−→x
dt

· d−→v

= m

	
−→v · d−→v

=
1

2
mv2 +C

but we now know that our classical version of momentum was not universally good,
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and classically we can write our force as

F = ma = m
dv

dt
=

dp

dt
so if our momentum is different for relativity, then forces should be different as well.

We found that the relativistic momentum for any particle in any reference frame is

given by
−→p = γm−→v = γbAm

−→v = γpm
−→v

where I didn’t include subscripts because it is any particle momentum in any frame.

But that is fraught with peril. So let’s put a p on as a subscript to let us know this is

a momentum type γ. You would have to supply your own subscripts when you do a

problem. But we want to do this next problem for any momentum. And we want to take

a derivative of the general momentum equation to find the general force equation.

Let’s look at dp/dt in some detail

dp

dt
=

d

dt






1
�
1−

�
v2p
c2

�mv






dp

dt
= m



 1


1−

�
v2

c2

�
dvp
dt

+ v



−1

2

�

1−
�

v2p
c2

��− 3
2 �
−2vp

c2
dvp
dt

�







We can cancel the twos

dp

dt
= m



 1


1−

�
v2

c2

�
dvp
dt

+ vp




�

1−
�

v2p
c2

��− 3
2 �

vp
c2

dvp
dt

�







and we would like a common denominator, so lets work toward that.

dp

dt
= m






1
�
1−

�
v2p
c2

�
dvp
dt

+






v2p
c2

�
1−

�
v2p
c2

�� 3
2

�
dvp
dt

�










dp

dt
= m

dvp
dt






1
�
1−

�
v2p
c2

�
1−

�
v2p
c2

�

1−
�
v2p
c2

� +






v2p
c2

�
1−

�
vp2

c2

�� 3
2











dp

dt
= m

dvp
dt






1−
�
v2p
c2

�

�
1−

�
v2p
c2

�� 3
2

+

v2p
c2

�
1−

�
v2p
c2

�� 3
2






=
mdvp

dt
�
1−

�
v2p
c2

�� 3
2
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This is just our relativistic force equation. Then our work equation becomes

w = −
	 x

0

dp

dt
dx

= −
	 x

0

mdvp
dt

�
1−

�
v2p
c2

�� 3
2

dx

we can use the fact that vp =
dx
dt so that dx = vpdt so

w = −
	

mdvp
dt

�
1−

�
v2p
c2

�� 3
2

vdt

= −
	 v

o

mvpdvp
�
1−

�
v2p
c2

�� 3
2

To solve this, we can use the form	
x

(1− x2)
3
2

dx =
1√

1− x2

but we need to make our integral look like this form. Let x = vp/c, then x2 = v2p/c
2

and dx = dvp/c then our work integral looks like

w =

	 x

o

m (cx) (cdx)

(1− (x2))
3
2

We can take out the constants, and we have our standard form

w = mc2
	 x

o

x (dx)

(1− (x2))
3
2

= mc2
�

1√
1− x2

�����
x

0

= mc2



 1


1− v2p

c2

− 1√
1− 0





=
mc2



1− v2p

c2

−mc2

and this must be equal to ∆K. But we started our integral with vp = 0 so this is really

just Kf = K where since Ki = 0 we can drop the f subscript.

K =
mc2



1− v2p

c2

−mc2

= γpmc2 −mc2

It’s not clear from looking at this that we will recover 1
2mv2p for low velocities (like

not at all clear). To see that it is true, let’s use some of that math that you “learned” in
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M215/M316. We can do a series expansion of
�

1−
v2p
c2

�−1
2

≈ 1 +
1

2

v2p
c2

+O (higher) for
v2p
c2
≪ 1

and keeping just these first two terms, we get

Klow ≈ mc2

�

1 +
1

2

v2p
c2

�

−mc2

≈ mc2 +
1

2
mc2

v2p
c2
−mc2

≈ 1

2
mv2p

so for low velocities this works. But the relativistic equation looks very strange. Let’s

look at the relativistic form further.

Total Energy

It might seem strange that our kinetic energy is the difference between two terms.

K =
mc2



1− v2p

c2

−mc2

= γpmc2 −mc2

what if we take the mc2 to the other side.
mc2



1− v2p

c2

= γpmc2 = K +mc2

seems to be a total energy of some sort. To see what sort of total it is, let’s look at mc2..

It has the object’s mass in it. Our total energy would be equal to this term if we had

no kinetic energy, K = 0. That would be in a reference frame where the object is not

moving. Then our sortof total energy would be just mc2. No motion, but we still have

energy. Where is it? Of course you know the answer because this is one of the most

famous equations on Earth.

Eo = mc2

is the energy tied up in the mass of the object. We call it the rest energy. It is this rest

energy that gives rise to nuclear energy (and nuclear bombs). So our sort of total energy

is a combination of the kinetic energy and the rest energy of the object.

E = K +Eo

We can now define the relativistic total energy

E =
mc2



1− v2p

c2

= γpmc2
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We should ask, what happened to potential energy? And here again is a strange thing

in relativity. The energy tied up in a system configuration will show up in this rest

energy term for the system! The idea of potential energy has been swallowed up into

our new idea of rest energy of a system. But you may object, rest energy consists of the

mass of the system, m, and c2. The c2 can’t change, so are you saying what we used

to call potential energy of a system actually changes the system mass? And the answer

is a surprising yes! We will study this with atoms, where the potential energy due to

the Coulomb force between the protons and electrons will end up changing the atom’s

mass. But it is true for solar systems and galaxies as well. This is another big change in

going from Galilean to special relativity.

We started our trip through physics by studying velocities. But you may have noticed

that we don’t have a conservation of velocity law. Momentum does have a conservation

law. This makes momentum more fundamental that velocity! We can write our energy

equation in terms of momentum so we have energy in terms of the more fundamental

quantity. To do this take our relativistic momentum

p =
mv



1− v2p

c2

= γpmv

and square it

p2 =
m2v2p

1− v2p
c2

and multiply by c2

p2c2 =
m2v2pc

2

1− v2p
c2

= γ2pm
2v2pc

2

and we can rearrange

p2c2 = γ2pm
2
v2p
c2

c4

= γ2p
�
mc2

�2 v2p
c2

now

γp =
1



1− v2p

c2

so γ2p would be

γ2p =
1

1− v2p
c2
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and we can solve this for v2p/c
2

1−
v2p
c2

=
1

γ2p

v2p
c2

= 1− 1

γ2p
Using this we can write

p2c2 = γ2p
�
mc2

�2 v2p
c2

as

p2c2 = γ2p
�
mc2

�2
�
1− 1

γ2p

�

= γ2p
�
mc2

�2 − γ2p
�
mc2

�2 1

γ2p

= γ2pmc4 −
�
mc2

�2

Now take E2

E2 = γ2pm
2c4

This is the first term in our expression for p2c2!

p2c2 = E2 −
�
mc2

�2

so that

E2 = p2c2 +
�
mc2

�2

This is our new relativistic expression of energy in terms of momentum. Note that what

we want is conservation of energy and conservation of momentum so we can solve

problems. This form for the total energy is nice because it is in terms of momentum.

This should make conservation type problems easier!

Notice that if a particle has no mass (i.e. is a photon) we get

E2
photon = p2c2 + 0

or the momentum of a photon would be

p =
Ephoton

c
we used this back in PH220, but it is a result of special relativity.

Universal Speed Limit

Let’s look at kinetic energy again and ask the question what kinetic energy it would

take to make a particle (or spacecraft, etc.) to the speed of light. We can take

K =
mc2



1− v2p

c2

−mc2
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and put in vp = c

K =
mc2



1− c2

c2

−mc2

=
mc2√
1− 1

−mc2

=
mc2

0
−mc2

= ∞−mc2

which undoubtedly is making a mathematician squirm. What we really mean is

K = lim
vp→c

mc2


1− v2p

c2

−mc2 =∞

and this is a good way to say what we mean. As we accelerate an object toward the

speed of light, the energy required to do so becomes infinite. This puts an effective limit

on how fast an object can go without doing some general relativity process like warping

space (think warp engines from science fiction). Objects with mass cannot have speeds

equal to or greater than the speed of light. Of course if m = 0 in our equation then we

would have a limit that approached zero, and that would be fine. This seems to imply

that only massless particles (like photons) can travel at the speed of light.

Sadly this concludes our study of special relativity. And although we will use what

we learned for the rest of the semester and into our junior and senior level classes,

we won’t study special relativity again for a while. You might feel that we have just

scratched the surface, and you would be right. If you are interested in relativity, stay

tuned for general relativity (well as small taste of it) at the end of this class, and for

graduate level courses in relativity.

But there is more fun to come. Next lecture we begin our study of quantum mechanics!





8 Quantization: The Begin

nings of Modern Physics

3.1, 3.2, and 3.3

Fundamental Concepts in the Lecture

• Waves and Fields

• Planck’s Quantum Hypothesis; Blackbody Radiation

• Photon Theory of Light and the Photoelectric Effect

Waves and Fields Review

So far in our physics adventure we have studied electric and magnetic fields. There are

other kinds of fields as we shall see. But let’s review what we know from PH220 for a

moment. And since we need to recall the ideas of interference, let’s review the double

slit experiment.

We can start by defining an electric field
−→
E =

1

4πǫo

q

r2
r̂

where r̂ is a unit vector in the radial direction and a magnetic field and of course q is the

charge amount. We are familiar with the permittivity of free space ǫo from our study of

electric fields. We also know
−→
B =

µo
2π

I

r
φ̂

where φ̂ is a unit vector in the azimuthal direction, I is the current, and µo is the

permeability constant for free space.

We see from the equations that the electric and magnetic fields exist in all of space

(they have a value for every r) and we remember from PH220 that they are not really

independent. Maxwell’s equations tell us that moving electric fields produce magnetic
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fields and moving magnetic fields produce electric fields.� −→
E · d−→A = 0 Gauss’s law for electric fields

� −→
B · d−→A = 0 Gauss’s law for magnetic fields

� −→
E · d−→s = −dΦB

dt Faraday’s law
� −→
B · d−→s = εoµo

dΦE
dt AmpereMaxwell Law

(8.1)

and of course, relative motion determined which field was moving. So really the

electric and magnetic fields were a matter of reference frame. What appeared as a

magnetic field in one frame showed up as an electric field in another frame. This is

another example of the noninvariance of interpretation that we see in special relativity.

Whether we see an electric field or a magnetic field is really a matter of which reference

frame we use to observe the experiment. This is why physicists tend to define an

electromagnetic field, rather than separate electric and magnetic fields. See, you were

doing relativity back in PH220, you just didn’t know it!

A great way to make a changing or moving field is to make a wave. We can write a

wave in the electric and magnetic fields as

E = Emax sin (kr − ωt+ φ)

B = Bmax sin (kr − ωt+ φ)

where

k =
2π

λ
ω = 2πf

are the “wave number” and angular frequency of the wave. For such an electromagnetic

wave we found that
Emax

Bmax
= c (8.2)

The power in the wave is given by the Poynting vector
−→
S =

1

µo

−→
E ×−→B (8.3)

This gives both the magnitude and the direction of the power. The magnitude can be

written in terms of just the electric field because of the relationship between Emax and

Bmax so that

S =
1

µo
EmaxBmax (8.4)

can be written as

S =
E2
max

cµo
(8.5)
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The intensity of the light is written as

I = Save

or

I =
1

2µoc
E2
max (8.6)

For a double slit experiment we are mixing two waves. And we know to expect

interference fringes. These fringes are not just points, but are patterns that fade from a

maximum intensity. We can calculate the intensity pattern. Start with the two fields.

E2 = Emax sin (k2r2 − ω2t2 + φ2)

E1 = Emax sin (k1r1 − ω1t1 + φ1)

and we can calculate the resulting wave

Er = E2 +E1

Emax sin (k2r2 − ω2t2 + φ2) +Emax sin (k1r1 − ω1t1 + φ1)

but we can make this more meaningful if we use a trig identity

sin a+ sin b = 2cos

�
a− b

2

�
sin

�
a+ b

2

�

Then we find

Er = Emax sin (k2r2 − ω2t2 + φ2) +Emax sin (k1r1 − ω1t1 + φ1)

= 2Emax cos

�
(k2r2 − ω2t2 + φ2)− (k1r1 − ω1t1 + φ1)

2

�

× sin

�
(k2r2 − ω2t2 + φ2) + (k1r1 − ω1t1 + φ1)

2

�

= 2Emax cos

�
1

2
[(k2r2 − ω2t2 + φ2)− (k1r1 − ω1t1 + φ1)]

�

× sin

�
(k2r2 − ω2t2 + φ2) + (k1r1 − ω1t1 + φ1)

2

�

But now we know that we can simplify this because the two sets of light that come

through the slits started as one beam, so ω2 = ω1 = ω, k2 = k1 = k, t2 = t1 = t, and

φ2 = φ1 = φo.

Er = 2Emax cos

�
1

2
kδ

�
sin

�
kr2 + kr1

2
− ωt+ φo

�

= 2Emax cos

�
1

2

2π
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d sin θ

�
sin

�
k
r2 + r1

2
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We have a combined wave that is a traveling wave
�
sin

�
k (r2+r1)

2 − ωt+ φo

��

but with amplitude
�
2Eo cos

�
1
2

�
2π
λ d sin θ

���
that depends on our total phase

∆φ = 2π
λ d sin θ.
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But the situation is more complicated because of how we detect light. Our eyes, film,

and most detectors measure the intensity of the light. We know that

I =
E2

cµo

=
4E2

o

cµo
cos2

�
1

2

�
2π

λ
d sin θ

��
sin2

�
k (r2 + r1)

2
− ωt+ φo

�

Light detectors collect power for a set amount of time. So most light detection will be

a value averaged over a set integration time. This means that the detector sums up (or

integrates) the amount of power received over the detector time. Usually the integration

time is much longer than a period, so we need to timeaverage our intensity.
	

many periods
Idt ∝ =

	

many periods

4E2
o

cµo
cos2

�
1

2

�
2π

λ
d sin θ

��
sin2

�
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2
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�
dt

=
4E2

o
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�
1

2

�
2π
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d sin θ

��	

many periods
sin2

�
k (rx2 + r1)

2
− ωt+ φo

�
dt

but the term 	

many periods
sin2

�
k (r2 + r1)

2
− ωt+ φo

�
dt =

1

2
(8.7)

To convince yourself of this, think that sin2 (x) has a maximum value of 1 and a

minimum of 0. Looking at the graph

it should be believable that the average value over a period is 1/2. The average over

many periods will still be 1/2.

So we have

Ī =

	

many periods
Idt =

2E2
o

cµo
cos2

�
1

2

�
2π

λ
d sin θ

��
(8.8)

where Ī is the time average intensity. The important thing to notice is that the time

varying part has averaged out.

So, usually in optics we ignore the fast fluctuating parts of such calculations because

we can’t see them and so we write

I = Imax cos
2

�
1

2

�
2π

λ
d sin θ

��
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where we have dropped the bar from the I, but it is understood that the intensity we

report is a time average over many periods.

We should remind ourselves, our intensity pattern

I = Imax cos
2

�
1

2

2π

λ
d sin θ

�

is really

I = Imax cos
2

�
∆φ

2

�

Which is just our amplitude squared for the mixing of two waves. All we have done to

find the intensity pattern is to find and expression for the phase difference ∆φ.

Our intensity pattern should give the same location for the center of the bright spots

as we got back in PH123. Let’s check that it works. We used the small angle

approximation in PH123. It is still valid, so let’s use it again now. For for small angles

I ≈ Imax cos
2

�
πd

λ
θ

�

≈ Imax cos
2

�
πd

λ

y

L

�

Then we have constructive interference when
πd

λ

y

L
≈ mπ

where m is an integer. We can write this as

y ≈m
Lλ

d
which is what we found before.

The plot of normalized intensity
I

Imax
= cos2

�
∆φ

2

�

verses ∆φ/2 is given next,

15 10 5 0 5 10 15

0.5

1.0

delta_phi/2

I /I_max

but we will find that we are not quite through with this analysis.

We did this using slits that were small, but on the order of the size of the wavelength
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of light. We could apply this to the realm of the very small by using diffraction

Diffraction of Xrays by Crystals. If we make the wavelength of light very small, then

we can deal with very small diffraction gratings. Xray wavelengths are much smaller

than visible light wavelengths. If we use Xrays can investigate smaller things. This

concept is used to investigate the structure of crystals with Xrays. The crystal lattice

of molecules or atoms creates the regular pattern we need for a grating. The pattern is

three dimensional, so the patterns are complex.

Let’s start with a simple crystal with a square regular lattice. NaCl has such a structure.

If we illuminate the crystal with xrays, the xrays can reflect off the top layer of atoms,

or off the second layer of atoms (or off any other layer, but for now let’s just consider

two layers at first). If the spacing between the layers is d, then the path difference will

be

δ = 2 (d sin (θ)) (8.9)

then for constructive interference

2d sin (θ) = mλ m = 1, 2, 3, . . . (8.10)

This is known as Bragg’s law. This relationship can be used to measure the distance

between the crystal planes.

A resulting pattern is given in the following figure.
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Xray diffraction pattern of DNA (image courtesy of the National Institute of Health, image in

the public domain)

DNA makes an interesting diffraction pattern. If the substance consists of a powder of

small crystals, the individual diffraction peaks turn into circles.

First Xray View of Martian Soil. http://photojournal.jpl.nasa.gov/catalog/PIA16217

We will use this idea of diffraction in our study of quantum mechanics.

Quantum Waves: Photoelectric Effect
ConcepTest 27.2a

But we need to modify our view of light to study quantum mechanics. To do this, I want

to talk about a specific experiment (Einstein’s explanation of this experiment received

the Noble prize, so it is kind of a big one). To understand, we will need to describe the

experiment in detail. Here is a picture of the experimental setup.
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Let’s start with the variable power supply. It is just a battery box much like the power

supplies we have in our labs, only it can be both positive or negative, and it can achieve

very high potentials.

Next let’s look at the metal plate on the right. We place it in a glass container, and

we remove the air (creating a vacuum). We find that when light strikes the plate we

get electrons! They are released when the light energy is absorbed. The electrons get

an amount of kinetic energy from the absorbed light. The light must supply enough

energy to break the electron away from it’s nucleus, and then enough to account for the

velocity of the electron.

But we know that waves carry energy, and light is a wave, so this should not be to

surprising. Now in our setup, we also have a plate on the left with a hole in it for light

to pass through. This plate is hooked to the positive side of the power supply. So it has

a high potential compared to plate right hand plate. Then the electrons that are freed by

light hitting the right hand plate will be accelerated to the left hand plate. A current will

flow though the light bulb, but only when light hits the plate!

We would expect that if the potential was higher, more of the electrons would be

accelerated to plate the left and the current will be greater. We also expect that if we

increase the amount of light we would get more electrons, so more electrons would be

accelerated to the left plate.

Here is a graph that describes the situation.
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It is a graph of current vs. the power supply potential difference. Note that if the

intensity of the light is larger, we do get a larger current. If we increase the voltage,

we might see a small increase in the current, but the current soon reaches a maximum

value. More potential difference does not give more current.

But look what happens when we reverse the polarity of the power supply (switch the

wires from plus to minus and from minus to plus). The current starts to fall as we make

the potential more negative. What is happening?

Well, each of the electrons is released with some amount of kinetic energy. But now

there is a force due to the electric field that tries to prevent the electrons from reaching

the left hand plate.

This is like throwing a ball up toward the ceiling. We have the acceleration due to

gravity acting downward, the ball’s velocity is upward. so the ball slows down. If the

ball is thrown with a large initial velocity, it will reach the ceiling, but if it has a smaller

initial velocity, it will turn around and head back to us or the floor.

This is just what happens to the electrons. If they are released with a large initial

velocity toward the left hand plate, they still make it, but they hit with a slower speed.

The slowest electrons stop, turn around, and head back to right hand plate. So the

current is reduced.

If we make the potential difference more negative (larger magnitude, but still negative)

it is like trying to throw the ball if our class was on Jupiter. The larger gravity would

mean that I could never get the ball to hit the ceiling.
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The potential that just stops the current, sending the all the electrons back the other

way, is called the stopping potential.

The maximum kinetic energy of the electrons is related to the stopping potential

Kmax = e∆Vs (8.11)

None of this seems strange, but note from the graph that the stopping potential is the

same shape for all light intensities! No matter how much light I shine on plate E, if

∆V = ∆Vs no current is ever produced. Remember that for waves on strings or sound

waves the intensity is proportional to the amplitude of the wave, and it tells us how

much energy we are delivering. So if we increase the intensity of light, we expect to

have more energy available to release electrons! But it does not happen–ever–for this

case.

It get’s stranger. If I change the frequency, I still get electrons, that is, until I get below

a frequency fc. Then no matter how much intensity I have, I never get a photoelectron

released! I could increase the intensity so much that the absorbed light melts the metal

plate, but no electrons come out (well, a few due to thermal effects). If I increase the

frequency of light, even if I have almost no intensity, I get photoelectrons, and their ki

netic energy increases as frequency increases. But below fc I never get an electron.

Einstein successfully explained this experiment by theorizing that when the light was

emitted an electron may jump from a higher energy state to a lower energy state. This

would release energy, giving off a small bit of light. The higher energy state he wrote

as

En = nhf (8.12)

He wrote the lower energy state as

En−1 = (n− 1)hf (8.13)



Blackbody Radiation 131

and the quantized bit of light that was emitted would have energy

E = En = En−1 = hf (8.14)

The quantized bit of light is called a photon. Einstein theorized that the energy of the

photon was kept locally (in the near vicinity of the center of the photon) so when the

photon strikes an electron, it would give up its energy all at once. This explains why

increasing the intensity of the light does not increase the kinetic energy of the electrons.

Intensity for light waves must be like the superposition of all the photons, and only one

photon is absorbed by an individual electron. The Kinetic energy is then

Kmax = hf − φ (8.15)

where φ is something that tells us how much energy is required to free the electrons

from the metal atoms. The photon energy E = hf provides enough energy to both free

the electron and to give the electron kinetic energy. The φ term is the energy that it

takes to free the electron. Einstein called φ the work function of the metal. If the photon

provides just this amount of energy, the electrons are freed, but there is no energy left to

move them from the metal atoms, so they just recombine (so we will have no current)

then

K = 0 = hf − φ (8.16)

or

fc =
φ

h
(8.17)

gives a cutoff frequency just as we saw in the experiment.ConcepTest 27.2b

ConcepTest 27.2c

ConcepTest 27.2d

The device we described is called a photocell. They are used in safety devices for

garage door openers or to automatically turn off street lights during the day.

So what do we learn from this experiment? We learn that in some circumstances

light acts like a small bundle of energy that travels through space or can absorbed

independently of the total wave. It is this clumpiness of light that will start us thinking

in quantum ways.

Blackbody Radiation
ConcepTest 27.1

Long, long, ago we studied radiation as a means of transporting energy (in PH123). We

studied Stefan’s law

P = σAeT 4 (8.18)

where σ is Stefan’s constant, A is the area, e is the emissivity, and T is the temperature.

This tells us that when something has a temperature, T it will lose energy with an
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energy loss rate of
∆E

∆t
= P

So, when things are hot, we expect them to radiate. But Stefan’s law does not talk

about the wavelength of the light. In fact, Stefan’s law assumes we are talking about all

wavelengths at once.

But it is sometimes useful to know how much radiation there is of a specific color. For

example. If we have a stove heating element, and it is glowing red, we probably don’t

want to touch it.

In fact, for an ideal material, the temperature would completely control the distribution

of wavelengths that come from it as it glows due to thermal energy. Such an ideal

material is called a black body. If you tell me what the temperature is, I can tell you

what the radiation pattern from a black body will look like. Some example curves at

different temperatures are given in the next figure.
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Plank Balackboady Curve for T = 1000K (green or dashed), T = 900K (red or

dotted), T = 600K (blue or dash dot),

Notice that the curves for different temperatures peak at different wavelengths. You

might ask what type of objects display such a radiation curve. and the answer is most

objects display a radiation curve that is close to this. The curve is an idealization (for

reasons we will study later) but anything warm displays this curve. Here is a graph of

the solar radiation
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Solar Spectrum (Image courtesy US Government)

Note that the yellow curve (before the Earth’s atmosphere absorbs some of the light)

matches our ideal curve fairly well. The Sun is nearly an ideal blackbody which shows

us that the term “blackbody” doesn’t really describe the color of the object, but rather

its lack of reflection. The Sun does not reflect light well, but it does emit light well!

In the next figure I have marked the peak of the curve for different temperatures.
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Plank Balackboady Curve for T = 1000K (green), T = 900K (red), T = 600K

(blue), with verticle lines showing Wein’s law predictions for the peak wavelengths.
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The equation for the full curve is kind of messy

I =
2πhc2

λ5
�
e

hc
λkBT − 1

� (8.19)

The peak of the curve is useful. It gives the wavelength (and therefore the color) of the

glow coming from the warm object. To find this we really should take a derivative, but

a good approximation would be

λmaxT = 2.8978× 10−3mK

This is called Wein’s law.

Since a warm object that has an intensity that follows this equation is called a

blackbody, we often call this the blackbody equation. It is shown in the curves above

for different T values, and in the next figure as the solid (red) curve. This curve was

known from experiment but was not understood. The dashed (blue) curve is the result

that was expected from classical electrodynamics. Note that it is quite different. This

caused quite a problem. It is even called the ultraviolet catastrophe. Classical theory of

electromagnetic waves did not predict the right result!
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A researcher named Plank solved the problem. He assumed that a black body was made

of millions of tiny charged oscillators (we would now talk in terms of standing waves,

as we will see later in the course). Then, knowing that standing waves in strings and

other things were often quantized (only certain frequencies are possible), he assumed

something was quantized, in this case, the energy. This might make some sense if
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we consider that for a piece of rope that is experiencing a standing wave, the velocity

of each piece of rope, and therefore the kinetic energy of that piece, depends on the

frequency, but the frequency is quantized for a standing wave! This would mean that if

we hold all other variables constant (e.g. don’t change the amplitude, or the mass of the

rope) only certain values of the kinetic energy are possible. In our case, the equation

is quite simple (it is harder for a rope standing wave, were there are bands of allowed

energy)

En = nhf (8.20)

here h = 6.626 × 10−34 J s. This is called Planck’s constant. And n is a positive

integer. When Planck made this assumption, he got the messy equation above (Equation

8.19). It looks ugly, but it works! It matched the experimental results. Planck did not

know what the resonators were, but he knew the result was useful. It would take many

years before others (and Planck, himself) would realize that this picture of quantized

light might be real.

Let’s see a little of what Planck did (we will derive the black body equation in detail

later in our course).

He assumed that light was generated inside a box.

Because light is a wave, he assumed there would be standing waves in the box. We

know about standing waves, not all frequencies will make a standing wave. Planck
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assumed this would be the case and we would get standing waves with energy values

En = nhf that would make persistent standing waves. All waves with other energy

values would die out. The number of waves with each energy, E, would be given by

an equation that we will borrow from statistical mechanics (PH412). It is called the

MaxwellBoltzman distribution (you should have seen this in PH123 briefly)

N (E)− N

kBT
e
− E
kBT

But this isn’t quite right because the MaxwellBoltzman distribution can’t describe the

energy of the molecules because it a continuous distribution of energy and our energy is

quantized. Plank modified the distribution function to be something like this

Nn = N
�
1− e

− ε
kbT

�
e
− nε
kbT

where ε = hf. You might wonder where we got this, and the answer is from your future

in PH412, Thermodynamics, but in the middle of our course we will take some time to

give more details about how Planck got this. For now, let’s use this result. The Nn is

the number of oscillators with energy En. Notice that the energy is in even steps, it is

quantized. And we have a definite number Nn of oscillators with the specific energy

En. The total number of oscillators, N is given by

N =
∞�

n=0

Nn

=
∞�

n=0

N
�
1− e

− ε
kbT

�
e
− nε
kbT

and we can use a trick that you will use in Math 215 or Math 316.
∞�

n=0

enx =
1

(1− ex)

but this isn’t exactly what we need. Let’s take a derivative of this with respect to x

d

dx

∞�

n=0

enx =
∞�

n=0

d

dx
enx =

∞�

n=0

nenx

now we need the other side of the equation
d

dx

1

(1− ex)
= −1 (1− ex)

−2
(−ex)

=
ex

(1− ex)2

so that
∞�

n=0

nenx =
ex

(1− ex)2

Maybe your math class did this second identity, mine didn’t. But now we have it. We
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can find the average energy

Eav =
1

N

∞�

n=0

NnEn

which says we add up all the energies En but weight them with the number of

oscillators that have that energy and then divide by the total number of oscillators. So it

is a weighted average. Putting in our value for Nn and En

Eav =
1

N

∞�

n=0

�
N

�
1− e

− ε
kbT

�
e
− nε
kbT

�
(nε)

Eav =
N

�
1− e

− ε
kbT

�

N

∞�

n=0

(nε)
�
e
− nε
kbT

�

then if we let

x =
ε

kBT
and note that we have

Eav =
�
1− e

− ε
kbT

�
ε
∞�

n=0

(n)
�
e−nx

�

we have our form
∞�

n=0

nenx =
ex

(1− ex)2

so that

Eav = ε
�
1− e

− ε
kbT

� ex

(1− ex)2

or

Eav = ε
�
1− e

− ε
kbT

� e
−ε
kBT

�
1− e

−ε
kBT

�2

= ε
1

e
ε

kBT

�
1− e

−ε
kBT

�

= ε
1�

e
ε

kBT − e
ε

kBT e
−ε
kBT

�

=
ε�

e
ε

kBT − 1
�

and finally

Eav =
hf

�
e

hf
kBT − 1

�

Now suppose our box has side length L. Inside the box we could have our standing

waves.



138 Chapter 8 Quantization: The Beginnings of Modern Physics

Suppose we view these like standing waves on a string. Then the wavelength for a

particular mode of oscillation would be

λ =
2L

n

Now suppose that there is a small hole in one side of the box. Planck found that the

intensity of the light leaving the hole as a function of wavelength was

I (λ) =
c

4
u (λ)

where u (λ) is the energy density in the box. This came from averaging over the all

the angles the light could leave and taking the amount of light that ended up coming

straight out of the hole. I won’t repeat this geometric calculation (we will do it later).

But let’s use it.

The energy density would be

u (λ) dλ =
EaveN (λ) dλ

V
and we can find the number of standing waves in the box in one dimension as

N1D (λ) dλ =
dn

dλ
dλ

and we see that

n =
2L

λ
so ����

dn

dλ

���� =
2L

λ2
so

N1D (λ) dλ =
2L

λ2
dλ

If we take the box as a cube and allow the same number of standing waves in each
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direction we would get

N3D (λ) dλ =
8πL3

λ4
dλ

which isn’t obvious. Once again we are borrowing from PH412 (or later in our course).

But let’s assume this is right. It doesn’t seem crazy compared to our one dimensional

case. Then

u (λ) =
Eave

8πL3

λ4

V
and V = L3

u (λ) =
Eave

8πL3

λ4

L3

= Eave
8π

λ4

but we know Eave

u (λ) =



 hf
�
e

hf
kBT − 1

�



 8π

λ4

=
8π

λ4



 h c
λ�

e
cf

λkBT − 1
�





and the intensity is

I (λ) =
c

4

8π

λ4



 h c
λ�

e
cf

λkBT − 1
�





from our geometry of the hole so

I (λ) =
2πhc2

λ5



 1
�
e

cf
λkBT − 1

�





We have the Planck function. The math is intriguing, but the point here is that to make

this work we had to assume quantized oscillators. These quantized oscillators made

standing waves with discrete energies. Oscillations with energies in between the En

died out and didn’t contribute. We saw just this sort of behavior in harmonics in musical

instruments in PH123. We have to allow that some energies don’t work and a discrete

set of energies do work. This is shades of things to come as we study atoms and build

their energy shells.

Both the photoelectric effect and the black body radiation curve show that there is more

to how light works than we learned in PH123. Light is a wave, but it is not exactly

like a water wave or a sound wave. We found that light comes in small packets called

photons, and that in the case of thermal equilibrium, not all wavelengths of light would

be produced. These are both examples of quantization.
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3.4, 3.5, and 4.1

Fundamental Concepts in the Lecture

• Energy, and Momentum of a Photon

• Compton Effect

• Photon Interactions; Pair Production

• De Broigle Waves

In our last lecture we learned that light comes in small wave packages that superimpose

to make large light beams. We called the wave packages “photons.” In this lecture we

are going to look at how photons interact with matter. We are going to find that in many

ways photons act like particles. At the end of the chapter we will discuss the idea of

waveparticle duality.

The discovery of Xrays

In 1895, a physicist,Wilhelm Roentgen, noticed that a fluorescent screen glowed even

when it was meters from his gas discharge tube. You have seen a fluorescent screen if

you have seen an old fashioned television set. The screen of the TV was a series of

fluorescent dots painted on a sheet of glass. Roentgen’s version was a separate thing,

no television equipment around it. But Roentgen was surprised, knowing that normal

charged particles should not have been able to travel for meters. He placed a black

screen in front of the fluorescent screen and was again surprised. The radiation creating

the fluorescent glow seemed to go right through the black screen! He tried subjecting

his new “rays” to electric and magnetic fields. They did not bend. So they were not

charged particles. He had no idea what he had found, so he called the radiation Xrays.

The X standing for an unknown thing.

Another physicist (von Laue) suggested that the Xrays were small electromagnetic
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waves. He decided that if the wavelengths were short enough, he should be able to use

a salt crystal like a diffraction grating to bend the light into patterns. They tried this,

and found the predicted pattern (we talked about this in our last lecture).

By using the known spacing of the atoms in the salt crystal, they could calculate the

wavelength of the electromagnetic waves (about 0.1nm).

These waves have high frequencies. We now know that this means they have high

energies. And because

λ =
c

f
they must have small wavelengths. These characteristics explain why they can penetrate

most things.

Making Xrays

A schematic of an Xray tube is shown above. The idea behind making xrays is to take

fast moving electrons and slow them down in a hurry.

We learned from studying antennas back in PH220 that accelerating electrons make

electromagnetic waves. In this apparatus we will accelerate elections and again we will

produce electromagnetic waves. This time we start with very fast electrons, so they

have a large kinetic energy. We will recover the lost kinetic energy as electromagnetic

waves, Xrays.

The way it works is that the wire marked filament has a small potential difference. So

current flows through the filament and it will heat up due to resistance. A large poten

tial will exist between the filament and the copper rod shown. This potential difference
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will cause electrons to leave the filament. This is called and electron gun because it

“shoots” electrons like bullets. The large potential difference will accelerate the elec

trons toward the tungsten coating on the copper rod. As the electrons impact the target,

they will slow down quickly.

The electrons will nearly impact the target atom’s nucleus. The deceleration may stop

the electron, giving the most energy to the created Xray photon. Or the electron may

only lose part of it’s kinetic energy.

Spectrum of the Xrays emitted by an Xray tube with a rhodium target, operated at 60

kV. The continuous curve is due to bremsstrahlung, and the spikes are characteristic K

lines for rhodium. The curve goes to zero at 21 pm in agreement with the Duane–Hunt

law, as described in the text.

If we plot the intensity of the emitted Xrays, we will find a graph much like the one

above. The tall peaks we will have to wait to understand, but the rest of the curve comes

from this “breaking” of the electrons. The radiation is called bremsstrahlung radiation,

which means “breaking” or “slowing down” in German.

There are not many calculations that we can do yet with what we know about Xrays,

but we can find the minimum wavelength of the Xrays produced. We know that the
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kinetic energy of the electrons will be

K = e∆V (9.1)

and we know from Planck that the energy of the photon will be

E = hf (9.2)

so if the electron is completely stopped all the energy will go into making a photon.

e∆V = hf (9.3)

Then

e∆V = h
c

λ
(9.4)

or

λ =
hc

e∆V
(9.5)

is the minimum wavelength of the Xrays.

Most of us have had an Xray taken, so these once mysterious rays are now quite

commonplace. And of course we have already talked about Xrays and diffraction

through crystals to find the structure of the crystal.

Compton Effect

In 1923, an American physicist named Compton performed an important experiment.

He shot Xrays at a carbon target. He measured the wavelength of the Xrays before and

after they hit the target and got a surprise. The wavelength changed after the collision

(we often say it “shifted” because the peak on a spectrograph would move over on the

graph). Compton found that the amount of wavelength change depended on the angle at

which the Xrays scattered away from the target.

Compton was familiar with the idea of a photon from Einstein’s work. He theorized that

if light did travel in small wave packets like particles, then those small wave packets

would carry momentum. And if that were true, the photons could have collisions like

billiard balls would. He could use conservation of momentum to explain what he saw!

Think about this for a minute. From what Plank and Einstein taught us the energy of

the photon is equal to

E = hf

and for light in a vacuum

c = λf

so

E = h
c

λ
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if the wavelength shifts, the energy changes.

He theorized that the photons hit electrons, as shown in the figure below.

The shift in wavelength, then, is given by

∆λ =
h

mec
(1− cos θ) (9.6)

where me is the electron mass. The angle θ is as shown in the figure.

We are assuming that the photon not only has energy, but also carries momentum. But

from relativity we know that this is true.

p =
E

c
(9.7)

which we can now write as

p =
h c
λ

c

=
h

λ
(9.8)

Let’s see how this works. For the photon we have

Eγ = hf =
hc

λ
where we are using γ to indicate a photon. Then

pγ =
Eγ
c

For the electron we now know the total energy is the kinetic energy plus the rest energy

Ee = Ke +Eeo

= Ke +mec
2

and

pe =
meve

1− v2e

c2
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Let’s use conservation of energy and conservation of momentum to find the Compton

formula. We can write out conservation of energy

Eγi +Eei = Eγf +Eef

Eγi +mec
2 = Eγf +Eef

and conservation of momentum

pγix + peix = pγfx + pefx

pγiy + peiy = pγfy + pefy

we can use our angles to make this

pγi + 0 = pγf cos θ + pef cosφ

0 + 0 = pγf sin θ − pef sinφ

Suppose we measure the energy of the incident photon and the energy and direction of

the scattered photon. Then Eγi, Eγf , and θ are known. We can eliminate φ by solving

for the terms in pef and squaring the equations, and adding the result

pγi − pγf cos θ = pef cosφ

pγf sin θ = pef sinφ

(pγi − pγf cos θ)
2 = p2ef cos

2 φ

(pγf sin θ)2 = p2ef sin
2 φ

Now we can add these equations together to eliminate φ

p2ef sin
2 φ+ p2ef cos

2 φ = (pγf sin θ)2 + (pγi − pγf cos θ)
2

p2ef
�
sin2 φ+ cos2 φ

�
= p2γf sin

2 θ + p2γi − 2pγipγf cos θ + p2γf cos
2 θ

p2ef = p2γf sin
2 θ + p2γf cos

2 θ + p2γi − 2pγipγf cos θ

p2ef = p2γf + p2γi − 2pγipγf cos θ

Now we know

E2
ef = c2p2ef +m2

ec
4

From conservation of energy we know

Eγi +mec
2 −Eγf = Eef

so our last equation can be written as
�
Eγi +mec

2 −Eγf
�2

= c2p2ef +m2
ec

4 (9.9)

and, just to remind ourselves, from conservation of momentum we found

p2ef = p2γf + p2γi − 2pγipγf cos θ

so our last energy equation (9.9) can be written as
�
Eγi +mec

2 −Eγf

�2
= c2

�
p2γf + p2γi − 2pγipγf cos θ

�
+m2

ec
4
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and we can use

pγ =
Eγ
c

for the photon momenta. Then

�
Eγi +mec

2 −Eγf
�2

= c2

�
E2
γi

c2
+

E2
γf

c2
− 2

Eγi
c

Eγf
c

cos θ

�

+m2
ec

4

or just
�
Eγi +mec

2 −Eγf
�2

= E2
γi + E2

γf − 2EγiEγf cos θ +m2
ec

4

And expanding the left hand side gives

m2
ec

4−2mec
2Efγ+2mec

2Eiγ+E2
fγ−2EfγEiγ+E2

iγ = E2
γi+E2

γf−2EγiEγf cos θ+m2
ec

4

We can cancel some terms

−2c2meEfγ + 2c2meEiγ − 2EfγEiγ = −2EγiEγf cos θ
Now we want to transform this into a nice equation that relates the wavelengths. The

path isn’t immediately clear. But let’s try to isolate the cos θ term a bit. Try dividing by

EγiEγf
−2c2meEfγ + 2c2meEiγ − 2EfγEiγ

EγiEγf
=
−2EγiEγf cos θ

EγiEγf
or just

−2c2meEfγ
EγiEγf

+
2c2meEiγ
EγiEγf

− 2EfγEiγ
EγiEγf

= −2 cos θ
or more simply

−2c2me

Eγi
+

2c2me

Eγf
− 2 = −2 cos θ

Canceling the two’s gives

−c2me

Eγi
+

c2me

Eγf
= 1− cos θ

More algebra gives.

c2me

�
1

Eγf
− 1

Eγi

�
= 1− cos θ

or �
1

Eγf
− 1

Eγi

�
=

1− cos θ

c2me

and we know that

Eγ = hf =
hc

λ
so �

1
hc
λf

− 1
hc
λi

�

=
1− cos θ

c2me

(λf − λi)
1

hc
=

1− cos θ

c2me

λf − λi =
h

cme
(1− cos θ)

Note that the final wavelength, λf , is not the same as the initial wavelength. That was
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what Compton saw! So then

λf = λi +∆λ

And finally we have our wavelength shift

∆λ =
h

cme
(1− cos θ)

The quantity
h

cme
is sometimes called the Compton wavelength, but this is a bad name. Clearly it is closer

to a ∆λ.

We can find the direction of the electrons by returning to our momentum equations

pγi − pγf cos θ = pef cosφ

pγf sin θ = pef sinφ

and dividing
pef sinφ

pef cosφ
=

pγf sin θ

pγi − pγf cos θ
and using

pγ =
Eγ
c

The sin / cos term becomes a tangent.

tanφ =
Eγf
c sin θ

Eγi
c − Eγf

c cos θ

Eγf sin θ

Eγi −Eγf cos θ

But the important point to notice is that we are doing conservation of momentum and

energy as though the light were a particle. The photon is participating in what we might

think of as a collision. And this is not a normal way to think about something that we

described earlier as a wave.

Pair Production

If all this was not strange enough, photons can do stranger things yet. Suppose we have

a high energy photon. We know from our study of relativity that rest energy

Eo = mc2

which strongly tells us that mass is just a form of energy. If our photon has enough

energy, it can create matter! This was quite a surprise! But a photon can create a pair

of particles (it must be a pair to conserve momentum). One possibility for the pair of
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particles is an electron and a positron.

γ → e− + e+

The positron is a particle that has the same mass as an electron and acts like an electron,

but it has a positive charge and, significantly, it is antimatter!. These particles form the

basis of PET scanners. If the positron and electron don’t move apart quickly, they will

recombine and out will come two photons again,

e− + e+ → γ + γ

where this time we get two photons to conserve momentum. This is called annihilation,

when matter and antimatter combine to form photons. No mass remains.

Once again, this is a photon acting in a very notwavelike manner.

WaveParticle Duality of Light

So now we have studied interference of light which is a wave phenomena, and we have

studied Compton scattering, positironelectron annihilation and pair production, and

Bremsstrahlung emission that all seem to be particlelike properties of light. Which is

it, waves or particles?

Young’s double slit experiment seemed to indicate conclusively that light is a wave.

And we successfully did many problems using this wave theory of light back in PH123

(or your second semester physics class). Then the photoelectric effect and the Compton

effect were discovered and light seemed to act like a particle again! What is it? Our

current theory says it is both! Well, that is a little confusing. It really says that it is a

more complicated localized wave. It is not really a wave or a particle, but something

else that sometimes looks like a wave and sometimes looks like a particle. Instead of a

simple sine wave, it is a short packet of waves.

Before we declare this as too strange, let’s realize that a particle model of a human is

sometimes a good model
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But sometimes viewing a person as a shapeless point is not good enough. For one thing,

all particles look alike, and not all humans look alike.

Our particle model from PH121 was designed to make math easier. We could ignore all

the internal details of, say, person A if person A is, say, shot out of a circus cannon and

is therefore a projectile. Person A can flail his arms or twist, but it won’t change his

projectile motion. But once we learned about rotational motion, particle model wasn’t

enough. After all, person A might do artistic somersaults and twists in the air and

particle model couldn’t describe that. We had to go to extended freebody diagrams and

walk away a bit from particle model to describe rotation. Now we will need to do this

again. The idea of a particle is not detailed enough to describe a photon. The photon has

wave properties (like person A has limbs) and we can’t ignore this in all circumstances.

Let’s take on a specific experiment to show the range of behavior we should expect

from photons.
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A laser produces photons. The beam of light must somehow be related to the photons.

That beam goes to a beam splitter. Half of the beam goes through the beam splitter

and half is reflected off of the beam splitter. A series of mirrors allows the beams to

recombine and the recombined waves mix to form an interference pattern on a detector

array (something like a camera sensor). But along one path we can place a high speed

optical switch. This switch diverts the beam to a detector, something like a silicon photo

diode or a photomultiplier. This detector uses photoelectric effect to cause a detection,

so basically it is a photon detector. If we turn the switch off, we get two waves mixing

at the camera. We see interference. This is a wave phenomena. If we engage the switch,

we get detected photons on the photon detector, and this is a particlelike phenomena.

You might say to yourself “wait, maybe the laser knows if the switch is engaged, and if

it is, it sends photons and if it isn’t it sends waves. But we could make the beam paths

very long, and the switch very fast so that the switch could be engaged long after the

waves or photons left the laser. The system still works the same. So it can’t be that we

have a decision happening at the laser.

It appears that the wavelikeparticlelike nature of light is all part of the way light

really is. Neither a particle model nor a wave model is all the way right. But this should

not be to surprising (maybe a little weird, but not too surprising). There is no such thing

as a “particle.” A particle is an abstraction we used to simplify the math. But no object

in the universe is well described in every detail by the ideal of a particle. No one is

shocked to find out that divers have limbs and can do twists and turns.2 We should also

not be too surprised to find that photons have wave properties. Nothing in the universe

is really a particle. When our objects get smaller or more fundamental, like photons,

the particle model does an even poorer job of describing all the behavior. We will see

much more of this failure of particle approximation as we go, starting with the work of

2 I can hear in my mind the PBS show about the strange limbparticle duality of divers....
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De Broglie.

Waveparticle Duality of Matter

You might be saying to yourselves aren’t these dual waveparticle photons quite

strange? A physicist named De Broglie also asked himself this question (see, you think

like famous physicists!). His conclusion was that maybe light is not so strange. Maybe

everything really has a waveparticle duality. Let me say this another way. Maybe

electrons, protons, and neutrons are really localized wavelike things. Since they have

momentum, suppose we use the momentum equation for a photon backwards to find

the wavelength of, say, and electron

p =
h

λ
=⇒ λ =

h

p
(9.10)

then if our electron is not going too fast,

λ =
h

meve
(9.11)

After going this far, he thought he could use the results of the Einstein and Plank to

write the energy of these matter waves as

E = hf (9.12)

and then he could use the energy to find the frequency of the waves

f =
E

h
(9.13)

The ideas of De Broglie were not taken well by the scientific community at large until

by accident Davison and Germer measured the wavelength of electrons. They were

scattering low energy electrons off a nickel target in a vacuum system. The vacuum

system sprang a leak, and their nickel target oxidized. They were probably a little

annoyed, but this was really the best day of their careers! They heated up the Nickel

target to remove the oxidation (blowing hydrogen over it to carry away the oxidation

remnants). Once it cooled, they replaced their target, and started up their experiment.

But now the electrons scattered into neat patterns! Davison and Germer recognized

them as diffraction patterns! The Nickel target had formed a regular crystal structure

when it was heated, and now they had diffraction just like Xrays from NaCl crystals!

They repeated the experiment, but this time with the intent of measuring the wavelength

of the electron waves. Others soon repeated the experiment. And de Broglie’s ideas

were proven right!

Let’s state clearly what this means
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All particles have a dual waveparticle nature

We don’t see this wave like behavior of matter in everyday experience because the

wavelengths are so very small. Electron wavelengths used in electron microscopes are

about 100 times smaller than normal light wavelengths use in normal optical systems.

But we can make pictures with electron waves! It is also true that in every day expe

rience we don’t pass particles through narrow slits. So most matter behavior is well

explained by the particle part of the waveparticle duality of matter. It depends on our

experiment, which behavior we will see. We will develop our theory of matter waves in

our next lecture.

Scanning electron microscope image of an eye on a fruit fly. This image was taken

using electron waves. Image courtesy Darthmoth College.





10 De Broglie Waves and

Uncertainties

4.24.4

Fundamental Concepts in the Lecture

• de Broglie and the Wave nature of Matter

• Electron Microscopes

• Heisenberg uncertainty relations

Question: The first experiments that verified the wavelike nature of electrons through difraction were
performed by directiong electrons through

a. A single slit

b. A double slit

c. A crystal lattice

d. Jello

In the last lecture, we suggested that matter, like electrons and protons, might really be

waves in the same way that photons are waves. It is time to develop this theory.

Particle Interference

If, as we said in the last lecture, electrons have a wavelength, then we should be able to

make a double slit experiment using electrons. This is hard to do with the wavelength

of, say 40keV electrons. Let’s see why. We know from de Broglie

λ =
h

p
or, since

hc = 1240 eV nm

we could write the wavelength as

λ =
hc

pc
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If our electron is not traveling relativistically we can say that

p = mv =
√
m2v2

=

�
2m

1

2
mv2 =

√
2mK

=
1

c

�
2(mc2)K

which is convenient because we know ∆K = e∆V for an electron shot out of an

electron gun. If we know the accelerating stage voltage for making the electron beam,

we can know the kinetic energy and then the momentum. Since we know for electrons

m = 0.511MeV/c2

p =
1

c

�
2 (0.511× 106 eV/c2) c2 (40000 eV)

= 2. 021 9× 105 eV/c

so then

λ =
1240 eVnm

2. 021 9× 105 eV

= 6. 132 8× 10−3 nm

= 0.06132 8Å

It’s hard to build slits that will work for such small wavelengths. Claus Jonsson and

his group did this back in 1961. They built double, triple, quadruple, and up to five

slits. Their double slit had a slit width a = 0.5µm with a slit spacing of d = 2µm.

The distance from the slit to the screen was L = 0.4m. Here is one of the results from

illuminating the double slit with electrons.

Claus Jonsson, “Electron Diffraction at Multiple Slits,” AJP Volume 42, Jan 1974, pp 411

(Translated by Deitrich Brandt and Stanley Hirschi)

We can clearly see a diffraction pattern. For a double slit experiment we know that

ym =
mλL

d
m = 0,±1,±2, · · ·
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so that

y1 =

�
0.06132 8Å

�
(0.4m)

2µm

= 1. 226 6× 10−6m

= 1.23µm

Which is, as Jonsson reported, close to his measured value. Jonsson had to magnify his

diffraction pattern in order to record it. A fringe spacing on the order of 1µm is hard

to see with your unaided eyes. And so within the uncertainties of the apparatus and the

magnification system, the experiment gave consistent values. But just the image itself

is a stunning example of the wave nature of electrons!

With this wave nature we can do some fantastic things. A scanning electron microscope

(SEM) is one of them. The next figure gives a schematic SEM design and shows what

one looks like (complete with very dramatic looking human operators) and shows an

image of ice crystals made with electrons waves.

Schematic of a Scanning Electron Microscope (SEM) and a picture of a US Department of

Energy SEM. In the lower right hand corner is a SEM image of ice crystals.

Although it is strange to consider matter as being made of waves, The fact that we can

build a device like a SEM is a very good hint that this wave model of matter is not

wrong. It is a little like building and using a surfboard to prove that there are ocean

waves. Once you are metaphorically hanging 10, it is good evidence that your model

works, no matter how unnerving that model might at first appear.
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Uncertainty Relationships

When we think of a wave, so far in physics we have mostly thought of something like

this

y = A sin (kx− ωt− φ)

which in practice might look like this

5 4 3 2 1 1 2 3 4 5

10

5

5

10

x

y

Notice that there is no start or stop to this kind of wave. Our figure starts at x = −5 and

ends at x = 5, but the equation does not! There is a value of y for every x from −∞ to

+∞. But our photons are not such waves. They are limited waves at best.

We should investigate what happens when you have a limited wave. I did this investi

gation using Python. Suppose we have a sine wave with f = 200Hz, but I limit this

wave’s existence by making it start at ti = 0 and then make it end at tf = 10 s. I could

do this in practice by turning on a radio transmission or even an acoustic speaker, and

then turning the device off ten seconds later. Our screen resolution is terrible for plot

ting such a function, but in the figure below you can see that our signal only exists from

t = 0 to t = 10 s.

2 1 1 2 3 4 5 6 7 8 9 10 11 121

1

x

y

If I zoom in on a part of the graph, we can see that it is really a sin wave.

2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.501

1

x

y

Python did equally bad at plotting this. All we see is a blue band.
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But in the second graph, notice that we have plotted frequency. Python and most

scientific programing languages have functions to find which frequencies are in a

signal. This function is referred to as a Fourier Transform. In PH123, we would say

that these functions perform the job of a spectrometer, so we would call the figure to the

right a spectrogram (or just a spectrum).3

We expect only one frequency, 200Hz, and that is mostly what we get. Since our period

for our wave is

T =
1

200Hz
= 0.005 s

and we have 10 s of data, that is four orders of magnitude more signal than a period.

The whole signal seems very long compared to a period. We expect this to look kind of

like an infinite signal. But suppose we take the same wave, but for less time. We limit

the wave more.

So we still get a blue blur for our wave picture, but now the wave only exists for one

instead of ten seconds. If you look closely at the frequency graph, you will notice that

the 200Hz peak representing our wave is a bit wider right at the bottom.

We could limit our wave more, say, so it only lasts tf = 0.1 s. We would get a set of

graphs that look like this.

3 If the idea of a Fourier transform isn’t familiar, see Appendix A.
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Notice that not only can Python render the wave now, but more importantly the 200Hz

frequency peak is noticeable wider. This is profound! It means that by limiting the

wave, we no longer have just one frequency! The graph tells us we have mostly 200Hz

but we also have some 199Hz and some 201Hz and some 190Hz and some 210Hz,

etc. The very fact that the wave does not go on so long requires that we have more than

one frequency in the wave. We could say that as ∆t gets smaller, our ∆f is getting big

ger. Here are two more examples with smaller ∆t values.

The cost of limiting our waves is that we can’t have a single frequency for the wave. For

an experimentalist, this means that if you only measure a short segment of the signal,
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you have an increased uncertainty in the frequency you will find from that signal. For

a photon, it means that we can expect uncertainty in the frequency (or wavelength)

because the photon is limited. It is important to know what we mean by uncertainty in

this case. In our example above, when we say that ∆f increased we really mean that we

have more than one frequency. We don’t just mean that we don’t know the frequency

well. We really are mixing more than one frequency.

We could say that we have increased the uncertainty in the frequency by some amount

ε such that

∆f ≈ εf =
ε

T
or the uncertainty in f is some fraction ε of the peak frequency. If we take our last

figure and say that ∆t ≈ T, we could say

∆t∆f ≈ T
ε

T
= ε

which gives us an inverse relationship between ∆t and ∆f

∆f ≈ ε

∆t
Or even more interestingly, for a photon ∆E = hf so

∆E ≈ hε

∆t
and we have an uncertainty relationship between the duration, ∆t, and the energy in the

wave, ∆E. And it tells us just what we have been studying. If the duration of our wave

signal is short (small ∆t) then our wave signal has to be made of more partial waves

with different energies (different frequencies). So we don’t have just one frequency. We

have a wider bandwidth of frequencies centered around a main frequency.

We took the history graph viewpoint in what we have done so far. But we could just as

well have taken a snapshot viewpoint and we would have ended up with an uncertainty

condition on the length of the whole wave ∆x and the wavelength λ. Again modeling

the uncertainty as a fraction of the wavelength ǫ we have

∆x∆λ ≈ λ× ǫλ = ǫλ2

where we have used ∆x as nearly one wavelength. Once again we don’t just mean we

don’t know λ well. We are actually mixing more than one λ to describe our limited

wave.

We could make a measurement of N wavelengths. Then the uncertainty in our

wavelength gets better (Think of PH150, measuring millimeter with a meter stick has

an uncertainty of about a millimeter  the smallest marking  and measuring a meter

with a meter stick has an uncertainty of about a millimeter, but now that millimeter

is not as important compared to the whole measurement 1mm/1m = 0.001 so the



162 Chapter 10 De Broglie Waves and Uncertainties

fractional uncertainty is less). We could say that our uncertainty would go down by a

factor of 1/N

∆λ ≈ ǫλ

N
and our distance measurement was ∆x = Nλ. So then

∆x∆λ ≈ (Nλ)

�
ǫλ

N

�
= ǫλ2

and our uncertainty relationship is the same. So our wave reasoning can be used as a

normal uncertainty. But we really mean that for waves we have more than one partial

wave with different wavelengths combined to make an overall wave.

Note that we have done very little in the way of quantum thinking here! These

uncertainty relationships apply to classical waves as well. And this is not surprising.

Think of a wave on the beach. Knowing exactly where the wave is (∆x) is easy if the

wave is very small.

A pulse like wave with small ∆x and large ∆λ (left), a more extend wave with larger ∆x and

smaller ∆λ (middle) and an infinite wave with infinite ∆x (because it exists everywhere) and a

single λ so ∆λ is zero (right).

For such a limited pulselike wave ∆λ is larger because you have to have many

wavelengths mixed to build a limited wave. You could point to the location of the little

wave. But if the wave is an ocean wave that extends across miles of water uniformly,

then ∆λ is small, nearly zero and ∆x is big. This just says the wave is not all in one

location. It is stretched across miles of ocean. And as the extended wave hits the

beach, everybody gets wet, not just people in one location. The big wave is not well

represented by particle model.

We need a new name for a limited wave. We will call such a wave a wave packet.

In quantum mechanics, the wave packet shape tells us something about the position of

the particle. A wave packet that looks like this
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tells us that the “particle” could be detected anywhere because the wave is everywhere.

A wave packet that looks like this
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y

tells us that the position where the “particle” can be detected must be somewhere close

to 4m.

And of course all real waves have to start and stop at some point, so all real waves are

wave packets.

Uncertainty and De Broglie waves

De Broglie waves have a wavelength that is related to the momentum

λ =
h

p
we could write this as

p =
h

λ
Let’s find dp by taking a derivative

dp = − h

λ2
dλ

The minus sign can be important so we know the different directions of change, but

let’s look at the magnitude of the change only. If we allow our small changes to be a

little bigger, we could, to a good approximation write this as

∆p =
h

λ2
∆λ

so

∆λ =
λ2

h
∆p

We can use our uncertainty relationship for waves and make it especially for de Broglie

waves. Starting with

∆x∆λ ≈ ǫλ2
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and substituting in our equation for ∆λ we get

∆x∆λ ≈ ǫλ2

∆x

�
λ2

h
∆p

�
≈ ǫλ2

∆x∆p ≈ ǫh

We can use our new wave packet name and say that this last equation tells us that the

smaller the wave packet (∆x small) the more uncertain the momentum (∆p large).

We are not quite ready to do the quantum mechanical calculation to find ǫ. That is a a

problem for PH433. But I will give you the answer now

ǫ =
1

4π
This is the smallest possible uncertainty that we can obtain. This gives our

positionmomentum uncertainty as

∆x∆p ≥ h

4π
And just to be confusing, let’s define a new symbol

� =
h

2π
= 6.58× 10−16 eV s

This symbol is pronounced “h bar.” So our positionmomentum uncertainty is

∆x∆p ≥ 1

2
�

You might have thought that the definition of � should have had a 4π, but that is not our

tradition. Often this minimal case is not achieved, so often it is good enough to estimate

∆x∆p ≈ �

Let’s consider a standard experiment to illustrate this uncertainty principle.

Suppose we take a beam of electrons and send them all in the xdirection toward an

aperture of size a. The electrons that make it through the aperture will have their
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uncertainty in position changed to about a

∆y = a

Then, using our estimate from above

∆y∆py ≈ �
becomes

a∆py ≈ �
or

∆py ≈
�

a

We can see that where we would have expected all the momentum to be in the

xdirection with py = 0, we will now have an uncertainty in that py. Some electrons

will have motion in the ydirection! We can even find an angle where the electrons are

likely to go. For small angles

sin θ ≈ tan θ =
py
px

The wavelength is

λ =
h

px

px =
h

λ
so

sin θ ≈
�

a
h
λ

=
λ

h

h

2πa
=

λ

2πa

Now let’s think of a single slit diffraction pattern from our PH123 optics. For the first

dark fringe we would have

sin θd =
λ

a

We have most of our electrons going in a direction with an angle that is less than θd,

which is just what we would expect! We begin to see that diffraction is very connected

to our quantum uncertainty relationship!

Let’s go back to our energytime uncertainty relationship.

∆E∆t ≈ hε

We have another ε to find, and once again I am going to quote a future result

ε =
1

2
�

We have the same limiting case for energytime uncertainty

∆E∆t ≥ 1

2
�
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and once again we often don’t achieve the minimum so a good estimate is

∆E∆t ≈ �
What we have found is quite profound and bears summarizing

∆x∆p ≥ 1

2
�

There is a fundamental limit on how well we can simultaneously determine the position

and momentum of a wave packet (object).

∆E∆t ≥ 1

2
�

There is a fundamental limit on how well we can simultaneously determine the energy

and time coordinate of a wave packet (object).

Notice that we did not use the word “measured” in this summary. It is not that we can’t

measure momentum and position with infinite position (although we can’t!). It is that

it is a fundamental impossibility to determine both the momentum and position with

infinite precision simultaneously for an object because those quantities don’t have a

single value for the object. It is a fundamental limit because objects are not really

particles. It is because they have a wave nature. No effort to improve measurement

precision can beat this because it is a part of the wave reality of objects. So this is

different that our PH150 measurement uncertainty. For this reason some scientists

call this “indeterminacy” instead of “uncertainty.” But I will stick with “uncertainty.”

Heisenberg came up with this fundamental limit, so these uncertainty relationships bear

his name. These are the Heisenberg uncertainty relations.

Although these uncertainty relationships are just what we should expect from waves,

some of the ideas that follow from these ideas of uncertainty can seem strange. Because

energy is uncertain for a small amount of time ∆t, we can break conservation of energy

for a small time. We can have positronelectron pairs simply pop into existence, so long

as they pop back out of existence within a time

∆t ≈ �

∆Epair
and this is totally OK! Waves can do things like this, but particle model would not

predict such an outcome.
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4.54.7

Fundamental Concepts in the Lecture

• The mathematical concepts behind wave packets

• Moving wave packets

• Spreading wave packets

• What’s in a wave packet?

In the last lecture we introduced the idea of a wave packet. And I used this idea to draw

diagrams of photons like this

but really all we did in the last lecture was limit the wave. And we found that limiting

our wave mathematically meant that we could not have just one wavelength, but our

mathematical description of the wave needed to be a superposition of many waves with

different wavelengths. This gave us the starting and stopping of the wave.

But, our picture of a photon wave packet has the amplitude change as well. We need to

develop a mathematical way to understand the shape in between the start and stopping

points. That is what we will try to do in this lecture.

Building the mathematical concepts behind wave packets

Let’s return to PH123 and remember what it is like to mix two waves.

y1 = ymax sin (k1x1 − ω1t1 + φ1o)

y2 = ymax sin (k2x2 − ω2t2 + φ2o)
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Let’s take the case where φ2o = φ1o = φo, and let’s mix the waves in the same location

so x1 = x2 = x. Further let’s just let φo = 0. And let’s say that our waves are not too

fast so we can use the nonrelativistic approximation that all times are the same.4 And

let’s plot the waves at t = 0 so we have

y1 = ymax sin (k1x)

y2 = ymax sin (k2x)

and mixed together we have

yr = y2 + y1

= ymax sin (k2x) + ymax sin (k1x)

And let’s use our favorite trig identity

sin a+ sin b = 2cos

�
a− b

2

�
sin

�
a+ b

2

�

to write this as

yr = 2ymax cos

�
k2x− k1x

2

�
sin

�
k2x+ k1x

2

�

= 2ymax cos

�
x (k2 − k1)

2

�
sin

�
x (k2 + k1)

2

�

= 2ymax cos

�
x
∆k

2

�
sin

�
xk

�

where k is the average value of k. Let’s plot both of our individual waves and our

combined wave. We will need some actual numbers to make the plots. Let’s let

k1 = 10 rad
m and k2 = 11 rad

m and A = 1.

Our individual waves look like

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

2

1

1

2

x

y

Notice that there are places where the waves are in phase, and places where they are

not. The superposition looks like this

4 Or do all our experiment in one reference frame so to us all our geoclocks are synchronized.
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Where there is constructive interference, the resulting wave amplitude is large, where

there is destructive interference, the resulting amplitude is zero. If this were PH123, we

would say we have beats. But this time the beating is in the snapshot graph. We have a

modulated spatial frequency.

We are part of the way to our goal. We have some of the wave with a different ampli

tude than the rest of the wave. But we still don’t have a wave packet that looks like our

photon.

Our uncertainty relation lets us know what to do next. If we want ∆x to be smaller, we

need more wavelengths. We need to add in more waves. Let’s try

y1 = ymax sin (k1x)

y2 = ymax sin (k2x)

y3 = ymax sin (k3x)

y4 = ymax sin (k4x)

y5 = ymax sin (k5x)

and let’s let λ1 = 10, λ2 = 11, λ3 = 12, λ4 = 13, and λ5 = 14. We would see the

individual waves as
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where we can already see regions of constructive interference, and the combined wave

looks like

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

4

2

2

4

x

y

This approach is getting us something that looks more like the shape of our photon, but

notice that we always have more than one region that looks right. And these regions

that look right go on being reproduced infinitely on either side of the xaxis. So this

approach is not enough. We still need to limit the wave. To see how we can fix this let’s

go back to just two waves and look at our equation for the resultant wave

yr = 2ymax cos

�
x
∆k

2

�
sin

�
xk

�

We have an amplitude of

A = 2ymax cos

�
x
∆k

2

�

and a wave part

sin
�
xk

�

It is the amplitude that is modifying the wave so we get spots where the wave gets

larger. In fact we could plot the amplitude as a function on it’s own
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And now let’s plot this amplitude function with the wave part inside it
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We can see that the amplitude function seems to contain the wave part of the resultant

wave. From the graph it is easy to see the cosine is modifying the sine function, so we

have correctly identified which part of our equation is the amplitude and which part is

the wave.

This gives us a clue. The amplitude function

A = 2ymax cos

�
x
∆k

2

�

oscillates from large to small for all x, but what if we modified our amplitude function

so that it didn’t oscillate forever. Suppose we made it be mostly all in one place. Then

we would have a limited wave. Maybe we coudl try adding a function like 1/x that we

know falls off to zero quickly. Adding this gives an amplitude function of

A =
1

x
2ymax cos

�
x
∆k

2

�

where we added in a 1/x, to our original amplitude. Let’s plot this function

5 4 3 2 1 1 2 3 4 5

10

20

x

y

And it does look like our mental picture of a photon a bit. We should check to make

sure it doesn’t repeat somewhere farther away



172 Chapter 11 Working with Wave Packets

50 40 30 20 10 10 20 30 40 50

10

20

x

y

500 400 300 200 100 100 200 300 400 500

10

20

x

y

5000 4000 3000 2000 1000 1000 2000 3000 4000 5000

10

20

x

y

This is looking very promising. But this change to our amplitude is not obvious. There

must be some implications to such a change.

Let’s think, we started with adding waves to make our combined wave look more like a

photon wave packet. We did this because if we want ∆x to be small, ∆λ must be larger

so we added in more waves with different λ values. Mathematically this is

yr (x) =
�

Ai sin (kix)

which means for every x value along the wave, the height of the combined wave yr (x)

is made by adding up the y parts of each partial wave at the position x. But up till now

we used only a few different wavelengths. What if we used very many wavelengths.

Then we might write this last equation as

yr (x) =

	
A (k) sin (kx) dk

Let’s make the simple assumption that all the amplitude functions for the partial waves

are the same, A (k) = Ao, and let’s integrate from ko − ∆k
2 to ko +

∆k
2 . In doing
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this we are taking and infinite number of wavelengths with k values that are spread

across ∆k centered on ko. An infinate number of k values means an infinite number of

wavelengths, so since

k =
2π

λ
then

|∆k| =
����=

2π

λ2
∆λ

����
so we have a ∆λ that is like

|∆λ| =

����
λ2

2π
∆k

����

=

����
2π

2π

λ2

2π
∆k

����

=

����
2π

k2
∆k

����

So as our ∆k get’s larger, so does our ∆λ. That should make ∆t smaller and we should

have a limited wave. Let’s try the integral.

yr (x) =

	 ko+
∆k
2

ko−∆k
2

Ao sin (kx) dk

We can look up the integral if we don’t remember it	
sin (ax) dx = −1

a
cos ax

then we can write our integral as

yr (x) =

	 ko+
∆k
2

ko−∆k
2

Ao sin (kx) dk =

�
−Ao

x
cos kx

����
ko+

∆k
2

ko−∆k
2

= −Ao

x
cos

��
ko +

∆k

2

�
x

�
−

�
−Ao

x
cos

��
ko −

∆k

2

�
x

��

= −Ao

x

�
cos

��
ko +

∆k

2

�
x

�
−

�
cos

��
ko −

∆k

2

�
x

���

=
Ao

x

�
cos

��
ko −

∆k

2

�
x

�
− cos

��
ko +

∆k

2

�
x

��

and we need another trig identity. I looked it up in the CRC Standard Math Tables.

cosa− cos b = −2 sin
�
a+ b

2

�
sin

�
a− b

2

�

so

yr (x) = −
2Ao

x
sin

��
ko − ∆k

2

�
x+

�
ko +

∆k
2

�
x

2

�

sin

��
ko − ∆k

2

�
x−

�
ko +

∆k
2

�
x

2

�

and we can write this as

yr (x) = −
2Ao

x
sin

�
(2ko)x

2

�
sin

��
−2∆k2

�
x

2

�
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or even as

yr (x) = −
2Ao

x
sin

�
−∆k

2
x

�
sin (kox)

And knowing

sin (−x) = − sinx

then

yr (x) =
2Ao

x
sin

�
∆k

2
x

�
sin (kox)

and we have an amplitude with a 1/x in it just like we wanted. And now we can see

that this 1/x factor did include many more λ values distributed over a ∆λ which makes

our ∆t limited. We have limited our wave and achieved the our photon like shape. This

is a good candidate for a wave packet.

So what did it cost us to get an amplitude function that included a factor of 1/x? It

cost us having an infinite number of spatial frequencies (wave numbers) within a band

width ∆k. We needed to take every possible wave with a k value between ko − ∆k
2 to

ko +
∆k
2 and add all these waves together to make our wave packet. This makes the

math more challenging, but it represents our new view of a photon fairly well.

But it might not be true that all the amplitudes are the same for the waves we mix. That

was a simple first guess. We should allow for A (k) to change. Let’s pick,

A (k) = Aoe
−(k−ko)2
2(∆k)2

which would give

yr =

	
A (k) cos (kx) dk

=

	
Aoe

−(k−ko)2
2(∆k)2 cos (kx) dk

where for this wave I used a cosine instead of a sine, but cos (kx) = sin
�
π
2 − kx

�
is

still a wave just with a different φ.

This integral is harder to find in a table (but I put it in our table in the appendix).	 ∞

0

e−a
2x2 cos (bx) dx =

√
π

2 |a|e
−b2
4a2

The result. is

yr = Ao∆k
√
2πe−

(∆kx)2

2 cos (kox)

and we see that we do pick up a range of k values (and therefore have a range of λ

values) so we again have a limited wave. There are more mathematical forms that can

work. The exact form of the wave packet will depend on the place where we put the

wave. More on this in the next few lectures.
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Motion of the wave packet

So far we have done all our work on forming wave packets at t = 0, one snapshot. Let’s

let these waves move now. When we restore the time dependence we get a traveling

wave who’s amplitude varies. We can find the amplitude function algebraically. Let’s

do this for two waves mixing and then try to mentally extrapolate to an infinate number

of waves mixed with wave numbers from a band ∆k.

We can write out the entire resultant wave in our usually way. Our two waves are

y1 = ymax sin (k1x− ω1t+ φo)

y2 = ymax sin (k2x− ω2t+ φo)

and the resultant

yr = 2ymax cos

�
(k2x− ω2t+ φo)− (kx− ω1t+ φo)

2

�
sin

�
k1x− ω2t+ φo + kx− ω1t+ φo

2

�

= 2ymax cos

�
(k2 − k1)x

2
− (ω2 − ω1) t

2

�
sin

�
(k2 + k1)x

2
− (ω2 + ω1) t

2
+ φo

�

= 2ymax cos

�
∆kx

2
− ∆ωt

2

�
sin

�
kx− ω + φo

�

The first term

A = 2ymax cos

�
∆kx

2
− ∆ωt

2

�

is the amplitude, and the second term is a wave with frequency ω and wave number k.

From PH123 we remember that

k1 =
2π

λ1
ω1 = 2πf1

so
ω1

k1
=

2πf1
2π
λ1

= λ1f1 = v1

the wave speed for wave 1 (we could do the same to find the speed of wave 2). Let’s

give this a special name. Because we took just k1 and ω1, this is the speed of just one of

our component waves, not a mix of waves. We call this the phase speed. I would prefer

to call this a component speed because for us there will be more than one component

wave making up our mixed wave. But tradition has it that we call this the phase speed.

In our case there is something similar to a phase speed for the combined wave. The

combined wave has a wave part with ω = (ω2+ω1)
2 and with k = (k2+k1)

2 . This gives
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the speed of the combined wave to be

vwave part =
(ω2+ω1)

2
(k2+k1)

2

=
(ω2 + ω1)

(k2 + k1)
=

(2πf2 + 2πf1)
2π
λ2

+ 2π
λ1

=
2π

2π

f2 + f1
1
λ2

+ 1
λ1

=
f2 + f1
λ1
λ1λ2

+ λ2
λ1λ2

=
f2 + f1
λ1+λ2
λ1λ2

=
(f2 + f1)λ1λ2

λ1 + λ2

and notice this is different that the phase speed of each of the components

v1 = λ1f1

v2 = λ2f2

But now let’s look at the amplitude term. It seems to have a speed as well! It has

ω = ∆ω and k = ∆k so

vamplitude part =
∆ω

∆k
=

(ω2 − ω1)

(k2 − k1)
=

(2πf2 − 2πf1)
2π
λ2
− 2π

λ1

=
2π

2π

f2 − f1
1
λ2
− 1

λ1

=
f2 − f1
λ1
λ1λ2

− λ2
λ1λ2

=
f2 − f1
λ1−λ2
λ1λ2

=
(f2 − f1)λ1λ2

λ1 − λ2

and this speed is different that the speed of the wave part! Let’s give this speed a special

name. This speed is the speed of the amplitude bumps. Because the amplitude bumps

are a result of adding a group of waves, let’s call it the group speed. For just two waves

we can write this as

vamplitude part = vgroup =
∆ω

∆k
=

(ω2 − ω1)

(k2 − k1)
but if we have many many frequencies and wave numbers like in our wave packet case

we can write this as

vgroup =
dω

dk

Let’s apply all this to de Broglie waves. The energy in a matter wave looks like the

energy for a photon

E = hf = �ω

and the momentum is

p =
h

λ
but for a wave

λ =
2π

k
so we can write momentum for our wave/particle as

p =
h
2π
k

= �k

to find the group speed, we take

vgroup =
dω

dk
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we can find dω and dk

dE = �dω

dω =
dE

�

and

dp = �dk

dk =
dp

�

so

vgroup =
dE
�

dp
�

=
dE

dp

For a relativistic particle, this can be more complicated, but let’s do the nonrelativisitc

case where

E ≈ K =
p2

2m
then

dE =
2pdp

2m
=

pdp

m
and

vgroup =
dE

dp
=

pdp
m

dp
=

p

m
= v

just as we saw in classical physics (the particle speed is... the particle speed). This last

problem gave us a hint on how to interpret these speeds but we should carefully look at

what each means.

Let’s plot our combined wave as an aid in this.

= 2ymax cos

�
∆kx

2
− ∆ωt

2

�
sin

�
kx− ω + φo

�

To plot we need actual numbers so let’s say that

f1 = 100Hz

and

λ1 = 2m

. Then

v1 = (2m) (100Hz) = 200.0
m

s
and let

f2 = 110Hz

and

λ2 = 2.5m

v2 = (2.5m) (110Hz) = 275.0
m

s
these are the component or phase velocities. The combined wave would have a
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wavepart speed of

vwave part =
(f2 + f1)λ1λ2

λ1 + λ2

=
(110Hz + 100Hz) (2m) (2.5m)

(2.5m) + (2m)

= 233. 33
m

s
which is somewhere in between the two phase velocities. Now for the group velocity

vamplitude part =
(f2 − f1)λ1λ2

λ1 − λ2

=
(110Hz− 100Hz) (2m) (2.5m)

(2m)− (2.5m)

= −100.0 m

s

Wow that was a surprise! Let’s see what is happening. Let’s plot our waves

y1 = 10 sin

�
2π

λ1
x− 2πf1t

�

y2 = 10 sin

�
2π

λ2
x− 2πf2t

�

where I let φo = 0 and let’s put in numbers

y1 = 10 sin

�
2π

2m
x− 2π (100Hz) t

�

y2 = 10 sin

�
2π

2.5m
x− 2π (110Hz) t

�

we can plot these at t = 0
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y

and we can plot the combined wave, we need

∆k = k2 − k1 =
2π

2.5m
− 2π

2m
= −0.2 π

m
= −0.2π

∆ω = ω2 − ω1 = 2π (110Hz)− 2π (100Hz) = 20πHz
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and

k =
2π

2.5m + 2π
2m

2
= 0.9

π

m

ω =
2π (110Hz) + 2π (100Hz)

2
= 210πHz

so

yr = 2ymax cos

�
∆kx

2
− ∆ωt

2

�
sin

�
kx− ω + φo

�

becomes

yr = 20 cos

�−0.2π
2

x
1

m
− 20πHzt

2

�
sin

�
0.9

π

m
x− 210πHzt+ 0

�

so at t = 0

yr = 20 cos

�−0.2π
2

x
1

m
− 20πHz (0)

2

�
sin

�
0.9

π

m
x− 210πHz (0) + 0

�

We get the following plot where the combined wave is in red (light line) and the

amplitude envelope function is in black (heavy line).
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Now let’s look at these waves a time t = 0.05 s later.

yr = 20 cos

�−0.2π
2

x
1

m
− 20πHz (0.05 s)

2

�
sin

�
0.9

π

m
x− 210πHz (0.05 s) + 0

�

In this amount of time the wave part would move a distance

∆xwave = vwave part∆t

= 233. 33
m

s
× 0.05 s

= 11. 667m

and the amplitude part would move

∆xgroup = vwave part∆t

= −100.0 m

s
× 0.05 s

= −5.0m
here is what we see
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And this sounds crazy, unless we look a lot closer. In the last two figures a particular

wave part peak is marked with a little green dot. In the first at t = 0 s the dot is at

x = 0.62m. That same peak is found later at t = 0.05 s at x = 12. 287m. It has moved

to the right.

Meanwhile, the envelope function peak was at x = 0 at t = 0 and it has moved to

the left to about x = −0.5 at t = 0.05 s. The important thing to realize is that the

wave peak (red line) that is right under the envelope peak at x = −5m is not the same

peak that was under the envelope curve at x = 0 at t = 0. The envelope curve is built

from interference. The motion of the two original waves is just such that the spot of

constructive interference is constructed from different peaks of the two constituent

waves at different times. And that spot of constructive interference moves in a different

direction than the waves, themselves for this particular case!
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Of course this is a very simple situation with just two waves. And having the group ve

locity turn out to be in the opposite direction of the waves is not normally the case. But

the point is, that when we integrate over a bandwidth ∆k of infinite waves, we could

find a group velocity that is very different than the phase velocities.

2 1 1 2 3 4 5 6 7 8 9 10 11 12
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0.5
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y

Spread of the wave function

Let’s consider a single slit experiment again.

In such an experiment we restrict the wave packet so we get a definite ∆y0 with

an initial momentum uncertainty ∆pyo. This will have an accompanying velocity

uncertainty

∆vyo =
∆pyo
m

So the best we can do to know the velocity is to say

vy = vyo ±∆vyo
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and the position of the particle later will be

y = vy∆t

= (vyo ±∆vyo)∆t

= vyo∆t±∆vyo∆t

We have an uncertainty of the y position of the wave packet because of the wave nature

of the wave packet. Of course we also have a basic uncertainty in the y position because

the particular wave packet could have come from any part of the slit opening so it will

have an uncertainly of ∆yo as well. We can estimate the total uncertainty like we did

back in PH150

∆y =



(∆yo)

2 + (∆vyo∆t)2

and this grows as ∆t grows. The growing uncertainty means that the wave packet will

spread out. This is just what we see in our double slit experiment. we could write this as

∆y =

�

(∆yo)
2 +

�
∆pyo
m

∆t

�2

and using de Broglie again we can say

∆pyo =
�

∆yo
so

∆y =

�

(∆yo)
2 +

�
�∆t

m∆yo

�2

and this is really an important discovery. it means that the uncertainty in the second

term gets bigger when the slit gets smaller. And this is an important issue in

experimentation. The more we try to confine the wave packet the larger the uncertainty

in the position will be as time goes on.

What does the wave packet mean?

If we look at the electron double slit experiment again,

Claus Jonsson, “Electron Diffraction at Multiple Slits,” AJP Volume 42, Jan 1974, pp

411 (Translated by Deitrich Brandt and Stanley Hirschi)
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but this time lower the rate of electrons headed through the slits we find a strange thing.

Electrons hitting the screen still make the diffraction pattern, but we can see individual

electron hits. The pattern becomes spotty. If we further lower the electron rate. the

pattern get’s harder to distinguish. There are just more dots in the spots where there

were bright fringes were. Fewer, and the dots seem random. But if we are patient,

eventually the pattern will become apparent. It just takes more time.

Apparently the diffraction pattern is made of individual electron detections. There are

just more detections where the bright fringes would be. The detections are particle

nature, the pattern is wave nature.

This is really not so strange. Think of a light diffraction pattern. The intensity is

proportional to the electric field amplitude squared. And if we did a light double slit

experiment but lowered the intensity to the point where only a few photons at a time

pass through the experiment, we would same the same speckle pattern. The detection of

the photons is particle nature. The pattern is wave nature. So the probability of a photon

begin detected in some part of the pattern is proportional to the amplitude squared.

The same is true for de Broglie wave packets. The wave packet amplitude tells us the

probability of an electron detection for any given spot.





12 Wave Packets and the

Schrödinger Equation

5.15.3

Fundamental Concepts in the Lecture

• Boundary conditions

• Schrödinger equation

Wave Packets and Boundaries

Think back to our study of optics in PH123. We learned that light can travel through a

material like glass. You might have seen a demonstration of this that looked like this.

We leaned about incoming, reflected, and transmitted rays of light.

But now with our quantum viewpoint, we should reexamine this situation. Light is a
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wave, but a limited wave (a photon) and electrons are waves. How do they interact with

their environment?

Let’s have a light wave be incident on a piece of glass. We will call this incident light

wave 1

But we know that some of the light energy is transmitted into the glass. We can call this

transmitted wave light wave 2

And from optics we know that the wavelength changes at the boundary. In this case, the

wavelength is smaller inside the glass than outside the glass. We further know that some

of the light will be transmitted across the second boundary. Let’s call that wave 3.

But we know there are also reflected waves. At the first boundary we expect a reflection

and we can even say that the wave will invert on reflection from the first boundary.

And there will also be a reflection off of the second boundary.

We have what we can identify as five different waves in this situation. And this is
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common for all wave phenomena. We could envision a similar situation with a water

wave. We would have three transmitted waves

and two reflected waves

Wherever we have waves and those waves meet boundaries, we expect transmission

and reflection.

There is something that happens with light reflection that we didn’t cover in PH123.

Suppose we have a material that is not transparent. Then the light wave won’t

transmit–at least not very far. But the light energy does enter the material. The

amplitude of the wave decays exponentially until it is zero. The distance from the

boundary to where the amplitude is zero is called the penetration depth. But the

imporant idea is that the light wave doesn’t immediately stop at the boundary.

We will find this to be true for matter waves as well.

We need to pay attention to our wave at the boundaries. The wave must not experience

a discontinuity at the boundary.

The wave can’t have a gap. It must be continuous
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So the waves in the next figure would not work

but the waves in this next figure would work

The function must not only be continuous, but must not have any strange discontinuities.

It musts be differentiable. Here is another example of something that would not work.

Let’s also remember energy diagrams from PH121. If we have a hill



Wave Packets and Boundaries 189

we could describe this situation with an energy graph like this

Now we are ready to take on matter waves and boundaries. Let’s consider an accelerator

that is accelerating electrons.

The apparatus is on the bottom of the figure and the energy diagram is on the top.

It really is built of a series of pipes, surrounded by electrical systems to adjust the

potential. Here is an example from CERN.



190 Chapter 12 Wave Packets and the Schrödinger Equation

LINAC 2 linear accelerator at CERN. This device has multiple drift tubes where applied electric

fields create zones of acceleratoin adn deceleration.

The electrons enter the first section of the beam pipe and experience a potential energy

Uo = q∆Vo. Then they reach the middle section where the beam pipe is grounded so

∆V = 0 so U = 0. Then in the third segment we again have Uo = q∆Vo. We would

expect some of the electron wave packets to be transmitted across each boundary, and

some to be reflected from each of the boundaries.

At the boundaries, the wave packet functions must be continuous. Let’s take a specific

case

In region 1 where the potential is Uo we might have a wave given by

y1 (x) = C1 sin

�
2π

λ1
x− φ1

�

where

C1 = 11.5

λ1 = 4.97 cm

φ1 = −65.3 ◦ = −1. 139 7 rad
But we use y to indicate position along one coordinate axis. Now our potential energy

isn’t a function of height. So let’s change to a new letter, ψ. This is the Greek letter psi,

or “pitchfork.”

ψ1 (x) = C1 sin

�
2π

λ1
x− φ1

�

Suppose we measure the wavelength in Region 2 and find

λ2 = 10.5 cm
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And suppose that the boundaries between state 1 and 2 of the accelerator is at

x12 = 0

and the boundary between state 2 and statge 3 is at

x23 = L = 20 cm

We expect that our wave equation will change at the boundaries, and we know we need

to match up the different equations for the different regions so they are continuous at the

boundaries. For this problem, let’s assume that for some reason there are no reflections

at the boundaries (not realistic, but it makes the math easier for a first problem in using

boundary values to match wave functions). In practical terms, we expect that in Region

2 we will have a similar wave equation

ψ2 (x) = C2 sin

�
2π

λ2
x− φ2

�

but we will need to adjust C2, λ2, and φ2 so that y2 (0) = y1 (0) and we will do this

again at the second boundary between Regions 2 and 3

ψ3 (x) = C3 sin

�
2π

λ3
x− φ3

�

and we will need to adjust C3, λ3, and φ3 so that ψ2 (L) = ψ3 (L) . Let’s take on the

boundary at x = 0 first. Set

ψ1 (0) = ψ2 (0)

C1 sin

�
2π

λ1
(0)− φ1

�
= C2 sin

�
2π

λ2
(0)− φ2

�

C1 sin (−φ1) = C2 sin (−φ2)

−C1 sin (φ1) = −C2 sin (φ2)

This gives us one equation, but two unknowns, C2 and φ2. We can get another equation

by demanding that the union be differentiable at the boundary. That is the same as

saying that the slope of each wave equation must be the same at the boundary. So we

can set the derivatives dψ1/dx = dψ2/dx at x = 0

dψ1

dx
=

d

dx

�
C1 sin

�
2π

λ1
x− φ1

��

= C1 cos

�
2π

λ1
x− φ1

��
2π

λ1

�

= C1

�
2π

λ1

�
cos

�
2π

λ1
x− φ1

�

and likewise
dψ2

dx
= C2

2π

λ2
cos

�
2π

λ2
x− φ2

�
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setting these equal at x = 0 gives�
dψ1

dx

����
x=0

=

�
dψ2

dx

����
x=0

C1

�
2π

λ1

�
cos

�
2π

λ1
(0)− φ1

�
= C2

2π

λ2
cos

�
2π

λ2
(0)− φ2

�

C1

�
2π

λ1

�
cos (−φ1) = C2

2π

λ2
cos (−φ2)

We have another equation with the same two unknowns. It is down to algebra. We have

two equations

C1 sin (φ1) = C2 sin (φ2)

C1

�
2π

λ1

�
cos (−φ1) = C2

2π

λ2
cos (−φ2)

and two unknowns φ2 and C2. Let’s take the two equations and divide them
C1 sin (φ1)

C1

�
2π
λ1

�
cos (−φ1)

=
C2 sin (φ2)

C2
2π
λ2

cos (−φ2)

λ1
sin (φ1)

cos (−φ1)
= λ2

sin (φ2)

cos (−φ2)
λ1 tan (φ1) = λ2 tan (φ2)

tan (φ2) =
λ1
λ2

tan (φ1)

so

φ2 = tan−1
�
λ1
λ2

tan (φ1)

�

φ2 = tan−1
�
4.97 cm

10.5 cm
tan (−65.3 ◦)

�

= −0.799 74 rad
= −45. 822 ◦

Now we can solve for C2. Using the first of our two equations.

C2 = C1
sin (φ1)

sin (φ2)

C2 = (11.5)
sin (−1. 139 7 rad)
sin (−0.799 74 rad)

= 14. 568

and we can plot this to see if it worked

ψ1 (x) = 11.5 sin

�
2π rad

4.97 cm
x+ 1. 139 7 rad

�

ψ2 (x) = 14. 568 sin

�
2π rad

10.5 cm
x+ 0.799 74 rad

�
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The Region one wave is in dark red (and dashed), the Region 2 wave is in light red, and

we see right at x = 0 the wave is continuous and differentiable. We seem to have done

well. Let’s take on the next boundary at x = L. We will do the same thing. We know

C2 and φ2, we need to know C3 and φ3. But we also need to know λ3. We can get λ3

by symmetry. Since in Region 3 the potential energy is Uo just like it was in Region 1,

we can say that λ3 = λ1. Think of the light exiting the glass in our previous example.

the wavelength in the air region is the same on both sides of the glass region.

Then Set

ψ2 (L) = ψ3 (L)

C2 sin

�
2π

λ2
(L)− φ2

�
= C3 sin

�
2π

λ3
(L)− φ3

�

This gives us one equation, but two unknowns, C3 and φ3. We again get another

equation by demanding that the union be differentiable at the boundary.�
dψ2

dx

����
x=L

=

�
dψ3

dx

����
x=L

We already know dψ2/dx

dψ2

dx
= C2

2π

λ2
cos

�
2π

λ2
x− φ2

�

but we need to find dψ3/dx

dψ3

dx
=

d

cx

�
C3 sin

�
2π

λ3
x− φ3

��

= C3 cos

�
2π

λ3
x− φ3

��
2π

λ3

�

= C3

�
2π

λ3

�
cos

�
2π

λ3
x− φ3

�
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setting these equal at x = L gives

C2
2π

λ2
cos

�
2π

λ2
L− φ2

�
= C3

�
2π

λ3

�
cos

�
2π

λ3
L− φ3

�

C2

λ2
cos

�
2π

λ2
L− φ2

�
=

C3

λ3
cos

�
2π

λ3
L− φ3

�

and our two equations are

C2 sin

�
2π

λ2
(L)− φ2

�
= C3 sin

�
2π

λ3
(L)− φ3

�

C2

λ2
cos

�
2π

λ2
L− φ2

�
=

C3

λ3
cos

�
2π

λ3
L− φ3

�

and two unknowns φ3 and C3.

Let’s do just what we did before and take the two equations and divide them

C2 sin
�
2π
λ2

(L)− φ2

�

C2
λ2

cos
�
2π
λ2

L− φ2

� =
C3 sin

�
2π
λ3

(L)− φ3

�

C3
λ3

cos
�
2π
λ3

L− φ3

�

so, canceling the C2 and C3 gives

λ2
sin

�
2π
λ2

(L)− φ2

�

cos
�
2π
λ2

L− φ2

� = λ3
sin

�
2π
λ3

(L)− φ3

�

cos
�
2π
λ3

L− φ3

�

And using some trig gives

λ2 tan

�
2π

λ2
(L)− φ2

�
= λ3 tan

�
2π

λ3
(L)− φ3

�

Now let’s try to isolate φ3
λ2
λ3

tan

�
2π

λ2
(L)− φ2

�
= tan

�
2π

λ3
(L)− φ3

�

�
2π

λ3
(L)− φ3

�
= tan−1

�
λ2
λ3

tan

�
2π

λ2
(L)− φ2

��

φ3 =
2π

λ3
(L)− tan−1

�
λ2
λ3

tan

�
2π

λ2
(L)− φ2

��

Then

φ3 =
2π

4.97 cm
(20 cm)− tan−1

�
10.5 cm

4.97 cm
tan

�
2π

10.5 cm
(20 cm) + 0.799 74 rad

��

= 24. 877 rad

This seems unusually high, but we can check it by solving for C3 first and seeing if we

get the same number. Start again with our two equations

C2 sin

�
2π

λ2
(L)− φ2

�
= C3 sin

�
2π

λ3
(L)− φ3

�

λ3
C2

λ2
cos

�
2π

λ2
L− φ2

�
= C3 cos

�
2π

λ3
L− φ3

�
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This time square both and add them

C2
2 sin

2

�
2π

λ2
(L)− φ2

�
+

�
λ3

C2

λ2

�2

cos2
�
2π

λ2
L− φ2

�
= C2

3 sin
2

�
2π

λ3
(L)− φ3

�

+C2
3 cos

2

�
2π

λ3
L− φ3

�

We can take out a C2
3 on the right hand side

C2
2 sin

2

�
2π

λ2
(L)− φ2

�
+

�
λ3

C2

λ2

�2

cos2
�
2π

λ2
L− φ2

�

= C2
3

�
sin2

�
2π

λ3
(L)− φ3

�
+ cos2

�
2π

λ3
L− φ3

��

adn isolate it

C2
2 sin

2

�
2π

λ2
(L)− φ2

�
+

�
λ3

C2

λ2

�2

cos2
�
2π

λ2
L− φ2

�
= C2

3

C2
3 =

�

C2
2 sin

2

�
2π

λ2
(L)− φ2

�
+

�
λ3

C2

λ2

�2

cos2
�
2π

λ2
L− φ2

�

putting in numbers gives

C3 =

�
(14. 568)2 sin2

�
2π

10.5 cm
(20 cm)− (−0.799 74 rad)

�

+

�
(4.97 cm)

14. 568

10.5 cm

�2

cos2
�

2π

10.5 cm
(20 cm)− (−0.799 74 rad)

�� 1
2

= 7. 357 6

Now lets put this back into the first of our two equations and resolve for φ3

C2 sin

�
2π

λ2
(L)− φ2

�
= C3 sin

�
2π

λ3
(L)− φ3

�

C2

C3
sin

�
2π

λ2
(L)− φ2

�
= sin

�
2π

λ3
(L)− φ3

�

sin−1
�
C2

C3
sin

�
2π

λ2
(L)− φ2

��
=

�
2π

λ3
(L)− φ3

�

φ3 =

�
2π

λ3
(L)− sin−1

�
C2

C3
sin

�
2π

λ2
(L)− φ2

���

φ3 =

�
2π

4.97 cm
(20 cm)− sin−1

�
14. 568

7. 357 6
sin

�
2π

10.5 cm
(20 cm) + 0.799 74 rad

���

= 24. 877 rad

We got the same number. To further check the value, we can plot the wave equations

and see if they are continuous and differentiable at L.

ψ1 (x) = 11.5 sin

�
2π rad

4.97 cm
x+ 1. 139 7 rad

�
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ψ2 (x) = 14. 568 sin

�
2π rad

10.5 cm
x+ 0.799 74 rad

�

ψ3 (x) = 7. 357 6 sin

�
2π rad

4.97 cm
x− 24. 877 rad

�
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This is just what we expected to see, so we must have good values for φ3 and C3.

It’s not always true that the wave equation will be the same functional form in all

regions, as we will soon see. It is also true that in this example we have ignored any

reflected waves. But that is a subject for a later problem.

Particle in a box

Let’s repeat our boundary problem, but this time let’s make the potential in Region 1

and Region 3 infinite (Uo =∞)

A particle in region 2 could not escape. In our last example there were waves in Region
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1 and Region 3, but with infinite potential, a particle/wave can’t penetrate into these

regions. Think of our poor electrons. If they are in Region 2 of the beam pipe, it would

take infinite energy to get them into Region 3 or Region1.

To deal with this kind of situation, we know that at x = 0 the wave

ψ2 (0) = 0

because the wave

ψ1 = 0

in all of Region 1. There is no wave in region 1, and at the boundary the wave functions

have to match. It is also true that

ψ2 (L) = 0

because

ψ3 = 0

in all of Region 3.

With these boundary conditions we should be able to find a wave equation for ψ2 (x)

in Region 2. But if we refer back to our optics example, we expect that we could have

electrons going to the right, but we could reflect electrons off of the barrier at x = L so

we could have electrons going to the left. These correspond to waves 2 and waves 5 in

our optics example

and if that is the case we can recognize a PH123 analog of this situation. This is like a

guitar string fixed on both ends. We know we will get standing waves.

Let’s call the wave going to the right ψ2r and the wave going to the left ψ2l. We could

write wave equations for these two waves.

ψ2r = C2r sin (k2x− ω2t+ φ2r)

ψ2l = C2l sin (k2x+ ω2t+ φ2l)

And to make things easier, we can do our work for the special case of t = 0, knowing

that whatever parameter values we find for this special case must be true for all

times. We have coefficients C20 and φ20 at the boundary at x = 0. At this boundary

ψ2r (0) = 0

0 = C2r sin (k2 (0) + φ2r)

0 = sin (φ2r)
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so we don’t have a constraint on C2r but we do have a constraint on φ2r. It should be

zero.

φ2r = 0

and likewise ψ2r (L) = 0 so

0 = C2r sin (k2L)

0 = sin (k2L)

since sin (θ) = 0 when θ = 0, π, 2π . . .which tells us that

k2L = nπ

so
2π

λ2
L = nπ

or

λ2 =
2π

nπ
L =

2

n
L

And now we see a very imporant wave property. Only certain wavelengths will make

wave packets that fit in Region 2 with our infinite potential boundary conditions. When

only certain values of a physical parameter work in a certain physical situation, we say

the system is quantized. Of course because frequency and wavelength are related, we

expect that only certain values of the frequency are allowed. and

f2 =
v

λ2
(12.1)

=
v
2
nL

(12.2)

= n
v

2L
(12.3)

But we were looking for the amplitude coefficient C2l which we need to complete our

wave equation We have again

0 = C2l sin (k2 (0) + φ2l)

so

0 = sin (φ2l)

and once again

φ2l = 0

but once again we don’t have a way to find C2L. We are going to need some new

physics to find the amplitudes to complete the wave equations. Let’s assume that for

now the symmetry of the situation demands that

C2l = C2r = C

then

ψ2r = C sin (k2x− ω2t)

ψ2l = C sin (k2x+ ω2t)
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The sum is

ψr = ψ2r + ψ2l = C sin (k2x− ω2t) +C sin (k2x+ ω2t)

To gain insight into what these two waves produce, we use another of our favorite trig

identities

sin (a± b) = sin (a) cos (b)± cos (a) sin (b)

to get

ψr = C sin (k2x− ω2t) +C sin (k2x+ ω2t)

= C sin (k2x) cos (ω2t)−C cos (k2x) sin (ω2t) +C sin (k2x) cos (ω2t) +C cos (k2x) sin (ω2t)

= 2C sin (k2x) cos (ω2t)

= (2C sin (k2x)) cos (ω2t)

This looks like the harmonic oscillator equation

ψ = ψmax cos (ωt+ φo)

with φo = 0 and with another complicated amplitude

A = 2C sin (k2x)

Note that we have an oscillatory part and an amplitude part. Let’s deal with the

amplitude for a while because that will set the shape of the wave packets. We have an

amplitude that is dependent on position, and it must be zero at x = 0 and x = L.

The problem we have been working is given the affectionate name of a particle in a box

because the particle can’t escape. It’s a good approximation for many physical systems

where one particle is bound to something else (electron bound to an atom, atoms bound

to molecules, etc.). So it gives us great physical insight. But we must be able to find the

wave equation including it’s amplitude. We are missing C in what we have done so far.

We need to be able to find the C. And notice that since ψ2 (0) = 0 and ψ2 (L) = 0

and ψ1 (0) = 0 and ψ3 (L) = 0, we are not going to be able to use matching on the

boundaries to find C. We need another strategy. Let’s work on the amplitude next.

the Schrödinger equation

Let’s continue with our particle in a box problem. We failed to find the amplitude for

our wave equation. We could try many different things to find this amplitude, but a

physicist named Schrödinger came up with one that has worked well. We will do the

nonrelativistic case in this class (but if you go on in physics, the relativistic case is

really cool). Schrödinger’s approach starts with trying derivatives. He gave a symbol

for the wave function for a de Broglie wave packet, ψ just like we have done. In our
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particle in a box problem then

ψ (x, t) = 2C sin (kx) cos (ωt)

and we know that we need the amplitude C part so let’s work with the envelope for a

moment and ignore the cos (ωt) wavy part (that is, we will work at t = 0).

ψ (x, 0) = C sin (kx) cos (ω (0)) = C sin (kx)

Let’s write ψ (x) without showing its time dependency (t) as the amplitude of ψ (x, t) .

ψ (x, t) = ψ (x) cos (ωt)

And let’s find the derivative of the wave function

dψ (x)

dx
= 2Ck cos (kx)

and the second derivative
d2ψ (x)

dx2
= −k22C sin (kx)

= −k2ψ (x)

The second derivative gives a constant times the original function. This isn’t a surprise

if you paid close attention in PH123. We know that this is a property of wave equations.

Schrödinger further mused that for a nonrelativistic case

K =
p2

2m
=

(mv)2

2m
=

1

2
mv2

and for a de Broglie wave

p =
h

λ
=

h

λ

2π

2π
= �k

so for a nonrelativistic de Broglie wave the kinetic energy would be

K =
�
2k2

2m
And we can solve for the wave number in terms of K

k2 =
2mK

�2

We can put this back into our second derivative.

d2ψ (x)

dx2
= −k2ψ (x)

= −2mK

�2
ψ (x)

and now recall that the total nonrelativistic energy for a wave packet would be

E = K + U

where in general we will think of potential energies that arrive from field forces like

electric field forces or the strong nuclear force. Gravity will be a special case that we

will deal with relativistically (we know the tie to rest mass already). We will save that

for later. But the gravitational pull on an electron is small enough that we will ignore it
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for now. Then

K = E − U

and
d2ψ (x)

dx2
= −2m

�2
(E − U)ψ (x)

Rearrangign gives

− �
2

2m

d2ψ (x)

dx2
= Eψ − Uψ (x)

adn finally

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)

This is exciting in and of itself because this last equation is so famous. This is the

nonrelativistic, timeindependent Schrödinger equation. It is time independent because

we used just the amplitude of the wave function to get it. But what is more exciting is

that we can use the Schrödinger equation to get our missing amplitude.

Let’s make an additional notation change before we get the amplitude. We left of the

cos (ωt) . But that is fine, we were after the amplitude so we just wanted the time

independent amplitude part. We can retrieve the time independence by writing

ψ (x, t) = ψ (x) cos (ωt)

but here we are going to play a mathematical trick. We can use something from that

complex analysis class that you haven’t taken

e−ix = cos (x)− i sin (x)

This is a complex number
�
i =

√
−1

�
. Our equation is real, there is no imaginary part.

But notice that the real part of e−ix is cos (x) so

Re
�
e−iωt

�
= cos (ωt)

Then if we write

ψ (x, t) = ψ (x) cos (ωt)

= ψ (x)Re
�
e−iωt

�

that would work. But the Re is annoying to write. We can just write

ψ (x, t) = ψ (x)
�
e−iωt

�

and remember at the end of our calculations we need to take the real part (yes we really

do it this way).

To help get our amplitude. Let’s delay one more time and talk philosophically. What

is this wave function we are building? It seems different than a water wave or a sound

wave. The question is hard to answer. We know the wave equation solutions should be

like electromagnetic waves from optics. And we know that the square of the amplitude

at a particular position of an electromagnetic wave gives us the probability of detecting
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a photon at that location.

I =
1

2µoc
E2
max

Where the electromagnetic wave amplitude is large, there is a high probability of

detecting photons. Where it is low, there is a low probability of detecting photons. This

suggests that we can treat the amplitude squared of a wave function as a probability

P (x) dx = |ψ (x)|2 dx
To do this we need to “remember” some probability theory. The probability of detecting

a photon at a mathematical point represented by a single value of x is always zero.

Think about this. If the particle is at x + dx no matter how small the dx might be,

the photon is still not at x. So finding the probability of a waveparticle at any single

x value isn’t very helpful. It is like asking how may students in a class got a score of

91.43530694538475% on the test. The chance of getting that exact score is very low.

But we can meaningfully ask how many students got a A on the exam by binning all

the students that got higher than 90% and lower than a 93%. We do the same thing with

locating a particle. We find the probability that the waveparticle is within some range

of positions ∆x or if the range is small, dx. That is what the dx means in our equation.

The probability that the particle is in the range of x to x+ dx.

This should be proportional to our amplitude squared |ψ (x)|2 . It is convenient to

notice that

|ψ (x, t)|2 = |ψ (x)|2
��e−iωt

��2

Here the absolute value symbol means we take the item, say e−iωt and multiply it by

its complex conjugate, e+iωt. A complex conjugate is the same quantity but with i

replaced by −i so
��e−iωt

��2 = e−iωte+iωt = 1

or in general if we have a complex number z = a+ ib where a and b are real, then the

complex conjugate of z is z∗ = a− ib. And
��z2

�� = zz∗ = (a+ ib) (a− ib) = a2 + b2

Then, we can write

|ψ (x, t)|2 = |ψ (x)|2
��e−iωt

��2

= |ψ (x)|2 (1)
= |ψ (x)|2

so it won’t hurt to stick |ψ (x, t)|2 into our probability equation in place of |ψ (x)|2 .

We still don’t have our amplitude C value. But we are getting close. We could write the
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probability of finding the waveparticle between x1 and x2 as

P (x1 : x2) =

	 x2

x1

P (x) dx

so in our case

P (x1 : x2) =

	 x2

x1

|ψ (x, t)|2 dx
We know that the probability of the waveparticle being somewhere in the universe has

to be 1. If we integrate our probability over all possible states, the integral has to be 1

(the particle/wave has to be somewhere in the universe). So	 ∞

−∞
P (x) dx = 1

and for us this becomes 	 ∞

−∞
|ψ (x, t)|2 dx = 1

There is a special name for this condition even though it seems so obvious. A wave

function that integrates over all space to 1 is called normalized.

Now let’s look at the idea of an average. The average value of some quantity x, is given

as

x =

�N
i=1 nxi�N
i=1 xi

we take the number of times a particular value of x is found in the data set. That is nxi.

And we sum that up weighting each xi by the number of times that xi occurs. Then we

have to divide by the total which is
�

xi

We want to find the place where we will detect the waveparticle most often. That is

like a classical average location of a particle. That would be each location xi multiplied

by the probability of finding the particle at that location. And we need to divide by the

total probability. We write this as

x =

�∞
−∞ (x)P (x) dx
�∞
−∞ P (x) dx

The (x) in the integral in the numerator is the important part to notice. That is the thing

being averaged. It could be that we want the average energy, and that would look like

E =

�∞
−∞ (E)P (x) dx
�∞
−∞ P (x) dx

In quantum mechanics this average detection location is called an expectation value of

x. It is often denoted with angle brackets

�x� =
�∞
−∞ (x)P (x) dx
�∞
−∞ P (x) dx



204 Chapter 12 Wave Packets and the Schrödinger Equation

Let’s apply this to our particle in a box problem. We found so far that a wave equation

like

ψ (x, t) = C sin (kx) cos (ωt)

should work. We could write this as

ψ (x, t) = C sin (kx) e−iωt

and we could say that for our wave function the particle must be some where in the

universe. 	 ∞

−∞

��C sin (kx) e−iωt
��2 dx = 1

since we found for the particle in a box

kL = nπ

then

	 ∞

−∞

���C sin
�nπ

L
x
�
e−iωt

���
2

dx = 1

C2

	 ∞

−∞
sin2

�nπ

L
x
�
dx = 1

Let’s get another result from an integral table (or a symbolic math processor)	
sin2 (ax) dx = − 1

4a
(sin 2ax− 2ax)

If we let a = nπ
L the our integral is just like the table form. Because we know that the

wave function is zero for −∞ < x < 0 and for L < x <∞ we can integrate from 0 to

L. This just says the wave particle must be in the box.

1 = C2

	 L

0

sin2
�nπ

L
x
�
dx

=

�
−C2 1

4nπL

�
sin

�
2
nπ

L
x
�
− 2

nπ

L
x
�����
L

0

= −C2 1

4nπL

�
sin

�
2
nπ

L
L
�
− 2

nπ

L
L
�
−

�
−C2 1

4nπL

�
sin

�
2
nπ

L
(0)

�
− 2

nπ

L
(0)

��

= −C2 1

4nπL

�
sin

�
2
nπ

L
L
�
− 2

nπ

L
L
�
−

�
−C2 1

4nπL

�
sin

�
2
nπ

L
(0)

���

and we know that at L and at 0 the sine terms must be zero

1 = −C2 1

4nπL

�
−2nπ

L
L
�

so

1 = C2 1

2
(L)

and

C =

�
2

L
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and we have our amplitude C value! We can write our wave function as

ψ (x, t) =

�
2

L
sin

�nπ

L
x
�
e−iωt

where n = 0, 1, 2, · · ·

We don’t have just one equation that works, we have a bunch of equations, each with a

different n value5. We will need to refine our analysis next lecture. But what we have

done in this lecture is huge.

1. We have thought about how wave functions for matter waves and even photons must
act at boundaries.

2. We have found how to use boundary conditions to find a mathematical form for the
wave function in different regions based on the potential energy of the regions.

3. We have found that for a particle in an infinite potential “well” (particle in a box)
we could find the form of the equation but not the amplitudes.

4. We solve this by deriving the nonrelativistic, timeindependent Schrödinger
equation

5. We interpreted the amplitude of the wave function as a probability of detection

6. We used the ideas of normalization in probability theory to solve for the amplitude

7. Along the way we used the idea of probabilistic averages to define expectation
values

We did something like thirty years of physics in about an hour! We will revisit all this

in the next lecture to solidify the procedure. But as of now, we are proper quantum

physicists!

5 Think of the harmonic series for waves on strings.





13 Using the Schrödinger

Equation

5.45.6

Fundamental Concepts in the Lecture

• Constant Potential Energy and the Schrödinger Equation

• Free Wavicles (waveparticles)

• Infinite potential well again

• Finite potential well

• Twodimensional infinite potential well

Constant Potential Energy

Before we return to our particle in an infinite potential well, let’s take another look

at the Schrödinger equation and do some simple problems. The nonrelativistic,

timeindependent Schrödinger equation we found to be

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)

If E > U we can write

−d2ψ (x)

dx2
+

2m

�2
(U −E)ψ (x) = 0

Or, if we take out a minus sign

−d2ψ (x)

dx2
= −2m

�2
(U −E)ψ (x)

and then take the costants to the other side
d2ψ (x)

dx2
= −2m

�2
(E − U)ψ (x)

And if we define

k =

�
2m (E − U)

�2
=

2π

λ
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where k is the wave number, we can write the Schrödinger equation as

d2ψ (x)

dx2
= −k2ψ (x)

This really looks like a PH123 problem because this is just the linear wave equation and

back in PH123 we showed that sine and cosine functions are solutions to this equation.

We can see that energy is going to be important in our study of wave mechanics. The

energy in our wavicle determines the wave number (and therefore the wavelength) of

our wave.

The Schrödinger equation is linear, which means that a solution to the Schrödinger

equation added to another solution to the Schrödinger equation would also be a solution.

This is because derivatives of sums of functions are equal to the sum of the derivatives

of the individual functions. Since we know sines and cosines are solutions, then the

sum of a sine and a cosine function would be a solution

ψ (x) = A sin (kx) +B cos (kx)

Let’s see that it works
dψ (x)

dx
= Ak cos (kx)−Bk sin (kx)

and
d2ψ (x)

dx2
= −Ak2 sin (kx)−Bk2 cos (kx)

= −k2 (A sin (kx) +B cos (kx))

= −k2ψ (x)

so it does work. Of course if we were to do a problem (we will soon) we would need to

find the coefficients A and B just like we did in the last lecture.

But now consider the case when E < U. In PH121 we would say that a particle could

not travel into a region where U is bigger than the particle energy. This would be like a

ball with only a little bit of energy being able to climb tall hills.

But for wave/particles this would be the case of a wave penetrating into a forbidden

region. In optics this could be a case where the energy in the wave is absorbed, or even

the small penetration into the metal of a mirror before reflection. The expression for k

above will be imaginary and that isn’t so helpful. If E < U we can instead rewrite the

Schrödinger equation

−d2ψ (x)

dx2
+

2m

�2
(U −E)ψ (x) = 0
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−d2ψ (x)

dx2
= −2m

�2
(U −E)ψ (x)

d2ψ (x)

dx2
= +

2m

�2
(U −E)ψ (x)

and define

α2 =
2m

�2
(U −E)

We then have

d2ψ (x)

dx2
= +α2ψ (x)

Sines and cosines don’t work for this equation. We need a new function that gives

itself when you take the second derivative, but without introducing a minus sign. The

function eαx can do this. And so can e−αx. So we could have a solution of the form

ψ (x) = Ceαx +De−αx

where C and D are amplitudes. And just to be complete let’s show that it works
dψ (x)

dx
= Cαeαx −Dαe−αx

d2ψ (x)

dx2
= Cα2eαx +Dα2e−αx

= α2
�
Ceαx +De−αx

�

= α2ψ (x)

which is what we expected. So in a region with E < U, our solution would be

ψ (x) = Ceαx +De−αx

This function is an exponential and this e−αx is what we call an exponential decay.

The amplitude of a wave may decay to zero as it penetrates into a forbidden region. In

optics this is like the beam amplitude decaying to zero as it penetrates into the metal of

a mirror. The exponential nature of the falloff seems natural (because nature works

that way!).

Free Particle

Let’s try a new scenario, lets let U = 0. We should get a solution that is a wavicle that is

traveling in free open space where there is nothing to pull or push it (remember forces

are directly related to potential energies). Then the energy is given by the de Broglie

equations

E =
�
2k2

2m
and we won’t have a quantized k because there is no potential well to cause reflections



210 Chapter 13 Using the Schrödinger Equation

to make standing waves form. There are also no boundary conditions because we

have assumed no boundary (there is no U, anywhere, so no change in U anywhere).

Of course this would mean we have only one wavicle and nothing else in the entire

universe, which is never the case. But this might be a good approximation for an

electron in a vast open empty region of the universe.

Normally we would use the boundary conditions to find the coefficients A and B. But

there is no boundary. But no problem, we have normalization to do this job. So the

wavicle must be somewhere in the universe	 ∞

−∞
P (x) dx = 1

and taking our probability interpretation for the wave function this becomes	 ∞

−∞
|ψ (x, t)|2 dx = 1

and we could guess a wave function of the form

ψ (x, t) = (A sin (kx) +B cos (kx)) e−iωt

so we would write 	 ∞

−∞

��(A sin (kx) +B cos (kx)) e−iωt
��2 dx = 1

and separating the complex time dependent term we get
��e−iωt

��2 = 1
	 ∞

−∞
|A sin (kx) +B cos (kx)|2 dx = 1

and taking the square gives	 ∞

−∞

�
A2 sin2 (kx) +AB sin (kx) cos (kx) +B2 cos2 (kx)

�
dx = 1

and here we see we have another problem. The first term will oscillate all the way from

−∞ to +∞. It does not converge at x = ±∞ The last term is no better, it just shifted

along the x axis. And there is sort of a cross term involved in the square, but that

won’t converge as well. We will end up adding infinities at the limits, and this is not a

comfortable situation. It is hard to see how it will come to be just 1.

Let’s play another mathematical trick to make this more tractable. Once again using

something from that complex analysis course you haven’t taken yet, let’s write

sin (kx) =
eikx − e−ikx

2i

cos (kx) =
eikx + e−ikx

2
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so now

ψ (x) = A sin (kx) +B cos (kx)

= A

�
eikx − e−ikx

2i

�
+B

�
eikx + e−ikx

2

�

=
Aeikx

2i
− Ae−ikx

2i
+

Beikx

2
+

Be−ikx

2

=

�
Aeikx

2i
+

Beikx

2

�
+

�
−Ae−ikx

2i
+

Be−ikx

2

�

=

�
A

2i
+

B

2

�
eikx +

�
B

2
− A

2i

�
e−ikx

and let’s define two new amplitude functions

a =

�
A

2i
+

B

2

�

b =

�
B

2
− A

2i

�

so that

ψ (x) = aeikx + be−ikx

and, putting in the time dependence

ψ (x, t) = aeikxe−iωt + be−ikxe−iωt

= aei(kx−ωt) + be−i(kx+ωt)

We can recognize this as two waves, the first one going to the right, and the second

one going to the left. Only now we don’t just have an agreed upon complex time

dependence where we know to take the real part at the end. No, now the a and b

coefficients are really complex.

Now let’s return to our situation where U = 0 everywhere and we have a wavicle,

say, moving to the right. Then we know b = 0 because the term aei(kx−ωt) is a wave

moving to the right and be−i(kx+ωt) is a wave moving to the left.

Given our wave moving to the right, let’s try normalization, we have

P (x) = |ψ (x, t)|2

=
���aei(kx−ωt)

���
2

= |a|2 ei(kx−ωt)e−i(kx−ωt)

= |a|2

which is a conatant, so the probablility of detecting the particle is the same everywhere!

The integral is still awkward because we have a subtraction of infinities at the edges

that still must give us just 1. But we can now see why. The probability is constant
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everywhere. So there is a small but constant probability that we find the wavicle

anywhere.

This situation is called a free particle.

This is just what we should have expected from our uncertainty relationship

∆x∆λ ≥ �

2
We have just one wavelength in our k = 2π/λ, so ∆λ = 0.

∆x ≥ �

2∆λ
If we know λ precisely then ∆x is infinite, meaning the wave is everywhere. Picture

a nice sinusoidal wave in the middle of the Pacific ocean. In order to get the (nearly)

single wavelength, the wave would have to be spread out everywhere, covering a large

part of the ocean.

A wave function of the form

ψ (x, t) = aeikxe−iωt

is called a plane wave. It is an idealization. Few waves (if any) can actually be infinite

in extent. But often this is a good approximation for a wave in a big open volume.

Infinite potential well revisited
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Suppose once again we have a wavicle in an infinite potential well. We now know that

the Schrödinger equation

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)

should describe our situation. But we have three regions, and we expect now that we

might have different functions in each of the three regions.

In Region1

− �
2

2m

d2ψ1 (x)

dx2
+ (∞)ψ (x) = Eψ (x)

and infinity is so big that U ≫≫ E so we can just ignore the energy E

�
2

2m

d2ψ1 (x)

dx2
= (∞)ψ1 (x)

The only function that can satisfy this equation is

ψ1 (x) = 0

The wave function is zero everywhere in Region 1. We get the same equation with the

same result for Region 3.

For Region 2 we have U = 0 which is now familiar!

− �
2

2m

d2ψ (x)

dx2
+ 0 = Eψ (x)

or
d2ψ (x)

dx2
= −2mE

�2
ψ (x)

and we can identify

k =

�
2mE

�2

and this gives just one wavelength, we expect the wave to exist everywhere in Region 2.

But we know that at the boundaries there could be reflections of this wave. So we can

have two waves in the box traveling different directions. And if we have two waves in

the same region, we could form standing waves! Let’s call our two waves ψ2r and ψ2l

(one going left, and one going right).

ψ2r (x, t) = C20 sin (k2x− ω2t+ φ20)

ψ2l (x, t) = C2L sin (k2x+ ω2t+ φ2L)

Before we showed that φ20 = φ2L = 0 so we can simplify to

ψ2r (x, t) = C sin (k2x− ω2t)

ψ2l (x, t) = C sin (k2x+ ω2t)
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We found the sum

ψr (x, t) = ψ2r (x, t) + ψ2l (x, t) = C sin (kx− ωt) + C sin (kx+ ωt)

and we used another of our favorite trig identities

sin (a± b) = sin (a) cos (b)± cos (a) sin (b)

to get

ψr (x, t) = C sin (kx− ωt) +C sin (kx+ ωt)

= C sin (kx) cos (ωt)−C cos (kx) sin (ωt) +C sin (kx) cos (ωt) +C cos (kx) sin (ωt)

= 2C sin (kx) cos (ωt)

= (2C sin (kx)) cos (ωt)

But now, realize that we could have done all this with two cosine waves

ψ2rc (x, t) = D20 cos (k2x− ω2t+ φ20)

ψ2lc (x, t) = D2L cos (k2x+ ω2t+ φ2L)

because a cosine wave is also a solution to the Schrödinger equation, so we should

consider a solution that has both of these possibilities

ψ (x, t) = A sin (k2x− ω2t+ φ20) +B cos (k2x− ω2t+ φ20)

or at t = 0, with knowing the phase constants would be zero

ψ (x, 0) = A sin (k2x) +B cos (k2x)

where the amplitudes A and B have to be determined. It is good to start with an

addition of all the possible types of solutions to the Schrödinger equation and then use

our boundary (and other ) conditions to eliminate parts of the solution that can’t work

by setting their coefficients to zero. We call the combined set of possible solutions a

superposition state.

For our case let’s look at the B coefficient first. At the boundaries x = 0 and x = L we

know ψ2 (0, t) = 0 and ψ2 (L, t) = 0 to match ψ1 = 0 and ψ3 = 0 in Regions 1 and 3.

So at x = 0

ψ (0, t) = A sin (k (0)) +B cos (k (0)) = 0

0 = 0 +B

The only way this can be true is

B = 0

This seems like a waste of time to have tried this superposition state just to find out the

cosine part didn’t work. But we won’t always know which possible solutions will work
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until we try them at the boundaries. Let’s look at x = L

ψ (L, t) = A sin (k (L)) +B cos (k (L))

= A sin (k (L))

because B = 0. Then

0 = A sin (k (L))

gives us

kL = nπ

as we found before where n = 1, 2, 3, · · · . Let’s investigate this further From the

Schrödinger equation we found

k =

�
2mE

�2

and

k =
nπ

L
for Region 2. So then �

2mE

�2
=

nπ

L
and we can solve this for the energy, E, of the wavicle�

2mE

�2
L = nπ

2mE

�2
L2 = n2π2

E =
n2π2�2

2mL2

E =
n2π2 h2

4π2

2mL2

And notice that the energy is quantized

E =
n2h2

8mL2
n = 1, 2, 3, · · ·

with a quantum number n. Let’s define

Eo =
h2

8mL2

then

E = n2Eo n = 1, 2, 3, · · ·
We usually write this as

En = n2Eo n = 1, 2, 3, · · ·
to remind us that E is quantized. We see that only certain values of energy are possible

in the well. Not all energy values give viable de Broglie waves that match the boundary

condition. This is very like standing waves on strings. We can draw our energy diagram

as
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where only the first three energies fit on the diagram at the scale we used. From

using the Schrödinger equation we once again have new physics. If we were to insert

a detector and detect electrons in an infinite potential well. We would find that the

electrons would only have the energies En. No in between energies would be found.

We used normalization to find the amplitude A before. Let’s repeat it here.

Using our statistical interpretation of the Schrödinger equation we can say where the

electrons are most likely to be detected for each allowed energy. We start with the wave

function

ψ (x, t) = A sin (kx)

and we could say that for our wave function the particle must be some where in the

universe. 	 ∞

−∞

��A sin (kx) e−iωt
��2 dx = 1

since we found

kL = nπ

then

	 ∞

−∞

���A sin
�nπ

L
x
�
e−iωt

���
2

dx = 1

A2

	 ∞

−∞
sin2

�nπ

L
x
�
dx = 1

we used the standard form	
sin2 (ax) dx = − 1

4a
(sin 2ax− 2ax)
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If we let a = nπ
L the our integral is just like the table form. Because we know that the

wave function is zero for −∞ < x < 0 and for L < x <∞ we can integrate from 0 to

L. This just says the wave particle must be in the box.

1 = A2

	 L

0

sin2
�nπ

L
x
�
dx

=

�
−A2 1

4nπL

�
sin

�
2
nπ

L
x
�
− 2

nπ

L
x
�����
L

0

= −A2 1

4nπL

�
sin

�
2
nπ

L
L
�
− 2

nπ

L
L
�
−

�
−A2 1

4nπL

�
sin

�
2
nπ

L
(0)

���

and we know that at L and at 0 the sine terms must be zero

1 = −A2 1

4nπL

�
−2nπ

L
L
�

so

1 = A2 1

2
(L)

and

A =

�
2

L

and we have our amplitude ! We can write our wave function as

ψ (x, t) =

�
2

L
sin

�nπ

L
x
�
e−iωt

But wait! we can do more. We can interpret this wave function to know where the

electrons are most likely to be detected. The probability of detection is proportional to

the amplitude squared

P (x) = |ψ (x, t)|2

=

�����

�
2

L
sin

�nπ

L
x
�
e−iωt

�����

2

=
2

L
sin2

�nπ

L
x
�

so our probability function is a sine squared. The shape looks like this sin2 x

5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

0.5

1.0

x

y

but we don’t have an actual value for L. So getting the shape right is harder. But we can
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cheat in making a graph. We can define a variable that is u = x/L then

P (x)
2

L
sin2 (nπu)

and we can make the y axis in units of 2/L and plot from u (0) = (0)/L = 0 to

u (L) = (L/L) = 1. For n = 1 we get

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

x/L

units of 2/L

which tells us that we are most likely to detect electrons in the middle of the well for

the lowest energy electrons. For n = 2 we have

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

x/L

units of 2/L

For the second allowed energy the electrons are never detected right in the middle of

the well, but rather are most likely detected at the x = L/4 and x = 3L/4 spots. The

electron wave packet has spread out. For n = 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

x/L

units of 2/L

we see the spreading continue. For n = 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

x/L

units of 2/L

we would find that we could detect the electron all over the well, but still the detections

would be in clumps.

Let’s put this probability of detection on our energy graph.
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The spreading of the wave function amplitude reminds us of uncertainty.

∆x∆p ≈ �
we can use the definition of standard deviation form to find ∆x

∆x =



(x2)− (x)2

finding x is easy, it’s just L/2

(x)2 =
L2

4
but finding (x2) is harder. Let’s use our average finding equation from last lecture.

(x2) =

� L
0

�
x2

�
P (x) dx

� L
0 P (x) dx

=

� L
0

�
x2

� ���



2
L sin

�
nπ
L x

�
e−iωt

���
2

dx

� L
0

���



2
L sin

�
nπ
L x

�
e−iωt

���
2

dx

=
2
L

� L
0

�
x2

�
sin2

�
nπ
L x

�
dx

2
L

� L
0 sin2

�
nπ
L x

�
dx

=

� L
0

�
x2

�
sin2

�
nπ
L x

�
dx

� L
0
sin2

�
nπ
L x

�
dx
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we can look up (or ask a symbolic math package) and find	
sin2 (ax) dx = − 1

4a
(sin 2ax− 2ax)

	
x2 sin2 (ax) =

sin (2ax)

8 (a)
3 − x cos (2ax)

4a2
− x2 sin (2ax)

4a
+

x3

6
in our case a = nπ

L so
	 L

0

�
x2

�
sin2

�nπ

L
x
�
d =

�
sin

�
2
�
nπ
L

�
x
�

8
�
nπ
L

�3 − x cos
�
2
�
nπ
L

�
x
�

4
�
nπ
L

�2 − x2 sin
�
2
�
nπ
L

�
x
�

4
�
nπ
L

� +
x3

6

�����

L

0

=
sin

�
2
�
nπ
L

�
L
�

8
�
nπ
L

�3 − L cos
�
2
�
nπ
L

�
L
�

4
�
nπ
L

�2 − L2 sin
�
2
�
nπ
L

�
L
�

4
�
nπ
L

� +
L3

6

−
�
sin

�
2
�
nπ
L

�
(0)

�

8
�
nπ
L

�3 − 0− 0 + 0

�

=
sin (2nπ)

8
�
nπ
L

�3 − L cos (2nπ)

4
�
nπ
L

�2 − L2 sin (2nπ)

4
�
nπ
L

� +
L3

6
− (0)

= 0− L (1)

4
�
nπ
L

�2 − 0 +
L3

6
− 0

=
L3

6
− L3

4n2π2

and
	 L

0

sin2
�nπ

L
x
�
dx =

�
− 1

4nπL

�
sin 2

nπ

L
x− 2

nπ

L
x
�����
L

0

= − 1

4nπL

�
sin 2

nπ

L
L− 2

nπ

L
L
�
−

�
− 1

4nπL

�
sin 2

nπ

L
0− 2

nπ

L
0
��

= − 1

4nπL

�
sin 2

nπ

L
L− 2

nπ

L
L
�
− 0

= −sin 2nπL L

4nπL
+

2nπL L

4nπL

= − L

4nπ
sin (2nπ) +

L

2

=
L

2

so

(x2) =
L3

6 − L3

4n2π2

L
2

=
L3

6 − L3

4n2π2

L
2

=
L2

3
− L2

2n2π2
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∆x =



(x2)− (x)2

=

�
L2

3
− L2

2n2π2
− L2

4

= L

�
1

12
− 1

2π2n2

Now we know that the electrons can go either direction so p = 0 and then

K =
1

2
mv2

=
1

2
mv (v)

=
1

2m
(mv)2

=
p2

2m
which is the nonrelativistic kinetic energy  momentum relation. Nonrelativistic is fine

because of our nonrelativistic assumptions in the Schrödinger equation so

p2 = 2mK

= 2mE

= 2m
n2h2

8mL2

=
n2h2

4L2

and none of these change so p2 = p2. Then

∆p =



(p2)− (p)2

=

�
n2h2

4L2
− 0

=
nh

2L
then

∆x∆p =
nh

2L
L

�
1

12
− 1

2π2n2

=
nh

2

�
1

12
− 1

2π2n2

=
h

2

�
n2

12
− 1

2π2

which isn’t all that impressive to me. But it does say that the bigger the n the bigger the

uncertainty. The spreading of the wave packet that we observed is just what we should

expect.
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Multidimensional infinite potential wells, and finite potential wells

So far we have used only one dimensional examples.

But suppose instead of a group of wavicles traveling in only one dimension, we have

particles that could travel in two dimensions. And suppose we have a two dimensional

infinite potential well.

where

U (x, y) =

�
0 if 0 ≤ x ≤ L, 0 ≤ y ≤ L
∞ if otherwise

We could have waves travel in both the x and the ydirections in the center allowed

region. That would modify our Schrödinger equation

− �
2

2m

�
d2ψ (x, y)

dx2
+

�
d2ψ (x, y)

dy2

��
+ U (x, y)ψ (x, y) = Eψ (x, y)

We would have solutions like

ψ (x) = A sin
�nxπx

L

�

and we could have solutions like

ψ (y) = B sin
�nyπy

L

�

or we could even have functions that combine x and y dependence. If you have taken

M316 you are no doubt saying “ah, this is a separable differential equation.” but some
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of us haven’t had that math yet, so I will wait a bit before we do a problem like that. For

now I will just quote a solution

ψ (x, y) = C sin
�nxπx

L

�
sin

�nyπy

L

�

But this isn’t too strange, it is just a combination of the solutions for the two

onedimensional cases. We would need to get the coefficient C from normalization	 	
|ψ (x, y)|2 dxdy

and if we did this problem we would find that

C =
2

L

Note that we are now quantized in two directions, so we have two quantum numbers,

nx and ny that are in our wave function. The energy for this case would be

E =
�
2π2

2mL2

�
n2x + n2y

�

(a problem to look forward to in PH433). But think about what we have done for

a moment. Since the square well is symmetric, we should expect that we could get

the same energy for a wave that is all in the xdirection and for a wave going in the

ydirection.

They would look just the same, so they should have the same energy. For example

suppose nx = 1 and ny = 2, then

E =
�
2π2

2mL2

�
12 + 22

�
= 5

�
2π2

2mL2

but now suppose nx = 2 and ny = 1

E =
�
2π2

2mL2

�
22 + 12

�
= 5

�
2π2

2mL2

we get the same energy. There are two ways to get the same energy. But the two ways
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would have different wave functions.

ψ12 (x, y) = C sin
�πx

L

�
sin

�
2πy

L

�

ψ21 (x, y) = C sin

�
2πx

L

�
sin

�πy

L

�

When this happens for a system we cay that states that have the same energy for

different wave functions are degenerate.

You might wonder if we could have a threedimensional square well? And of course we

could and you might guess that we would pick up an additional quantum number nz

and another term in the wave function that includes nz. Our energies would change as

well. And we could have more degenerate states. But we will take on that problem later

in our course.

But what if the potential outside of our well isn’t infinite? Well, we still get quantized

wave functions. We could do this problem, and we will in three dimensions! well,

almost. We will see what our Schrödinger equation would look like and we will use the

solutions to those equations that early researchers found. We could do this problem

here, but we need an additional insight. That will come from studying the quantum

phenomena that we call tunneling. And we will do that in our next lecture. stuff.



14 Barriers, Oscillators, and

Early Hints about the

Structure of the Atom

6.16.3

Fundamental Concepts in the Lecture

• Quantum Barriers

• Quantum Harmonic Oscillator Ground State

• Atoms are not homogeneous (Thompson’s Model)

• Atoms have hard nuclei (Rutherford’s Model)

Barriers and Tunneling

In learning about wave functions and boundaries we did problems where the potential

energy stepped up or stepped down.

We entered the problems we did with quite a lot of information. That is because doing

a finite potential well is quite difficult, enough so that the solution is in the American

Journal of Physics. If you are an American Physical Society member you can download

the paper. It is likely available from the Library as well. But if you want to wait, you

will do this problem in our junior level quantum mechanics class (PH433). With some

higher math, you can find the energy states and the wave functions.
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But with the help of knowing λ1 and λ2 we did the problem of matching the wave

functions at the boundary. Let’s take on another one of these, but let’s change the

situation so that in Regions 1 and 3 U = 0 and in Region 2 E < Uo. That would mean

that the electrons or the wavicles could classically never get into Region 2, much less

into Region 3. There is a barrier. Our schematic diagram might look like this.

We can see from our previous optics case that we should expect reflections.

The energy diagram would look like this.

We would expect the Schrödinger equation to apply

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)
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where in Region 1

− �
2

2m

d2ψ (x)

dx2
+ (0)ψ (x) = E1ψ (x)

d2ψ (x)

dx2
= −2mE1

�2
ψ (x)

k21 =
2mE1

�2

and in Region 2

− �
2

2m

d2ψ (x)

dx2
+ Uoψ (x) = Eψ (x)

− �
2

2m

d2ψ (x)

dx2
= Eψ (x)− Uoψ (x)

d2ψ (x)

dx2
= −2m

�2
(E − Uo)ψ (x)

d2ψ (x)

dx2
=

2m

�2
(Uo −E)ψ (x)

d2ψ (x)

dx2
= α2ψ (x)

and we can see that

α2 =
2m

�2
(Uo −E)

which is like our k values, but for an attenuation.

In Region 3 again we have

− �
2

2m

d2ψ (x)

dx2
+ (0)ψ (x) = E3ψ (x)

k23 =
2mE3

�2

And from what we have done before we recognize that in Region 1 we will have a

solution of the form

ψ1 (x, t) = Aei(k1x−ωt) +Be−i(k1x+ωt)

which is really two waves, one going to the right and one reflected wave going to the

left. We are free to choose A, the incident amplitude by choosing the settings on the

electron gun that is generating the electrons. The amplitude A we will consider known.

In Region 2 the wave function will look like

ψ2 (x) = Ceαxe−iωt +De−αxe−iωt

which again includes a reflected term. We have to match ψ1 and ψ2 at the boundaries.

In Region 3 we should have a solution like in Region 1, but we have already used the

symbol E for energy so let’s make the coefficients F and G

ψ3 (x, t) = Fei(k3x−ωt) +Ge−i(k3x+ωt)

In Region 3 we don’t expect a reflected wave going to the left. That tells us right away
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that G = 0

ψ3 (x, t) = Fei(k3x−ωt)

and we know that with U = 0

k3 =

�
2mE

�2
= k1

so let’s call k3 = k1 ≡ k

ψ3 (x, t) = Fei(kx−ωt)

We have to match the wave functions at the boundaries. Let’s define some terms to help

us think about the physics. The reflection coefficient tells us how much of the wave

packet is reflected at x = 0.

R =
|ψ1 (x, t)|2reflected
|ψ1 (x, t)|2incident

=

��Be−i(k1x+ωt)
��2

��Aei(k1x−ωt)
��2

=
|B|2
|A2|

The transmission coefficient tells us how much of the wave packet gets into Region 2

T =
|ψ2 (x, t)|2transmitted
|ψ1 (x, t)|2incident

=

��Eei(k3x−ωt)
��2

��Aei(k1x−ωt)
��2

=
|F |2
|A2|

and we must have conservation of energy so

R+ T = 1

assuming no dissipation of the energy into thermal energy or other energy forms.

Before we solve for the coefficients, it is interesting (and important!) to look at

ψ2 (x) = Ceαxe−iωt +De−αxe−iωt

and

α =

�
2m

�2
(Uo −E)

We expect that the wave going to the right should diminish. That is, the particles are

less likely to be detected the further we get into Region 2. We can look at

ψ2 (x) = De−αx

and see where it has diminished to 1/e of it’s original value. That would be when

x =
1

α
=

�
�
2m (Uo −E)

we usually give this particular depth a symbol

δ =
�

�
2m (Uo −E)

We will call this the “penetration depth.” Actually the wave goes a bit farther into the

material. But this definition of “penetration depth” is a ballpark estimate for how far

the wave goes into the forbidden region of the barrier (Region 2). And now for the

astonishing part, if the thickness L < δ, then the wave can get through! Classically the

electron wouldn’t have enough energy to escape, but a quantum electron is a waveicle
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that can slosh over the barrier if the barrier is thin enough. We call this quantum

tunneling.

But back to the slogitoutmath. We need at x = 0

ψ1 (0, t) = ψ2 (0, t)

Aei(k(0)−ωt) +Be−i(k(0)+ωt) = Ceα(0)e−iωt +De−α(0)e−iωt

which becomes

A+B = C +D

and we need

�
dψ1

dx

����
x=0

=

�
dψ2

dx

����
x=0�

k1Aei(kx−ωt) − k1Be−i(kx+ωt)
���
x=0

=
�
αCeαxe−iωt +−αDe−αxe−iωt

��
x=0

ik1Aei(k(0)−ωt) − ik1Be−i(k(0)+ωt) = αCeα(0)e−iωt +−αDe−α(0)e−iωt

ikA− ikB = αC +−αD

now at x = L

ψ2 (L, t) = ψ3 (L, t)

CeαLe−iωt +De−αLe−iωt = Eei(k1L−ωt)

CeαL +De−αL = Feik1L

and finally �
dψ2

dx

����
x=L

=

�
dψ3

dx

����
x=L

�
αCeαxe−iωt +−αDe−αxe−iωt

��
x=L

=
�
kFei(kx−ωt)

���
x=L

αCeαLe−iωt +−αDe−αLe−iωt = ikFeik(kL−ωt)

αCeαLe−iωt +−αDe−αLe−iωt = ikEeikLe−iωt

αCeαL +−αDe−αL = ikEeikL

So we have four equations

A+B = +C +D

ikA− ikB = +αC − αD

0 +CeαL +De−αL = +FeikL

αCeαL +−αDe−αL = ikFeikL

with E, Uo, m, and A known and

α =

�
2m

�2
(Uo −E)
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k =

�
2mE

�2

so really α and k are known. We also know L. If we have numbers, it is likely better at

this point to have a computer solve the system of equations. Writing our equations with

the A terms on the right of the equal sign

+B −C −D + 0 = −A

ikA− ikB − αC + αD + 0 = −ikA

0 +CeαL +De−αL −EeikL = 0

0 + αCeαL +−αDe−αL − ikEeikL = 0

and we could put these into a matrix solver






1 −1 −1 0
−ik −α α 0
0 eαL e−αL −eikL

0 αeαL −αe−αL −ikeikL











B
C
D
F




 =






−A
−ikA
0
0






Suppose the waves are electrons so

m = 9.1093829× 10−31 kg

and suppose we adjust our electron flow so that

A = 10

and suppose we have a copper conducting layer in a piece of microelectronics with an

oxide layer that is about

L = 5nm

thick. Further suppose that the electrons have energy of

E = 7eV

and that the oxide layer is, to a good approximation, a square barrier with

Uo = 10 eV

We also know

� = 1.054571726× 10−34 J s

= 4.13566752× 10−15 eV s
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and then

k =

�
2mE

�2

=

�
2 (9.1093829× 10−31 kg) (7 eV)

(1.054571726× 10−34 J s)2

= 1. 355 5× 1010
1

m

= 13. 555
1

nm
and

α =

�
2m

�2
(Uo −E)

=

�
2 (9.1093829× 10−31 kg)

(1.054571726× 10−34 J s)2
(10 eV− 7 eV)

= 8. 873 6
1

nm

then our matrix




1 −1 −1 0
−ik −α α 0
0 eαL e−αL −eikL

0 αeαL −αe−αL −ikeikL











B
C
D
F




 =






−A
−ikA
0
0






becomes




1 −1 −1 0
−i

�
13. 6
nm

�
−8. 873 6 1

nm 8. 873 6 1
nm 0

0 e44. 368 e−44. 368 −ei(67. 775)

0
�
8. 87
nm

�
e44. 368 −

�
8. 87
nm

�
e−44. 368 −i

�
13. 6
nm

�
ei(67.775)











B
C
D
F




 =






−10
−i

�
136.
nm

�

0
0






after putting in the numbers. The answer is






B
C
D
F




 =






4. 000 2− 9. 165 1i
8. 119 2× 10−39 + 4. 784 8× 10−38i

14.0− 9. 165 1i
−1. 774 9× 10−19 + 9. 710 7× 10−19i






It is just fine that the amplitudes are complex because we switched from sines and

cosines to complex exponentials. With the coefficients, we can find our wave functions,

but we still need ω = 2πf for our time dependence. In regions 1 and 3 we know

K = E − U = (7 eV− 0) = 7 eV and

K =
1

2
mv2 =

1

2
m (λf)

2

so
2K

m
= (λf)2
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1

λ

�
2K

m
= f

2π

λ

�
2K

m
= 2πf

k

�
2K

m
= ω

ω =

�
13. 555

1

nm

��
2 (7 eV)

9.1093829× 10−31 kg

= 2. 127× 1016
rad

s
then our wave function ψ1 (x, t) would be

ψ1 (x, t) = 10ei(13. 555
1
nmx−(2. 127×10

16 rad
s )t)

+ (4. 000 2− 9. 165 1i) e−i(13. 555
1
nmx+(2. 127×10

16 rad
s )t)

and in region 2

ψ2 (x, t) =
�
8. 119 2× 10−39 + 4. 784 8× 10−38i

�
e8. 873 6

1
nmxe−i(2. 127×10

16 rad
s )t

+(14.0− 9. 165 1i) e−8. 873 6
1
nmxe−i(2. 127×10

16 rad
s )t

and in region 3

ψ3 (x, t) =
�
−1. 774 9× 10−19 + 9. 710 7× 10−19i

�
ei(13. 555

1
nmx−(2. 127×10

16 rad
s )t)

Notice that each of these is still a wave. But the amplitudes and wavelengths are

different. We can get some insight into how the waves move if we plot the wave

function amplitudes squared
�
|ψ|2

�
to tell us where we are likely to detect the

electrons.

1 1 2 3 4 5 6

200

400

x

Psi

And what we see is instructive. On the left we expect constructive and destructive

interference. And that is what we see. In Region 2 we expect to see fewer and fewer

detections as we move away from the boundary. And that is what we see. In Region

3 we expect see whatever particles that make it to be free. They will have a constant

amplitude because they could be anywhere beyond the barrier.

We could make the barrier narrower, say, L = 0.5nm. Then the amplitudes are
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B
C
D
F




 =






3. 998 3− 9. 163 3i
3. 922 3× 10−4 + 0.002 31i

13. 998− 9. 165 6i
0.216 15− 1. 795 5× 10−2i






and we again see constructive and destructive interference in Region 1, exponential

decay in Region 2, and free particles in Region 3.
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You might wonder if the curves at x = L really match (I did). So I zoomed in on that

part of the graph.
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Notice that amplitude after x = 0.5 is not zero. There is still a wave there. Some of

the wavicles got through. We don’t see that wave part because we are just plotting the

amplitude. But there are waves leaving the barrier, so the electrons are getting through.

Classically this wouldn’t happen. We would just get reflection off of the barrier. But in

the quantum picture we do get penetration of the barrier and we can even have wavicles

escape. This phenomena is part of everyday electronics. Tunneling diodes use this

quantum mechanical effect to work. So this is likely happening somewhere in your

phone and computer right now.

We have used the Schrödinger equation to solve some interesting problems. But we are

really working our way to building atoms. We will start this process in our next lecture,

and spend a few lectures to come up with a quantum model for atomic structure.

Harmonic Oscillator

Let’s try an different kind of potential well. We remember a harmonic oscillator from
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PH123. A mass on a spring is an example, but so is a diatomic molecule or even an

electron that has been disturbed and oscillates around its equilibrium position. The

potential energy for a nonrelativistic harmonic oscillator is

U =
1

2
κx2

where κ is a “spring constant.” We can plot this potential energy

2 1 0 1 2

50

100

150

200

x(nm)

U(eV)

We can only calculate the lowest energy or ground state for a quantum harmonic

oscillator until PH433. But we can do that much, so let’s see how it goes. and we can

use the Schrödinger equation

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)

and put in our potential energy

− �
2

2m

d2ψ (x)

dx2
+

�
1

2
κx2

�
ψ (x) = Eψ (x)

We can guess a solution (here an expression that means someone figured it out and I am

quoting the right answer from them).

ψ (x) = Ae−αx
2

This is not an obvious solution, and it is only a partial solution. The complete solution

is

ψ (x) = NnHn (αx)Ae−αx
2

where H (x) is one of the Hermite polynomials and where Nn is an amplitude

coefficient. You might say to your self that you have never heard of the Hermite

polynomials, and for most people that would be true. You will see them again in

PH433. But for now we need to know that

H0 = 1

then for the ground state wave function we can write

ψ0 (x) = N0e
−αx2
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and try it in our Schrödinger equation. First let’s take a derivative or two
dψ0 (x)

dx
= −N02xαe

−αx2

and we have a product of two functions that have x in them
dψ0 (x)

dx
= −2N0α

�
xe−αx

2
�

Then the second derivative is
d2ψ0 (x)

dx2
= −2N0α

�
−xα2xe−αx

2

+ e−αx
2
�

= 4α2x2N0e
−αx2 − 2N0αe

−αx2

=
�
4α2x2 − 2α

�
N0e

−αx2

so our Schrödinger equation becomes

− �
2

2m

��
4α2x2 − 2α

�
N0e

−αx2
�
+

�
1

2
κx2

�
N0e

−αx2 = EN0e
−αx2

− �
2

2m

�
4α2x2 − 2α

�
+

�
1

2
κx2

�
−E = 0

−2α2
�
2

m
x2 +

α�2

m
+

1

2
kx2 −E = 0

�
α�2

m
−E

�
+

�
1

2
κ− 2α2

�
2

m

�
x2 = 0

We want this to be zero for all x. That means we need the two terms to become zero

simultaneously. So �
α�2

m
−E

�
= 0 (14.1)

and �
1

2
κ− 2α2

�
2

m

�
x2 = 0 (14.2)

for all x, even if x = 0. This means that�
1

2
κ− 2α2

�
2

m

�
= 0

The first equation (14.1) gives the condition

α�2

m
= E

and the second (14.2) gives
1

2
κk =

2α2
�
2

m
1

4�2
κm = α2

α =

√
κm

2�
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using this we can write

α�2

m
= E

√
κm

2�

�
2

m
= E

√
κm

2

�

m
= E

�

2

�
κ

m
= E

so our energy for the ground state is

E0 =
�

2
ωo

and we can write our wave function as

ψ0 (x) = N0e
−
�√

κm
2�

�
x2

To finish this off, we need to normalize ψ0 (x)	 ∞

−∞
N0e

−
�√

κm
2�

�
x2

= 1

We can’t limit our integration to the classical range of the harmonic oscillator because

we now know that our wave equation can penetrate forbidden zones.
	 ∞

−∞

����N0e
−
�√

κm
2�

�
x2

����
2

dx = 1

N2
0

	 ∞

−∞
e
−2
�√

κm
2�

�
x2
dx = 1

N2
0

	 ∞

−∞
e
−
�√

κm
�

�
x2
dx = 1

We need an integral table again.
	 ∞

−∞
e−ax

2

dx =

�
π

a

so we can write

a =

√
κm

�

=

√
m
√
m
√
κ√

m�

=
m
√
κ

�
√
m

=
mωo
�

so

N2
0

	 ∞

−∞
e
−
�√

κm
�

�
x2

= N2
0

�
π

mωo
�

= 1

N2
0

�
π�

mωo
= 1
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N2
0 =

�
mωo
π�

N0 =
�mωo
�π

� 1
4

so our wave function is given by

ψ0 (x) =
�mωo
�π

� 1
4

e−(
mωo
2� )x2

but this is only the ground state. We would have to do this all again for each excited

state. In PH433 we will show you a trick to avoid the nasty math involved in finding all

the other states. The Hermite polynomials have a generating function just for doing

this. But for now we will stick to the ground state wave function.

We found for the ground state

E0 =
�

2
ωo

but this is a special case of the more general

En =

�
n+

1

2

�
�ωo

We can plot our ground state function. Here it is again.

ψ0 (x) =
�mωo
�π

� 1
4

e−(
mωo
2� )x2

We will need some numbers to make the plot. Suppose we have an electron bound to an

atom. It might oscillate around it’s equilibrium position when an electromagnetic field

wave goes by. Suppose it has κ = 95 eV/nm2 and we know that m = 0.511MeV/c2

then

a =

√
κm

�
=

√
κmc2

�c
=

�
(95 eV/nm2) (0.511MeV)

197.3 eVnm

=
35. 314

nm2

so then our wave function would be

ψ0 (x) =

�
35. 314

π nm2

� 1
4

e−(
35. 314
2 nm2

)x2

and the energy would be

E0 =
�

2

�
κ

m

=
�c

2

�
κ

mc2

=
197.3 eVnm

2

�
(95 eV/nm2)

(0.511MeV)

= 1. 345 1 eV
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Classically if we had U = Eo then

U =
1

2
κx2max

gives

xmax =

�
2Eo
k

xmax =

�
2 (1. 345 1 eV)

(95 eV/nm2)

= 0.168 28 nm

so in our plot the solid green part is the in the classical allowed region and the dashed

red curve is in the forbidden zone.
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If we add in the potential well, we can see that indeed the dashed red part of the wave

function is extending beyond the classical potential well.
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It might not be satisfying to not be able to do the higher states, but we have to leave

something for PH433. We are going to leave potential wells for a while, but they will

come back. Atoms are essentially electrical potential energy wells, and nuclei are

potential energy wells for nuclear forces. So more potential wells to come.

Ancient thoughts on atomic structure

In Newton’s day, atoms were thought to be structureless little balls. Particle model

worked for the experiments Newton and his generation did. Our ideal gas law uses

this assumption. But once it was discovered that there were charged parts of matter,

Newton’s atomic theory could no longer explain the new experiments. Atoms were
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electrically neutral. But if photoelectric effect or Compton scattering knocks out

an electron, the atom is left positively charged an a negative electron is lost. These

seem like different parts that made up the original atom. Thompson proposed a “raisin

pudding” theory of the atom that had electrons and positive charge carriers mixed

uniformly together. This could explain how you could knock out an electron. The atom

was made of parts, but the parts were all mixed up.

Let’s look at one way the Thompson model fails. If we assume a net positive atom

with charge Zqe where where qe is an electron charge and we assume an electron with

charge −qe then, using Gauss’s law (just for review) we would have a field due to the

atom at the electron’s location of	
E · da =

Qinside

ǫo

E

	
da =

Qinside

ǫo

E4πr2 =
Qinside

ǫo

E =
Zqe

4πǫor2

where we have let the electron be just on the outer rim so very nearly all the Zqe

positive charge is inside the Gaussian surface. Then the electron would feel a force
−→
F = qe

−→
E

= − Zq2e
4πǫor3

−→r
This force is holding the electron in place in the Thompson model. but notice that it

looks like a restoring force. We could model this like a spring force with

F = −kr

with

f =
1

2π

�
k

m
This means we should see an oscillation of the electron about an equilibrium position at
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a particular frequency

f =
1

2π

�
k

m

=
1

2π

�
Zq2e

4πǫor3m

and because moving electrons cause electromagnetic waves with the same frequency as

their oscillation, such a Thompson model atom should radiate at this frequency. We can

test this for hydrogen where Z = 1 and r ≈ 0.53nm.

f =
1

2π

�
(1) (1.602× 10−19C)2

4π (8.85× 10−12 Fm−1) (0.53 nm)3 (9.11× 10−31 kg)

= 2. 076× 1014Hz

which gives a wavelength of

λ =
c

f
=

3× 108 m
s

2. 076× 1014Hz

= 1. 445 1× 10−6m

= 1. 4451µm

Strangely, Hydrogen has several frequencies that are produced (we will understand that

soon) the first of which is about 91nm = 0.091 µm. There is are wavelengths in the

micron region at λ = 1. 87µm, 1. 281 4µm, 1. 093 5µm, 1. 005µm and others, but we

see that our particular wavelength is not in the list, and our analysis would not predict a

list.

Rutherford tested the Thompson model by shooting positively charged αparticles at a

thin sheet of gold foil. To his astonishment, some of the aparticles went though the

gold as though there were nothing there. Others were reflected back. Rutherford inter

preted this to mean that matter mush be full of holes. He viewed the atom like a small

planetary system. He postulated a nucleus (the “Sun” of the little planetary system)

with electrons flying around in orbits like planets.

He could consider each electron hitting the nucleus if it came in a distance from the nu

cleus about the size of the nuclear radius. The distance, of the approach of the aparticle

from the axis of the nucleus is called the impact parameter and the apparent circular
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area of the nucleus is called the nuclear cross section. A particular impact parameter, b,

we get a If an αparticle comes in at less than the distance b from the axis, the particle

will scatter with an angle that is larger than θ.

We know now that accelerating charges will radiate (remember our antenna). An

orbiting electron is an accelerating charge (not speeding up, but changing direction).

That would mean that all atoms would constantly emit radiationa result not backed up

by our experience. So from Maxwell’s electromagnetic wave theory of light, we have a

disaster in our theory of the atom. There must be more to it (which most of you already

know from your chemistry courses).





15 The Bohr Model of the Atom

6.46.7

Fundamental Concepts in the Lecture

• Atomic spectra

• Bohr Model of the Atom

Atomic Spectra give a clue

We all know that we can make rainbows using a prism or a diffraction grating. If we do

this in an organized way, our device is called a spectrometer. A very simple version of a

spectrometer is shown in the next figure.

For a long time it has been known that if you take a gas and electrically excite it, you

get not only a blackbody radiation spectrum from the gas (and the apparatus, and the

lights in the room, etc.) but also some specific colors of light at some specific angles

(an therefore at some wavelengths). You get individual bright lines in the spectrum.

Let’s take Hydrogen as an example. As far back as 1885, Balmer was studying these

lines of emission from Hydrogen.
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You can see the broad rainbow that comes from the black body emission, but in that

emission you can see some bright lines (a red, and blue are prominent in this image,

and there is a fainter violet line visible). He even found a formula for calculating what

the wavelengths would be for these lines for Hydrogen gas
1

λ
= RH

�
1

22
− 1

n2

�
n = 3, 4, 5, . . . (15.1)

The quantity RH = 1.0973732× 107 1
m is called the Rydberg constant.

Balmer had limited equipment and he found only some of the emission lines of Hy

drogen. Most are not visible to our eyes. Here is a chart with more of the hydrogen

spectrum.
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It’s an oddly designed chart that will make more sense as we go. But from our study

of a particle in a box, we can recognize descrete energy levels and guess that they may

represent standing waves in the wave functions of something.

For these other lines beyond the ones Balmer found we can modify the Balmer equation

λ = λlimit
n2

n2 − n2o
where for each case the n values start at a particular no and increase

n = no + 1, no + 2, no + 3, · · ·
The particular form of this equation is not so important right now as is the fact that only

certain values are possible for the wavelength. Think of wave functions in potential

wells. We found only certain values for the wavelength created stable wave functions.

Could there be something like a standing wave in the atom that is allowing absorption

or emission at specific wavelengths?

To be complete, we need to state that the emission spectra do have the lines that we
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have seen, but the spectrometer picture above actually is shining light through the gas

of atoms. In this case the continuum spectrum from thermal emission has holes it it.

we get dark lines where the emission spectrum has bright lines. This is called an

absorption spectrum and the bright lines version is called an emission spectrum. Some

of the dark lines in the absorption spectrum are in the same places as the bright lines in

the emission spectrum for a particular gas–but not all. A successful model for atoms

would have to explain this.

These spectral lines were known about for a long time and people looked for patterns to

try to figure out what was causing them. Two patterns emerged.

Bohr Misses the Clue, but hits on quantization

Niels Bohr went beyond Rutherford in forming a theory of the atom. He didn’t get

everything right, but he did get some things right and his model is still useful in some

ways. This is a little bit like Galilean relativity is still useful, but we know it is not a

complete theory. We will study Bohr’s model in some detail. To explain what Rutheford

had found, and to explain the atomic spectra, Bohr made a few assumptions to make his

theory work. For hydrogen, they are as follows:

1. The electron moves in circular orbits around the proton under the influence of the
Coulomb force of attraction

a. The Coulomb force produces the centripetal acceleration (this is not surprising
to us)

2. Only certain electron orbits are stable (this is a little surprising, this is one of his big
assumptions)

a. These are the orbits in which the atom does not emit energy in the form of
electromagnetic radiation

b. Therefore, the energy of the atom remains constant and classical mechanics can
be used to describe the electron’s motion

3. Radiation is emitted by the atom when the electron “jumps” from a more energetic
initial state to a lower state (another surprising assumption)

a. The “jump” cannot be treated classically
b. The frequency emitted in the “jump” is related to the change in the atom’s

energy
c. It is generally not the same as the frequency of the electron’s orbital motion
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d. The frequency is given by Ei −Ef = hf

4. The size of the allowed electron orbits is determined by a condition imposed on the
electron’s orbital angular momentum

The last assumption takes some explaining. Bohr assumed that the angular momentum

of the electron was quantized! That is, it can only have values that are integer multiples

of a constant, in this case, �.

Let’s review angular momentum. It is

L = Iω (15.2)

where I is the moment of inertia, and ω is the angular speed. For a point mass rotating

about a point r away we have

I = mer
2 (15.3)

and we need to remember

ωr = vt (15.4)

where vt is the tangential speed. Then we can find the angular momentum of the

electron as it orbits

L = Iω = mer
2 vt
r

= mevtr (15.5)

so assumption 4 tells us that

mevtr = n� n = 1, 2, 3, . . . (15.6)

Now Bohr had no idea why the angular momentum was quantized. But he knew that if

he made this assumption, he was able to explain the Hydrogen absorption and emission

spectra.

Let’s use this idea of quantized angular momentum to do a problem. Let’s find how

much energy is in the hydrogen protonelectron system. We will want to find the

potential energy of the electron’s orbit (think of a satellite orbiting the Earth) and the

electron’s kinetic energy.

The potential energy of the electron would be

U =
1

4πǫo

q1q2
r

= −k
1

4πǫo

e2

r
(15.7)

and the kinetic energy of the electron is

K =
1

2
mev

2 (15.8)
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so the total energy of an atom at rest is

E =
1

2
mev

2 − 1

4πǫo

e2

r
(15.9)

We can use Newton’s second law to find the kinetic energy . The sum of the forces is

ΣF = mea = me
v2

r
(15.10)

but there is only one force, and this is the Coulomb force so

me
v2

r
=

1

4πǫo

e2

r2
(15.11)

so

(r)me
v2

r
= ke

e2

r2
(r) (15.12)

mev
2 = ke

e2

r
(15.13)

�
1

2

�
mev

2 = ke
e2

r

�
1

2

�
(15.14)

K =
1

4πǫo

e2

2r
(15.15)

then the total energy of the atom is

E =
1

4πǫo

e2

2r
− 1

4πǫo

e2

r
(15.16)

= − 1

4πǫo

e2

2r
(15.17)

The energy is negative, meaning that the electron would have to gain energy to escape

the atom. The electron is bound to the proton.

Bohr wanted to find the stable orbits of the electrons. Let’s take on this problem too.

He started with

L = mevtr = n� (15.18)

and solved for vt

vt =
n�

mer
(15.19)

and squaring gives

v2t =

�
n�

mer

�2

(15.20)

We found before that the centripetal force was just the Coulomb force. For a circular

orbit v = vt

Fc = FE (15.21)

me
v2t
r

=
1

4πǫo

e2

r2
(15.22)
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let’s solve this for v2t

v2t =
1

4πǫo

e2

rme
(15.23)

We have two different expressions for v2t . They must be equal, so
�

n�

mer

�2

=
1

4πǫo

e2

rme
(15.24)

We can solve this for r
n2�2

m2
er

2
=

kee
2

rme
(15.25)

n2�2

mer
=

1

4πǫo

e2

1
(15.26)

4πǫon
2
�
2

e2me
= r (15.27)

which gives a quantized orbit radius! This is just what Bohr assumed we would find!

He assumed only certain orbits were stable. We call the smallest radius (with n = 1)

the Bohr radius.

r1 = ao =
4πǫo�2

e2me
= 0.0529× 10−9m (15.28)

then the others are just multiples

r = n2ao n = 1, 2, 3, . . . (15.29)

This should really be reminding us of allowed wave functions in potential wells.

Now that we know the radius for each orbit, let’s find the energy of the orbits using our

energy equation

E = − 1

4πǫo

e2

2r
and put in our result for the radius.

E = − 1

4πǫo

e2

2n2ao
(15.30)

= − 1

4πǫo

e2

2n2 1
4πǫo

�2

e2me

n = 1, 2, 3, . . . (15.31)

= − 1

42π2ǫ2o

e4me

2n2�2
n = 1, 2, 3, . . . (15.32)

= − 1

32π2ǫ2o�
2

mee
4

n2
n = 1, 2, 3, . . . (15.33)

and we see that the energy is quantized. For hydrogen, we can substitute in values to

get

E = −13.6

n2
eV n = 1, 2, 3, . . . (15.34)

When n = 1 we have the lowest energy state, called the ground state. It has energy

E1 = −13.6 eV. The next state is E2 = −13.6 eV/4 = −3. 4 eV. We can represent

these states graphically by picturing them like a building. We will draw a line
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representing the ground floor or ground state. Above it will be the second floor (second

energy state) and the third floor (third energy state) etc. Only, for the atom the floors are

all different sizes. And this is a picture type we already know from our study of wave

functions in the infinite potential well problem and the quantum harmonic oscillator.

The horizontal lines are the energy states, the vertical arrows are the transitions that take

an electron from one state to another. They represent absorption or emission of photons.

the photons would have the energy represented by the difference of energies of the two

states participating in the transition. Bohr’s model correctly predicts the emission lines

for hydrogen with wavelengths that are very close to the observed wavelengths.

Notice that for large values of n we can get almost no energy between states. They are

really continuous, no longer so quantized. The top line of the graph shows the energy

of an electron infinitely far away at rest (no energy).

Suppose we want to get rid of the electron all together. This is called ionization. The

energy required to remove the electron is 13.6 eV.

Lets look at a what happens when an electron goes from one stable state to another. We

call this a transition. Say our electron jumps from the state with the quantum number

n = 3 to n = 1, the ground state. There is an energy difference of

E3 −E1 = −1.512 eV− (−13.6 eV) = 12. 088 eV (15.35)

Then the energy of the produced photon would be

hf = E3 −E1 = 12. 088 eV
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and the frequency of the photon would be

f =
E3 − E1

h
=

12. 088 eV

6.63× 10−34 J s
= 2. 921 134 17× 1015Hz (15.36)

In general

f =
Ef −Ei

h
(15.37)

You may wonder why this theory had so much success, since most of the assumptions

were unfounded when Bohr made them. Here is an example of what the theory could

do. Let’s find a formula for the emission spectra, based on Bohr’s theory. We want to

find the inverse of the wavelength
1

λ
(15.38)

but we know that
1

λ
=

f

c
=

Ef −Ei
ch

(15.39)

or, using the Bohr theory expression for energy

1

λ
=
− 1

32π2ǫ2o�
2
mee

4

n2f
−

�
− 1

32π2ǫ2o�
2
mee

4

n2i

�

ch
(15.40)

Taking out everything that is not an n gives

1

λ
=

mee4

32π2ǫ2o�
2 (ch)

�
1

n2i
− 1

n2f

�

(15.41)

=
mee

4

32π2ǫ2o�
2
�
h2π
2π

�
c

�
1

n2i
− 1

n2f

�

(15.42)

=
mee

4

(64π3) ǫ2o (�
3) c

�
1

n2i
− 1

n2f

�

(15.43)

This looks a little familiar. If n2i = 22 and if

RH =
mee

4

64π3ǫ2o�
3c

(15.44)

= 1.0973731534× 107m−1 (15.45)

then Bohr has just derived the equation for the quantized wavelengths associated with

the Hydrogen spectrum. When you do the calculation, the value Bohr got for RH

matched very well with what Balmer found experimentally. Bohr knew he was on

to something. Bohr’s model reproduces the strange numeric relationships that were

observed between the frequencies of the emission lines!

If we allow for atoms that have more than one electron, then the Bohr model can also

explain why some of the emission lines don’t show up as absorption lines. An electron

may wish to jump to a new state, but if there is already an electron in that state, we can

see that the transition can’t happen. So far so good for Bohr!
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Bohr’s Correspondence Principle

Bohr stated something that is obvious in a way, but it needed to be stated. Quantum

mechanics is in agreement with classical physics when the energy differences between

quantized levels are very small. In other words, if we go outside the atom ( n is very

large) then the electron should act just like as previous experiments had shown. That is,

the electron should still look particleish in experiments that had previously succeeded

by viewing the electron as a particle. We can see this works in the Bohr model for high

n. This will have to be part of our quantum model for the atom.

Extension to “HydrogenLike” Atoms

The Bohr theory really only explained Hydrogen. For a scientific theory to be of

practical value, it must predict behavior beyond that which it was designed to explain.

So the fact that Bohr correctly found the relationship between the Balmer lines was

good, but not good enough. But the Bohr model was also able to explain a second group

of lines for Hydrogen, the Lyman series. And for Hydrogen, the successes kept piling

up.

But more impressively, the Bohr model was extended to atoms that were “like”

hydrogen. That is, when the atom only has one electron. To get atoms that only have

one electron, we have to remove electrons. Then we would have ionized atoms. To use

the Bohr theory for these atoms, we just look for the electron charge e and substitute in

Ze2 wherever there was just e2 for the nucleus (the proton for Hydrogen). The symbol

Z is the atomic number of the element (which is the number of protons). Let’s take an

example,

F =
1

4πǫo

q1q2
r2

=
1

4πǫo

(Ze) (e)

r2

but this time instead of just e for a proton we have Ze for the nucleus charge. And this

force must once again be due to a centripetal acceleration times the electron mass

me
v2t
r

=
1

4πǫo

Ze2

r2

so once again
1

2
mev

2
t =

1

8πǫo

Ze2

r3
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so our atomic number shows up in our kinetic energy term

K =
1

8πǫo

Ze2

r
and the total energy with the change to Ze as the nuclear charge becomes

E =
1

2
mev

2 − 1

4πǫo

Ze2

r
And with our expression for K from the force considerations

E =
1

8πǫo

Ze2

r
− 1

4πǫo

Ze2

r

=
1

8πǫo

Ze2

r
− 2

8πǫo

Ze2

r

= − 1

8πǫo

Ze2

r
and once again use the assumption of angular momentum quantization

mevtr = n� (15.46)

and solved for v

vt =
n�

mer
(15.47)

and squaring

v2t =

�
n�

mer

�2

(15.48)

so that

K =
1

2
mev

2
t =

1

2
me

�
n�

mer

�2

and this must be equal to our previous expression for K

1

2
me

�
n�

mer

�2

=
1

8πǫo

Ze2

r
and we can solve this for the stable orbit distance, r

1

2
me

n2�2

m2
er

2
=

1

8πǫo

Ze2

r

1

2

n2�2

mer
=

1

8πǫo
Ze2

8πǫo
2Ze2

n2�2

me
= r

r =
4πǫo�2

Ze2me
n2

and we see the only effect will be that the orbits move in because the Coulomb force

has become stronger with the additional nuclear charge.
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The energy for the orbit will be

E = − 1

8πǫo

Ze2

4πǫo�2

Ze2me
n2

= − Z2e4me

32π2ǫ2o�
2

1

n2

and we can compare this to the hydrogen case

En = − 1

4πǫo

mee
4

2�2

�
1

n2

�
Hydrogen (15.49)

becomes

En = − 1

4πǫo

meZ
2e4

2�2

�
1

n2

�
Atom with atomic number Z (15.50)

This all worked very well.

But when we try to do this for elements with more than one electron, it does not go so

well. Something was missing

Bohr Model  What doesn’t work

There was an initial difficulty that the Bohr model assumed the hydrogen atom was in

vacuum, but the emission lines were measured with the apparatus in air. This was a

difficulty easily solved once the mistake was understood. But that wasn’t the end of

troubles for the Bohr model.

We assumed in deriving the Bohr model that the proton never moved. But real objects

don’t act this way. The Sun, for example, moves because the planets orbit around them.

The Earth as well wiggles in its orbit of the Sun because the Moon orbits around it but

really the Moon and Earth both orbit the center of mass of the MoonEarth system. We

can fix this problem in the Bohr model somewhat artificially by using the “reduced

mass” of

m =
memp

me +mp

in the calculations instead of me. (We will explain why this works in detail later in our

course.)

But a more serious challenge came when the angular momentum of the ground state

electron was experimentally measured to be L = 0. A founding assumption for Bohr

was that

L = mevr = n� (15.51)

and neither n nor � could be zero. Something was clearly wrong.
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We can now add on a problem from the uncertainty principle, that a planar orbit, say, in

the xy plane would leave vx = 0 and z = 0 so ∆p = 0 and ∆z = 0 and we know that

can’t be for an electron wavicle. Bohr did his work before Heisenberg, so this wasn’t

discovered as a problem until later. But we, knowing how to use uncertainty relations

for wavicles, can see right away that this can’t work.

De Broigle Discovers the Clue

Remember that Bohr told us that the angular momentum of the electron was quantized,

mevtr = n�

but why?

From our work with De Broigle waves, we might have an idea. We now know that

electron waves act in some ways like waves on strings. If they have a set of bound

ary conditions in a potential well we get standing waves that we can call stable states.

So maybe the stable states of the electron would be standing waves! Since the atom is

round, they would look a little more like the waves around the lip of a vibrating cup or

the edge of a bell.

To make the wave work, there would have to be an integer number of electron

wavelengths. That is

2πr = nλ n = 1, 2, 3, . . .

Now remember that the de Broigle wavelength for an electron is

λ =
h

pe
=

h

meve
so our condition is

2πr =
nh

meve
n = 1, 2, 3, . . .
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Now let’s do a little algebra
1

2π
2πr =

1

2π

nh

meve

r =
n�

meve
mever = n�

which is just what Bohr had proposed! Quantum mechanics gives a reason for Bohr’s

quantized angular momentum.

It looks like the atom is a potential well and that the electrons are standing waves at

allowed states in that potential well! We will build a quantum model of the electron

states in an atom in our next lecture.
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7.17.3

Fundamental Concepts in the Lecture

• We can form a one dimensional model of hydrogen that let’s us solve the
Schrödinger equation

• Quantizing the angular momentum

• Three dimensional solutions of the Schrödinger equation for hydrogen

One Dimensional first look at Quantum Hydrogen

Atoms are three dimensional objects (at least!). You can bet that going from one

dimensional potential wells to three dimensional potential wells would mean more

math. So before we take on a three dimensional atom, let’s do a useful approximation.

Let’s assume a one dimensional atom. Because our atom will be hydrogen, we will

imagine a proton at x = 0 and an electron that is allowed to exist at some location

x > 0. We know the form of the potential energy for such a situation from PH220

U =
1

4πǫo

q1q1
r

=
1

4πǫo

e2

x
then the Schrödinger equation

− �
2

2m

d2ψ (x)

dx2
+ Uψ (x) = Eψ (x)

becomes

− �
2

2m

d2ψ (x)

dx2
− 1

4πǫo

e2

x
ψ (x) = Eψ (x)

and we are back to looking up solutions to differential equations in books. We do have

boundary conditions. At x = 0 the term 1
4πǫo

e2

x ψ (x) will be infinite unless the wave

function goes to zero at x = 0. And as x → ∞ it seems that the electron should be

closer to the nucleus if it is a bound state so we expect ψ (∞)→ 0. This leads us (after
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looking it up in a math book) to suggesting a wave function of the form

ψ (x) = Axe−bx

where we will have to find b and A based on our boundaries, or normalization. We

know what to do by now to see if this works. We take derivatives
dψ (x)

dx
= A

�
x (−b) e−bx + e−bx

�

= Ae−bx (1− bx)

and

d2ψ (x)

dx2
= A

�
e−bx (−b) + (1− bx) (−b) e−bx

�

= A
�
−be−bx + (1− bx) (−b) e−bx

�

= −Abe−bx (1 + (1− bx))

= −Abe−bx (2− bx)

We can substitute our second derivative that we found into the Schrödinger equation

and also put in our form for ψ (x) wherever it shows up

− �
2

2m

�
d2ψ (x)

dx2

�
− 1

4πǫo

e2

x
[ψ (x)] = E [ψ (x)]

− �
2

2m

�
−Abe−bx (2− bx)

�
− 1

4πǫo

e2

x

 
Axe−bx

!
= E

 
Axe−bx

!

or

− �
2

2m

�
−Abe−bx (2− bx)

�
− e2

4πǫo

�
Ae−bx

�
= E

�
Axe−bx

�

The A and e−bx terms cancel leaving

− �
2

2m
(−b (2− bx))− e2

4πǫo
= Ex

Rearranging gives
�
2b

2m
(2− bx)− e2

4πǫo
= Ex

and now let’s collect terms in x

2
�
2b

2m
− bx

�
2b

2m
− e2

4πǫo
= Ex

2
�
2b

2m
− e2

4πǫo
= x

�
E + b

�
2b

2m

�

2
�
2b

2m
− e2

4πǫo
− x

�
E + b

�
2b

2m

�
= 0

Like for the harmonic oscillator, we want this equation to be zero for all x, so we need

2
�
2b

2m
− e2

4πǫo
= 0
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and �
E + b

�
2b

2m

�
= 0

Let’s solve for b using the first of these

2
�
2b

2m
=

e2

4πǫo

b =
me2

4πǫo�2
=

1

ao
where ao is the first Bohr radius. That is encouraging. Let’s try the second equation and

solve for energy

E + b2
�
2

2m
= 0

E = −b2
�
2

2m
and now we know b

E = −
�

me2

4πǫo�2

�2
�
2

2m

= − m2e4

16π2ǫ2o�
2

1

2m

= − me4

32π2ǫ2o�
2

which is the energy of the first Bohr state. This is really cool, but you might guess that

we are not done. We really do need three dimensions. But let’s finish this 1D Bohr state

wave function. We still need A so we normalize	 ∞

0

��Axe−bx
��2 dx = 1

A2

	 ∞

0

x2e−2bxdx = 1

and we are back to looking things up in integral tables. I found one	 ∞

0

xne−cxdx =
n!

cn+1

and though I don’t like the idea of factorials in my equations, we can use this. Set n = 2

and c = 2b then

A2

	 ∞

0

x2e−2bxdx = A2 2!

(2b)
3 = 1

so then

A2 =
(2b)

3

2
= 4b3

A = 2b
3
2

so

ψ (x) = 2b
3
2xe−bx

and we found b earlier, so

ψ (x) = 2a
− 3
2

o xe−x/ao
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wich is fine but we could put in ao as well

ψ (x) = 2

�
me2

4πǫo�2

�− 3
2

xe−
4πǫo�

2

me2
x

And we can plot the shape of this. Remember that we have our nucleus (a proton) at

x = 0. Then the positive x direction is away from the nucleus. And the factor

4πǫo�2

me2
=

4π
�
8.854187817× 10−12 Fm−1� �1.05457266× 10−34 J s

�2

(9.1093897× 10−31 kg) (1.60217733× 10−19C)2

= 5. 291 8× 10−11m

= 0.529 18Å

and

2

�
me2

4πǫo�2

�− 3
2

= 2

� �
9.1093897× 10−31 kg

� �
1.60217733× 10−19C

�2

4π (8.854187817× 10−12 Fm−1) (1.05457266× 10−34 J s)2

�− 3
2

=
2.0

�
1. 889 7 1

Å

� 3
2

then the amplitude squared would be

ψ2 (x) =
4.0

�
1. 889 7 1

Å

�3 x
2e−2(0.529 18Å)x

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

x(A)

Psi^2

It is instructive to plot this with our units on the x axis spaced ao apart.

ψ (x) = 2a
− 3
2

o xe−x/ao



Fixing the angular momentum 261

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

x/a_o

Psi^2

and this shows easily that the peak probability of detection is right at the Bohr radius.

But this solution is very different than what Bohr’s model would give us! Notice that

the electron can be detected right up to the nucleus and has a significant probability of

detection at four times the Bohr radius. This is a very different solution even though it

preserves the good characteristics of the Bohr model. We could try for a first excited

state, but really we know atoms are not one dimensional. So let’s move to the three

dimensional case.

Fixing the angular momentum

Bohr had to assume quantized angular momentum. We expect that we will need this to

be true in our case. It is strange to think of waves having angular momentum. With

linear momentum we found that the momentum was really more fundamental than

mass or velocity. After all, there is no velocity conservation law in the universe, but

momentum is conserved. So as strange as it seems, photons that don’t have mass do

have momentum and can push things. The formula p = mv was really a special case

of a more general relationship. We are going to find that angular momentum is also

fundamental. So our intuition from PH121 is going to get stretched. Our classical

relationship L = r × p is once again a special case and there is a more general

relationship. We need to investigate a little bit of this extension of the concept of

angular momentum now.

This is because we need to fit this new angular momentum quantization (on top of

wavelength and energy quantization) into our Schrödinger equation. Let’s develop a

way to do this. Classically

L = r × p

which puts L perpendicular to the distance vector from the object we are orbiting and

to the momentum vector. So for a planetary orbit, if r and p are in the xy plane L is in

the z direction. It is worth “remembering” that the energy of an orbiting object sets
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the average orbital distance, but the shape of the orbit comes from angular momentum.

And angular momentum is conserved in an orbit just like energy. The three components

of the angular momentum can be any number classically.

Bohr guessed that angular momentum

L = n� n = 1, 2, 3, . . .

but we have seen that this doesn’t match experiment. We will see (in PH433) that a

better guess is

L =
�

l (l + 1)� l = 0, 1, 2, 3, . . .

This works because when l = 0 then L = 0 and we are in agreement with experiment.

It still gives quantization (only certain values work) but it is more complicated than

just an n. That is not too strange, we have found for different potential wells we got

energies that went like n, but some went like n2. This is just a little more complicated.

Now let’s look at components of the angular momentum. Let’s define a zcomponent of

the angular momentum

Lz = ml� ml = 0,±1,±2,±3, . . .± l

This number, ml is traditionally called the magnetic quantum number and l is

traditionally called the angular momentum quantum number. These numbers will pop

out of our three dimensional solution to the Schrödinger equation just like the n in the

harmonic series popped out of our solution for wave equations for waves on strings or

and n2 popped out in our solution for the energy states of the infinite potential well.

The numbers l and ml are, in a way, like the components of the angular momentum.

The ml is related to Lz. But l is a little different. In classical mechanics the angular

momentum has three components, Lx, Ly, and Lz. It turns out in quantum mechanics

we can’t specify all three angular momentum components at the same time. If we know

Lz precisely, then Lx and Ly are indeterminate (think uncertainty). In the next figure,

if we know Lz then we see that the values for Lx and Ly are spread around a circle and

can take any value on the circle. They are, in our current use, “uncertain.” And once

again it is not that we don’t know them well, it is that with the restriction that they must

together form the circle, Lx and Ly, will take on all the values that would form that

circle.
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If we consider the angle φ where tanφ =
Ly
Lx

the we can say that φ will take on any

value from 0 to 2π. It is uncertain. And then we could declare

∆Lz∆φ ≥ �
and we have yet another uncertainty relationship. But the strangeness doesn’t end there.

Remember that the Lz is quantized with quantum number ml. So it can only take on

certain values.

We could define an angle θ measured from the positive z axis and then

cos θ =
Lz
L

=
ml�

l (l + 1)

and we see that only some values of θ are allowed. This seems strange, but remember

that we are dealing with waves and when we have standing waves only some values of

the quantum numbers will make those standing waves.

As a very rough analogy, you could envision standing waves on strings. Let’s think of
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using jump ropes and make standing waves. But we could have our rope turners make a

three dimensional standing wave by rotating the rope while making it oscillate.

But notice that with this structure, we could add in another set of people with another

rope if we match the nodes up just right.

But we would have to line up the oscillating ropes just right or the two ropes would start

to hit each other and destroy the standing waves. We probably couldn’t add in a third

rope because there just isn’t room to fit in another wave without the waves colliding.

We could envision another rope in the zdirection if we could find rope holders that

could float. Our hydrogen electron waves will form something like this. Some values

of angular momenta would make the waves that would conflict with themselves, other

waves, or the boundaries and would therefore not make standing wave patterns. I hope

this helps to see why only some values of angular momentum are possible in our atom.

We have to remember we are dealing with waves, and the standing waves that we

make from our specific potential well will only have certain forms that don’t conflict
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and ruin the standing wave pattern. With de Broglie waves, ruining the stable wave

function for the electron would require the electron to go somewhere else (like leave the

atom). So if we continue to think of electrons using the wave nature, we can see that

angular momentum quantization is natural, maybe even for our angular momentum.

This analogy isn’t perfect, but maybe it will help.

The idea that angular momentum is quantized is given a strange name space

quantization. Perhaps this is because it means only certain directions for the angular

momentum are possible. This will give the shape of the electron orbitals as we will see.

Hydrogen wave functions

Now it is time to get the actual hydrogen wave functions. Of course we start with the

Schrödinger equation

− �
2

2m

∂2ψ (x)

δx2
+ Uψ (x) = Eψ (x)

but we already have a problem. This equation is one dimensional. Let’s fix that now

− �
2

2m

�
∂2ψ (x, y, z)

∂x2
+

∂2ψ (x, y, z)

∂y2
+

∂2ψ (x, y, z)

∂z2

�

+U (x, y, z)ψ (x, y, z) = Eψ (x, y, z)

and this works because derivatives are linear, they just add, and we now have a

wave function that is a function of x, y, and z. But this simple fix turns out to be

mathematically challenging. That is because

U (x, y, z) = − e2

4πǫor

= − e2

4πǫo
�

x2 + y2 + z2

is a function of all three variables x, y, and z. Our best hope for a solution is to use

separation of variables so that we have three Schrödinger equation parts, one that is

only a function of x and one that is only a function of y and one that is only a function

of z. But the U (x, y, z) is messing that up. But U is only a function of r, and we

do have spherical symmetry, so maybe spherical coordinates will let us separate the

equations. However, the derivatives in spherical coordinates are more complicated. In

spherical coordinates our Schrödinger equation looks like this .

− �
2

2m

"�
∂2ψ

∂r2
+

2

r

∂ψ

∂r

�
+

�
1

r2
∂2ψ

∂θ2
+

cos θ

r2 sin θ

∂ψ

∂θ

�
+

1

r2 sin2 θ

∂2ψ

∂φ2

#
+U (r)ψ = Eψ

You might be wondering where on Earth this came from. And the answer is from

your math courses. Either you already have seen this transformation from Cartesian to

spherical coordinates, or you soon will. I will let the math course prove that this is the
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right equation. We will just use it.

For those who have taken Math316 let’s pause and notice that if we define a new

operator for second derivatives∇2 such that

∇2ψ =
1

r2 sin θ

"
sin θ

∂

∂r

�
r2

∂ψ

∂r

�
+

∂

∂θ

�
sin θ

∂ψ

∂θ

�
+

1

sin θ

∂2ψ

∂φ2

#

we can rewrite our Schrödinger equation. Let’s try this by writing out the derivative of

the products in this last equation

∇2ψ =
1

r2 sin θ

"
sin θ

�
r2

∂2ψ

∂r2
+ 2r

∂ψ

∂r

�
+

∂

∂θ

�
sin θ

∂2ψ

∂θ2
+

∂ψ

∂θ
cos θ

�
+

1

sin θ

∂2ψ

∂φ2

#

and taking the 1/(r2 sin θ) inside we have

∇2ψ =

"�
∂2ψ

∂r2
+

2

r

∂ψ

∂r

�
+

�
1

r2
∂2ψ

∂θ2
+

cos θ

r2 sin θ

∂ψ

∂θ

�
+

1

r2 sin2 θ

∂2ψ

∂φ2

#

which looks very like the left hand side of our Schrödinger equation. So

− �
2

2m

"�
∂2ψ

∂r2
+

2

r

∂ψ

∂r

�
+

�
1

r2
∂2ψ

∂θ2
+

cos θ

r2 sin θ

∂ψ

∂θ

�
+

1

r2 sin2 θ

∂2ψ

∂φ2

#
+U (r)ψ = Eψ

could be written as

− �
2

2m

 
∇2ψ

!
+ U (r)ψ = Eψ

and you will sometimes see it this way. If you are just now taking M316, then you now

know you are in for a treat. But the question for us now is to find a solution to this three

dimensional nonrelativistic Schrödinger equation in spherical coordinates.

The trick is to now assume a wave function that is the product of three functions, but

each of only one variable

ψ (r, θ, φ) = R (r)Θ (θ)Φ (φ)

Let’s put this into our new Schrödinger equation to try out our guess. We will have to

rearrange a bit to make it fit on the page. We start with

− �
2

2m

"�
∂2ψ

∂r2
+

2

r

∂ψ

∂r

�
+

�
1

r2
∂2ψ

∂θ2
+

cos θ

r2 sin θ

∂ψ

∂θ

�
+

1

r2 sin2 θ

∂2ψ

∂φ2

#
+U (r)ψ = Eψ

but everywhere there is a ψ we put in ψ = R (r)Θ (θ)Φ (φ) . We get

− �
2

2m

�
∂2 (R (r)Θ (θ)Φ (φ))

∂r2
+

2

r

∂ (R (r)Θ (θ) Φ (φ))

∂r

�

− �
2

2m

�
1

r2
∂2 (R (r)Θ (θ)Φ (φ))

∂θ2
+

cos θ

r2 sin θ

∂ (R (r)Θ (θ)Φ (φ))

∂θ

�

− �
2

2m

�
1

r2 sin2 θ

∂2 (R (r)Θ (θ)Φ (φ))

∂φ2

�

+U (r)R (r)Θ (θ)Φ (φ) = ER (r)Θ (θ)Φ (φ)

Where I had to distribute the −�2/ (2m) to make it all fit on the page.

We can take out some of the functions that act like constants in the partial derivatives
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(another M316 thing, but we know partial derivatives form PH150).

− �
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2m

�
Θ(θ) Φ (φ)

∂2 (R (r))

∂r2
+

2

r
Θ(θ)Φ (φ)
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+
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r2 sin2 θ
R (r)Θ (θ)

∂2 (Φ (φ))

∂φ2

+U (r) (R (r)Θ (θ)Φ (φ))

= E (R (r)Θ (θ) Φ (φ))

Now let’s divide each term by (R (r)Θ (θ)Φ (φ))
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R (r)Θ (θ)Φ (φ)
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r2 sin θ
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+U (r)
(R (r)Θ (θ)Φ (φ))

R (r)Θ (θ)Φ (φ)

= E
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R (r)Θ (θ)Φ (φ)
to get
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∂θ2
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cos θ

sin θ

1
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∂ (Θ (θ))
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1

sin2 θ

1

Φ (φ)

∂2 (Φ (φ))

∂φ2

�

+U (r) = E

which we can regroup so all the R (r) , Θ(θ) and Φ(φ) functions are grouped together.
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∂ (R (r))

∂r

�

− �
2

2m

�
1

Θ (θ)

1

r2
∂2 (Θ (θ))

∂θ2
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cos θ

r2 sin θ

1

Θ (θ)
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∂θ

�

− �
2

2m

1

r2 sin2 θ

1

Φ (φ)

∂2 (Φ (φ))

∂φ2

+U (r) = E

And let’s do more rearranging, let’s multiple through by r2 sin2 θ and put all the terms
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in Φ(φ) on the right hand side

−r2 sin2 θ
�
2

2m

�
1

R (r)

∂2 (R (r))

∂r2
+

2

r

1

R (r)

∂ (R (r))

∂r

�

−r2 sin2 θ

r2
�
2

2m

�
1

Θ (θ)

∂2 (Θ (θ))

∂θ2
+

cos θ

sin θ

1

Θ(θ)

∂ (Θ (θ))

∂θ

�

+U (r) r2 sin2 θ −Er2 sin2 θ

=
�
2

2m

1

Φ (φ)

∂2 (Φ (φ))

∂φ2

Notice that the right hand side of the equal sign is just a function of φ and the left hand

side is a function of r and θ. The only way for this to be true independent r, θ, φ is for

each side to be a constant. And further notice that φ is an angular direction. We expect

that this direction of motion will produce angular momentum. And we know from our

discussion of space quantization that angular momentum is quantized. So although

each side must be equal to a constant, we suspect that there will be more than one value

for that constant that will work (more than one standing wave that can form). Those

values will correspond to the allowed angular momenta. As a terrible spoiler, we give

this constant the symbol −m2
l . So

1

Φ(φ)

∂2Φ(φ)

∂φ2
= −m2

l

∂2Φ(φ)

∂φ2
= −m2

lΦ(φ) (16.1)

and we could solve this for the Φ(φ) part of the wave function. We would expect a

wave in the φ direction. And then ml would be a quantum number just like n was for

waves on strings. The quantum number ml is going to tell us which wave solutions

make standing wave patters that work for our hydrogen potential well like n told us

which frequencies made standing waves on violin strings.

But for now let’s just replace 1
Φ(φ)

∂2Φ(φ)
∂φ2

with −m2
l in our Schrödinger equation and

rearrange again

−r2 sin2 θ

�
1

R (r)

∂2 (R (r))

∂r2
+

2

r

1

R (r)

∂ (R (r))

∂r

�

−r2 sin2 θ

r2

�
1

Θ (θ)

∂2 (Θ (θ))

∂θ2
+

cos θ

sin θ

1

Θ(θ)

∂ (Θ (θ))

∂θ

�

+
2m

�2
U (r) r2 sin2 θ − 2m

�2
Er2 sin2 θ

= −m2
l
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Now let’s put all the terms with Θ(θ) on the right hand side

−r2
�

1

R (r)

∂2 (R (r))

∂r2
+

2

r

1

R (r)

∂ (R (r))

∂r

�
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U (r) r2 sin2 θ − 2m
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=
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1
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∂2 (Θ (θ))

∂θ2
+

cos θ

sin θ

1

Θ (θ)

∂ (Θ (θ))

∂θ

�
− m2

l

sin2 θ
and notice that on the left hand side of the equal sign we have only a function of r and

on the right we have only a function of θ. For these two sides to be equal for all r and

θ we need each side to be equal to another constant. Once again this constant will be

associated with angular motion and therefore angular momentum. And we know that

the angular momentum is quantized. So once again we expect that more than one value

for this constant will work. And once again as a large spoiler let’s write this constant as

l (l + 1) folowing what we found from space quantization, then�
1

Θ(θ)

∂2 (Θ (θ))

∂θ2
+

cos θ

sin θ

1

Θ(θ)

∂ (Θ (θ))

∂θ

�
− m2

l

sin2 θ
= −l (l + 1)

and �
∂2 (Θ (θ))

∂θ2
+

cos θ

sin θ

∂ (Θ (θ))

∂θ

�
− m2

l

sin2 θ
= −l (l + 1)Θ (θ) (16.2)

And we could solve this for the Θ(θ) part of our wave function. But for now, let’s

replace the left hand term with the right hand term in our Schrödinger equation and

rearrange again
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r

1
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∂ (R (r))
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We can multiply both sides by R (r)
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= −l (l + 1)R (r)

Then dividing by r2 gives

−
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r
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�
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�2
(U (r)−E)R (r)

= − l (l+ 1)

r2
R (r)

and moving the �2/2m back in place
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R (r)

We can almost fit our radial part of the Schrödinger equation on one line of the page
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r

∂ (R (r))
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+ [U (r)]R (r) +
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R (r) = ER (r)
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and putting in our Coulomb potential we have

− �
2

2m

�
∂2

∂r2
(R (r)) +

2

r

∂

∂r
(R (r))

�
+

�"
− e2

4πǫor

#
+

l (l+ 1)

2mr2

�
R (r) = E (r)R (r)

(16.3)

The mass is still the reduced mass. We can find equations that solve this differential

equation for the R (r) part of the . We will find clever ways to do that in PH433. But

for now, we will just quote the results. The first thing to note is that ml isn’t in the

radial equation. But E and U are in the radial equation. So all wave functions with

the same l but different ml values will have the same energy. These states are called

degenerate (they have different quantum numbers, but have the same energy). We will

get an additional quantum number, n, from solving the radial part of the Schrödinger

equation that labels the energies.

En = − me4

32π2ǫ2o�
2

1

n2

which looks much like or energy quantization for an infinite potential well.

Sadly, we won’t actually launch off into a differential equations class at this point. But

we know

ψ (r, θ, φ) = R (r)Θ (θ)Φ (φ)

and the pieces of this wave function have been found using partial differential equation

techniques to solve equations (16.1), (16.2) and (16.3). The parts are given in the next

table for a few of the possible quantum numbers n, l, and ml.

n l ml R (r) Θ (θ) Φ (φ)

1 0 0 2

(ao)
3
2
e−

r
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1√
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2(3ao)

3
2

�
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15
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A plot of these functions is hard, but doable. Usually we plot |ψ|2 so the plot gives the

probability of where the electron will be detected. Here is one attempt.
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If you are thinking that these look a lot like pictures of electron orbitals, you are

right! The orbitals you studied in High School are the wave functions (squared) of the

electrons.

Not every value of the quantum numbers for electrons in hydrogen atoms make real

wave functions that work. This is a little like when we did standing waves back in

PH123 and found that the even quantum numbers for pipes closed on one end don’t

make standing waves. We won’t do the math to show this here (more for PH433 to do!)

but the pattern is
n 1, 2, 3, · · ·
l 0, 1, 2, · · · , n− 1
ml ±1,±2,±3, · · · ,±l

Finding the probability density is still a little tricky. We need to remember that in

spherical coordinates the volume element is

dV = r2 sin θdrdθdφ

and we would need to integrate over all space. We can try that for the radial functions

in the problems.

What we have done is monumental, but its kind of like building only part of the

monument ourselves. We borrowed solutions from our future selves (and past

colleagues). But we now can explain that atoms are potential wells, and we can explain

Bohr’s assumption of quantization because we should just expect quantization from a

wavicle in a potential well.

We could check one of the radial parts, say the ground state radial part, of the wave

function to make sure it really works

R (r) =
2

a
3
2

e−
r
ao
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if we take derivatives
∂
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and take the ground state energy

E1 = − me4
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and put all this into equation (16.3)
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and simplifying

− �
2

2m

�
2

a2o
+

2

r

�
− 2

ao

��
+

�
− e2

4πǫor

�
(2) = − �

2

2ma2o
(2)

− �
2

2m

�
2r

a2or
− 4ao

ra2o

�
+

�
− e2

4πǫor

�
(2) = − �

2

2ma2o
(2)

− �
2

2m

�
2r − 4ao

a2or

�
+

�
− e2

4πǫor

�
(2) = − �

2

2ma2o
(2)

− �
2

2m

�
r − 2ao
a2or

�
+

�
− e2m�2

4πǫo�2mr

�
+

�
2

2ma2o
= 0

−r�2 − 2ao�
2

2ma2or
− 2�2ao

2a2omr
+

�
2r

2a2omr
= 0

−r�2 + 2ao�
2 − 2�2ao + �

2r = 0

−r�2 + �2r + 2ao�
2 − 2�2ao = 0

0 = 0

so indeed it works.

There is a little more to this story. We still need the angular parts. And there is the
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surprise of electron angular momentum (spin) still to come. But we have developed

(with help) a new model for the atom (well hydrogen) that matches all that we know

about atoms (well, hydrogen atoms).





17 Details of the Quantum Model

for the Atom

7.47.7

Fundamental Concepts in the Lecture

• Radial probability densities

• Angular probability densities

• Electron intrinsic spin

• Spectroscopic notation (cause we need another notation...)

Radial probability densities

If you have taken chemistry you know they make a big deal of whether an electron is

an “outer” or “inner” electron. We should be able to find the highest probability of

detection for an electron wave, and sort of mentally equate that to the location of the

electron (it is where it would be detected most often, so this isn’t really so bad). We

would need to integrate
��ψ2

�� = |R (r)Θ (θ)Φ (φ)|2 and we now need to integrate over

a volume interval in spherical coordinates

dV = r2 sin θdrdθdφ

We would have

P =

	 	 	
|R (r)Θ (θ) Φ (φ)|2 r2 sin θdrdθdφ

and this could be daunting. But if we just want to know the distance from the nucleus

where there is the most probability of detection, we could write the probability of being

at a particular position r away from the nucleus as just

P (r) dr = |R (r)|2 r2dr
	 π

0

|Θ(θ)|2 sin θdθ

	 2π

0

|Φ(φ)|2 dφ
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where we are, in effect, averaging out all the angular dependence, and if we demand that

each of the parts of the wave function R (r) ,Θ(θ) ,Φ(φ) are individually normalized,

then the two integrals are both equal to 1 so we are left with just

P (r) dr = |R (r)|2 r2dr
And we could take a particular form of R (r) from our chart and plot it. For the ground

state

R (r) =
2

a
3
2

e−
r
ao

and

ao =
4πǫo�2

e2me
= 0.0529nm (17.1)

so then
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0

5

10
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P

and we see that we are most likely to detect an electron at a little over a tenth of an

angstrom away from the nucleus. We now know the trick of plotting with u = r/ao.

Then our function looks like
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2
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2
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4
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3 e
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2

=
4u2
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and we can make our vertical access in units of 4/ao so the plot looks like this
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0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

x/a_o

P(4/a_o)

and this is just the ground state. We will designate a state by it’s quantum numbers. The

ground state has n = 1, l = 0, ml = 0 so we call this the (1, 0, 0) state. We could try

another, say the (3, 2, 1) state (look at the table in section 16.3). Then
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so if we make our vertical axis again in units of 4
196 830ao

then our plot looks like
�
u6

�
e−2

u
3
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500

1000

x/a_o

P(strange units)

and we can see that when x = ao u = 1 so our ground state had a peak near x = ao and
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now we have a peak near 10ao. The higher electron states are indeed more “outer” just

like we learned in Chemistry. Here is a plot of both the ground state and the (3, 2, 1)

state and we can see that the electron in the ground state is more often found nearer the

nucleus with the vertical axis again in units of 4/ao.

0 10 20 30 40 50 60
0.00

0.05

0.10

x/a_o

P(4/a_o))

The (1, 0, 0) (thin blue line) and (3, 2, 1) (thick red line) radial probability functions plotted

together in distance units of x/ao and with vertical axis units of 4/ao. The n = 3 electron is

more likely to be detected farther away from the nucleus than the n = 1 case.

Angular probability densities

Looking back at our table of wave function pieces we note that the wave function Φ(φ)

does depend on φ, but |Φ(φ)|2 will always lose the φ dependence. The probability

density does not depend on φ. We call this being cylindrically symmetric.

For the ground state (1, 0, 0) and first excited state (2, 0, 0) the function Θ(θ) is a con

stant. That means all angles, θ, are equally likely (think uncertainty relation) so the

(1, 0, 0) and (2, 0, 0) look like fuzzy balls with the most probable detection at different

distances, r, from the nuclear center. But with larger n values we expect the wave func

tions to not be symmetric. Here is an example for the (3, 1, 0) state.
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Hydrogen (3,1,0) orbitals plotted using David Manthey’s Orbital Viewer www.orbitals.com/orb,

and Mathmatica.

The plot on the left makes a surface of the peak of the probability function (amplitude

squared) it looks like a smooth surface. This is how we usually see electron probabil

ity functions graphed. But the plot on the right might be a better way to think about

the probability function. It shows the same structures, but you can see that the proba

bility fades into the maximum and back out of the maximum surfaces. In either case,

we just plot the amplitude squared, so you don’t see that there is an underlying wave.

In the next figure (figure ??) on the left are the the (1, 0, 0) and (2, 0, 0) states plotted

like the left hand case in the last figure. Once again, the software used picked the peak

value of |ψ|2 to plot as a surface. So the surface of the ball shaped (1, 0, 0) function is

the surface over which the probability of detection is constant. That gives us our orbital

visualization shape

First six hydrogen orbitals plotted using David Manthey’s Orbital Viewer www.orbitals.com/orb
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Now let’s look at the (2, 1, 0) wave function. The Φ(φ) function is still constant, but

now

Θ(θ) =

�
3

2
cos θ

which is not spherically symmetric. We can see the (2, 1, 0) state also plotted in the

figure (??). It’s shape is very different.

The figure also has the (3, 0, 0) , (3, 1, 0) and (3, 2, 0) states plotted. Notice that as n

gets bigger the (n, 0, 0) states get bigger, and notice that the standing wave patterns get

more complicated as n increases and l increases. Like we did with our analogy with

waves on ropes, we are building standing wave shapes that can fit in the geometry of

our spherical potential well. Those shapes are more complicated as l and ml get bigger.

Angular momentum and space quantization

It would be good to pause a moment and look once again at angular momentum

quantization. We can get some benefit in this case from using the Bohr model because it

gives the same result as our quantum model but without the lovely difficult math. Let’s

model an electron orbiting the atom. That moving electron is a current, and current

loops create magnetic fields. So we would expect the electron (and therefore the atom)

to have a magnetic moment µ.

The magnetic moment is defined as the current multiplied by the area of the current

loop

µ = IA

and the current in the Bohr model is very simple. It is one electron charge, e, circling

the atom in a period

T =
2πr

vt
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so our current is

I =
e

2πr
vt

=
evt
2πr

and we could put this in terms of momentum by writing p = mvt

I =
emvt
2πrm

=
ep

2πrm
then the magnetic moment is

µ = IA

=

� −ep

2πrm

��
πr2

�

=

�−e

2m

�
(rp)

= −
� e

2m

�
L

and of course both µ and L are vectors and because of the minus sign, they point in

opposite directions. We could take the z component of these vectors

µz = −
� e

2m

�
Lz

but we know at some point we have to go beyond the Bohr model, so let’s use our

quantum version of Lz and see if this is enough to get a semireasonable result.

Lz = ml�

Then the magnetic moment zcomponent would be

µz = −
� e

2m

�
ml�

and now we know that the magnetic moment z component is quantized. This isn’t so

much a surprise because we have seen space quantization before. We know that this

means the atom can only align the orbit of the electron at certain angles. And it means

that if we know µz precisely, we don’t know µx and µy precisely. They are uncertain,

meaning they might take on many different values with the restriction that

µ =



µ2z + µ2x + µ2y

so we might get something like this
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and over time we would get something like what is shown in the next diagram where

we would see the µx and µy values (and therefore the Lx and Ly) form a circle.

It is tradition to define

µB =
e�

2m
and we call this the Bohr magneton. Then

µz = −µBml

If we place the atom in an external magnetic field, we would expect that the magnetic
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moment would want to line up with the field and the atom will turn so that this is the

case. That would be the lowest energy. Think of taking a small magnet and placing

next to a large magnet. It would take work to turn the small magnet over. It prefers to

be oriented with the external magnetic field. But now we know that we can’t perfectly

align our atom. We can make the z component align, but we get uncertainty in the µx
and µy components. They won’t be exactly zero.

This is a semiclassical way to get µz so it isn’t really the right reasoning, but the value

we got is good and the insight into what is happening is not terrible. We can do better

in the upper division quantum mechanics courses. But we need this result to understand

how atoms behave in magnetic fields. A clever experiment made use of this atomic

magnetic moment. And to understand how we need to know that if we put the magnetic

dipole in a non uniform external magnetic field. the nonuniformity can push the dipole.

We will look at this experiment in our next lecture.





18 Hydrogen Atoms in Magnetic

Fields
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Fundamental Concepts in the Lecture

• Intrinsic Spin.

• Spectroscopic Notation

• Zeeman Effect

• Fine Structure

Back when we studied the infinite square well we briefly considered a twodimensional

square well and found that we could make standing waves with the same energy in

different ways.

And we now know that we call such waves degenerate, meaning that they have the

same energy. We use energy to do problems in physics, and these waves all have the

same energy, so in problems they would all look alike. We need some way to make

the degenerate wave states visible. And in our last lecture, we found that electrons in

orbitals have magnetic moments. And this gives us an idea of how to see the degenerate

states. If we push on the electron orbitals with external magnetic fields, we could

slightly change the energy of the standing wave, and then it would be distinguishable

from the other standing wave states in physics experiments! And that is just what we

are going to do to investigate the inner workings of our atoms.
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SternGerlach Experiment

We now know quite a lot about angular momentum in Hydrogen atoms. We could

design an experiment to see the different angular momentum states. Suppose we could

produce Hydrogen atoms in an excited state, say, the (2, 1) state so that we could

have quantum numbers of (2, 1,−1) , (2, 1, 0) , and (2, 1,+1) . We could do this by

heating the hydrogen atoms in an oven. The thermal energy would be used to excite

the electrons into higher orbitals. Then we could allow the hot hydrogen to shoot out

through a region with a strong nonuniform magnetic field.

The hydrogen will eventually decay back to the ground state, so if we want to see the

excited states we can’t make the hydrogen atoms move far. But if we keep the distances

small, we can see the effect of the atom’s angular momentum. Because some of the

atoms will have ml = 0, we would predict that these atoms will go straight through the

region with the Bfield. These atoms have zero angular momentum, and therefore will

have zero magnetic moment. They will be unaffected by the external magnetic field.

But for the atoms with ml = ±1 the atoms will feel a push from the field because

they do have a magnetic moment. The ml = +1 atoms will go one direction and the

ml = −1 atoms will go the other direction. We expect to detect the hydrogen atoms in

three clumps. One clump for each state

(2, 1,−1) , (2, 1, 0) , (2, 1,+1)

Two researchers, Stern and Gerlach, came up with this idea and performed an

experiment. And what they found was that our predication was wrong. They got

six groups of electrons! The angular momentum did split the atoms into groups, but

apparently we missed some angular momentum somewhere.

The answer to this dilemma is that we dealt with the angular momentum of the electron

orbits. Now it is not true that the electrons obit, but the wave function of the electron

about the nucleus has orbital angular momentum. But a little like an orbiting planet can

not only move around the star it orbits, but can also spin as it goes, we could have an

amount of intrinsic angular momentum attributed to the electron. Because the solution
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came from the analogy with planetary orbits, this intrinsic angular momentum is called

spin angular momentum. But the electrons are waves, so it’s not correct to say that the

electrons turn on an axis like a planet. Instead we think of this as another contribution

to the total angular momentum of the atom, but one that is part of the intrinsic nature

of the electron. Electrons have a specific spin angular momentum in the same way

they have an amount of charge. It is independent of them being in an atom. We won’t

go through the modification of the Schrödinger equation to show how the spin angular

momentum quantum number arrives. But we will define a quantum number

ms = ±
1

2
so that we gain an additional spin angular momentum of

Sz = ±
1

2
� = ms�

and we get an additional magnetic moment of

µs = −
e

m
S

that accounts for the additional splitting of our hydrogen atoms. The atoms in our

experiment would have quantum numbers of the form�
2, 1,−1,+1

2

�
,

�
2, 1,−1,−1

2

�
,

�
2, 1, 0,+

1

2

�
,

�
2, 1, 0,−1

2

�
,

�
2, 1,+1,+

1

2

�
,

�
2, 1,+1,−1

2

�

Six total just as the experiment demonstrated.

You might wonder what you would see without the magnetic field. And that would be

just one group of hydrogen atoms. You might also notice that we don’t walk around all

day in strong nonuniform magnetic fields. So most of the time we wouldn’t see this

effect. But such experiments show us how atoms are made. And so they are valuable.

In this case, we can see that the (2, 1) state has a sixfold degeneracy that is broken (so

we see all six states) in a nonuniform magnetic field. For most of the time we might

not see an obvious result of all these quantum numbers. But internally, these quantum

numbers are the clue to how atoms (and chemistry) work.

Spectroscopic notation and Selection rules

Because you only see the effects of some of the quantum numbers for hydrogen atoms

when they are in magnetic fields, you might guess that it took a while before they were

discovered. There was a previous way to denote the quantum state of the electrons

that was used before we even knew there were quantum states. It comes from naming

the emission lines that we studied before. The spectral emissions also depend on the
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hydrogen atom’s electron orbital structure. So there should be a tie between our wave

functions and the spectral lines. But because of the degeneracy of our electron states

when they are not in a magnetic field, the spectral notation only deals with n, the

principle quantum number, and l. For each n we have

l 0 1 2 3 4 5 6
Symbol s p d f g h i

The letters don’t make much sense. Originally they stood for sharp, principle, diffuse,

and fundamental. These were words that described the emission lines. But after the

first four you can see they just went down the alphabet. You have likely heard of these

from high school chemistry. We put the value of n with the symbol for l to describe

the state of electrons. You know a 1s electron is in the lowest “shell.” So our principal

and angular momentum quantum numbers l are telling us something about where the

electrons will be detected in the atom!

Selection rules

If we did quite a lot more math (we won’t) we could use our solutions to the

Schrödinger equation to find probability of an electron transitioning from one quantum

state to another. The results of these calculations give a series of rules that tell us what

transitions are most likely. They are called “selection rules.” Our first one is that

∆l = ±1
So if we have a hydrogen atom in the

�
3, 2, 1, 12

�
state it could transition to the

�
2, 1, 1, 12

�
state because

∆l = lfinal − linitial = 2− 1 = 1

and this is “allowed” by our probability calculations. That is, it is a transition that is

highly probable. We could also transition to the
�
1, 1, 0, 12

�
state. But we are very

unlikely to see a transition to the
�
2, 0, 1, 12

�
because this would be a ∆l of 2 and that is

less likely.

This selection rule is a great success of our quantum model of the atom. We see just

these same transition probabilities in experiment. So something seems to be right in

our model! But without the math it is less satisfying to simply state the rule. Let’s

motivate it a little by recalling that when an electron transitions from a higher state to a

lower state it emits a photon. But in the transition we might lose angular momentum,

say, going from an l = 2 to and l = 1 state. We still need conservation of angular

momentum. So the angular momentum must go somewhere. And of course it goes into

the photon. Photons have spin angular momentum of ms = 1. This is why a ∆l of ±1
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is so much more likely. The loss of electron angular momentum must match the gain of

photon angular momentum.

Zeeman Effect

We can get another selection rule by considering another experiment. Once again we

will place our hydrogen atoms in an external magnetic field. The atoms may have a

net magnetic moment, and if they do they will tend to align with the external field. We

know from PH220 that there is a potential energy of the form

U = −µL ·B
and the potential energy is higher when the magnetic moment is antialigned with the

field. So the atoms will tend to align their magnetic moment with the field to reach the

lowest energy state (like a ball rolling down a hill). We could put this potential energy

in the Schrödinger equation and solve it again with this new potential, but let’s not.

We can use what we know and our quantum numbers to get a good idea of what will

happen. We can write U as

U = −µzB = mlµBB

With no external magnetic field the electron has some energy that we can call E0. But

when the external magnetic field is turned on we would the electron would have more

energy due to the external magnetic field

E = E0 ± U

This just modifies our Schrödinger equation so that where there was one solution with

E = E0 now we have three solutions with energies

E = E0 − U

E = E0

E = E0 + U

and we could represent this with our energy diagram with the E0 line broken into three

lines.
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This will show up in the spectral lines of the atom. In the absence of the external field,

we would get transitions from, say, the 2p state to the ground state where the energy of

the photons would be

∆E = E2,1 −E1,0 = Eo −E1,0

But if our atom is in an external magnetic field we could get

∆E = E2,1 −E1,0

= Eo ± U −E1,0

= ∆E ± U

And because the energy is different, we expect the frequency to be different

E = hf =
hc

λ
and

|dE| =
����
hc

λ2
dλ

����
so we could write

∆λ =
λ2

hc
∆E

and see that the change in the wavelength is proportional to the change in the energy.

These changes are small, but can be easily seen in spectrographs.
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We have done it again. We have used magnetic fields to look carefully at the electron

orbitals. Degenerate states were forced into different energies by the external magnetic

field and that made them visible. Once again we would need to find the wave functions

and calculate the transition probabilities to derive this (we won’t in this class), but we

would get a new selection rule

∆ml = 0,±1
and transitions where ∆ml is 2 or more are much less likely to happen.

Fine Structure

You would think we would be done with magnetic fields and hydrogen atoms, but there

is one more consideration we need to make. And this one is harder to think about. Once

more, let’s use the Bohr model (Because it is easier, like using Newton’s laws is easier

than special relativity). But it is not too bad under some circumstances.

Lets say that in our Bohr model the electron and protons move like particles in the

atom, so they are making magnetic fields. The proton magnetic field will affect the

electron because the electron has spin angular momentum so it has a spin magnetic

moment. Notice that this is different than our Zeeman case. We don’t have an external

magnetic field. We are talking about magnetic fields made by the charged wavicles that

are part of the atom.

The calculation is easier to do if we consider a strange view point. Think of sitting on

a back porch watching the sun go down. We know that this isn’t what really happens.

The Earth is going around the Sun, so it is the Earth’s movement that makes it look like

the Sun is going down. But from a back porch where all we care about is how much

light we are getting from the Sun, it is perfectly fine to model this as though the Earth

is stationary and the Sun moves. The coordinates are strange, but we can totally do

the math to make it work. We could do the same to find the magnetic field due to the

relative motion between the electron wavicle and the proton in the hydrogen atom. All

we care about is the view point from the electron, because we want the potential energy

due to the magnetic field as seen from the electron (as though we were viewing from

a tiny back porch on the electron). We can do the calculation by taking the coordinate

system where the electron is stationary and the proton is moving. We are using Bohr

model so we can treat the wavicle electron and proton like a particle. From this view

point the situation is as shown in the next figure.
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This amounts to a current loop

So we will have a magnetic field upward (think right hand rule) and our electron

magnetic moment will be affected by this proton magnetic field. We could have for the

electron

Sz = ±
1

2
�

and this would give a magnetic dipole potential energy of

Us = ±µBBp

where we can estimate the proton magnetic field as

Bp =
µoI

2r
=

µo
2r

e

T
=

µo
2r

evt
2πr

this would give an energy separation for the split states of

∆E = 2µBB

= 2µB
µo
2r

evt
2πr

= µB
µoevt
2πr2

Now let’s use the Bohr model quantization of orbital angular momentum

mrvt = n�

to write

vt =
n�

mr
so

∆E = µB
µoe

2πr2

�
n�

mr

�

= µB
µoen�

2πmr3

and recalling that

µB =
e�

2m
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we have

∆E = µB
µoe

2πr2
n�

mr

=
e�

2m

µoen�

2πmr3

=
µoe

2n�2

4πm2r3

and we know the Bohr radius for the ground state orbit

r1 = ao =
4πǫo�

2

e2m
n2 (18.1)

so

∆E =
µoe

2n�2

4πm2
�
4πǫo�2

e2m n2
�3

=
µoe

2n�2e6m3

4πm2 (64π3ǫ3o�
6n6)

=
µoe

8m

256π4ǫ3o�
4n5

It is traditional to define a constant

α =
e2

4πǫo�c
and now remember from PH220 that

c =
1√
ǫoµo

so that

α =
e2
√
ǫoµo

4πǫo�
This is called the fine structure constant. And our energy split causes line splitting in

the spectrum that is known as the fine structure. We can write ∆E in terms of the fine

structure constant. First let’s compute α4

α4 =
e8ǫ2oµ

2
o

256π4ǫ4o�
4

=
e8µ2o

256π4ǫ2o�
4

This looks a lot like our energy

∆E =
µ2oe

8

256π4ǫ2o�
4

m

µoǫon
5

= α4mc2
1

n5

The value of α is approximately

α =
1

137
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and for a hydrogen atom in the n = 2 state we would have

∆E =

�
1

137

�4

(0.511MeV)
1

25

= 4. 533× 10−11MeV

= 4. 533× 10−5 eV

We used the Bohr model so our estimate can’t be exact, but just by chance it is really

good. The experimental value is 4.54× 10−5 eV. Don’t take this match too seriously,

It just happened to work out. Our Bohr approximation can only be taken to give order

of magnitude type values, and this one happened to be close but it is really not an

indication of something right about the Bohr model. It is just luck. We really should

(but won’t) do the math using waves to show this value is predicted by the relativistic

Schrödinger equation.

You might wonder what all this fuss about hydrogen atoms is all about. Though

hydrogen is prevalent in the universe, there are other elements like carbon and iron. But

what we have been doing with hydrogen is to build intuition on how larger atoms will

work. We expect that they will have energy levels with a series of quantum numbers

(n, l,ml,ms) and that the electrons will follow a pattern of “filling” the atom with

electrons that have different quantum numbers. We won’t prove this in our class, but

Wolgang Pauli did long ago. It turns out that in an atom, no two electrons can have

the same set of quantum numbers (n, l,ml,ms) . This is called the Pauli exclusion

principle and it is where we will start our next lecture.



19 Many Electron Atoms

8.1  8.4

Fundamental Concepts in the Lecture

• Pauli Exclusion Principle

• Electron states in atoms

• The periodic table

• Electron Screening
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• Properties of the elements

Pauli exclusion principle

In our last lecture we found that the atom has a detailed structure of possible standing

waves that fwe call orbitals around the nucleus. We found the details of the orbital

structure using magnetic fields. But now it is time to figure out what those orbitals do.

We also found that we could borrow the results of some lengthy numerical calculations

and use quantum numbers and selection rules taken from the results of those

calculations and gain understanding of how the hydrogen atom works. We are going to

continue this process, avoiding the numerical work, but using the results to gain insight.

The first of these results comes from Wolfgang Pauli who had to do his work

experimentally because digital computers had not been invented yet. Pauli noticed

experimentally that not all the emission lines show up as absorption lines. This led

him to postulate that no two electrons can have the same set of quantum numbers

(n, l,ml,ms) . This has become known as the Pauli exclusion principle.

This principle explains that we can’t have all the electrons in the ground state. Since

in the Hydrogen ground state there are two possible quantum number sets
�
1, 0, 0, 12

�
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and
�
1, 0, 0,−1

2

�
, we can only have two electrons in the ground state. This is really an

expression of the idea that it takes space for a standing wave, and too many standing

waves in a volume of space will interfere with each other, destroying themselves.

Think again of trying to make standing waves on jump ropes. We found before that if

we added jump ropes, we could make more than one standing wave in the same general

place. But after a while, adding more waves would make the standing waves interfere

with each other.

Only certain combinations of waves could exist in the same location. Our electron

standing waves are a lot like this. Pauli’s exclusion principle just tells us that the

electron waves interfere with each other if we put two electrons in exactly the same

standing wave form in the same location. Only one particular standing wave type can

fit in a particular space.

Pauli’s principle even tells us that existing standing waves will resist the introduction of

more standing waves beyond what will fit. In physics, we have a name for something

that pushes back on an object. It is a force. So the electron standing waves can exert a

force on other electrons, forcing them into higher energy states where they can form

new standing waves without conflict.

And this becomes the basis of filling the electron states in the atom. Each electron will

have it’s own unique set of quantum numbers representing a unique standing wave

pattern. So for every unique set of quantum numbers we could have an electron. If we

try lithium, we have three total electrons. Then two will likely be in a ground state,

and one will be forced into the next state up. The electrons, like balls in a gravitational

potential well, will tend to the lowest energy state. So we would guess we would have

electrons in the
�
1, 0, 0, 12

�
,
�
1, 0, 0,−1

2

�
, and

�
2, 0, 0,+1

2

�
or

�
2, 0, 0,−1

2

�
states.

Three in all because lithium has three electrons.
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We would expect that electrons would move to as low and energy as possible. So the

lithium atom is very unlikely to have electrons with quantum numbers
�
1, 0, 0, 12

�
,

�
1, 0, 0,−1

2

�
, and

�
5, 1, 0,+1

2

�
, for example under normal conditions (like on a planet

surface, or in free space). That last electron won’t want to stay in a 5p state if there is a

2s state that isn’t occupied.

Then atoms with more than one electron would seem easy to understand. You look for

the possible quantum numbers, and fill the states from the lowest energy to the highest.

But there are some complications.

Screening in ManyElectron Atoms

Let’s consider an atom like Lithium again. It would have two electrons in a 1s state and

one in a 2s state. But let’s think about the potential energy for that last electron. The

potential energy would look like

U =
1

4πǫo

e (3e)

r
if the other two electrons weren’t there. But they are there and we know from our

study of Hydrogen that they are likely to be detected closer to the nucleus than the 2s

electron. We can use Gauss’ law to think about this situation.

The electric field felt by the 1s electrons is due to the positive nucleus and has a change

of 3e. But for the 2s electrons, we could take a Gaussian surface in between the most

probable radii for the 1s and 2s electrons and find that the 1s electrons would diminish

the total charge inside the Gaussian surface. If this was a Bohr model atom, they would

reduce the charge inside to just e. We would get Bohr energy states like

En = (−13.5 eV)
Z2
eff

n2

≈ (−13.5 eV)
(3− 2)2

22

= −3. 375 eV
But because we have a quantum atom things are less exact. The electrons don’t just
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exist right at the most probable radius for the 1s state, The wave function extends into

the 2s state. But just the same, the field would be less, and we know that the field is

what generates the force that causes the potential energy

F = −dU

dr

eE = −dU

dr

E = −dV

dr
So the potential is less because the field is less. This effect gets more pronounced as

we examine larger atoms with more electrons. And it gets a little harder to calculate

because the p and d orbitals are stranger shapes. A 2s orbital actually extends all the

way to the nucleus, so it will feel more than the effect of just one proton in the Lithium

case. But if we have a 2p electron in an atom, its orbital goes to zero at the nucleus

location, so we would expect to feel more of the charge from the 1s electrons.

This canceling of part of the nuclear charge due to more inner electron orbitals is called

screening. And it makes the calculations of energy states more exciting. But we can

see that because of screening, inner electrons will be more tightly bound than outer

electrons because the outer electrons see a lower effective nuclear charge. The field at

their location is less, so the binding force is less.

Extensive numerical calculations give the following general relative energy levels for

manyelectron atoms.

Notice the screening effects. The s and p orbitals have higher probabilities closer to the
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nucleus so their energy levels are drug down the energy diagram. The d orbitals have

less probability of being near the nucleus. So we see that the 4s and 4p levels are low

enough to be right around the 3d level. This pattern persists as we go up the energy lev

els. This is a somewhat generic treatment. For actual atoms, a numerical calculation

needs to be done to see exactly what the energy of each state will be. From such a cal

culation we can see that the s state goes deep into the atom and even into the nucleus,

but the p and d states appear to have a node at the nucleus location. Here are the 3s, 3p,

and 3d orbitals plotted as point clouds so you can see into the orbital structure.

The 3s, 3p, and 3d orbitals for hydrogen plotted as point clouds using David Manthey’s Orbital

Viewer www.orbitals.com/orb

Keeping with our somewhat generic treatment, we know from Hydrogen that all the

electrons with the same n quantum number will have about the same average distance

for their most probable detection location. The s states are more uniform, the p have

lobes that extend further, but the average distance is about the same. The set of orbitals

that have about the same average distance from the nucleus is called a shell. And

because these groups tend to share n quantum numbers, the shells can be related

directly to those n values. The shell symbols are as follows.

n 1 2 3 4 5
Shell K L M N O

The various l quantum number values for a given n quantum number are called

subshells. So in the L shell we could have two subshells, 2s and 2p. And using the

Pauli exclusion principle and the tight relationship between subshells and the l quantum

number we can see that each subshell can have

2 (2l + 1)

electrons where the (2l + 1) comes from the number of ml possibilities for each l and

the extra 2 out front comes from the two ms possible values.

Combining all this, we can see that our generic order for filling atoms with electrons
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goes as follows.

n l Subshell
Capacity

2 (2l+ 1)
1 0 1s 2
2 0 2s 2
2 1 2p 6
3 0 3s 2
3 1 3p 6
4 0 4s 2
3 2 3d 10
4 1 4p 6
5 0 5s 2
4 2 4d 10
5 1 5p 6
6 0 6s 2
4 3 4f 14
5 2 52 10
6 1 6p 6
7 0 7s 2
5 3 5f 14
6 2 6d 10

Optical Transitions

@@@@@@@ Not Done @@@@@@@

The Periodic Table of the Elements

The Periodic Table of the Elements was developed based on chemical properties. But

those chemical properties of the elements must come from the atomic structure. And

the atomic structure comes from quantum waves forming orbitals. We can map what

we know about orbitals to our periodic table to show how the orbital structure makes

the chemical properties happen.



The Periodic Table of the Elements 301

Notice that the Alkalis all have s states for their uppermost electrons. The lower states

are all filled, and they end the filling on an s state, But in each case the final s subshell

is not full. This leaves an electron without a balancing electron with the opposite

spin state. Helium has a full s subshell, but Hydrogen does not. And this creates the

chemical difference between hydrogen and helium. Hydrogen is very reactive. It has

a single electron in a subshell that isn’t full. This electron can participate in bonds.

But Helium doesn’t easily participate in bonds at all. It’s highest subshell is full. And

these properties follow as we go down the columns in the periodic table. All the Alkali

elements have an unmatched electron in a s subshell and are therefore reactive. All the

Inert gasses have full subshells and are not reactive.

Note the structure of the table. The first row has just hydrogen and helium. That takes

care of all the 1s states where there are no more electrons. But in the next row we

have more electrons. Lithium and Beryllium take the two 2s electrons and we are out

of 2s states. We then start on the 2p states and those atoms are across the chart in the

section leading up to the halogens. As we go down the chart we see that all the rows

on the far right hand side are p states. Going down the chart we get larger atoms with

more electrons. Eventually we will start filling d states. And this gives us the transition

metals.

Remember in our generic energy diagram that the 4f state energy got mixed up with

the 6s and 6p states because of screening. We see this in our periodic table. Really the

table should look like this.
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so that the 4f states show up in the right order for filling the electron energy states. But

this makes the table to wide to easily go in books. So we tend to put the Lanthanide or

Rare Earth metals below the rest of the chart. But this is only for convenience in chart

making. The 4f states belong with the 6s states energy wise. The same is true for the

5f Actinides.

If we were chemists, we would spend quite a long time on this showing that the energy

states for the highest populated subshell produce the chemical bonding properties of the

elements. As we are physicists (at least in this class), let’s just summarize some results.

Intent gasses

The column that has Helium on top is the Inert gasses They have filled subshells and

are very stable. They are generally nonreactive.

Halogens

The column marked with p subshells next to the inert gasses all are one electron short

of a filled subshell. They all have their highest populated subshell of the form np5.

The n is their shell number, and the 5 says they have five electrons in this highest

energy subshell. The p subshell can have 6 electrons, so we are missing one. This is the

source of their reactivity. If they can borrow an electron from another element their p

subshell will be more stable. We won’t prove this, but a filled subshell is able to fit in

the atomic potential well at a slightly lower energy. So like balls like to roll down hills

to get to a lower energy state, atoms like to have filled shells to get to a lower energy

state. This may seem strange, but remember that our potential well comes from both

Coulomb force and from angular momentum. If we can get the angular momentum

of the electrons to, say, cancel out, we will affect the energy state of the whole shell

(think of all that angular momentum based splitting that we found in magnetic fields

in our last lecture). There is more to it than just this, but it does make sense that a

combination of electron waves could have a different energy than those waves would
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have independently. And it turns out that the combined wave functions in a filled shell

cancels out enough to lower the energy of all the electrons in the shell.

So halogens readily form bonds with atoms that can share an electron. Chlorine readily

bonds with Sodium. The Sodium atom has one electron in its outer most s state. That

electron is less tightly bound because the nuclear charge is screened. It will share this

electron with the chlorine atom so the chlorine atom has a full p state and the sodium

atom will effectively have a full 2s state so it will be more stable (lower energy). As we

look at the other p state elements, we change the reactivity and the bonding. Oxygen,

for example is missing two electrons in it’s uppermost p subshell. And we can see why

it might bond with two hydrogens to fill this subshell.

Transition metals

This is the first three rows of the section where we are filling d states. Some exciting

things happen here. Let’s look at Copper. We would expect the configuration 4s23d9

for its final subshells. But a d state would like 2 (2 (2) + 1) = 10 electrons. A filled

subshell has a lower energy state (and therefore is more stable) so the 3d state borrows

an electron from the 4s state producing 4s13d10 Thus copper has an upper single s state

electron and like the Alkali elements, this electron is loosely bound and can readily be

freed. This is one reason copper is a good conductor.

Rare Earth metals

These elements have the same thing going on as the transition metals. They tend to

have an inner subshell, the 4f, that is being filled. But a higher n subshell is already

filled (6s) . We should expect some of the same properties as the Transition metals.

The higher number of electrons in the f states has effects on paramagnetism. You may

have heard of rare earth magnets.

Actinides

We would expect these atoms to act much like the rare earth group. But here we are

getting to the end of what we can do with our quantum atom structure so far. We

find that many of the actinides are radioactive. That is not predicted by our electron
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structure. We will need to study more atomic structure, specifically the nuclear

structure, to understand this.

Graphs of atomic properties.

We would expect our quantum structure to be radially visible in the properties of the

elements. And we can see that is true by graphing properties by element Z number.

For example, we expect the atomic radius to decrease as the nuclear charge increases.

The nuclei with more protons have a stronger electrical force (or deeper potential well)

and therefore electrons in these atoms are held more tightly. So as we fill p and d and f

shells, the atomic radii should decrease. But s states are large, their orbital probabilities

have a broad fall off as we saw for hydrogen atoms. So the atomic size should increase

whenever we hit an s state. This is just what we see.

Atomic Radii Plotted by Atomic Number. Atomic properties plotted using the

Mathematica ElementData function.

How tightly the atom holds on to it’s outer electrons should also show us signs of our

quantum atomic structure. Filled shells should require more energy to remove the

electrons. So as shells fill, we should see the ionization energy increase. Here is a graph

of the ionization energy.
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We see the inert gasses require the most energy to remove an electron. We can see the

Alkalis require the least. Those s subshell electrons are easy to remove.

More complicated properties that involve larger quantities of atoms are harder to

analyze, but we can still see some structure in our curves that is due to our quantum

model of the atom. For copper, we found the subshell structure allowed a relatively free

electron to participate in current flow. Then resistivity should show effects of subshell

structure. Here is the electric resistivity plotted as a function of atomic number.

From this plot we could predict the sort of subshell structure we see in Cu would also

be present for Ag and Au.

And one more bulk property plot, this time for magnetic susceptibility, shows some

patterns that are due to our quantum atomic structure.
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Atomic Magnetic Susceptibility Plotted by Atomic Number. Atomic properties plotted

using the Mathematica ElementData function.

We could make many more such plots. But for now we can say that our new quantum

model of the atom seems to be very successfully explaining may experimental results.
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8.58.7

Fundamental Concepts in the Lecture

• Absorption edges

• Xray transitions of inner electrons

• Moseley’s law

• Addition of Angular Momenta

• Stimulated emission

• Lasers

Addition of angular momentum

You might be getting the feeling that with all our quantum numbers and selection rules

that we are obscuring the physics of what is going on in the atom. The truth is that the

math is doable, but difficult enough that it is hard to keep the physics in mind even

if we did the details of calculating the orbitals. But we do need to remind ourselves

of the physics of what we are doing. Let’s take a moment and think about one of the

implications of what we have done.

We started collecting quantum numbers by finding the allowed energy values and the

allowed angular momentum values for an electron in an atom (hydrogen). We found

that the n, l,ml,and ms quantum numbers were the clue to how to build the electron

wave structure of the atom. But the l, ml and ms quantum numbers do stand for angular

momentum. So we could reasonably ask if the atom, itself, has an angular momentum.

And of course the answer is yes!

The angular momentum of the atom is largely due to the electron angular momenta.

From our study of mechanics (PH121) we know that angular momentum is a vector and

angular momenta add like vectors. But now we have quantized vectors. How do we
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modify our vector addition so we ensure we end up with allowed angular momentum

states for the atom?

We know that orbital angular momentum should follow rules like

|L| =
�

l (l + 1)�

Lz = ml� ml = 0,±1,±1 · · · ± l

Sz = ms� ms = ±
1

2
and this must be true for the overall atom as well. We expect the same sort of

quantization. But now we have more than one angular momentum to add. That is, when

we add angular momenta the result still has to follow our quantization rules for angular

momentum.

The first thing to realize is that a filled shell has zero net angular momentum. Let’s look

at this. A filled ns state will have two electrons with quantum numbers�
n, 0, 0,

1

2

��
n, 0, 0,−1

2

�

Due to what we have called space quantization, the Lz values will be specified, but the

Lx and Ly values will be uncertain meaning all Lx and Ly values will be experienced

with the restriction that

|L| =



L2
x + L2

y + L2
z

so it is not surprising that the net angular momentum in the x and y directions sums to

zero. But we have to look at the z component of the orbital angular momentum and we

need to consider the spin angular momentum. We have

l1 = 0

l2 = 0

ml1 = 0

ml2 = 0

ms1 =
1

2

ms2 = −1

2
We can find the angular momentum for each angular momentum part. The

zcomponents give

L1z = 0� = 0

S1z =
1

2
�
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and

L2z = 0� = 0

S2z = −1

2
�

and since L1z and L2z are zero and we expect the x and yparts to sum to zero then

|L1|+ |L2| = 0

is really the only possibility. Same with ml

m1l +m2l = 0

and

m1s +m2s =
1

2
+

�
−1

2

�
= 0

there is no net angular momentum for a filled ns state.

A np state is harder. We would have quantum numbers

l ml ms

1 −1 1
2

1 −1 −1
2

1 0 1
2

1 0 −1
2

1 1 1
2

1 1 −1
2

Total 0 0

And, adding up the ml and ms values for a filled np state we still have no net angular

momentum. Remembering our last few lectures we know that there was some energy

tied up in the angular momentum of the electrons, but if we cancel out all of that angular

momentum then that energy would not be there, and the entire filled shell would have a

lower energy. This is just what we expected in our last lecture.

But if we don’t have a filled shell we should have a net angular momentum. And the

only shells that are not filled are the outer most. So let’s look at those.

The detailed math tells us that the orbital angular momentum needs to be added in a

specific order to get the quantization right. Let’s do an atom with two electrons in its

outer shell first so it is easy, then we will deal with three or more outer shell electrons.

Let’s pick carbon with electron structure 1s22s22p2. It is those 2p2 electrons that will

give carbon a net angular momentum. For a single electron we found that we had a rule

that

|L| =
�

l (l + 1) l = 0, 1, 2, · · ·n− 1

We can only have certain l values. We expect that we should have a maximum l for the

combined angular momentum of the two 2p2 electrons when their angular momentum
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vectors point the same direction. We take

Lmax = l1 + l2

Because both electrons are p electrons both have l = 1 so

Lmax = 1 + 1 = 2

We also expect to have a minimum allowed angular momentum that represents both

electron’s angular momentum canceling. We find this as follows

Lmin = |l1 − l2|
so for carbon

Lmin = |1− 1| = 0

This gives us a new atomic angular momentum quantum number L with allowed states

that range from Lmin to Lmax but L is still quantized so it goes from Lmin to Lmax in

integer steps.

L = Lmin, Lmin + 1, Lmin + 2 · · ·Lmax

For carbon this would be

L = 0, 1, 2

This gives the total orbital angular momentum for the atom, but we know we need

the z component of this as well. We call the Lz atomic quantum number ML and it’s

summation rule is easy, we just add up the individual ml values

Ml = m1l +m2l

and the permitted values are

Ml = 0,±1,±2, · · · ± L

This is just our normal rules for ml. For the carbon atom we could have the possibilities

L Ml

0 0
1 −1, 0, 1
2 −2,−1, 0, 1, 2

The atomic spin angular momentum similarly is

MSmax = m1s +m2s

MSmin = |m1s −m2s|
For carbon this is simple, it is just

MSmax =
1

2
+

1

2
= 1

MSmax =

����
1

2
− 1

2

���� = 0

and we need integer steps, so these are our only possibilities.

But we are not done. We need to check that the Pauli exclusion principle is still met.

No two electrons can have the same quantum numbers. Our quantum numbers for the
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2p2 electrons can be
n l ml ms

2 1 −1 1
2

2 1 −1 −1
2

2 1 0 1
2

2 1 0 −1
2

2 1 1 1
2

2 1 1 −1
2

Our system tells us that we could have L = 2 and Ml = 2 and Ms = 1, but let’s see if

that particular state follows the Pauli exclusion principle. To get L = 2 we could take

any two of the states. To get Ml = 2 we would need the last two states with m1l = 1

and m2l = 1 so then m1l+m2l = 1+1 = 2. But in this case MS can’t equal 1 because

that would require m1s =
1
2 and m2s =

1
2 and that would give two states with exactly

the same quantum numbers. That is not allowed by the Pauli exclusion principle. All

we have in the last two states is m1s =
1
2 and m2s = −1

2 which would give Ms = 0.

So the atomic angular momentum state [L,Ml,MS] of

[2, 2, 1]

is not allowed. But we could have

[2, 2, 0]

For carbon the allowed atomic angular momentum states would be

L Ml MS

0 0 0
1 −1 0, 1
1 0 0
1 1 0, 1
2 −2 0
2 −1 0, 1
2 0 0
2 1 0, 1
2 2 0

So far, so good! But remember we need to deal with atoms with more than two

electrons in the outer shell. Nitrogen, 1s22s22p3, seems like a good atom to take on.

We start by defining a partial total orbital angular momentum for just two electrons

L12max = l1 + l2 = 2

just like before. We would have

L12 = 0, 1, 2

But now we have three electrons so we couple in another to make sure the end result
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follows our angular momentum quantization rules

L123max = L12max + l3 = 2 + 1 = 3

We need to think a bit to find L123min. We want the smallest minimum that we can get

by coupling the 1, 2 angular momentum with the third electron.

L12min = |l1 − l2| = 0

We know from before that L12 can be 0, 1,or 2. Then calculating L123min could give

any of the values

L123min = |L12 − l3|
which are

L123min = |0− 1| = 1

= |1− 1| = 0

= |2− 1| = 1

so the smallest of these is

L123min = 0

So our atomic L quantum number can have the values

L123 = 0, 1, 2, 3

and our atomic ML allowed states can be

Ml = 0,±1,±2,±3
And the atomic spin states would follow the pattern for the L quantum numbers. The

partial spin angular momentum would be

MS12max = S1 + S2 =
1

2
+

1

2
= 1

Then coupling in the third electron gives

MS123max = S12max + S3 = 1 +
1

2
=

3

2
And for the minimum

MS12min =

����
1

2
− 1

2

���� = 0

and coupling in the third electron gives

MS123min =

����0−
1

2

���� =
1

2
so the allowed atomic spin states are

MS123 =
1

2
,
3

2
because we only get integer steps. We still need to do the Pauli test to show which of

these are actually allowed. Some will not be allowed by the Pauli exclusion principle.

This always feels to me like a lot of busy work to find the allowed atomic angular
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momentum. But remember that we are avoiding a tremendous amount of numerical

calculations by using these quantum number rules. So it is busy work with a wide smile.

We know the possible atomic angular momentum states, but we should ask, which

of the possibilities is the atomic ground state? There, of course, would be a large

numerical computation to find this. But the result would be the same as we would get

using the following rules:

1. Find
MSmax ≡ S

being careful to make sure it is one of the states possible by considering the Pauli
exclusion principle. If it’s not we check the next lower state until we find one that
works.

2. Next, for that MS find the maximum value of

Mlmax ≡ L

We still have to make sure that our state is possible according to the Pauli exclusion
principle. If it’s not we check the next lower state until we find one that works.

3. The resulting S, L values give the lowest energy or ground state.

These rules are called Hund’s Rules. Let’s try this for carbon. Only the outermost

electrons will matter, because the lower states will all be full and will therefor have

no angular momentum. The upper most electrons are 2p2 states. We found that

MSmax = +1 so our MS value is MS = 1. Because a p state can have three electrons

with ms = +1
2 and three with ms = −1

2 , and we only have two electrons in our p state,

we can totally have two electrons with ms = +1
2 so the MS = 1 state is allowed by the

exclusion principle. So far so good.

Now we want a maximum Ml = m1l+m2l and it would be nice to pick both ml values

as 1. But we can’t do that by the exclusion principle or we would have both electrons

with
�
2, 1, 1, 12

�
so we need one of them in a different state. We choose

�
2, 1, 0, 12

�
or

m2l = 0. This gives Ml = 1 + 0 = 1 so our atomic ground state is

[L,S] = [1, 1]

This Ml and Ms will have the lowest energy of the many possibilities for two 2p

electrons, so without additional energy being added to the atom, the two 2p electrons

will end up in this state.
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Transitions involving inner electrons

In what we have done so far we have concentrated on the outer most electron orbitals

because they govern chemical reactions. Chemical reactions are important to us living

things. So our concentration on these outer shells is justified. But you may have

wondered if it is possible to remove an electron from one of the inner shells. These

electrons are held much more tightly because the Coulomb force is larger and in

addition these shells are full, providing another energy disincentive for an electron to

leave. But it is possible if we provide, say, a photon with just the right energy. The

energy must match the binding energy of that particular electron.

We could design an experiment where we scatter xrays off of an atom. It is relatively

easy to make an xray source where you can tune the wavelength (and therefore change

the energy) of the xrays. So we can irradiate the atom but change the energy until we

get just the right one to knock out a 1s electron. It’s hard to irradiate just one atom, so

we could take a thin film of metal atoms (say, mercury held between two microscope

slides). Then the xrays that don’t have the matching energy would be absorbed by the

bulk metal material, but the matching wavelength would knock out an electron. The

absorption would stop at that matching frequency. The experimental results look some

thing like this.

Schematic depiction of an absorption edge for mercury.

The absorption jumps down right at λ = 0.0149nm. This wavelength has an energy of

E =
hc

λ
=

1239.8419 eV nm

0.0149nm
= 83211. eV

which is just what our quantum atomic model gives for a 1s electron binding energy for

mercury. Because we dealt with a n = 1 case, this change in the absorption spectrum is

called a K absorption edge, but we could target an n = 2 electron to get an L edge, or

in large atoms we could get an M edge, etc.
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Our quantum model tells us that the 1s ionization energies should be large, and should

grow with atomic number Z. But we wouldn’t expect the sort of structure as we would

see with outer electron ionization energy. The outer electrons are lightly bound and

come in different shells. The 1s shell, is, well, always a 1s shell, so if we plot this K

shell ionization vs. atomic number we get a smooth curve.

Moseley’s Law

But, you might say, if we remove a 1s electron, what happens to that vacancy. Won’t

one of the other electrons fill that vacancy? and that would leave another vacancy,

so wouldn’t we get a cascade of electrons shifting downward? That is exactly what

happens. And with each transition downward we get photons emitted. So we can see

this cascade happen. There is a quirk in the literature in discussing these transitions.

They are named for the original vacancy. So if an electron moves down to the 1s

state from anywhere above on the energy diagram, the transition is called a Kshell

transition even though the electron came from somewhere else.

Long ago we studied xrays. We found that if we stopped electrons they gave off their

energy and we called this Bremsstrahlung radiation. But in the plot we used we had not

only the broad Bremsstrahlung radiation, but we also saw some large peaks.
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Xray tube with a rhodium target, operated at 60 kV. The continuous curve is due to

bremsstrahlung, and the spikes are characteristic K lines for rhodium. The curve goes

to zero at 21 pm in agreement with the Duane–Hunt law, as described in the text.

We can now identify these peaks by looking at their energies. They correspond to the

ionization energies of the inner electrons. The two mystery peaks that we saw in our

graph are from removing 1s electrons and then letting higher electrons transition down

to the 1s shell by emitting photons. There are just two prominent peaks in our experi

mental graph. But there are often three (or more) such peaks, and they are designated

as the Kα, Kβ, and Kγ (etc.) xrays. If we remove an electron form the n = 2 shell we

would call the transitions the L xrays. The following figure shows some of the possi

ble transitions
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If we think of the inner electrons and Gauss’ law again, we can see that the outer

electrons mostly don’t participate in the Coulomb force for the inner electrons (in the

Bohr model they wouldn’t matter at all). So we can treat these inner electrons almost as

though the other electrons weren’t there. Henry Moseley used this idea to predict the

transition energies.

∆E = En2 −En1 = (−13.6 eV) (Z − 1)
2

�
1

n22
− 1

n21

�

where n2 and n1 are the n quantum numbers for the final and initial energy levels of

the transitioning electron. For the Kα transition he got

∆EKα = E2 −E1 = (−13.6 eV) (Z − 1)
2

�
1

22
− 1

12

�
= 10.2 eV (Z − 1)2

The frequency of the photon emitted is proportional to ∆EKα
. So our equation says

that the frequency of the photon emitted should be proportional to Z2. Moseley plotted

Z vs.
√
f and according to our equation this should be a straight line. His data is in the

plot below.

From H. G. Mosely, Philos. Mag. (6), 27:703,1914

The bottom curves are the K series and you see the Kα and Kβ lines. The higher
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group of lines are the L series. Moseley found he could identify elements this way. If

you gave him a sample of the material, he could tell you what element it was. Even

better he found several positions on the slope of his line where there should be an atom,

but none was known. Technetium was one of these. Technetium is radioactive with a

short enough half life (something we will discuss later) that it is not found in nature.

But Moseley’s chart said there should be an element with Z = 43 that would have

a particular Kα frequency. And sure enough it is possible to make Technetium and

Moseley’s law correctly predicted the Kα frequency.

We have the equipment to do this xray work in our laboratories at BYUIdaho. If you

are interested, you can join the research group that does this work.

Stimulated Emission

Here is a transition diagram for helium (below, figure ??). This diagram is somewhat

schematic (don’t take the energy values to seriously) but it shows what we have been

saying. Let’s analyze the helium case.

We start with the ground state 1s2. We have just two electrons and they are in the same

shell so we have quantum numbers �
1, 0, 0,

1

2

�

�
1, 0, 0,−1

2

�

The ms values must be different to satisfy the Pauli exclusion principle. We can

calculate the atomic angular momentum. We start with

Lmax = 0 + 0 = 0

and

Lmin = 0− 0 = 0

which gives the only possibility for

Mlmax = L = 0

and we have just ms1 =
1
2 , ms2 = −1

2 so

MS = S = 0

And we started with the Pauli check, so we have found the atomic angular momentum

state for helium in the ground state. But what if we excite one of the electrons? Then
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we would wave 1s12s1. Our quantum numbers would be like�
1, 0, 0,±1

2

�

�
2, 0, 0,±1

2

�

Our atomic angular momentum still would have

L = 0

so

Ml = 0

but now we can have different values for ms1 and ms2 because the n = 1 and n = 2

quantum numbers guarantee that the Pauli test will be satisfied for any ms combination.

We could have

MSmax = S = ms1 +ms2

be

S =
1

2
− 1

2
= 0

with two ways that could happen, or

S =
1

2
+

1

2
= 1

We have two cases. The first one is called a singlet state and the second is called a

triplet state (because we could have MS = −1, 0,+1 for the S = Msmax = 1 case).

We can see in the diagram that we can go beyond the first excited state.

Note that the diagram is split in half. If we have an atomic S = 0 starting state we

get different energy levels than if we have a S = 1 starting state! And of course there

would be different emission spectra. Note that in both cases we have many allowed

transitions. But some are not allowed. We could do a lot of math (but we wont) to show

that this leads to some selection rules on atomic angular momentum

∆L = 0,±1
∆S = 0

that must be added to our selection rues we already know

∆l = ±1
∆ml = 0,±1

If we have MS = 1 can the electrons never transition to the electron ground state?
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You can guess that the helium always ends up in the ground state eventually. But it

takes more time for these transitions to happen because they are less likely. Most

transitions are usually almost instantaneous so a long time might be microseconds.

Such states are called “metastable” because they really do transition but it takes much

more time for them to decay.

So far we have been talking about photons removing electrons or at least pushing them

to higher energy states. The photon comes in and the electron absorbs the energy from

the photon and jumps to a higher energy subshell. Schematically we could draw this as

Note that the diagram is an energy diagram, so it is not showing position of the photon

or the electron. It is just symbolic. The photon doesn’t come from the left, for example.

Coming from the left is just a symbolic way to show it enters the system. Note that we

are using the word absorption slightly differently that we did before. In the previous

section it meant that the xrays would become thermal energy in the bulk material. But

this absorption is the destruction of the photon with the energy going to excite electron
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in the atom. We symbolically write this as

γ + atom→ atom∗

But we also know from what we have done that the electron will eventually fall back

down into the energy well and when that happens we get a photon back out. This is

called spontaneous emission.

We write this as

atom∗ → atom+ γ

There is another possibility. If the atom is excited, and if another photon of the

transition energy difference comes, that new photon can force the electron to jump

down and emit a second photon.

This is called induced emission. And it has some strange properties. It is not surprising

that the two photons have exactly the same energy (and therefore the same wavelength

and frequency). But they are also in phase.

If we are clever, we can make this more probable than induced absorption. The trick is

to ensure the electron is already excited into the higher energy state. We can use one of

those “forbidden” states to accomplish this. You know that although their probability is

lower for transition, eventually the transition will happen. But that means the atom is

in the excited state for a long time. If you can get many atoms in a material to be in a

metastable forbidden state and quickly insert just the right energy photon, you would

get a cascade of single frequency inphase photons out. Ruby crystals were one of the

first materials used to do this. A different wavelength light flashed on to excite the

atoms in the ruby crystal. These atoms decayed, but were stuck briefly in a metastable

state. Then when a matching photon came though the new photon induced the electron

to transition though the forbidden transition. and out came another photon. Symboli

cally this would be.
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Here is a ruby crystal ready for such an experiment

Laser Ruby Crystal (Photo courtacy Guy Immega)

But of course if you put mirrors on both sides of the ruby crystal, the light would pass

back and forth through the crustal getting amplified with each pass.

This device is called a light amplification by stimulated emission device, or a LASER.

The initial photon that pushes the electron into the original excited state is called the

pump photon and in the next figure you can see the ruby crystal surrounded by a curly

flash bulb that provides the pump photons.



Stimulated Emission 323

Actual Ruby Laser 1963 (Photo courtacy US National Institute of Standards)

Ruby Laser Design (Photo courtacy US Department of Energy)

Pumping the atoms into the higher energy state is essential, and you need the majority

of the atoms to be in the higher energy state or the laser beam will die out due to

induced absorption and then spontaneous emission. When more atoms are excited than

are in the ground state we call the situation a population inversion.

There are much better laser materials than ruby crystals. Good materials use more

states. One improvement is to use four states with the metastable lasing state in the

middle.
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With what we know about atoms so far we can explain so many phenomena. But we

have been alluding to chemical bonding for some time. It’s time to take that on in our

next lecture.



21 Molecular Bonds and their

Structure

9.19.3

Fundamental Concepts in the Lecture

• Molecular Wave Functions

• Covalent Bonds

• Ionic Bonds

In working with molecular bonds, we have the same problem we had with multi

electron atoms. We can’t solve manybodied problems exactly. We have to do this

numerically. For atoms we used the simplest atom, hydrogen, because we could solve

the mathematical equations for the simple case and we extended our intuition we gained

from solving this problem to guide us in the manyelectron atoms. We will do the same

with molecules. We will start with the molecule H+
2 which is two hydrogen atoms, but

one atom has lost it’s electron. We call this a singly ionized hydrogen molecule. Then

we will extend our intuition from this simple case to more complicated molecules.

Molecular Wave Functions and the H+
2 Molecule

Let’s step back a minute in our study of quantum systems and review one dimensional

potential wells. Here is a schematic diagram of an infinite potential well with, say, an

electron trapped in the well.
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A few energy states are sketched in with their probability density functions. But what

would happen if we lowered the potential on one side of the well? We expect something

like the next sketch

Now the electrons in the well can escape into region 3. We know all about matching

boundary conditions for the wave functions and we could do such a problem. But now

suppose we have an additional potential well beyond region 3 as shown in the next

figure.
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In this sketch, we see energy levels and probability density functions, but we recognize

that the electrons could pass through region 3 and find them selves in Region 4. We

could find the wave functions by matching coefficients at all the boundaries (but we

won’t in our class). We can guess what sort of result we would get. We expect to see a

wave function that spans from the boundary of Region 1 and Region 2 all the way to

the boundary of Region 4 and Region 5. The wave function spans the small well in

Region 2 and the small well in Region 4. The wave function expanded to include all of

the region where the electrons could be detected. We don’t have two wave functions for

the small wells in the E1 state. We have one bigger wave function. This is just what we

would expect from wave behavior (well, quantum wave behavior). A wave traveling

from the right would travel all the way to region 5 and reflect. And, if the wavelength is

just right, it would form a standing wave.

We can use the intuition we have from potential wells to study a H+
2 molecule. This

molecule is two hydrogen atoms that are bound together, but with just one electron.

The other electron is missing. The two protons will be like deep Coulomb potential

wells for the electrons. If the two protons are far apart, we just have two hydrogen

atoms and all we have done with individual hydrogen atoms up till now would apply.

Schematically6 this might look sort of like this

6 “Schematically" means I will draw it like an artist trying to illustrate the point, and not plot it using
equations to show exact behavior.
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Note that these wave functions are not exactly accurate. We know they are three

dimensional and even the radial part peaks away from the nucleus a bit, but our radial

wave functions would be something like this. We will ignore the details for now.

If we allow these somewhat inaccurate wave functions, then we can draw what would

happen if we put them closer together.

From our onedimensional potential well example, we would expect the two protons to

create two dips in an overall deep potential well. The potential between the two protons

would be higher. And, most importantly, the wave function of our one and only elec

tron in H+
2 would form around both protons! Of course our molecular wave function

might have several possible shapes. For example, This pattern might also work.

We would find the probability of detection for our electron and the two wave functions

above would make different probability graphs.
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And we know that the orbitals came from these probability functions! This means our

atomic orbitals will change into molecular orbitals that span both nuclei. Back in high

school chemistry you were probably told that in molecules the atoms “share” electrons.

Now we can see what this means. The electron states have a complex potential well

structure, and the electron wave functions exist in all parts of that potential well

structure. The wave function is what is “shared” by the nuclei of all the atoms in the

molecule.

The details of forming the potential well may be complicated. For H+
2 they are bad

enough, but for a long carbon chain molecule they can be very complicated. But the

basic principles come from the forces involved. We have Coulomb forces from the

nuclei, and from the other electrons. Thus in a molecular bond we expect two opposing

forces to make up the potential well. And we know that

Fxi = −
dU

dxi
where xi is a generic coordinate. So the potential energy is related to our force. We

expect something like the schematic in the next figure.
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The repulsive potential comes from the electrons being repulsed by the electrons

of the other atom and eventually can come from the nuclei repulsing each other.

The attractive potential comes from the electrons of one atom begin attracted to the

nucleus of the other atom. The potential energy of the system is the sum of these two

competing potential energies. We expect the repulsive potential to dominate at very

small separation distances. We expect the attraction potential to dominate at larger

separation distances (remember we are missing an electron in H+
2 ). And we expect that

in between there should be an equilibrium where the potential is negative (because the

atoms are bound) and where the forces are balanced.

We hinted above that there were two possible ways we could have the two atom

wave functions combine |ψ1 + ψ2|2 or |ψ1 − ψ2|2 . In the first case we would have

a significant probability in between the two nuclei. This is just what we want for a

bond. We want the electron to be detected in between the two positive nuclei so there is

an attractive Coulomb force bonding the atoms together. The energy of the molecule

would be the potential energy due to the proton Up plus the potential energy due to the

electrons Ue. The sign of Ue depends on the form of the molecular wave function. It

turns out that the ψ1 − ψ2 case gives a positive Ue (repulsive Coulomb force) and the

ψ1 + ψ2 case gives a negative Ue (attractive Coulomb force). We need the negative Ue

case to combine with Up to give a region where

Umol = Up + Ue

can be negative and provide a bond. So the ψ1+ψ2 forms a bond and the ψ1−ψ2 does

not.

We didn’t prove any of this mathematically. But the calculations can be done
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numerically. And these results give us an idea of how molecular bonds are formed.

For H+
2 we find that the equilibrium position is at req = 0.106nm with an energy of

E = −16.3 eV.

We can find out how much of this energy is involved in the bond, itself. This is the

amount of energy required to separate the two atoms. We call this the bonding energy

and it is found by taking the molecular energy and subtracting it from the energy of the

two separate atoms. For H+
2 we have one atom with no electron which has no orbital

energy state. So we have

B =
�
E {H}+E

$
H+

%�
−E

$
H+

2

%

= (−13.6 eV + 0)− (−16.3 eV)

= 2. 7 eV

Our numerical calculations also gave r = 0.106nm and we should note that this is

req = 0.106 nm

= 2
�
0.529177249× 10−10m

�

= 2ao

And we recall that for hydrogen the 1s state maximum value occurs right at r = ao.

This means that the maximum probability for the detection location of the electron is

right in the middle of the molecule. Once again the electron seems to be “shared” in the

molecule.

The H2 Molecule

If you think we did little math for the H+
2 molecule, just wait for the H2 version.

We can envision again having two hydrogen atoms and bring them from an infinite

distance apart. We again have the possibilities of combining the wave functions as a

sum ψ1 + ψ2 or a difference ψ1 − ψ2.
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The difference, ψ1 − ψ2, still gives a positive total energy for all values of r. It won’t

form a bond. We will call this the antibonding state. The sum, ψ1 + ψ2, does have a

region where the total energy is negative and has a minimum. It can form a bond. We

will call this the bonding state. Now that we have two electrons in our molecule we

need to consider the Pauli exclusion principle. We now have a molecular orbital which

will give us our quantum numbers, and with two electrons we now we need to have

different spin quantum numbers. So we can have two electrons in our H2 molecule so

long as one has spin +1
2 and the other has spin −1

2 .

Calculations give the equilibrium separation for H2 of req = 0.074nm, closer than

for ionized H2. The extra electron Coulomb energy seems to have modified the

potential well changing the equilibrium position. The molecular energy at equilibrium

is E = −31.7 eV.

The bonding energy for H2 is

B = (E (H) +E (H))−E
�
H+

2

�

= 2 (−13.6 eV + 0)− (−31.7 eV)

= 4. 5 eV

The extra electron increased the binding energy. It will be harder to split H2 than it was

to split H+
2 .

Covalent bonds

The bonding we have just described is a special kind of covalent bond. It is a homopolar

bond because the two atoms are the same. A covalent bond is formed under the

following conditions:
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1. When the two atoms are brought together from infinity, their electrons interact and
their separate atomic states become molecular states.

2. The molecular wave function has a region with a lower energy than the separate
atomic states

3. The Pauli exclusion principle applies, so only electron states that obey the exclusion
principle will form.

Of course there is another molecular wave function that forms the antibonding state,

but that won’t form a bond. Since hydrogen can form a covalent bond, we expect the

hydrogen like atoms to also form covalent bonds. And indeed Li2 (dilithium) will form

such a bond with req = 0.267nm and binding energy of B = 1.10 eV. The equilibrium

position is larger than for H2 and Li2 is not as tightly bound.

We could also match up lithium and hydrogen with a covalent bond to form LiH.

Instead of a binding energy let’s give a dissociation energy. This is the energy it takes

to split the molecule which should be the same as the binding energy. But dissociation

energies are given at a particular temperature, meaning that they can often be less

than the binding energy because at a particular temperature thermal energy is helping

dissociate the two atoms. LiH has a dissociation energy of 2.43 eV and an equilibrium

separation of req = 0.160nm.

From our quantum atomic model we would expect s states to act similarly, but that

higher s states would have larger most probable detection distances for the electrons,

and like in our H+
2 case we would expect the shared electrons to be in between the

two atoms. So we would expect the req values to increase with increased n and we

would expect the binding energies to go down. Here are some covalent bonds for some

hydrogen like atoms7

Molecule Dissociation Energy ED ( eV) at 298K req ( nm)
H2 4.52 0.074
Li2 1.10 0.267
Na2 0.80 0.308
K2 0.59 0.392
Rb2 0.47 0.422
Cs2 0.43 0.450

where we have used only homopolar cases. The trend for larger req is clear and the

accompanying trend in lower dissociation energy is also obvious.

7 See https://cccbdb.nist.gov/ or B. deB. Darwent, "Bond Dissociation Energies in Simple Molecules,
NSRDSNBS 31, US National Bureau of Standards, January 1970.
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For nonhomopolar molecules we expect the req and ED values to be in between those

of the homopolar values.

Molecule Dissociation Energy ED ( eV) at 298K req ( nm)
LiH 2.43 0.160
LiNa 0.91 0.281
KNa 0.66 0.347

and this is what we see.

One way to mentally picture these bonds might be to draw an s orbital around a nucleus

for each atom like this

as the atoms become closer together, the orbitals overlap.

and the overlapping section shows where the probability density will become larger.

But be careful. This is not what the molecular orbital looks like. But it does give us a

way to think about the situation that would cause the molecular orbital to form. Let’s

think about an atom that is not hydrogenlike, but has, say, electrons in an outer most p

shell. Then we might think of our two atoms like this

where the figure eight p shell structure is drawn very schematically. And if we move

them together we could think of them like this
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where once again we see that we will increase the electron probability in the middle

between the two atoms. This will increase the potential and allow a bond to form. That

bond will involve these p states to change into a molecular state, and that molecular

state won’t look like our picture. But the picture can help us to see that such a molecular

state is likely to form. Let’s try another p state possibility. Our p states could be

oriented differently, say, like in the following diagram.

And once again we would predict a new covalent bond because we have increased the

electron probabilities in between the two nuclei (although not directly in the middle).

Once again a molecular bond is likely to form, but the orbitals won’t look like our

picture. From our simple approach we would guess from our pictures that for p states

we could have different req values for different orientations of the atoms.

How about an s and a p state, could they form a covalent bond?

It sure looks like this should work. And it does.
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A good example of this is HF. The Fluorine atom has an electron state of 1s22s22p5.

In the 2p state four of the electrons are pared in stable orbitals. They are less likely to

form bonds. But one electron in the 2p state is not paired and it readily forms a bond.

Some sp covalent bonds are described in the next table.

Molecule Dissociation Energy ED ( eV) at 298K req ( nm)
HF 5.90 0.092
HCl 4.48 0.128
HI 3.10 0.160

But we should consider our uncertainty principle. We got the shape of the p states

by assuming a particular orientation of our atoms. We could think of allowing some

uncertainty in which way we define our z axis and therefore which direction our p

orbital will take. We have three possibilities.

And if we look at this along one axis we get

This increases the number of covalent bonding points for an atom. For example

we could have oxygen with electron states 1s22s22p4 and we could have these 2p4
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electrons in any of the six possible states.

l ml ms

1 −1 1
2

1 −1 −1
2

1 0 1
2

1 0 −1
2

1 1 1
2

1 1 −1
2

If we allow two to be paired to make a stable p state, but allow two to be unpaired, we

could get two bonds!

Once again our picture is a nice way to think of creating the molecular wave functions,

but not what they actually look like. This last picture is of an water molecule. It implies

that the angle between the two hydrogen atoms would be 90 ◦. The actual angle is

104.5 ◦. So there is something not too bad about this simple graphical model, but there

is also more to the story. The molecular orbitals are not just a combination of the atomic

orbitals.

But we have discovered the origin of what high school chemistry calls “valence

electrons” and why sometimes we have one bond and sometimes we have more than

one bond for the same element. It is all in how the electrons are spread out in the

allowed states for the upper most shell.

Our simple graphical model has some limitations. Consider carbon, 1s22s22p2. Our

graphical model would expect a molecule like CH2 to form very like water molecules
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but this molecule doesn’t usually happen. Instead CH4 is much more likely. How

can this be? The answer is that when we form molecular states we destroy the atomic

orbitals and form new molecular orbitals. These don’t necessarily look like the atomic

orbitals. Chemists say that we have hybridized the states. I’m not sure this is a good

term because it implies the new molecular states are made from the old atomic states.

But the new molecular states are solutions to the Schödinger with more than one

potential minimum in a complex potential well. They really are their own things. But

we can think of them as somewhere between s and p states so we will call them sp

hybrid states.

The hybrid states follow some basic rules of formation:

1. As the atoms come together to form a molecule an atom with a configuration
2s22pn will have one of the 2s electrons move to the 2p shell giving 2s12pn+1

2. The hybrid states can be estimated by taking equal mixtures of the wave functions
representing the 2s state and each of the used 2p states.

For carbon, we get

1s22s22p2. → 1s22s12p3.

and the wave function could be any of the combinations of

ψ = ψ2s ± ψ2px ± ψ2py

where ψ2px and ψ2py are the p wave functions along the x and y directions. For CH4

we get a wave function that is a strange tetrahedral shape which is hard to draw.
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but if you can picture this, add in the hydrogen atoms. And you get something like this.

But once again the actual molecular states don’t look like this. We can see that where

the s states from hydrogen overlap we will get higher probabilities, but we really need

the numerical calculation to get the shape of the molecular orbitals.

We can guess the strength of the bonds by thinking about our bonding and antibonding

states. The electrons of both atoms will participate in building molecular orbitals.
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If we have two electrons in, say, the 1s state of both atoms then these electrons will

form bonding or antibonding states when the atoms are brought together. Since each

atom has two 1s electrons, we will form both a bonding and an antibonding pair. Each

pair form a molecular orbital. This will happen for each of the electrons in the atom.

And the strength of the bond will be determined by how many of the electron pairs in

the new orbitals are bonding or antibonding.

Let’s take Nitrogen as an example. It’s electron state is 1s22s22p3. So if we bring two

nitrogen atoms together we will fill a 1s bonding state and a 1s antibonding state (see

figure above). So far we have used four electrons. Likewise for the four 2s electrons

that we have between the two atoms. We will get a 2s bonding and a 2s antibonding

state. This takes up another four electrons, with a total of 8 used so far. We have a total

of 14 electrons in the molecule, so there are six left. Note that for the 2p states there

are px, py, and pz bonding and antibonding states. And note from the figure that the

bonding states are all lower energy than the antibonding states. So these will fill first.

We have six electrons to place, with two per bonding state. That leaves us with a total of

five bonding and two antibonding states. Thus overall the N2 molecule will be bound.

Ionic Bonds

But high school chemistry taught us that there is another kind of bond, one in which

an electron is taken from one atom and given to another. Then the Coulomb force

keeps the two atoms together. NaCl forms such a bond. We have Na with an electron

structure of 1s22s22p63s1 so it has an outer s electron that is unpaired. That electron is
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easy to remove. It has a binding energy of 5.14 eV. And we have Cl with an electron

structure of 1s22s22p63s23p5 and that leaves its highest shell missing one electron. If

it had an extra electron, the whole 3p shell would have a 3.61 eV lower energy. So if

we had an additional 5.14 eV − 3.61 eV = 1. 53 eV of energy we could remove the

electron from the Na atom and attach it to the Cl atom. Then the two atoms would be

attracted through Coulomb force

U = − 1

4πǫo

qNa+qCl−

r
But the Column potential is a potential energy. An atom in a Column potential will

move and gain energy by “falling” in the potential like a ball falling down a hill. We

could retrieve energy from that “fall.” We need U = 1. 53 eV. Then the atoms will have

to “fall” to within

− 4πǫoU

qNa+qCl−
=

1

r

r = −qNa+qCl−

4πǫoU

=
e2

4πǫoU

=

�
1.60217733× 10−19C

�2

4π (8.854187817× 10−12 Fm−1) (1. 53 eV)

= 9. 411 5× 10−10m

to gain the energy needed to make the electron switch happen. Many molecules are

formed this way. Here are a few.

Molecule Dissociation Energy ED ( eV) req ( nm)
NaCl 4.26 0.236
LiCl 4.86 0.202
KBr 3.97 0.282

The equilibrium separation has an additional term in it’s calculation for ionic bonds.

The atoms must stay far enough apart that their outer orbitals don’t overlap much.

If they do, then we may violate the Paul exclusion principle. That would force the

electrons to jump to higher energy states to make room for the electrons of the other

atom that would have the same quantum numbers. And such jumps require energy. That

energy to make room for the electrons of the other atom must be part of the potential

energy of the system. And we would have to supply that energy to push the atoms

closer together.

This is a nice story, but it is really a story from high school chemistry. We should worry
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when we say we lose an electron from one atom and place in another atom. Wouldn’t

the wave function of the electron still reach the first atom if they are only a fraction of a

nanometer apart?

And the answer is yes, the two atoms really share the electron, they just don’t share

equally. For NaCl the “sharing” is very unequal. For other molecules it is more

equal and for homopolar molecules it is exactly equal. We can envision a NaCl wave

function that is very lopsided. This means that being a covalent or ionic bond is really

a spectrum. How ionic a bond is could be determined by seeing how polarized the

molecule would be. If the electron wave function has a small amplitude around one

atom and a larger amplitude around the other, then the first atom will be more positive

and the second more negative. If this charge difference is large, the bond is very ionic.

A measure of the charge displacement for a molecule is the electric dipole moment. If

our NaCl were purely ionic then we would have

p = qreq =
�
1.60217733× 10−19C

�
(0.236nm) = 3. 78× 10−20Cnm

The measured value for NaCl is

pmeasured = 3.00× 10−20Cnm

so we could say that the fractional ionic nature of the bond would be

3.00× 10−20Cnm

3. 78× 10−20Cnm
= 0.793 65

or this is a 79% ionic bond.

The bonding structure is an exciting success of our quantum model of atoms. But

another great success is the prediction of molecular spectra, and we will take on this

topic in our next lecture.

@@@ define electron affinity



22 Molecular Spectra, Vibrations

and Rotations

9.4,9.5,9.6

Fundamental Concepts in the Lecture

• Molecular vibration and vibrational states

• Molecular rotation and rotational states

• Combined vibrational and rotational states

• Molecular spectra

Molecular oscillators

We studied quantum oscillators back in section (3). We hinted at the solution to the

various allowed energy states and even solved for the ground state wave function. What

we found was that a harmonic oscillator has a potential energy and therefore can be

treated like a potential well. From this treatment we find that there are allowed energy

states associated with wave functions.

We have built diatomic molecules in our last lecture and we have considered how the

bonds are formed. But think about those bonds. We have two atoms in equilibrium with

attractive and repulsive forces. Only the forces keep the atoms near each other. So

there isn’t a physical structure keeping them in place. We could easily make the system

oscillate by pulling on one of the atoms (or both) with, say, an electromagnetic field

(like a light beam). Here is a plot of the potential energy as a function of separation

distance for N2.
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Notice that the bottom of the well looks a lot like a harmonic oscillator potential. The

match is not exact, but if we use the harmonic oscillator solutions and don’t let r be too

far from reqlib. we should have solutions that match the situation fairly well. Let’s see

what we can do with this idea.

Harmonic oscillator review

When we studied the harmonic oscillator before we remembered from PH123 that

classically

ω =

�
κ

m
where κ is the spring constant. And we recall that

ω = 2πf

and the classical potential energy is

Us =
1

2
κ (x− xeqlib)

2

and the total energy is

E =
1

2
κ (xmax − xeqlib)

2

The solutions of the Schrödinger equation for a harmonic oscillator gave energy states

of the form

EN =

�
N +

1

2

�
�ω N = 0, 1, 2, 3, . . .

The ground state energy would then be

EN =

�
0 +

1

2

�
�ω =

1

2
�ω



Molecular oscillators 345

or we could write this as

EN =
1

2
hf

This harmonic oscillator ground state energy is called the zero point energy and it is

important that it is not zero. We get a potential well and allowed energy states that are

in even jumps of 1
2hf.

and we have a selection rule.

∆N = ±1
That is, jumps of more than one level are very unlikely.

Applying the quantum oscillator to molecular vibrations

Consider a diatomic molecule. We have a problem right from the start because we have

two masses that are oscillating.

We didn’t do a problem like this back in PH123. We need to find a way to do it now.

We have leaned that we can take special situations to help us solve such problems and

one way to do this is to take special view points, like a center of mass reference frame

or a reference frame that is riding along with one of the atoms. We will use both of

these techniques in this problem. In the end, we want a reference frame that has one of

the atoms stationary and the other one oscillating. We want this because it turns out this

makes the math easier. Let’s start with a special case, Let’s take the case when both

atoms are right at their equilibrium position.
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For atom 1 that will be −x1 and for atom 2 that will be x2. Then at that special moment

the energy is all kinetic

E =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
p21
2m1

+
p22
2m2

Now let’s switch reference frames to the center of mass frame. In this reference frame

the total momentum is zero, so it must be true that

p2 = p1 = p

and in that frame

E =
p2

2m1
+

p2

2m2

=
p2

2

�
1

m1
+

1

m2

�

=
p2

2

�
m2

m1m2
+

m1

m1m2

�

=
p2

2

�
m2 +m1

m1m2

�

=
p2

2
�

m1m2
m2+m1

�

=
p2

2 (M)
where

M =
m1m2

m2 +m1
which we have seen before. This is the reduced mass. If we use this mass then our

energy is

E =
p2

2M
and we can treat our two oscillators as one oscillator with mass M.

We should think about this reduced mass. When m1 = m2

M =
m1m1

m1 +m1
=

1

2
m1

This makes sense. Our double oscillator is like a single oscillator with half the mass

of the double situation. But from this we can see that if the masses are not equal, we

should expect different behavior for each. Larger masses would move less, smaller

masses would move more.

We have almost turned our double oscillator into a single oscillator problem. But we

need to worry about κ, the spring constant.
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We could measure an amount of energy E for a particular separation distance r. We

know the potential energy in a spring, and we can model this like a spring force

E =
1

2
κ (x− xeq)

2

And we could find the minimum energy Emin for the equilibrium separation distance

Req. Then

E −Emin =
1

2
κ (R−Req)

2

From this we can solve for our spring constant, κ

κ = 2
(E −Emin)

(R−Req)
2

Let’s take a specific case, for H2 suppose our energy is measured to be

E −Emin = 0.50 eV

and then our difference from equilibrium separation is measured to be

R−Req = 0.017nm

then our spring constant is

κ = 2
(0.50 eV)

(0.017 nm)2
= 3460. 2

eV

nm2

Knowing κ and how to find a reduced mass should allow us to find the frequency of

oscillation for our H2 molecule.

f =
1

2π

�
κ

m

=
1

2π

&''(2 (E−Emin)
(R−Req)2
m1m1
m1+m1

=
1

2π

�
3460. 2 eV

nm2

1
2m

=
1

2π

�
3460. 2 eV

nm2

1
2 (1.008u)

but we need to convert from u to some other mass unit. If we recall that

1u = 931.49406
MeV

c2

we write our frequency as

f =
1

2π

&'''(
3460. 2 eV

nm2 c
2

1
2 (1.008u)

�
931.49406 MeV

c2

u

�
c2
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Or, canceling some of the c terms,

f =
1

2π

��
3460. 2 eV

nm2

�
(2.99792458× 108ms−1)2

1
2 (1.008) (931.49406MeV)

= 1. 295 3× 1014Hz

The energy of the transition would be

∆E = hf =
�
4.1356692× 10−15 eV s

� �
1. 295 3× 1014Hz

�

= 0.535 69 eV

and the wavelength would be

λ =
c

f
=

2.99792458× 108ms−1

1. 295 3× 1014Hz

= 2. 314 5× 10−6m

= 2. 314 5µm

This is in the infrared. And this is great. We find that molecules have spectral lines in

the infrared that correspond to vibrations.

Chan, Mun Kit, 5Atmospheric Transmission Windows for High Energy Short Pulse Lasers,

Naval Postgraduate School, Monterey, CA. 2003, (https://calhoun.nps.edu/handle/10945/6224)

Different atoms have different masses, so we expect different frequencies for different

molecules. And we can use this vibrational spectrum of allowed transitions to identify

molecules. Astrophysicists and atmospheric physicists do this all the time.
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Having reduced our double molecular oscillator to a simple oscillator we expect energy

levels of the form

EN =

�
N +

1

2

�
�ω N = 0, 1, 2, 3, . . .

where we have used our reduced mass and combined κ to get ω.

But of course our harmonic model isn’t perfect. It only works at the bottom of the

actual potential well. So if the molecule is excited, the predicted frequencies won’t

be right. In particular the nice even spacing of the harmonic oscillator energy levels

doesn’t actually work for real molecules. but we get approximations for the first few

energy states that are not to terribly bad. For much of the matter in the universe, we

expect the lower states to be the most frequently occupied. But not for stars or other hot

glowing objects.

Obviously there is way more to finding molecular transition than our simple harmonic

oscillator model. If you go on in physical chemistry you might do that work. But this is

enough for us now. For the physicists you will do more in PH473.

Rotational molecular states

Of course if we can make our molecule vibrate, we could also rotate the whole thing.

And that would take rotational energy. That is a new energy possibility. But rotation

means angular momentum, and we already know that angular momentum is quantized.

Let’s see how this works for molecules.

Classically we would have

Krot =
1

2
Iω2

where I is the moment of inertia and ω is now the angular speed. And

Krot =
1

2
Iω2 =

L2
mol

2I
where for the molecule we have an angular momentum of

Lmol = Iω

But we know that we can’t specify all the components of Lmol due to uncertainty.

Molecules are not really little rigid barbells that can be spun. They are complex wave

structures. You might despair of finding a way to express these molecular rotational

states. But there are books on this topic. And for simple systems we can almost do the

problems exactly. Let’s borrow from those treatments.8 The state energies are of the

8 For example, Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain, Longman Scientific &
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form

EL =
Lmol (Lmol + 1)�2

2I
L = 0, 1, 2, 3, . . .

Note that this is very like the classical rotational kinetic energy but with L2
mol quantized.

We get a selection rule of

∆Lmol = ±1
where once again we mean that unit jumps are more probable but the other jumps

happen just with less frequency. We get an energy graph structure that is something like

this

with single jumps most probable.

For our diatomic molecule we could write

I = Mr2eq

where M is the reduced mass

M =
m1m2

m1 +m2

Technical, 1983
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and where

req = x1 + x2

so that

EL =
Lmol (Lmol + 1)�2

2Mr2eq
and we could define

B =
�
2

2Mr2eq
(just because it is tiresome to always calculate it) so that

EL = BLmol (Lmol + 1)

Then if we excited an molecule rotationally, so it goes from L i = L to Lf = L+ 1 we

would expect the excitation energy to be like

∆E = Ef −Ei = BLf (Lf + 1)−BLi (Li + 1)

= B (L+ 1) ((L+ 1) + 1)−BL (L+ 1)

= B (L+ 1) (L+ 2)−BL (L+ 1)

= B (L+ 1)L+B (L+ 1) 2−BL (L+ 1)

= 2B (L+ 1)

so our transitions depend on L, they are not evenly spaced and the emitted or absorbed

photons would have energies like 2B, 4B, 6B and so forth.

Let’s try a transition. Say we take our old friend H2 and find the lowest radiation energy

emitted due to rotation. We need a numerical B value so let’s do that first.

B =
�
2

2Mr2eq

we need M = 1
2m and we have req = 0.074nm from our previous study of H2 so

B =
�
2

2 12mr2eq

=
�
2

mr2eq

=
(�c)2

mc2r2eq
Numerically this is

B =
(197.326972 eVnm)

2

((1.008) (931.49406MeV)) (0.074nm)
2

= 7. 573× 10−3 eV

So now we take

∆E = 2B (L+ 1)
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and for the L = 0 case

∆E = 2B

= 2× 7. 573× 10−3 eV

= 1. 514 6× 10−2 eV

so the frequency of the emitted photon would be

f =
∆E

h
=

1. 514 6× 10−2 eV

4.1356692× 10−15 eV s
= 3. 662 3× 1012Hz

and let’s find the wavelength for the emitted photon.

λ =
c

f
=

2.99792458× 108ms−1

3. 662 3× 1012Hz

= 8. 185 9× 10−5m

= 81.85 9µm

which is infrared, but much larger than the vibrational states. This is the region of the

electromagnetic spectrum known as the far infrared. It is the stuff of thermal cameras.

Vibration and Rotation

Of course in real life a molecule that is vibrating could be rotating as well. So we are

unlikely to see just a rotation or just a vibration spectrum. Real spectra are usually

mixed. A first order approximation to finding an equation for such a mixed spectrum

would be to add together our vibrational and rotational energy equations.

EL = BL (L+ 1) L = 0, 1, 2, 3, . . .

EN =

�
N +

1

2

�
hf N = 0, 1, 2, 3, . . .

so our combined spectrum would be

EL,N = BL (L+ 1) +

�
N +

1

2

�
hf

An energy level would be indexed by two quantum numbers, L and N. This combined

spectrum must obey both selection rules

∆L = ±1
∆N = ±1

Let’s try one. For an initial state N,L let’s find a final state N + 1, L± 1 the possible
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energies for the absorbed photon are

∆E = EN+1,L+1 −ENL

∆E = EN+1,L−1 −ENL

Let’s start with the first one

∆E = EN+1,L+1 −ENL

=

"
B (L+ 1) ((L+ 1) + 1) +

�
N + 1 +

1

2

�
hf

#
−

"
BL (L+ 1) +

�
N +

1

2

�
hf

#

=

"
B (L+ 1) (L+ 2) +

�
1 +N +

1

2

�
hf

#
−

"
BL (L+ 1) +

�
N +

1

2

�
hf

#

=

"
B (L+ 1)L+B (L+ 1) 2 + hf +

�
N +

1

2

�
hf

#
−

"
BL (L+ 1) +

�
N +

1

2

�
hf

#

= [B (L+ 1)L+B (L+ 1) 2 + hf ]− [BL (L+ 1)]

= 2B (L+ 1) + hf

Now we need to do the L− 1 case

∆E = EN+1,L−1 −ENL

=

"
B (L− 1) ((L− 1) + 1) +

�
N + 1 +

1

2

�
hf

#
−

"
BL (L+ 1) +

�
N +

1

2

�
hf

#

=

"
B (L− 1) (L) +

�
1 +N +

1

2

�
hf

#
−

"
BL (L+ 1) +

�
N +

1

2

�
hf

#

=

"
BL2 −BL+ hf +

�
N +

1

2

�
hf

#
−

"�
BL2 +BL

�
+

�
N +

1

2

�
hf

#

= [= −BL+ hf ]− [−BL]

= −2BL+ hf

So for this transition we have two sets of allowed energies

∆E = 2B (L+ 1) + hf

∆E = −2BL+ hf

We get an energy diagram for the possible photon energies that looks like this
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Notice that a transition from the N,L state to the N + 1 state with energy hf is not

allowed. It obeys our selection rule on ∆N,

∆N = +1

but not ∆L.

∆L = 0

Spectroscopists tend to rotate this plot, because that is the way the spectra come out of

spectrometers.

The energy values are given in terms of frequency by the spectrograph

f =
∆E

h
Here is an example of a simple spectrograph of a molecular transition. Notice the many

peaks on either side of the gap.
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Spectrogram of a molecular transition. (Courtesy Davidi98,

https://commons.wikimedia.org/wiki/File:HCl_rotiational_spectrum.jpg, used with permission)

The gap is spacing is ∆f and we have peaks at

f =
∆E

h
=

2B

h
(L+ 1) + f

f =
∆E

h
= −hL+ f

Something is right about our simple approximate model for this molecular transition.

We get the missing middle at the oscillator resonate frequency f. And we get a series of

peaks on either side of the resonant frequency. But there are things our simple model

didn’t tell us. One is that the peaks aren’t really equally spaced. This is because we

assumed in the rotational discussion that the charges didn’t move farther apart or closer

together. But if we rotate a molecule with a stretchy bond, the distance between the two

atoms can change as it rotates.

A more serious issue is that the peaks are not all the same height and seem to die off

on either side. It is as though when we move away from ∆E = hf we get even less

probability of that transition happening.

If we borrow from our future again we could say that the “population of a particular

state” (meaning the likelihood that this particular transition will happen) is proportional

to the MaxwellBoltzmann distribution factor e−
E

kBT . It’s also true that with bigger L

values we get more degenerate states. So the probability of a particular state being in

the transition would be something like

P (EN,L) = (2L+ 1) e
− E
kBT

where the 2L+ 1 is the angular momentum degeneracy. We can approximate this with
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our equation for E

P (EN,L) = (2L+ 1) e
−
BL(L+1)+(N+12 )hf

kBT

and this explains our peak problem. For the first few levels the exponential factor

is nearly 1. But as the values of L grow, the exponential term becomes smaller and

smaller. If you are thinking this is great but where did the MaxwellBoltzmann factor

come from?–just hang on. We are headed there in our next lecture.



23 Statistical approach for many

atoms

Fundamental Concepts in the Lecture

• Classical Statistics and Entropy

• Quantum Statistics

• Distribution Functions and Density of States Functions

• Gas of Particles Density of States

• Photon gas density of states

More than two atoms

We have been placing electrons in molecular states now for a while. But we had only

really considered diatomic molecules. What happens if we have, say, a 200 kg ingot of

gold? We can guess we might have a larger number of states.

Large chunks of sold metal might be too much of a jump for our first attempt at normal

solid matter (solid state physics), but we want to be able to describe normal matter,

so we should consider samples of more that single molecules. If we have millions of

atoms, finding the states for each electron is at best tedious and probably just impossible

to do. In PH123 we used statistical methods to form the branch of physics that we

call thermodynamics, but sometimes this branch is called statistical mechanics. The

statistical part of thermodynamics can be thought of as a subfield, in itself. So let’s

review a bit of statistics, and then apply statistics to our quantum model of molecules.

Classical Statistics

How many ways can I put balls in four boxes if only one ball fits in a box? Mostly the

answer to this is that I don’t care, I am a physicist and I don’t get paid to put balls in
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boxes. But suppose we want to put electrons into molecular orbital states. That makes

the problem more interesting. So let’s consider the easier ball and box problem and use

it two work our way up to electrons.

In our ball and box problem, I can start with putting just one ball in one of the four

boxes. There are four ways I could do that. There are six different ways I can put two

balls in four boxes, and there are four ways to put three balls in four boxes, and one

way to put four balls in four boxes and one way to put no balls in for boxes.

1 2 3 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

1 1 1 0

0 1 1 1

1 0 1 0

0 1 0 1

1 0 0 1

1 1 1 1

0 0 0 0

1 0 1 1

1 1 0 1

This is a good place to start thinking about lots of electrons in lots of molecular states

for a small piece of a solid. But we know we need to go beyond just random placement.

We need to care about how much energy we have for electrons.

Suppose we have a system that has particles and two allowed energy levels (see figure

below). If we are in an environment were we have sufficient thermal energy, we would

expect that we would have a probability of 1
2 that the particle will be in the state with

E1 and a probability of 1
2 that the particle will be in the state with E2.
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Now if I have two particles, the probability that two particles will be in the state E1 will

be
�
1
2

�2
or 1

4 .

I can keep adding particles. For three particles the probability of being in the state E1 is
�
1
2

�3
or 1

8 .

And for molecules we we could have electrons as our particles and we have the

possibility of having six to ten (or more) electrons in a molecular shell. But for a bulk

metal, we could have many more electrons in a combined allowed state. So suppose we

had 50 electrons. Then the probability of those 50 electrons all being in the E1 state

would be �
1

2

�50

=
1

1125 899 906 842 624
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This is not very probable. Notice that we have marked our particles so we can tell them

apart. This should worry you. But let’s keep going with this assumption for now. From

our math classes we “remember” that the number of ways to arrange N objects in a line

is N ! So the number of ways to arrange one object is 1! = 1 and the number of ways to

arrange 2 objects in a line is 2! = 2, and the number of ways to arrange three objects in

a line is 3! = 6

Knowing this we can see that the number of ways of selecting and arranging r objects

taken from a group of N distinct objects is
N !

(N − r)!
For example, how many ways can we choose 2 particles from a group of 3 total

particles.
3!

(3− 2)!
= 6

In this calculation the order of the balls was important. Blue red was different from red

blue. But we expect that in choosing electrons the order won’t matter. So we should

consider how many ways we could choose r objects from N if the order isn’t important.

That is called a combination. So the number of combinations of N objects taken r at a

time is
N !

r! (N − r)!
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For our two balls chosen out of three case we get
3!

2! (3− 2)!
= 3

You “learned” all this at some time in a math class. But it might take thinking about this

for a few minutes to remember why these equations work.9

We are going to go beyond this set of mathematical curiosities that work for picking

numbered balls out of bins or people out of groups. We want to look at electrons in

molecules and solids. So let’s consider a group of particles that can be in one of three

energy states, but we have only two units of, say, thermal energy to spread among the

particles. Further, say, we have four particles and we can still distinguish the particles.

Then we might have states as shown in the following table.

Microstates

Macrostate Particle 1 Particle 2 Particle 3 Particle 4

A 2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

B 1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

The states are grouped into two groups. One group has a particle alone in the E3 = 2u

state. All the other particles have zero energy. The other group has the two units of

energy spread over two particles with each of these particles carrying 1u of energy and

the remaining two with zero energy. Because our energy is quantized, we can’t have all

the particles, say, with half a unit of energy. We only get whole units. We call these

groupings where the energy structure is similar macrostates and the individual ways we

pull off the macrostate structure are called microstates.

9 If this is truly new, I recommend chapter 15 of Mary L. Boas’ book, Mathematical Methods in the

Physical Sciences, 3rd Ed, Wiley, 2006. This is a good mathematical reference to have on hand.
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We can do some predictive calculations based on just this information. Once again we

assume that thermal or other processes make each microstate equally probable. Then if

we wish to measure the energy of a particle and find that it has 2 units of energy and we

repeat this experiment looking for particles with 2 units of energy we would expect to

find such a particle about 4/40 of the time. There are 4 microstates in which a particle

can have energy of 2units. And in each of these microstates 1 particle has this energy,

so we have 4 ways to get a particle with energy of 2units. And we have the 4 particles

spread over 10 microstates so our analysis gave us 4× 10 = 40 possible particle energy

states. And only four of these have a particle energy of 2 units. So about 4/40 = 10%

of the time we would find one particle having 2units of energy. How about finding a

particle with energy E = 0 units? We can count from the table and see that 24/40 =

0.6 or 60% of the time.

Suppose we wish to know how many microstates we will have for a particular

macrostate. We can say that for macrostate A we will choose 1 special particle out of

the four to have 2 units of energy. Then (using our mathematical form that tells us how

many combinations of N objects taken r at a time we can get) we should have

WA =
N !

r! (N − r)!
where we identify N = 4 particles and r = 1 with 2units of energy so

WA =
4!

1! (4− 1)!
= 4

microstates in macrostate A. For macrostate B we have r = 2 of the four particles with

energy of 1u so we would expect

WB =
4!

2! (4− 2)!
= 6

microstates. But suppose we had 3 units of energy. We could distribute that energy in

more ways among our four particles. We would expect a macrostate with one particle

with 3 units of energy and there would be

WA =
4!

1! (4− 1)!
= 4

Microstates

Macrostate Particle 1 Particle 2 Particle 3 Particle 4

A 3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3
we could write this as

WA =
4!

(1!) (3!)
= 4

and call N3 the number of particles with 3u and N2 the number of particles with 2u and
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N1 the number of particles with 1u and N0 the number of particles with 0u of energy.

Then

WA =
4!

(1!) (3!)
=

N !

N3!N0!
and if we realize that N1! = 0! = 1 and N2! = 0! = 1 because we have no particles

with 1u or 2u of energy, then we can write this as

WA =
4!

(1!) (1) (1) (3!)
=

N !

N3!N2!N1!N0!
where we just have to know N0,N1, N2, and N3 for our particular case.

We expect that we could also make a macrostate where three particles could have one

unit of energy

WB =
4!

3! (4− 3)!
= 4

with microstates
Microstates

Macrostate Particle 1 Particle 2 Particle 3 Particle 4

B 1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1

We could write this as

WB =
N !

(3!) (4− 3)!

=
N !

N1!N0!
= 4

or even

WB =
N !

N3!N2!N1!N0!
= 4

because N2 = N3 = 0, no particles have E = 2u or E = 3u. And of course N1 = 3

and N0 = 1 in this case.

But we could also have one particle with 2 units and one particle with 1 unit. How many

microstates would there be? Let’s build the table and then see what the mathematical
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function would be
Microstates

Macrostate Particle 1 Particle 2 Particle 3 Particle 4

C 2 1 0 0

2 0 1 0

2 0 0 1

1 2 0 0

0 2 1 0

0 2 0 1

1 0 2 0

0 1 2 0

0 0 2 1

1 0 0 2

0 1 0 2

0 0 1 2

We can use the new notation we developed in our first two cases to find the mathematical

result. We would have N3 = 0, N2 = 1, N1 = 1, and N0 = 2 so we expect

WC =
N !

N3!N2!N1!N0!
=

4!

(0!) (1!) (1!) (2!)
= 12

just as we see in the table.

In general the number of microstates in a macrostate is given by

Wr =
N !

Nr! . . . N2!N1!N0!
where r is the highest energy state occupied.

The total number of states would be

Wtotal = WA +WB +WC = 20

But this should also be

Wtotal =
4!

(1!) (0!) (0!) (3)!
+

4!

(3!) (0!) (0!) (1)!
+

4!

(0!) (1!) (1!) (2!)
= 20

If we define Q = 3u as our amount of energy the we could write this as

Wtotal =
(N +Q− 1)!

Q! (N − 1)!
and we could check to make sure it works

Wtotal =
(4 + 3− 1)!

3! (4− 1)!
= 20

At any rate, we can use this to show the probability of a particle having a particular

energy state. We did this before by counting the number of particles with a particular

energy from a table and by dividing by the total number of possible states. Let’s do that

again, only using our mathematical forms. Let’s define Ni as the number of particles
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in each microstate (this is what we got from the table before). And let’s define Wi as

the number of microstates in each macrostate. This is also called the multiplicity of the

macrostate. Then what we did before was to find the probability of a particle having a

particular energy E

p (E) =
ΣiNiWi

N
�

iWi

Let’s look at the denominator first to make sure we are achieving what we did before.

It should be the number of particles multiplied by the number of microstates. This is

the number of boxes in our tables for the A, B, and C macrostates combined. We can

calculate this separately just so we can verify that it worked

N
�

i

Wi = N (W1 +W2 +W3)

= N (WA +WB +WC)

= 4 (20)

= 80

Counting the boxes gives

16 + 16 + 48 = 80

so the denominator works. Now let’s look at the numerator. ΣiNiWi. If we want,

say, the probability that a particle will be measured with an energy of 3units, then

we need Ni, the number of particles with energy of 3u in each microstate. We can

see that 3u energies only occur in WA which we would now label W1 and in each of

the 4 microstates one particle has 3u of energy, so N1 = 1 and W1 = 4. And for W2

no particles have 3units of energy so N2 = 0 and likewise N3 = 0 so the numerator

would give

ΣiNiWi = 4

so
ΣiNiWi

N
�

iWi
=

4

80
= 0.05

or about 5% of the time we would find a particle with 3u of energy. We can do this for

all the possible values of E. For 2u

N1 = 0,W1 = 4

N2 = 0,W2 = 4

N3 = 1,W3 = 12

so
ΣiNiWi

N
�

iWi
=

12

80
= 0.15

or about 15% of the time we would find a particle with 2units of energy, and for one
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unit of energy

N1 = 0,W1 = 4

N2 = 3,W2 = 4

N3 = 2,W3 = 12
ΣiNiWi

N
�

iWi
=

24

80
= 0.3

or 30% of the time we would find a particle with 1unit of energy. We still need to

determine how often we would find a particle with no energy.

N1 = 3,W1 = 4

N2 = 1,W2 = 4

N3 = 2,W3 = 12
ΣiNiWi

N
�

iWi
=

12

80
+

4

80
+

24

80
= 0.5

or half the time we would find a particle with 0u of energy. These must sum to 100%

50 + 30 + 15 + 5 = 100

and we could plot these probabilities

E (units) p (E)
0 0.5
1 0.3
2 0.15
3 0.05

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

E(units)

p(E)

and a curve fit to the data gives

p (E) = 0.5727e−076E

Note the exponential fall off of the probability with higher energy. This reminds us of

the exponential term in the MaxwellBozmann distribution, and indeed this is just the

sort of analysis that produces that exponential. We expect collections of many atoms
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to have an energy distribution that falls off exponentially with higher energy. But our

analysis has been somewhat limited. We only allowed a little energy and a few states

with a few particles. You can guess that this will be harder with very many particles.

And that is what PH412 is for. So we will stop our classical analysis here, with just one

little topic more, entropy.

Entropy

You may have had entropy defined in your PH123 class as

S ≡ kB ln (W ) (23.1)

The W in this equation is the same multiplicity that we have been using. We could

consider a problem where we have three units of energy and that energy is all in one of

the four particles. That would be macrostate WA with it’s four microstates. Suppose we

allow this system to change until one of the particles has two units and one has one unit

of energy. That would be the WC state. And we would have entropies

SA ≡ kB ln (WA)

and

SC ≡ kB ln (WC)

then the change is order is

∆S = SC − SA

= kB ln (WC)− kB ln (WA)

= kB ln

�
WC

WA

�

= kB ln

�
12

4

�

= kB ln (3)

= 1. 098 6kB

which is larger than one. The entropy would increase. And we could say that it would

be unusual for the WC macrostate to evolve into the WA macrostate because then ∆S

would be negative.
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Beginnings of Quantum Statistics

Much of what we have done for classical statistics is still true. But there are some

differences that come because of quantization of energy and because of the nature of

wave mechanics. Two major differences are:

1. In quantum statistics like particles are not distinguishable.

In our diagrams above, I color coded the particles so you could tell which is which. You

might have guessed that this is not realistic. It is not possible to paint electrons differ

ent colors. And worse yet, electrons are waves. And it would, indeed, be futile to try to

paint a wave. In classical statistics we could tell which microstate we had in macrostate

A because we could tell the particles apart. But really that isn’t possible for electrons.

Because we can’t distinguish the different microstates, we are forced to accept them all

as one. The multiplicity of each macrostate becomes just 1. For our balls in boxes ex

ample, we would have just these possibilities because the other ways, say, to put one

ball in one box look just like our first line no matter what box and ball we choose.

1 2 3 4

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 0 0 0

2. In quantum statistics we have to obey the Pauli exclusion principle, so there are often

a maximum number of wavicles that will fit in a particular state.

So far we have only dealt with electron waves to any real extent. And electrons have

spin states of ±1
2 . They must obey the Pauli exclusion principle. Let’s consider our

example with three units of energy. For electrons only macrostate C would be allowed

because in macrostates A and B we would have three electrons with the same energy

and therefore the same quantum numbers and that can’t be.
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But there are wavicles with spin states that are integers. Photons are one such wavicle.

And when we do the lengthy calculations of their wave functions, we find that they

don’t obey the Pauli exclusion principle. We have really already acknowledged this

when we did stimulated emission. The second photon produced in stimulated emission

is exactly like the incoming photon. They would have the same quantum numbers. But

because they don’t have half integer spin, their wave functions are mutually compatible

and they can just add up. And we easily get coherent light beams this way.

Let’s try to recreate our graph of probability vs. energy for our 4 particle 3u of energy

system for a quantum electron case. We only have macrostate C to use.

p (E) =
ΣiNiWi

N
�

iWi

and for E = 0 we would have, working from the table

p (0u) =
24

48
= 50%

and for E = 1u

p (1u) =
12

48
= 25%

and for E = 2u

p (2u)
12

48
= 25%

so our graph looks like

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

E(units)

p(E)

and the exponential fit is quite unsatisfying. But with just three points it is hard to

tell what is going on. Let’s take a larger quantum case with, say, 6u of energy and 5

particles. Let’s see how to arrange these with quantum statistics.
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And the important thing is that these are the only possibilities. We can calculate our

energy probabilities

p (0) =
2 + 2 + 1

(5) (3)
= 33%

p (1) =
2 + 1 + 2

(5) (3)
= 33%

p (2) =
0 + 1 + 2

(5) (3)
= 20%

p (3) =
0 + 1+ 0

(5) (3)
= 6.7%

p (4) =
1 + 0+ 0

(5) (3)
= 6.7%

p (5) =
0 + 0 + 0

(5) (3)
= 0%

p (6) =
0 + 0 + 0

(5) (3)
= 0%

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

E(units)

p(E)

And this is clearly not an exponential function.
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Still, we are only up to six particles. That is a long way from a chunk of gold or the air

in a classroom. We need to extend our analysis to much larger systems.

Distribution Functions and Density of States Functions

You might wonder if going forward is necessary, do large numbers of atoms exhibit any

quantum behavior? We will find that even such normal everyday things like electric

conductivity depend on quantum states of the metal atoms. So what we are doing is

important to understanding the world we live in. It is so important that we have a whole

class on this at the Senior level (PH412). But we can start here. So let’s proceed.

Let’s give a name to the p (E) vs. E graphs. The functions we see in this kind of graph

is called a distribution function. We can generically represent this kind of function with

the symbols

f (E)

The MaxwellBoltzmann function is just such a distribution function for classical

systems.

So far our distribution functions have told us that it is more probable to find particles or

wavicles in lower energy states. And the details of just what energy states are populated

is important in understanding the parts of integrated circuits and glow paint, and so

many other cool things. So we will need to find the distribution function for large

groups of particles.

Our goal will be to find the probability of a particle (electron, atom, molecule, etc. de

pending on our situation) having a specific energy E. To find this we will calculate the

number of particles that have a particular energy, E, and we will give that the symbol

N (E) . And we will break this N (E) into two parts. One part will be the distribution

function that we just discussed. The distribution function tells us something about how

much energy we have in the system and how spread out that energy is. Let’s give it the

symbol f (E) . The other part will be the places we can put that energy. We will give

this piece the symbol g (E) and we will call it the degeneracy function (because it in

cludes the degeneracy of the energy states).
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We know about molecules, so let’s look at these two parts, g (E) and f (E) for an elec

tron (our particle) in a diatomic molecule. We know that there are energy states for

the electron. We have 1s and 2s and 2p and 3s states and so forth. The g (E) func

tion tells us about these states. For example for the 1s state energy would would have

g (E1s) ∝ 4 because in a diatomic molecule there the 1s state splits to include all four

1s electrons (two from each atom) so we have a degeneracy of 4 electrons at about

the same energy. For the 2s state we also have a g (E2s) ∝ 4 but g (E2p) ∝ 12 and

g (E3p) ∝ 12 and g (E3d) ∝ 20. Notice that the trend for g (E) is to get bigger as the

energy gets bigger.

Notice also that we didn’t use equal signs. The degeneracy function g (E) is defined

per unit volume. So it is proportional to the degeneracy, but not equal to it. We can

write our N (E) in terms of g (E) and f (E) as

N (E) = V g (E) f (E)

to account for the perunitvolume definition of g (E) .
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If the g (E) is about energy levels or where we can put energy, the distribution function

f (E) tells us which of these levels will be occupied. Notice in the figure the f (E)

shows that we have enough energy to fill the 1s, the 2s and some of the 2p states. The

f (E) tells us which states have electrons with energy.

A single molecule is a very limited system. We want to calculate N (E) for large

systems, like containers of gas (think PH123) or silicon chips in computer electronics,

and eventually for the whole universe. We expect our N (E) to look something like this

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0.0

0.5

1.0

E

N(E)

where the orange dotted line is g (E) and the purple dotted line is f (E) and the red

solid line is the product V g (E) f (E) . The g (E) function of this complicated system

has become effectively continuous because there are so many states for this large

system. Let’s look at some physical systems in more detail and find g (E) for those

systems.

Dilute gases

Let’s start with an easy case, a dilute gas, like a gas in one of the discharge tubes you

have seen in PH123. To do this we will need to be able to find the number of available

states with energy E. There are two ways we can add energy into the dilute gas. We can

add energy to the electrons in the atoms (or molecules) or we can add kinetic energy

(thermal energy) to the atoms (or molecules).

For the first part we might be able to just count the number of states as we have done

before. The hydrogen atoms in our hydrogen gas discharge tubes are far enough apart

that they don’t interact and we can count the number of states with energy En by

recalling that a state with quantum number n has possible l values up to n − 1 and

for each l value it will have 2l + 1 ml values so it will have l (2l + 1) substates.

Substituting l = n− 1 gives on the order of 2n2 as the degeneracy of each n state.
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We will have to work a bit harder to take into consideration the kinetic energy of the gas

(coming up shortly)

The number of atoms in our dilute gas with a particular energy depends on which n

state each atom has (with its degeneracy) and the distribution function that tells us

how the energy is distributed in the gas. As we have seen distribution functions often

favor lower energies, but the degeneracy favors higher energies That is, there are more

available states as n increases and the energy goes up. So there is a tugowar between

the distribution function and the degeneracy. How many atoms will have a particular

energy E will depend on the outcome of that tugowar.

We saw this in diatomic molecules as well. HCl is very popular so let’s use it for our

example. The degeneracy of each molecular energy state EL marked with the molecular

quantum number L is 2L+ 1 so the larger the energy the larger the number of available

states to take that energy. But the energy distribution function for a gas of HCl would

tend to favor lower energies.

Let’s give a symbol for the other part of our tugowar, the degeneracy of the energy

level En is written as

V g (E) = dn

and then we can write the number of particles that have a particular energy value En as

Nn = dnf (En)

Like all probability functions, our distribution function must be normalized. But this

time it must be normalized to the number of particles we have.

N =
�

n

Nn =
�

n

dnf (En)

Or another way to say this is that all the particles must have some energy value so if we

sum over all energy states we should find all the particles.

But we defined g (E) per unit volume, so normally we would say

g (E) =
dn
V

and

N =
�

n

V g (En) f (En)

But not everything is a dilute gas of single atoms. And we know that if we bring atoms

together their energy states split into molecular states. We did this with two atoms.
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But what happens if we bring in, say, five atoms?
E
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We get additional splitting of states where we once had two states we now have five

different 1s molecular states each with a slightly different energy. What happens if we

bring in many many atoms?
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Now there are so many states that we just have a blue blur. A nearly continuous set

of states in two bands. The states are really discrete, but in a calculus sense the ∆E

between them is so small we would call it dE and we could mathematically treat these

states as though they weren’t quantized.

In this case we could replace summations with integration over dE.

N =

	
dN

where our

dN = N (E) dE

We still need to do the same work. We need N (E) to depend on the degeneracy of the

states and we need a distribution function to know which states are filled. But we can

write our degeneracy as a density, not a physical density, but a density of states.

N (E) = V g (E) f (E)

where f (E) is still the distribution function and g (E) is the degeneracy per unit

volume. This is a good choice because with many gas atoms with many electrons our

degeneracy is so huge a degeneracy per volume is more wieldy. This also explains the

V in our equation, it is the volume of our sample. With volumes involved, this feels like

we are getting toward bulk material!

Our integrand is

dN = V g (E) f (E) dE

and our integral to normalize our probability distribution function is

N =

	 ∞

0

V g (E) f (E) dE

If this discussion has not given you a firm friendly feeling about the function g (E) it is

not surprising. It will help to take a concrete example. Let’s go back to a gaslike group
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of particles because we understand somewhat what we expect to get there, then we can

take on more difficult collections of particles once we understand our g (E) function.

Gas of Particles Density of States

Let’s assume a three dimensional infinite potential well.

Yes we have only done a one dimensional infinite potential well, but we can argue that

we ought to be able to extend our analysis to a three dimensional case without doing all

the math to solve the Schrödinger equation from scratch. In one dimension we have a

wave function of the form

ψ (x) = A sin kx

In three dimensions we expect to have waves in all three directions so

ψ (x, y, z) = A sin (kxx) sin (kyy) (sin (kzz))

and we know from PH123 and our review that the standing waves have to fit in the box

just right so we need even numbers of half wavelengths as our allowed states.

kx =
2π

λx
=

nxπ

L
where L is the size of the box. Let’s make our box a perfect cube so each side has

length L. Then

ky =
nyπ

L

kz =
nzπ

L
and

ψ (x, y, z) = A sin
�nxπ

L
x
�
sin

�nyπ

L
y
��

sin
�nzπ

L
z
��

Let’s take a semiclassical system for our first try, so we have kinetic energy

E =
p2

2m



378 Chapter 23 Statistical approach for many atoms

but we can have momentum in all three directions so

E =
1

2m

�
p2x + p2y + p2z

�

now lets assume we have wavicles so

p =
h

λ
=

h
2π
k

=
h

2π
k

and

px =
h

2π

nxπ

L
=

hnx
2L

and likewise for py and pz so that

E =
1

2m

��
hnx
2L

�2

+

�
hny
2L

�2

+

�
hnz
2L

�2
�

=
h2

8mL2

�
n2x + n2y + n2z

�

and if we define

n2 = n2x + n2y + n2z
then

En =
h2

8mL2
n2

But we have done something really weird here. The quantity n likely won’t be an

integer. We have moved from having a few discrete states that are well separated

in energy to having a combined set of states due to our particles being in a three

dimensional system that will give us fractional n values.

To develop our equation we can do something even weirder. We could picture our nx,

ny, and nz as being coordinates on an imaginary nspace. This nspace isn’t real, it is

a mathematical trick. We want an equation for dE and g (E) so we can integrate. We

know E ∝ n2 and in this nspace n would be the radius of a sphere. I have drawn one

quadrant of the sphere in the next figure.
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We could define a spherical shell that would have the thickness dn. And since En is

directly proportional to n2 we can say that states with energies between E and E + dE

would have n values between n and n+ dn. We have found a way to count all the states

buy defining a statespace labeled by our n values! This is just what we want for our

g (E) dE part of our integral. It should count all of the available energy states.

So we can integrate over dE just as we wanted to. There is one important restriction.

Our n values can’t be negative, So we only want the first quadrant of this statespace

where nx, ny, and nz are all positive. This gives part of the shell has a statevolume of
1

8
4πn2dn

This amount of degeneracy is just do to kinetic energy of the gas particles. And if our

particles in our gas have half integer spin we would have another degeneracy of 2s+ 1

because without an external magnetic field we get individual particles in any and all of

the spin states. So our density of states function would be

g (n) dn =
1

8

2s+ 1

V
4πn2dn

We see the spin state factor in the 2s+ 1 but where do we get the V from? This is our

box volume L3 for our three dimensional infinite well and we wanted the density of

states per unit volume.

g (n) dn =
1

8

2s+ 1

L3
4πn2dn

I jumped a bit in writing this. Weren’t we planning to have g be a function of E? But

we want the number of states per unit volume. This is a number. So if we realize that
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En depends on n2 directly then the number of states per volume we get by calculating

g (n) is the same number we would get by calculating g (E) so we can just write

g (E) dE = g (n) dn

but we do have to write dn in terms of dE and n in terms of E so we can place them in

our integral.

E =
h2

8mL2
n2

so

n2 =
8mL2

h2
E

or

n =
L

h

√
8mE

Now we can take the derivative of n2

2ndn =
8mL2

h2
dE

and substitute in for n

2

�
L

h

√
8mE

�
dn =

8mL2

h2
dE

Solving for dn gives

dn =
8mL

2
√
8mEh

dE

dn =

√
8mL

2
√
Eh

dE

and then we can write g (E) dE by substituting in equations for n and dn into g (n) dn

g (E) dE =
1

8

2s+ 1

L3
4π

�
8mL2

h2
E

��√
8mL

2
√
Eh

dE

�

or

g (E) dE = (2s+ 1) 4π
�m

h3

√
E
��√

2mdE
�

or even

g (E) dE = 4π (2s+ 1)

√
2 (m)

3
2

h3

√
EdE

and our density of states for our gas is

g (E) = 4π (2s+ 1)

√
2 (m)

3
2

h3

√
E

This tells us how many states we have in our box per unit volume. To find out which

states are occupied we would need to match this with a distribution function f (E) and

because we have many gas particles, we could, say, find the number of particles that

have energy between 0 and Eo by integrating

N(0 : Eo) =

	 Eo

0

vg (E) f (E) dE

and if we want the number of particles in the energy range Eo, Eo +∆E

N(0 : Eo) =

	 Eo+∆E

Eo

vg (E) f (E) dE
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and if ∆E is very small we could even approximate this as

N(0 : Eo) = vg (Eo) f (Eo) dE

but we will need to figure out how two write f (E) to do the calculations.

Photon gas density of states

There is another example of density of states that we might need later. So lets do it now

for practice. We want the density of states function for a “gas” of photons confined in a

reflective box with walls at temperature T.

Inside the box we have photons with energies from 0 to∞. And of course

f =
E

h
so we get frequencies for 0 to∞. And we know

E =
hc

λ
so we get

λ =
hc

E
so our wavelengths go from∞ to 0. And

E = pc

for photons so

E = c



p2x + p2y + p2z
We are going to get standing waves in all three directions in our box. The wave function

must go to zero at the walls because they are reflective. For photons, this reflective box

is an infinite potential well! That is nice, we can borrow from what we just did for the

gas of particles.

px =
hnx
2L
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and similarly for py, pz. So

E = c

��
hnx
2L

�2

+

�
hny
2L

�2

+

�
hnz
2L

�2

=
ch

2L



n2x + n2y + n2z

and this seems very familiar. We could write this as

E =
ch

2L
n

where

n2 = n2x + n2y + n2z
just like before.

There are details of photons we haven’t learned yet. We know they have s = 1. So we

expect a factor of 2s+ 1 = 3 but photons are polarized perpendicular to their direction

of travel so one of the spin components must be zero. Let’s set sz = 0 so we only get 2

instead of 3 for our spin state multiplicity. So let’s assemble our g (E) . Starting with

g (n) dn =
1

8

2s+ 1

V
4πn2dn

because of photon polarization

g (n) dn =
1

8

2

V
4πn2dn

and using our energy as a function of n

E =
ch

2L
n

we can write n as a function of energy, so

n =
2L

ch
E

and

dn =
2L

ch
dE

so

g (E) dE =
1

8

2

L3
4π

�
2L

ch
E

�2 �
2L

ch
dE

�

g (E) dE = π

�
2

ch
E

�2 �
2

ch
dE

�

g (E) dE =
8π

h3c3
E2dE

so our density of states function is

g (E) =
8π

h3c3
E2

This is only half of what we need to find the number of particles with a particular

energy. We still need probability density functions f (E) . We will take on this problem

in our next Lecture.



24 Probability Distribution

Functions and Quantum

Statistics

Fundamental Concepts in the Lecture

• Probability Distribution Functions

• Classical MaxwellBoltzmann distribution function

• Doppler Broadening

In the last lecture we found out how to find the multiplicity g (E) for a large system of

particles (atoms, photons, etc.). But we also said that we wanted to find the probability

of an event, like picking a particle with 2units of energy out of a group of particles and

that was found with

p (E) =
ΣiNiWi

N
�

iWi

But for large systems, the energy states become close together and to a good

approximation we can replace the summations with integrals. To do this we wanted

to replace Wi, our multiplicity function that tells us how many ways we can put in

particles with a particular pattern of energy, with g (E) that gives the same information

for systems with many energy states that are close together. Only g (E) is a per volume

quantity. We also want to replace our number of particles in a state with a particular

energy, Ni, with the distribution function f (E) so instead of calculating ΣiNiWi we

would have V g (E) f (E).
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In the last lecture we looked at ways to find g (E) for a system. Now we need to explore

finding the distribution functions f (E) .

Distribution Functions

In a few paragraphs we will derive the MaxwellBoltzmann distribution to see how

we get a form for f (E). The MaxwellBoltzmann distribution function is the easiest

because it is classical.

It has a maximum value at the intercept that is set by the number of particles we have. It

says that as the energy goes up we expect fewer and fewer particles to have that energy.

And this is generally our experience with classical systems. Balls roll down hill, things

like to find the lowest energy state they can occupy.
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Figure 24.2.

But not all systems work this way. Quantum systems often very much don’t work this

way. And we will need distribution functions for the cases of quantum particles. We

have two cases, one with wavicales with integral spin and another with wavicles that

have half integer spin. Let’s start with the integer spin case.

fBE (E) =
1

ABEe
E

kBT − 1
Let’s give a name for for particles with integer spin. We will call them Bosons. And

the distribution function for Bosons is called the BoseEinstein distribution function

after the researchers that worked to describe it. The distribution function looks like

this: Note that as E → 0, N (E) becomes infinite. This means that all the particles try

to occupy the lowest energy state. This is not an easy condition to achieve. E must

be very small, but when it does happen the we call it a BoseEinstein condensate. The

word “condensate” refers to energy, it does not mean becoming a liquid. The particles

“condensate” to the lowest energy state. There must be quite a bit of math involved in

finding the BoseEinstein distribution function so let’s postpone that for a minute (or

until a junior level thermal class) and talk about our second case.

We know particles that have half halfintegral spin. Electrons and protons both do. The

distribution function for half integral spin particles looks like this

fFD =
1

AFDe
E

kBT + 1
This distribution function is called the FermiDirac distribution, again after the

researchers that developed it. Particles that have halfinteger spin are called Fermions.

The normalization constant AFD isn’t so constant. It has an energy dependence.

AFD = e
− EF
kBT

And even this is an approximation. But for the region where it holds true we can write
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the FermiDirac distribution as

fFD =
1

e
− EF
kBT e

E
kBT + 1

=
1

e
1

kBT
(E−EF ) + 1

The energy EF is called the Fermi energy. Again we will postpone the derivation.10

But a graph of the FermiDirac distribution looks like this.

Note that at some point energies lower than the Fermi energy the distribution function

fFD (E) = 1. This means that all the allowed states with these energies are full. And a

bit higher than the fermi energy all the allowed states are all empty. But right around

the Fermi energy there is a transition. This means that, if there is an available energy

state with that energy (think g (E)) then it could be occupied by a molecule. We can

represent g (E) with our usual energy diagram with occupied states designated with

orange circles. We can match this with the FermiDirac distribution function to show

which states will be full.

10 If you are curious, see Keith Stowe, Introduction to Statistical Mechanics and Thermodynamics,
John Wiley & Sons, 1984. Both the FermiDirac and BoseEinstein distributions are derived in chapter 24.
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The lower states are all full where fFD (E) = 1. But near E = EF we can see we have

reached the upper shells for our material’s atoms and the states start to be open. States

directly above EF will be occupied by electrons from states just below EF . That is

what the fFD curve tells us in the region about EF .

An important special case is if the temperature is right at absolute zero, T = 0K, then

the Fermi Dirac distribution transitions instantaneously from 1 to 0 right at EF

Of course we have just sketched g (E) and f (E) separately so far. We could combine

them into a sketch of N (E) = V g (E) f (E). The degeneracy function g (E) increases

with E and fGD (E) is constant for a while then falls off quickly. Then N (E) would

look something like this for the T = 0 case
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This is a ground state scenario where all the electrons are at the lowest energies possible

(see the energy diagram insert in the last figure).

If the energy increases so that T > 0 then N (E) changes to be more like

Notice that as the temperature goes up, our particles can move to a higher state.

Classical MaxwellBoltzmann distribution function

So now let’s get one of these distribution functions. We will do the classical case and let

our upper division quantum classes do the quantum cases. But this will get you ready

for your upper division thermodynamics class where MaxwellBoltzman will be used.

Last lecture we argued that a classical distribution function should look exponential in

energy.

f (E) = Ae−bE

where A and b are likely constants (in energy) and we even did an example
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For classical systems like a gas of atoms it is traditional to write this slightly differently

fMB (E) = A−1e−E/(kBT )

where b has been written as one over Boltzmann’s constant, kB = 8.617385× 10−5 eV
K

multiplied by T, the temperature of the gas. This form is due to the work of Maxwell

and Boltzmann (not surprising), thus the MB subscripts. The constant A−1 is our

normalization constant that is chosen to ensure that the integral	
dN =

	
N (E) dE =

	
V g (E) f (E) dE = N

so we don’t miss any particles (or magically invent some that are not there by

miscalculating). This is a normalization integral, and we know from a normalization

integral we should be able to find the coefficient A−1.

We know a way to write g (E) for a gas from last lecture, That should apply to our case,

since the MaxwellBoltzmann distribution is for gasses.
	

N (E) dE =

	
V

�

4π (2s+ 1)

√
2 (m)

3
2

h3

√
E

��
A−1e−E/(kBT )

�
dE

N = V A−1

�

4π (2s+ 1)

√
2 (m)

3
2

h3

�	 ∞

0

E
1
2

�
e−E/(kBT )

�
dE

We can use an integral table for this, but we need to look in the definite integral section.

My table gives 	 ∞

0

x
1
2

�
e−nx

�
dx =

1

2n

�
π

n
so for us n = 1

kBT
and our integral becomes

	 ∞

0

E
1
2

�
e−E/(kBT )

�
dE =

1

2
�

1
kBT

�
�

π�
1

kBT

� =

√
π (kBT )

3
2

2
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Putting this back in our normalization equation gives

N = V A−1

�

4π (2s+ 1)

√
2 (m)

3
2

h3

��√
π (kBT )

3
2

2

�

so we can find A−1

N

V

�
4π (2s+ 1)

√
2(m)

3
2

h3

��√
π(kBT )

3
2

2

� = A−1

Which we can simplify a bit

A−1 =
Nh3

V
�
2 (2s+ 1)

√
2
� �

(mπkBT )
3
2

�

A−1 =
Nh3

V (2s+ 1)
�
(2mπkBT )

3
2

�

A−1 =
N (hc)3

V (2s+ 1) c3
�
(2mπkBT )

3
2

�

A−1 =
N (hc)3

V (2s+ 1)
�
(2mπc2kBT )

3
2

�

Then our energy distribution of gas molecules is

N (E) = V

�

4π (2s+ 1)

√
2 (m)

3
2

h3

√
E

��
A−1e−E/(kBT )

�

= V

�

4π (2s+ 1)

√
2 (m)

3
2

h3

√
E

�

 N (hc)3

V (2s+ 1)
�
(2mπc2kBT )

3
2

�e−E/(kBT )





and many things cancel

N (E) = V
�
4π
√
2 (m)

3
2
√
E
�


 N (c)3

V
�
(2mπc2kBT )

3
2

�e−E/(kBT )





=
�
2
√
E
�


 N�√
π (kBT )

3
2

�e−E/(kBT )





=
2N

√
π (kBT )

3
2

√
Ee−E/(kBT )

and this is the MaxwellBoltzmann distribution that we used earlier. For N = 2× 1020

and T = 300K this function looks like this



Classical MaxwellBoltzmann distribution function 391

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

1e+21

2e+21

3e+21

4e+21

E(eV)

N(E)

Note that even though this is for “classical” gases, we use spin state degeneracy in

forming this distribution function! Quantum behavior is everywhere!

Molecular speeds

In PH123 we encountered the MaxwellBoltzmann distribution as a distribution of

molecular speeds. In our classical ideal gas model, all we had was kinetic energy so

E =
1

2
mv2

and we can put this into the MaxwellBoltzmann distribution

Recall that our number of molecules is a number, it doesn’t matter how we count it so

N (v) dv = N (E) dE

N (v) = N (E)
dE

dv

N (v) =
2N

√
π (kBT )

3
2

√
Ee−E/(kBT )

dE

dv

=
2N

√
π (kBT )

3
2

�
1

2
mv2e−(

1
2mv

2)/(kBT ) (mv)

= N

�
2

π

�
m

kBT

� 3
2

v2e−(mv
2)/(2kBT )

This is called the MaxwellBoltzmann velocity distribution. For N = 2 × 1020 and

T = 300K for diatomic oxygen this distribution looks like this.
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MaxwellBoltzman velocity distribution for 02 at 300K where N = 2× 1020

Doppler Broadening

Let’s use what we can do with this idea of finding the number of particles with a

particular energy, or velocity, etc. Let’s take on the problem of line spectra of a gas.

We have dealt with the spectra from single atoms and single molecules. But in a gas

the gas molecules move around. And we know about Doppler shift. We should worry.

The line spectra frequencies must be affected by the motion of the molecules. Where

we would have one very small ∆E given only by the uncertainty relation due to the

∆t it takes for an electron to jump shells, we now expect to have a bigger uncertainty

because some molecules will be moving away from us giving a smaller frequency and

some will move toward us giving a higher frequency and some will be moving parallel

to our view giving just the frequency

f =
∆E

h

Because Doppler shift only depends on the component of the velocity along our view

direction, this is really a one dimensional problem. So let’s try a degeneracy function

that looks like this

g (nx) dnx =

�
2s+ 1

L

�
(dnx)

That is, we have allowed for spin angular momentum, and kinetic energy in the x

direction as the two ways to give particles energy. We have L as the length of our

onedimensional system. In three dimensions, g (E) is per unit volume, but this is a

one dimensional case so our g (E) will be per unit length, and that is where the L came

from. L is the length of our collection of gas molecules. As usual, we need to go from

g (nx) dnx to g (E) dE. But because we only have kinetic energy to deal with it is

actually a little more insightful to form g (v) dv
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Again we have primarily kinetic energy for a group of gas molecules so

E =
p2

2m
and this is a one dimensional case so

E =
p2x
2m

and from our previous gas problems we know that we get standing waves in our gas

cavity and the energy states look like

En =
n2xh

2

8mL2

and our gas molecules energy is kinetic energy is

(mvx)
2

2m
=

n2xh
2

8mL2

so then

v2x =
n2xh

2

4m2L2

vx =

�
n2xh

2

4m2L2

vx =
nxh

2mL
The dvx is just

dvx =
h

2mL
dnx

and solving for dnx gives]
2mL

h
dvx = dnx

so our degeneracy function is

g (vx) dvx =
2s+ 1

L

�
2mL

h
dvx

�

=
2m (2s+ 1)

h
dvx

and then our number of particles with speed vx can be found

dN = N (vx) dvx = Lg (vx) f (vx) dvx

where we can use our MaxwellBoltzmann velocity distribution again to find f (vx) .

We have g (vx) so

dN = N (vx) dvx = L

�
2m (2s+ 1)

h

�
f (vx) dvx

We use the MaxwellBoltzmann distribution because our gas molecules are

nonrelativistic and their energy of motion is kinetic, not quantized.

f (E) = A−1e
− E
kBT

then

dN = N (vx) dvx = L

�
2m (2s+ 1)

h

��
A−1e

− E
kBT

�
dvx
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dN = N (vx) dvx = L

�
2m (2s+ 1)

h

��
A−1e

−
1
2
mv2x
kBT

�
dvx

dN = N (vx) dvx = L

�
2m (2s+ 1)

h

��
A−1e

− mv2x
2kBT

�
dvx

We will need to normalize to find A−1

N =

	
dN =

	 ∞

−∞
L

�
2m (2s+ 1)

h

��
A−1e

− mv2x
2kBT

�
dvx

where we need both positive and negative velocities so we have positive and negative

limits of integration.

N = L

�
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h
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−∞
e
− mv2x
2kBT dvx

we can use the form 	 ∞

−∞
e−u

2

du =
√
π

by defining
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mv2x
2kBT

so
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We can use these in our integral
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which gives an expression for A−1

Nh

2Lm (2s+ 1)

�
m

2πkBT
= A−1

So our number of particles with speed vx can be found from

N (vx) dvx = L

�
2m (2s+ 1)

h

���
Nh

2Lm (2s+ 1)

�
m

2πkBT

�
e
− mv2x
2kBT

�
dvx

= N

�
m

2πkBT
e
− mv2x
2kBT dvx

Which tells us that our velocity distribution function is

N (vx) = N

�
m

2πkBT
e
− mv2x
2kBT
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which is a Gaussian function. For H2 with N = 2× 1020 and T = 300K we would

have
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We have found the distribution of molecules with each speed. But what we really want

is to know what this does to the frequency of light emitted by the molecules. We want

to know how many atoms will emit frequencies between f and f + df so we want

dN = N (f) df

and now we need a little bit of relativity. We need the relativistic Doppler shift

equations we derived earlier in this course. We got

fB = fA


�
1− vBA

c

�


�
1 + vBA

c

�

where our A frame is the frame of the moving molecule, and our B frame is the lab

frame. We can use vx = vBA. Our speeds are small, so let’s make some approximations

fB = fA


�
1− vx

c

�


�
1 + vx

c

�

=
fA


�
1− vx

c

�
�
1− vx

c

�


�
1 + vx

c

�
�
1− vx

c

�

= fA

�
1− vx

c

�
��

1− v2x
c2

�

and since vx ≪ c

fB ≈ fA

�
1− vx

c

�
�
(1− 0)

= fA
�
1− vx

c

�

We can choose this to change variables

fB = fA
�
1− vx

c

�
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so
fB
fA

=
�
1− vx

c

�

fB
fA
− 1 = −vx

c

c

�
1− fB

fA

�
= vx

and

dvx =
c

fA
dfB

We, in the lab see fB. Let’s drop the subscript from this and just call it f, the frequency

we see

N (f) df

= N

�
m

2πkBT
e
−
m

�
c

�
1− f

fA

��2

2kBT
c

fA
df

=
Nc

fA

�
m

2πkBT
e
−
m

�
c

�
1− f

fA

��2

2kBT df

which is a Gaussian function. For H2 with N = 2× 1020, T = 30000K, and fo = 8.

039 8× 1013Hz we would have
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f
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and this shows us that the line indeed is broader because the molecules are moving.

This is what a spectrograph will actually see.

How do we know when to use quantum statistics?

The general rule of thumb is that particles must be physically separated by more than a

wavelength to be considered classical. If we consider thermal energy for our particles,

then the amount of energy is about kBT and it will be mostly kinetic so if we set

p2

2m
= kBT
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then

p =
�
2mkBT

and

p =
h

λ
so

λ =
h

p
=

h√
2mkBT

=
hc√

2mc2kBT
The spacing between particles can be approximated by using the density

ρ =
N

V
The spacing between particles is then roughly

d =
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We would consider the situation to be classical if
λ

d
≪ 1
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2mc2kBT
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Notice that for the MaxwellBoltzmann distribution our amplitude would be

A−1 =
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3
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�
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so if λ/d≪ 1 then

A−1 ≪ 1

then we can calculate A−1 and test it to see of a classical treatment would be enough.

Examples of finding energy distribution functions

Let’s try to use what we have done in finding N (E) for some important cases.

Thermal radiation and the Plank Function

Let’s go back to our photons in cavity. This case is a bit of a strange case. We expect



398 Chapter 24 Probability Distribution Functions and Quantum Statistics

to use the BoseEinstein distribution function because photons have integer spin. But

there is a problem. The photons are particles that can be destroyed and recreated. Then

in our radiator cavity, then N will constantly change. Then ABE can be variable. We

will start with being interested in the shape of N (E) more than the numeric value. So

let’s set ABE = 1 and we look at the shape only. We have

dN = N (E) dE = V g (E) f (E) dE = V
8π

(hc)3
E2 1

e
E

kBT − 1
dE

The photons will have different energies. The number of photons with energy between

E and E + dE would be
�
EdN but for small dE we could approximate this by just

EdN = EN (E) dE. Let’s find the energy density in the cavity.
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EN (E) dE
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E3 1
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We can find from a table that 	 ∞
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and we can use this with
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which is the StefanBoltzmann law. And if we remember

E =
hc

λ
and

|dE| =
����
hc

λ2
dλ

����
so we can recognize

u (E) dE =
8π

(hc)3
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�3
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e
E
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hc
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dλ

u (E) dE =
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λ5
1

e
E
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dλ

And if you recall from PH220

I = u
c

4
we have

I =
2πhc2

λ5
1

e
E

kBT − 1
which is the Planck function. Now we can see what was meant way back at the

beginning of our course when we said that Plank envisioned the cavity radiator as not

having energies of just any energy. The situation is that the photons reflect making

standing waves. Those standing waves are quantized like all standing waves. The

quantized energies that plank assumed just come from the allowed energies of the

standing waves.

BoseEinstein Condensation

Let’s go back to the BoseEnistein condensate. We have the BoseEinstein distribution

function

fBE =
1

ABEe
E

kBT − 1
and let’s consider the density of states function for a gas

g (E) = 4π (2s+ 1)

√
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3
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√
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But instead of using our normalization integral, let’s find the maximum number of

particles that we can include in volume V. We want to maximize this, so we need to
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minimize the denominator. To do that we will make ABE ≈ 1 so that
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We have seen this before, let’s do it numerically this time.
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so we want our integral to look like this. We are close. If we let

u =
E

kBT
ukBT = E

dukBT = dE

Then
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@@@@ I get a different coefficient than Krane @@@@@

This is the maximum that should be in a volume V. But we could increase Nmax by

putting more particles into the volume, or by lowering the temperature. But something

is wrong with our analysis. If this is the maximum, we should not be able to add to the

maximum. And it takes a minute to figure out what our problem is. Let’s look at the

density of states again.

g (E) = 4π (2s+ 1)

√
2 (m)

3
2

h3

√
E

This says that if E = 0 then g (0) = 0 But there must be a ground state. So there must

be a possibility of a forbidden transition to E = 0 and this transition isn’t subject to our
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maximum value of N. This is the “condensing” action, if the temperature is low enough

the particles will transition to the E = 0 state and that state isn’t bound by our g (E) so

it doesn’t have a restriction on how many particles can be there. What we calculated in

Nmax was the number of particles that are not in the ground state because the ground

state wasn’t in our g (E) . The total number of particles has to be

Ntotal = N0 +Nex

where Nex is the particles in the excited states, and Nex is our Nmax.

We really should find the temperature at which this transition occurs. We can use what

we found for Nmax, but we want the case when all the particles will just barely not be

in the ground state so let
�

Ntotal

V (2.31516)π (2s+ 1)

� 2
3

=
2mkBT

h2
�

Ntotal

V (2.31516)π (2s+ 1)

� 2
3 h2

2mkB
= TC

below TC we will get particles starting to form a condensate.





25 More Probability Distribution

Functions and Quantum

Statistics

Fundamental Concepts in the Lecture

• Conduction in metals can be modeled as a “gas” of free electrons inside the pieces
of metal.

• Heat capacity at low temperatures can be modeled using the FermiDirac distribution

• Both use the idea of N (E) dE = V g (E) f (E) dE

We found that we could use our description of the number of particles with a particular

energy N (E) as being the product of a degeneracy function g (E) and a distribution

function f (E) such that N (E) dE = V g (E) f (E) dE allowed us to understand the

Planck function and BoseEinstein condensation. There are so many more phenomena

that we can explain using statistical mechanics. This is so true that we have a whole

class to deal with thermal energy for senior’s in physics. For now, let’s take on two

more important effects, the conduction of electrons in metals, and heat capacities for

solids (at least at low temperatures).

Free Electron Model of Metals

We are going to need to understand the quantum properties that make some elements

conductive metals. We know already that metals have a loosely bound electrons in their

highest electron energy level. We also know that as we bring atoms together the energy

states split, making many states that are close together. This means the weakly bound

electrons are allowed to take on energy and jump up into a vacant energy state. Here is

our energy vs. separation distance graph again.
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where ro is the equilibrium distance. Since ro is where the atoms usually are on this

graph. We will not draw the whole diagram. We will instead just draw a slice of this

last graph right around r = ro. Here is an example.
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3p

1s

2s

2p
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And note that up in the 3s and 3p state region we have lots of states. But for many

atoms these states are not full. We might have one 3s electron, but because the energy

levels are so close together, that 3s electron can take on energy of almost any value in

the band of energies from the bottom of the 3s region all the way to the top of the 3p

region. And that energy could be kinetic energy. This means the electrons can move!

This is what makes a metal a conductor.

Inside the metal, the outer electrons behave a lot like a confined gas. They are weakly
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interacting with each other and strongly interact with the boundary of the metal. We

can describe this situation with a FermiDirac probability distribution

fFD =
1

e
(E−Ef)
kBT + 1

and with a multiplicity function for individual electrons

g (n) dn =
1

8

d

V
4πn2dn

where d is the degeneracy for our “free” electrons (where we can put energy in the

electrons, themselves) and the rest we know comes from forming standing waves in a

container (where we can put energy by moving the electrons). Electrons can only have

±1
2 so we would expect d = 2.

The electrons will be confined to our piece of metal. This is a little like a three

dimensional infinite potential well. We expect that the electrons will act a lot like a

“gas” confined to a potential well that they can’t escape. We can guess that the energy

states would be like those from the infinite potential well.

E =
h2n2

8mL2

We once again we can write

n2 = E
8mL2

h2
and, taking a derivative gives

2ndn = dE
8mL2

h2
We can write just n as

n =

�

E
8mL2

h2
so dn is

dn =
1

2

�
E
8mL2

h2

�− 1
2

dE
8mL2

h2

which we can simplify

dn =
1

2

1√
E

�
8mL2

h2

� 1
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dE

so our degeneracy function would be

g (E) dE =
1

8

d

V
4π

�
E
8mL2

h2
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1√
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�
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h2
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and we want to simplify this a bit. We can combine the 8, m, and L parts

g (E) dE =
1

16

d

V
4π
√
E

�
8mL2

h2

� 3
2

dE

or even take out the 8
3
2

g (E) dE =
1
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d

V
4π
√
E16

√
2

�
mL2

h2

� 3
2

dE
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which cancels the 16

g (E) dE =
d

L3
4π
√
E
√
2

�
mL2

h2

� 3
2

dE

Applying the 3/2 power gives

g (E) dE =
4πd

√
En
√
2m

3
2

h3
dE

and finally, putting in d = 2

g (E) dE =
8π
√
E
√
2m

3
2

h3
dE

Note what we have done. We considered where we could put energy into our particles

(electrons in this case, with spin states) and where we could put energy into the system

by moving our particles (making standing waves). This is the same pattern we used for

gases and photons, etc.

Combining our g (E) with our f (E) we would have a number of particles as a function

of energy

N (E) dE = V

�
8π
√
E
√
2m

3
2

h3

�

 1

e
(E−Ef)
kBT + 1



 dE

Let’s put all the factors of energy in one place

N (E) dE = V
8π
√
2m

3
2

h3

√
E

e
1

kBT
(E−EF ) + 1

dE

We need the value of EF for the particular metal. We can find this by normalizing for

the spacial case when T = 0. Then all the electrons will be in the lowest energy state

we can get for our outer electrons. And since we said we would have one conduction

electron in the highest energy orbital per atom, we know that N is equal to the number

of atoms. The number of conduction electrons should be

N =

	 ∞

0

V
8π
√
2m

3
2

h3

√
E

e
1

kBT
(E−EF ) + 1

dE

=
8V π

√
2m

3
2

h3

	 ∞

0

√
E

e
1

kBT
(E−EF ) + 1

dE

and we want to do this integral at T = 0.

Let’s look at the FermiDirac distribution as a function of T. Suppose we take

E −EF = 2eV, then

f (2 eV) =
1

e
1

8.617385×10−5 eVK−1T (2 eV)
+ 1

which looks like this
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Now suppose we take E −EF = −2 eV then
1

e
1

8.617385×10−5 eVK−1T (−2 eV)
+ 1

which looks like this
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so we see that if E < EF then fFD = 1 and if E > EF then fFD = 0 so we can write

our integral just from 0 to EF

N =
8V π

√
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2

h3
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Solving for EF gives

EF =

�
N

3h3

V π (8× 2)
√
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3
2

� 2
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=
h2

2m

�
3N

8V π

� 2
3

=
h2c2

2mc2

�
3N

8V π

� 2
3

which is an expression for the Fermi energy.

Let’s look at this for, say, N = 1 × 1020 electrons in a V = 1cm3 piece of metal.
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Recalling that m = 0.51099906MeV/c2 for electrons, then

EF =
(1239.8 eVnm)2

2 (0.51099906MeV)

�
3
�
1× 1020

�

8 (1 cm3)π

� 2
3

= 7. 855 6× 10−2 eV

So for T = 20 we would get a graph of N (E) that looks like this
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The Fermi energy is indicated by a green dashed line. At T = 300 we can see that more

electrons will be free to move by noting that the curve has a higher number on the right

of the Fermi energy.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0.00

0.05

0.10

0.15

0.20

0.25

E

N(E)

This, of course, means that the number had to go down to the left of the Fermi energy

because we have a constant amount of electrons.

Heat capacity of Dilute Solutions of in 4He

As a final example, let’s look at the origin of heat capacities. Remember that a heat

capacity relates a change in temperature to a change in internal energy

Q = C∆T
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or

C =
∆E

∆T
with the limit for small changes dT of

C =
dE

dT
So our strategy would be to find an expression for the energy and take a derivative with

respect to temperature.

We will do more on this later, so for now let’s do the heat capacity of dilute solutions of
3He in 4He. This is a pretty strange, specific example. But it is a cool one.

The isotope 3He is rare, occurring at about 1 part in 106. The two isotopes react

chemically just the same, but we know 4He has matching electrons, matching protons,

and matching neutrons. Each has the possibility of ms = ±1
2 . So as long as they are

matched, the total spin is 0 in each case. So 4He has integer spin and is a Boson. But

if we remove one neutron, then the atom would have spin of ±1
2 from the remaining

neutron. And this would make 3He a Fermion. And the Pauli exclusion principle would

apply. Then if we cooled our helium sample, the 4He would become a superfluid

with all the 4He atoms in the ground state at about T = 2.17K. But the 3He can’t do

this because of it’s half integer spin. So we would have a superfluid with 3He atoms

dispersed in it. This is like a very strange “gas” of 3He. And we now have experience

with very strange “gases.”’

This gas would follow FermiDirac statistics because 3He is a fermion. So we would

expect

N (E) dE = V g (E)



 1

e
(E−Ef)
kBT + 1





which should look something like this

E

N(E)

as we have seen before.

First note that if T = 0 then

N (E) dE = V g (E) 1

so long as E < EF just as we found before. If we let the temperature rise to T then we
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get

N (E) dE = V g (E)
1

e
(E−Ef)
kBT + 1

Both are plotted in the next figure which is like our previous graph, but expanded to

show just the region around EF .

Let’s take a small number of 3He atoms, dN that have an energy of about E = EF − ε.

Then

−ε = E −EF

and we could write our equation for T > 0 as

N (E) dE = V g (E)
1

e
(−ε)
kBT + 1

If we excite the atoms by changing the temperature we move the atoms from the region

marked dN in the figure to the matching region at EF + ε. The atoms would gain

energy 2ε. We could approximate the energy gained by all the molecules in the shaded

group as

dE = 2εdN

The number of particles in the group is approximately dN = Nex (E) dε where

Nex (E) is the number of particles to move as a function of energy and we can find Nex

by taking the number of particles with a particular energy E at T = 0 (dashed squarish

curve) and subtracting off the number of particles with energy E when the temperature
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is T (red solid curve) right at E = EF − ε

Nex = N (EF − ε)T=0 −N (EF − ε)T

= V g (EF − ε) 1− V g (EF − ε)
1

e
(−ε)
kBT + 1

= V g (EF − ε)

�

1− 1

e
(−ε)
kBT + 1

�

To find the heat capacity we want to find dE and take a derivative with respect to T. So

next let’s find

dE = 2εdN

= 2εNex (ε) dε

= 2εV g (EF − ε)

�

1− 1

e
(−ε)
kBT + 1

�

dε

and integrate it to find the energy of all the excited particles.

Eex =

	 0

EF

2εV g (EF − ε)

�

1− 1

e
(−ε)
kBT + 1

�

dε

This will be the entire yellow shaded area in the last figure. The limits of integration

start at EF and go to zero so we pick up the entire yellow area.

Eex = 2εV

	 0

EF

g (EF − ε)

�

1− 1

e
(−ε)
kBT + 1

�

dε

We can approximate this by noting that g (EF − ε) varies much more slowly than fFD

so we could say that

g (EF − ε) ≈ g (EF )
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and take it out of the integral

Eex = 2εV g (EF )

	 0

EF

�

1− V
1

e
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kBT + 1

�

dε

Now we want

C =
dEex

dT
so then

C =
d

dT
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and we can take the derivative inside the integral

C = 2V g (EF )
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which looks like a fun integral to do.

Let’s do a u substitution with

u =
(−ε)

kBT
ε = −ukBT

then

du =
−1
kBT

dε

dε = −kBTdu

C = 2V g (EF )
1

kBT 2

	 0

EF

�
eu

(eu + 1)2
(−ukBT )2

�

(−kBTdu)

= 2V g (EF )
(kBT )

3

kBT 2
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�
eu
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2 u

2

�

du

We can approximate again by noting that our integrand is nonzero only near EF . Past

EF our yellow region has no area. So it won’t hurt to integrate out further. So let’s set

the lower limit to∞. Then

C = 2V g (EF )
(kBT )

3

kBT 2

	 0

∞

�
eu

(eu + 1)2
u2

�

du

Apparently a table gives
	 0

∞

�
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u2

�

du =
π2

6
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so

C = 2V g (EF )
(kBT )

3

kBT 2

π2

6

C = V g (EF ) k
2
BT

π2

3
We can borrow an earlier result for g (EF ) for a gas

g (EF ) = 4π (2s+ 1)

√
2 (m)

3
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h3
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and we remember that for our 3He we can only have two spin states, ±1/2, so

g (EF ) = 4π (2)

√
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We found earlier that
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Solving for V gives
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so, putting in g (EF ) and V our heat capacity becomes
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2EF
Note that we made many approximations, so this form won’t work for all T . But for

small T it does, well, okay.

We will return to heat capacities in the near future. But the idea is to show that we can

get real physical results with our determination of N (E) dE. And with many particles

we usually need to attack the problems this way.





26 Solids and Solid State

Physics

Technically we started looking at solid state physics in our last lecture when we took on

finding heat capacities. But liquid helium is not really a normal material and it’s really

not so solid. So in this lecture let’s take our quantum model for atoms and try to explain

the behavior of solids. This must work out for our quantum model to be correct. So

this can be a further test of our quantum model for atoms. We will see that this works,

but solids are complicated, so our analysis will be complicated too. A more complete

picture of solid state physics is available in our solid state physics class.

Fundamental Concepts in the Lecture

• Ionic bonds create solids with specific crystal structures

• Covalent and metallic bonds form less geometrical bonds

• Quantized vibrations are called phonons

• Phonons solve our problems in forming heat capacities of solids

Structure and bonding of elemental solids

There are three types of elemental solids that come from our types of bonding. Ionic

solids, covalent solids, and metallic solids.

Ionic solids

Molecules that form ionic bonds are held together by Coulomb forces. These Coulomb

forces can attract any other ion of the right charge. The ions can form into large

structures. In such a large groups of ions the atoms are not really participating in

molecular bonds (they don’t have shared wavefunctions). They are just bound together

electrically. The ions will try to form into the lowest energy state. This process builds
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closely packed structures. Often they are in cubic patterns. One possibility is a simple

cubic

But many ionic solids pack in more ions. One way to do this is to put an ion in the

center.

This is called body centered cubic structure or bcc. The solid looks like this

NaCl forms such a crystal. The small blue ions are the sodium, the larger green ions are

the chlorine. There are other cubic structures that can form. If we add another ion to

the face of each side of the cube we get a facecenterd cubic structure or fcc.
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CsCl forms such a solid structure

The large blue sphere’s are the Cs and the Cl are the small green spheres.

Ionic solids are hard, and all the electrons are involved in the bonding and held in full

shells, so the crystals are likely clear in the visible because visible photons can’t move

the electrons to cause absorption.

NN Separation (nm) Cohesive energy (kJ/mol) n Structure
NaCl 0.281 769 9 fcc
CsCl 0.356 657 10.5 bcc

We won’t do a lot of calculations with solids, but let’s try one. It is traditional to

calculate the attractive Coulomb potential for a crystal. This is potential energy is just

due the Coulomb force on one atom due to all the other atoms. The atoms are mostly

neutral except for the ionic “shared” electrons. The sharing of electrons between two

of the atoms creates separated charge. This separated charge is the reason the crystal

sticks together. To calculate the potential energy we need to alternate positive and

negative contributions. Each atom would have six neighboring atoms a distance r away.
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And 12 next nearest neighbors, and so forth.

UC =
� q1q2
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The factor α is purely geometric

α = 6− 12√
2
+

8√
3
+ . . .

and for the two cases

αfcc = 1.7476

αbcc = 1.7627

Of course there is also a repulsive force which is approximately due to the Pauli

exclusion principle because we are dealing with electrons of spin ±1/2. Let’s

approximate this as

UR =
A

Rn

where the n is in the 8− 10 range. We won’t derive this in this class.

Then the total potential energy would be

U = UC + UR

=
e2

4πǫor
(−α) +

A

rn

Finding the minimum of the energy well can give a value for A
dU

dr
=

1

4πrn+2ǫo

�
rnαe2 − 4πAnrǫo

�
= 0

rnαe2 = 4πAnrǫo
rnαe2

4πnrǫo
= A

rn−1αe2

4πnǫo
= A
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The binding energy is

B = −U (ro) = −
e2
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But we have an equal number of positive and negative ions in an ionic solid. So if we

had a mole of negative ions we would have a mole of positive ions. That is a total of

2NA ions per mole. Think if we had two ions bound together in the solid, then we

would need the binding energy from the first ion interacting with all the other atoms.

Same for the second. But in this we would include the interaction between the first and

the second ion, and then the second and the first. But these are the same interaction, so

we would be double counting. The cohesive energy is then

Ecoh =
1

2
B (2NA) = BNA

We could calculate the cohesive energy for specific substances (which might happen in

a homework problem).

Covalent solids

Covalent solids are not as orderly as ionic solids. This is because covalent bonds are di

rectional, governed by the orbital structure and these solids are held together by actual

bonds (not just Coulomb forces). Carbon forms this kind of bond with a tetrahedral

shape, and that forms tetrahedral shaped solids.
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NN Separation Cohesive energy (kJ/mol)
C (diamond) 0.154 710

But of course, this is just one of many patterns possible governed by the orbital structure

of atoms.

Metallic Bonds

Metallic bonds are different because they are not based on molecular bonds at all. The

atoms of the metal share the valence electrons to form our “gas” of electrons. The metal

is held together because the positive ions are attracted to the electron gas. Metals often

have a close packed hexagonal crystal form.

Molecular Solids

We saw that for ionic solids we started with diatomic molecules that were polar due
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to sharing of electrons. But we could use more complicated molecules that have

separated charge due to their bonds to form solids. For example some molecules have

a permanent dipole moment. Water is one of these. The shared electrons spend most

of their time with the oxygen atom. The oxygen is then negatively charged and the

hydrogen are left positively charged. The molecules are held together by Coulomb

forces between the dipoles. These Coulomb forces are known as van der Waals forces.

With this as a basis, we will take on finding the heat capacities of these solids.

Heat Capacity of Solids

We talked about heat capacities of 3He gas in 4He superfluid. If you are at CERN you

are very concerned about this because you want all of your He to be a superfluid, and

the 3He is not. But otherwise, this might not be a very common concern. But everyday

phenomena from beach breezes (I wish this was an everyday phenomena at BYUI) to

using hot pads while cooking, to city climate warming all depend on the heat capacity

of solid matter. Back in PH123 we studied molar heat capacities for gases.

C =
∆Eint
n∆T

We can try starting with this to build a more complete model this for solids. And it is

good to do this problem because it will lead us to a better quantum approach. So think

of an atom in a crystal matrix. The atom doesn’t have the ability to move much because

it is bonded to the atoms around it. You could mentally envision the atom suspended

in place by springs. It can vibrate on the springs. But it is restricted to a small region

around it’s equilibrium location. We can think of this vibration as happening in any

or all of the three directions x, y,and z, and in each of these directions we have two

ways to have energy, kinetic and potential energy. So all told there are six ways to store

energy, two for each of the three directions. This is 6 degrees of freedom.

And from PH123 we know we get 1
2kBT of energy for each degree of freedom so our

internal energy is

Eint = 6× 1

2
kBT

= 3kBT

If we have a whole mole of atoms in this situation we would have a total energy of

Eint = NA3kBT

and we might remember from PH123 that

NkB = nR
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so

Eint = 3nRT

and our molar heat capacity would be

C =
∆Eint
n∆T

=
3nRT

n∆T
= 3R

= 24. 944
J

Kmol
and we already see a problem. This is a constant! From what we did before at low

temperatures we expect there must be some change in heat capacity with temperature.

We saw this for gasses. But in this formulation there are no jumps to higher rotational

or vibrational states. We just have this number. This approach is called the DulongPetit

method after the researchers that came up with it. But it is not very good. Here are

some experimental measurements at room temperature where it is not always terrible.

Substance T = 293K T = 100K
Aluminum 24.3 12.8
Copper 24.4 16.0
Iron 25.1 12.0
Gold 25.4 21.1
Lead 26.5 23.8

But at T = 100K the numbers are much worse. There must be a temperature

dependence that we have missed.

In an attempt to fix this we could try what we did for 3He in 4He. The approach should

work for any fermions. And the in metals we know we have a “gas” of electrons.

Perhaps the thermal properties of solids are solely due to this “gas” of electrons. We

know the result from what we did before.

C =
k2BNTπ2

2EF
We could write this as

C =
π2

2

nRkBT

EF
or if we choose n = 1

C =
π2

2

RkBT

EF
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Let’s try this for, say, a mole of copper. We need EF

EF =
(hc)

2

2mc2

�
3N

8V π

� 2
3

We will need N/V which we can get from the density of copper

ρ =
M

V
= 8960.0

kg

m3

and each copper atom weights

12u = 1. 992 6× 10−26 kg

The mass of the sample M divided by the mass of an atom should give the number of

atoms
N

V
=

M

VmCu
=

ρ

mCu
=

8960.0 kg
m3

1. 992 6× 10−26 kg
=

4. 496 6× 1029

m3

This is the number density of atoms. If each atom contributes one electron then it is

also the number density of electrons. We get a Fermi energy of

EF =
(hc)2

2mc2

�
3

8π

N

V

� 2
3

EF =
(1239.8 eVnm)2

2 (0.511MeV)

�
3

8π

4. 496 6× 1029

m3

� 2
3

= 21. 401 eV

Then our heat capacity would be

C =
π2

2

RkBT

EF

C =
π2

2

�
8.314510 Jmol−1K−1

� �
8.617385× 10−5 eVK−1

�
(100K)

21. 401 eV

= 1. 652 2× 10−4T
J

K2mol
This is temperature dependant, which is good. But if we calculate C at T = 100K

C = 1. 652 2× 10−2
J

Kmol
Our value is no where near the experimental value. This function for C is actually not

too bad near 0K. But we have clearly missed something. Thermal conduction is not

due solely to free electrons.

Einstein solved this problem. His approach was to look at the atomic oscillations as

another wave function. That wave function could be quantized like any wave function.

Or in other words the vibrations could be looked at as like standing waves that only

allow certain frequencies and therefore have certain energies. Electromagnetic waves

we now know have a quanta of a photon. Mechanical waves can also be quantized and

have a quanta. That quanta is called a phonon. the phonon has energy

E = �ω

This is not too strange. We already found that in atoms and molecules the angular
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momentum was quantized and that gave us space quantization. This is like an extended

form for the motion of] not just the electrons, but the whole atoms. Because the atoms

oscillate in the crystal latus, we can model them as quantum oscillators.

We already studied the quantum oscillator and we found that it gave energy values of

En = �ω

�
n+

1

2

�

Now we can look at this another way. Our oscillator energies are integer increments, or

we have an increment of a phonon.

Einstein postulated that phonons obey BoseEinstein statistics. So he chose

f = fBE =
1

e
E

kBT − 1
and he reasoned that one mole of the solid would have NA atoms, and each atom can

oscillate along the three axes, so there could be 3NA oscillators in a mole of the solid.

Then

g (E) =
3NA

V
so

N (E) = V

�
3NA

V

��
1

e
E

kBT − 1

�

but each phonon has energy �ω so

N (�ω) = 3NA
1

e
�ω
kBT − 1

The total number of oscillators would seem to be the integral of this

N =

	 ∞

0

(3NA)

�
1

e
E

kBT − 1

�

dE

But we don’t have continuous energy! We need to evaluate this just at E = �ω. So we

have only

N = (3NA)

�
1

e
�ω
kBT − 1

�

for the lowest state. The total energy would be the number of phonons times the phonon

energy

Etotal = EN = �ωN =
3NA�ω

e
�ω
kBT − 1

which is what we needed to find C. We can now take a derivative

C =
dE

dT
= 3NA�ω

e
�ω
kBT

�ω
kBT 2�

e
�ω
kBT − 1

�2

Einstein defined a term TE = �ω
kB

called the Einstein temperature so we could write our
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heat capacity as

C =
dE

dT
= 3NA�ω

�ω

kBT 2

e
�ω
kBT

�
e

�ω
kBT − 1

�2

C =
dE

dT
= 3NA�ω

TE
T 2

e
�ω
kBT

�
e

�ω
kBT − 1

�2

Multiplying by kB/kB

C = 3NA
kB
kB
�ω

�
TE
T 2

�
e
TE
T

�
e
TE
T − 1

�2

or

C = 3kBNA

�
T 2
E

T 2

�
e
TE
T

�
e
TE
T − 1

�2

to put this in terms of R

C = 3 (1)R

�
TE
T

�2
e
TE
T

�
e
TE
T − 1

�2

where the (1) is a reminder that we have one mole of atoms in our sample. Einstein

tried this on diamond. He found from data that TE = 1300K so then

ω =
kBT

�
=

��
8.617385× 10−5 eVK−1

�
(1300K)

6.5821220× 10−16 eV s

�

= 1. 702 × 1014Hz

and our heat capacity looks like this

0 200 400 600 800 1000 1200
0
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20
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C(J/(Kmol))

which is fantastic improvement over the DulongPetit model. Of course the assumption

that all phonons have the same energy is too restrictive and the curve is wrong near

T = 0.

Debye relaxed this restriction on phonon energy by using the same approach we used
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for a “photon gas” in a cavity. For low temperatures Debye got

C =
12π4

5
R

�
T

TD

�3

where TD is a material dependent parameter called the Debye temperature.

This does better but is still not enough. At low temperatures it turns out that both the

electron heat capacity we calculated before and the phonon heat capacity we just found

are important. So we expect the actual heat capacity to be of the form

C = aT + bT 3

So we can see that we have used our technique of finding the number of particles with a

particular energy for both the electrons and the atoms separately in this case. Clearly

this is a powerful technique, but a complicated one.

But we have strayed from our everyday objects again. The Einstein method is really

quite good for normal earth surface temperatures.

Quantum Conduction

We are alternating between a theory of conduction and a theory of thermal heat

capacity. There is a reason these are tied together. Both electrical conduction and

thermal conduction in metals are accomplished at least in part by the semifree electron

gas.

We have already found that for our electron gas we have

N (E) dE = V

�
8π
√
2m

3
2

h3

√
E

��
1

e
1

kBT
(E−EF ) + 1

�

dE

and we plotted this to find the red curve shown below.

The dashed curves are the FermiDirac distribution

f (E) =

�
1

e
1

kBT
(E−EF ) + 1

�
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and the multiplicity function

g (E) =

�
8π
√
2m

3
2

h3

√
E

�

and we found the Fermi energy for the special case of T = 0

EF =
h2c2

2mc2

�
3N

8V π

� 2
3

but we didn’t find the Fermi energy for higher temperatures. We would have to integrate

N = V

�
8π
√
2m

3
2

h3

�	 ∞

0

� √
E

e
1

kBT
(E−EF ) + 1

�

dE

but this is done numerically. We won’t do it ourselves in this class. But the answer is an

approximate (it’s a numerical solution)

EF (T ) = EF (0)

�

1− π2

12

�
kBT

EF (0)

�2
�

So this is where we are with our quantum theory of electrical conduction. We ended

with a numeric solution.

Before we go on, let’s remember a few things from PH220 and use them to calculate a

classical estimate for the conductivity. The current density

j = σE

and for the electrons in the metal we have a force

F = −eE

and the electrons should have an acceleration of

a =
−eE

m
but we know that the electrons don’t accelerate to the end of the piece of metal. In

PH220 we learned that there is a constant drift velocity vd

vd =
−eE

m
τ

where τ is the average time between collisions between the free electrons and the

atoms. And that is the key, the electrons do accelerate in between collisions with the

atoms. But when the electrons do collide with the atoms of the conductor, they are

slowed. There is a net force do to the collisions much like a drag force, and when the

Coulomb force and the drag force are equal we have a kind of terminal velocity for the

electrons that is our vd.
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We can write the current density is

j = −nevd

= n
e2τE

m
where n is the electron number density, so the conductivity σ is

σ = n
e2τ

m
where the mean time between collisions is given by the

τ =
ℓ

vave
and where ℓ is the mean free path and vave is the average speed of the electrons. If

we treat this classically we could take our thermally based average velocity from

thermodynamics.

vave =

�
3kBT

m
Let’s apply this to copper and see what σclassical would be. For T = 293K

vave =

�
3
�
1.3806568× 10−23 JK−1

�
(293K)

9.1093897× 10−31 kg

= 1. 154 2× 105
m

s

then if we take ℓ to be the spacing between atoms in a copper lattice

ℓ = 0.256 nm

so

τ =
ℓ

vd
=

0.256nm

1. 154 2× 105 m
s

= 2. 218× 10−15 s

We need the number density n

n =
ρNA

M
=

�
8960 kg

m3

��
6.02× 1023 1

mol

�

0.0635 kg
mol

= 8. 494 4× 1028
1

m3

and finally for the conductivity we get

σ = n
e2τ

m

=

�
8. 494 4× 1028

1

m3

� �
1.60217733× 10−19C

�2 �
2. 218× 10−15 s

�

9.1093897× 10−31 kg

= 5. 309 2× 106
1

Ωm

The measured value is

σmeasured = 5.96× 107
1

Ωm
We should expect that the classical value would not be exactly right, but we are more

than an order of magnitude off. This seems very bad. We need a quantum theory of

conduction.
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FermiDirac velocity distribution and electrical conduction

For our electrons, the velocity is related to kinetic energy, so we should be able to

express our FermiDirac probability distribution in terms of velocities. Here is what it

would look like.

Notice that the distribution includes negative velocities. That is as it should be. Our

electrons can go either direction down a wire. Also notice that the distribution is 1 in

the center and falls to zero at a velocity that represents the speed at the Fermi energy.

We could call this the Fermi velocity. Now suppose that we apply an external electric

field in the positive direction. This adds in potential energy, and we obtain a drift

velocity. This shifts the distribution by vd.

On the left side of the distribution we now have a larger number of electrons with

velocities going the opposite direction of the field. On the right side we see we have

fewer electrons going in the field direction. Only electrons that are in the region right

around the Fermi velocity are affected. Thus we could say that only electrons with

v ≈ vF

are free to move. Then we could write

σ =
ne2τ

m
=

ne2ℓ

mvd
≈ ne2ℓ

mvF
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which is a (very) rough approximation (v is really not vF , in fact, it must be larger than

vF on average, but it is not too different...). It is not exactly right, but it would be more

correct than what we have done before. Sadly, this approximation is not enough to fix

our order of magnitude difference in the measured and predicted σ (in fact, it makes

things worse!). But we are not done, the electrons are waves, so we need to consider

wave behavior in calculating our mean free path.

Let’s look at this backwards. Let’s find out what the mean free path would need to be in

order for our model to match the measurement. We could solve for ℓ

σ =
ne2ℓ

mvF
σmvF
ne2

= ℓ

We will need the Fermi velocity, and let’s keep using copper so we know that

EF = 7.05 eV

then

vF =

�
2EF
m

� 1
2

=

�
2 (7.05 eV)

9.1093897× 10−31 kg

� 1
2

= 1. 574 8× 106
m

s
so that

ℓ =
σmvF
ne2

=

�
5.96× 107 1

Ωm

� �
9.1093897× 10−31 kg

� �
1. 574 8× 106 m

s

�
�
8. 494 4× 1028 1

m3

�
(1.60217733× 10−19C)2

= 3. 921 1× 10−8m

= 39.2nm

Copper atoms in a solid piece of copper are about 0.256 nm apart. And we can see

that the mean free path that works is 153. 13 bigger than the atomic spacing! It is easy

to imagin an electron missing an atom or two, but 153 seems rediculous. What is

happening?

The key is to consider that the electrons are waves. Like light photons can go through

a crystal lattice and ignore the atoms, the extended wave functions of the electrons in

the metal can mostly wave around the lattice atoms of the copper. If the lattice were

perfect, the electrons would travel very long distances (from the atomic perspective)

before being affected by an atom. Disturbances in the lattice shorten these distances.

The disturbances come from two different sources. One is impurities in the material,

and the other is thermal motion of the lattice atoms. The first just breaks up the lattice

causing scattering of the electron waves. The second moves the lattice atoms randomly
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also upsetting the electrons waves.

These lattice vibrations are just the same vibrations we looked at when we were

working to find a quantum theory for heat capacities. we know the lattice vibrations

will be quantized. and we call these quantized vibrations phonons.

We can use a one dimensional model to get some idea of how this works. Of course it

can only be an approximation, but let’s save the complete three dimensional problem

for a Solid State Physics Class.

In our one dimensional problem we have incoming electron waves. These electrons can

reflect (scatter) off of lattice atoms.

In the figure we have a reflection from the first atom, and a second reflection from the

second atom. Then the wave going to the left is a combination of two waves, and we

can have constructive and destructive interference! In the case shown, the atom spacing,

a, is just right to cause constructive interference. The path difference would be 2a, so

we would expect constructive interference when

2a = nλ n = 1, 2, 3, . . .

Clearly this can only happen for a wavelength that just matches. The wave number

k =
2π

λ
would then be

k =
2π
2a
n

=
nπ

a
and for an electron wave

E =
p2

2m
=

h2k2

2m
If it weren’t for the reflection off of the lattice atoms, there would be no restriction on k

and the electrons could have any energy. Once again it is the standing waves that make
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a difference. Notice that our energy depends on k2.This gives a potential well that is a

parabola in k

But what happens to wavelengths that don’t fit our criteria for constructive interference?

They act as free particles missing all the atoms. But with the ones that do reflect, we

are removing energy from the wave that won’t travel along the conductor. Instead the

energy at these wavelengths will be stored in the standing waves. And because k is

quantized, so will be E for these wavelengths.

E =
h2

2m

�nπ

a

�2

Since our idea of quantization came from constructive and destructive interference,

this shouldn’t be too much of a surprise. But this means that there are some electron

wavelengths that act as free particles and some that don’t. For the particles that are

reflected, we could still have a phase change on reflection or not, so we have two

possibilities ψ1 and ψ2 that could have different phases. We could draw the probability

density functions for these two cases.

The ψ1 case has a larger probability of detection right around the lattice ions. So

it will feel the Coulomb force of the ions more strongly, and will therefore have a

lower energy. The ψ2 case has a higher probability of being detected in between the

ions (dashed line), and therefore will have a higher energy. and the electrons with
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wavelengths far from λ = 2a/n will have an energy in between these two. We can

draw what would happen as a graph with the electrons energies that can travel through

the lattice unhindered in red. Note there is the sort of curling of the allowed state that

we would expect from FermiDirac statistics.

So we get some electrons traveling with some energies but some energies are not

allowed because of the interactions of the electron wavicles with the atoms. What we

learned in introductory electrodynamics (PH220) was true, but not the whole picture!

But we will leave the more exact calculation in three dimensions for a future solid state

class. Yet, our quantum electron gas model of conduction has taken us pretty far, and

even the weird energy gaps in conduction electrons are experimentally observed. This

is a great success for quantum mechanics. But before we leave conduction we should

consider superconductors.

Superconduction

It was a surprise when superconduction was first discovered. The situation is as shown

in the next figure.
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We expect the resistance of materials to lower with temperature. With lower

temperature the lattice vibrations are less, so the interruption of the electron waves is

less. But for some materials the resistance goes to zero below a material dependent

temperature TC . It doesn’t drop to near zero. It goes to zero. There is no resistance.

There is no heating of the superconductor because of the current flowing through the

superconductor because there is no resistance at all. Normal metals have a power loss

that goes like I2R. But for superconductors R = 0. No heating. How does this work?

Well a quick look at materials that are superconducting tells us that we need more

than just our electron gas model. Copper, for example, is not superconducting at any

temperature, nor is gold nor silver. So the best conductors at normal temperatures are

never superconducting at low temperatures.

In fact, the model for superconducting is that we don’t want the electrons to bypass

the lattice atoms. Instead we want the electrons to cause a disturbance in the lattice

sort of like a boat makes a wake in water. The lattice atoms begin to vibrate, and

these vibrations propagate through the material and interact with another electron.

The two electrons can become coupled through the lattice vibrations (a little like two

people jumping on a trampoline can enhance each other’s motion through the material

of the trampoline). These two electrons now move in tandem. And because they

move in tandem they will have a spin that is integer! They are no longer restricted by

Pauli exclusion, and therefore are not subject to FermiDirac statistics. Let’s use our

population diagrams to show what would happen.

In a normal metal, the electrons do obey FermiDirac statistics. We get a population

graph like the left hand side of the following figure for T = 0
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and when T > 0 we get the right hand graph. We see that we have some electrons with

energy above Ef with non zero probability. But for a superconductor the electrons

form pairs and this changes our graphs. At T = 0 all the electrons form pairs and the

situation is as shown in the left hand side of the next figure.

So the shape of the curve is no longer the same. Notice that the electron pairs have

lowered the energy. This is like a filled shell having a lower energy in an atom. So we

see the electrons all have energy lower than the Fermi energy. When the temperature

is above Tc no pairs form. But when the temperature goes below Tc, the electron pairs

start to form and as the electrons form pairs they drop down in energy. Then the energy

gap around EF starts to form. The gap energy is roughly given by

Eg = 3.53kBT

so it is a function of temperature. As the temperature lowers, more pairs form, and

the gap widens. Each pair makes two fermions into a pair with spin 1 which changes

their wave functions in such a way that they miss the atoms. And this seems to be

superconduction.

Much research has been and continues to be done to find semiconductors with

higher Tc. Ideally we would find something with Tc at or higher than liquid nitrogen

temperatures. But so far the records is about 130K.
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Semiconductors

We have dealt with conductors. Let’s look at what makes something an insulator. To

do this, let’s use our band model and of course FermiDirac statistics. Our band model

tells us that as we bring atoms together their electrical orbits split into many states due

to the Pauli exclusion principle into many molecular orbitals, and then into solid energy

states.



If we have a band that isn’t full, then the electrons can take on energy and that could be

kinetic energy. This is a conductor. Let’s add to our energy graph a rotated graph of the

FermiDirac distribution function. In the next graph, drawn for T = 0, we can see that

the energy states that are full (blue) are the ones below the Fermi energy. The ones that

are empty are those above the Fermi energy.

If we allow the temperature to be above zero (T > 0) then the extra thermal energy will

allow some electrons to move up into higher shells. The FermiDirac distribution shows

this as well.
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But we could have the case where the gap energy Eg is large compared to the thermal

energy (on the order of kBT ). Notice that in this case the FermiDirac distribution has

gone to zero before we reach an allowed state in the upper band. So no electrons are

likely to be in the upper state beyond the gap energy.

Let’s call the upper band in such a situation the conduction band and the lower, filled

band the valence band. The situation in our last figure is an insulator. It would take a

lot of energy to move an electron from the valence band to the conduction band. It is

possible, but normal thermal energy in a daytoday environment won’t do it. So this

material would be a good choice to coat electrical wires. Note that given sufficient
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energy, all materials are conductors. Which is why we must be careful around high

voltage electrical systems .

But what if the situation is the same, the valence band is full, the conduction band is

empty, but the gap energy is not so big?

In this case the gap energy might be on the order of kBT and at normal temperatures

the FermiDirac distribution tells us that some electrons will be able to use the thermal

energy to move from the valence band to the conduction band. And once there they are

free to take on kinetic energy (subject to all the things we have already discussed about

conduction).

Many materials naturally do this. And we have generated more by building crystal

lattices with carefully placed impurities to modify the gap separation.

Note that band theory is an extension of our model beyond the atomic model. From the

atomic structure of magnesium 1s22s22p63s2 would not be a conductor. It’s outer shell

is full. But band theory tells us that if we push many magnesium atoms together their

states will split and form bands. And a good numerical calculation will show that the

3p and 3s state’s bands overlap. That allows the 3s electrons plenty of energy states to

use to take on kinetic energy.
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Ptype and ntype semiconductors

Although we now understand the basics of semiconductors, there are some important

details to understanding how electronic systems work that we need yet to see. So far

we have only considered pure semiconductors. But suppose we put in on atom of the

wrong kind on purpose. Say we have silicon which has four electrons available for

sharing and each Si atom is sharing with four neighbors. But suppose we put in an

arsenic atom that has five valence electrons. This extra electron isn’t participating in the

bonding, so it is relatively easy to break free.

Since there is an extra negative charge in this type of semiconductor let’s call this an

ntype. The material is electrically neutral–all the electrons are matched with protons.

But one electron is easy to remove due to the impurity. And we say that the impurity is

a donor because it can allow an electron to be broken free.

Of course we could go the other way. We could replace one of the Si atoms with
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something like Gallium that only has three valence electrons.

All three electrons would participate in lattice bonds. But there is one bond missing

from the structure. The structure would like to have another electron forming that final

bond. That would likely be a lower energy state if the final bond were filled. So it is a

little like the structure wants another electron, or a little like it has extra positive charge

in the latus because of the lack of a fourth valence electron. Let’s call this type of

semiconductor a ptype. We say the impurity is an acceptor because it would like an

extra electron in it’s energy levels.

Both situations where impurities are added to semiconductors are called doped. But in

thinking about this remember that we put neutral atoms into the latus, so there is no net

charge. Just ntype semiconductors have an electron that is more free because it doesn’t

participate in a bond and ptype semiconductors have one place in the latus where there

is a missing bond. It is the energy of a filled bond state that will make the difference,

not an overall net charge.

A detail that we will need is that when the ptype semiconductors are formed, the

location of the missing bond can change.

An electron can move over from a neighboring atom and provide the missing bond for

the acceptor atom. In effect, the “hole” in the bond structure would move when this

happens. And that is just what we say, we say that there is a new kind of charge carrier,

a hole that effectively has a positive charge because it is formed by the latus structure
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wanting an electron so it can reach a lower energy state.

These different types of semiconductors become useful when we attach a ptype

semiconductor to an ntype semiconductor.

There is a potential energy just because in the ptype semiconductor the latus would

like another bond at the acceptor so the latus can have a lower energy.

On the ntype side, we have electrons that are relatively free to move, so some will

move from the n side to the p side to fill the vacant bonds. There has to be enough

of a tail in the FermiDirac distribution to make this happen or the electrons wont be

able to take on kinetic energy to make the move. But if there is enough of a tail in the

distribution (that is, if there is enough available kinetic energy) a few donor electrons

in the ntype semiconductor move to the ptype semiconductor filling the “holes” in

the acceptor states. This makes the edge part of the ptype region negatively charged

(remember both regions are neutral to begin with), and leaves the edge region of the

ntype region positively charged because it lost electrons. This sets up a separation of

charge and that means we will have an electric field. This electric field will eventually

stop the flow of electrons from the ntype region to the ptype region. This region in the

middle with an electric field is called the depletion zone because it is, in a sense, out of

charge carriers and no more will enter the region without some effort.
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The weak current formed by electrons moving to the p side is called the diffusion

current and in the usual confusing way we label currents, the electrons go from the n

side to the p side, but the current goes the other way because we always label currents

as though positive charges moved the opposite direction the negative charges actually

went.

Of course we have thermal energy on the p side as well and if there is enough of a tail

in the FermiDiract distribution on the p side, then some electrons will gain enough en

ergy to be freed, and the electric field that the depletion current formed will accelerate

these newly freed electrons over to the n side.

This is called the drift electron current but also in our normal strange way of labeling

currents we would say there is a current Idrift going the opposite direction of the drift

electron current. The net effect of these two currents is zero because in steady state, the
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drift and diffusion currents will be the same, but in opposite directions.

We could cause an imbalance in the net current so that charge would flow through this

pn junction. To do this, let’s decrease the energy difference in the conduction band on

the p side. We can do this by connecting a battery with the positive terminal on our p

side and the negative terminal on the n side. The positive connection to the battery can

remove some of the electrons from the p side of the depletion zone and the negative

connection can provide some electrons to remove positive holes on the n side of the

depletion zone. This narrows the depletion zone and therefore reduces the electric

field strength in the zone. And it decreases the electric potential across the depletion

zone. Then more electrons in the n side would have enough energy to participate in the

diffusion current. Then Idiff > Idrift and we get a net current.
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Notice in the diagram that the valence band energy difference between the n side and

the p side of the junction is lower by an amount ∆Vext provided by the battery, and

notice that now many more electrons in the n side can move to the p side through

diffusion. This configuration of a pn junction and a battery is called a forward bias and

it allows current to flow through the junction. Notice that not only did the energy level

change in a forward bias situation, but the depletion zone narrowed further helping the

current flow. Of course if we hook the battery up the other way so it is a reverse bias the

current will have a much harder time flowing. The reverse battery voltage adds to the

potential energy difference in the valence zone between the p and n sides. If the battery

voltage is large enough, the diffusion current will stop all together, and the diffusion

zone will widen further stopping the diffusion current.
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Under these circumstances, all we have is the small drift current that goes in the

opposite direction.

We can approximate the drift and diffusion currents using our statistical physics ideas. I

have repeated the next diagram to remind us of the shape of the tail. We are looking at

the part in green. We know we need FermiDirac distributions, but we are on the very

tail end of the distribution so we can approximate the tail with an exponential.
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In the p side, we have

Np = ζe−(Ec−EF )/kbT

where ζ is a scaling factor of proportionality and Ec is the conduction electron energy.

In the n side

Nn = ζe−(Ec−e∆Vext−EF )/kbT

and

Idiff ∝ Nn

Idrift ∝ Np

and the total current is

I = Idiff − Idrift ∝ Nn −Np

= ζe−(Ec−e∆Vext−EF )/kbT − ζe−(Ec−EF )/kbT

= ζe−(Ec−EF )/kbT
�
e−(−e∆Vext)/kbT − 1

�

= ζe−(Ec−EF )/kbT
�
e(e∆Vext)/kbT − 1

�

which we can write as

I = Io
�
e
e∆V
kBT − 1

�

where

Io = ζe−(Ec−EF )/kbT

which looks like this.
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Notice that this is essentially a oneway current valve. If you hook up the pn junction

in reverse bias mode, almost no current flows, but in forward bias mode the current can

flow. This pn junction is given the electronics name of diode and it is used in devices

that convert alternating current to direct current because it only allows current one

direction.
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Tunneling diodes

There are other diode designs that are of interest. One such design is to make the

depletion zone very thin by increasing the doping.

The heavy doping plus a strong forward bias makes the n side conduction band energies

overlap with the p side valence band energies. Then electrons participating in the

diffusion current are faced with a narrow barrier. And we know about barriers. Because

the electrons are waves, if the barer is narrow enough it the electrons will tunnel through

to the p side valence band. This configuration is called a tunneling diode.

Photo diodes

Another common form of a diode is the light emitting diode or LED. If you have taken

PH250 you have several of these in your Arduino kit and probably made them blink

for your first lab. These diodes use the electrical potential supplied by the battery

to excite electrons into the conduction band. But the diode is constructed so part of

the conduction band is closer to the valence band at one point. And at that point the

electron can jump down to the valence band in the same way an electron in an atomic

excited state transitions to a lower shell.
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And just like when an atomic transition happens, a photon is emitted. The photon will

have energy E = hf that matches the energy of the electron transition. So if we can

dope the diode to adjust the energy difference in the active region of the diode, we can

make any color of photon we want.

Just like with atomic transitions, we could work this process backwards. We could have

a photon absorbed, and use such a diode as a light detector.

Quantum Magnetic Materials

Let’s go back to the idea of magnetism. We found that for atoms, the magnetic moment

was primarily due to the spin of the electrons. But what happens when we put these

atoms into solids? Each atom has its own magnetic moment, and the material will have

an overall magnetic moment that is the sum of all the atomic magnetic moments.

M =
ΣNi=1µi

V
The magnetic moments usually are randomly aligned, soM is usually zero. But if we

put the sample in an external magnetic field, the individual magnetic moments tend to

align. Different substances are more or less able to have all their dipole moments align.

How well each substance is able to have it’s magnetic dipole moments align with the

external field is called the magnetic susceptibility, χ

µoM = χBext
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Diamagnetism

Some materials (e.g. noble gases) have paired electrons. The atomic orbitals are

distorted by a magnetic field as we have seen before. But with all the electrons pared,

they immediately relax when the external magnetic field is turned off. These materials

have a magnetic moment opposite the direction of the external field. This diamagnetic

effect is usually very weak.

Paramagnetism

Other materials have their magnetitic moments align with the external field. These are

called paramagnetic. To form a theory for paramagnetic materials let’s start with an

electron gas in a metal. Recall that electrons have spin angular momentum, so they

have a magnetic moment. The energy in the electrons in the gas would be

E = −µs ·Bapp
where µs = − (e/m) s is the spin magnetic moment of the electrons. Let’s assume an

applied magnetic field is in the zdirection. Then

E = −
� e

m

�
s ·Bapp

= −
� e

m

�
szBapp

= −
� e

m

�
ms�Bapp

= ±µBBapp

where ms = ±1
2 . The electrons with ms = +1

2 will gain energy when they align

with the field, and the electrons with ms = −1
2 will lose energy. The situation is as

described in the next figure.
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The spin up electrons’s distribution is shifted up in energy and the spin down electrons’s

distribution is shifted down. But, the electrons are able to interact. So the higher energy

electrons (orange area in the upper part of the figure) will flip to the lower energy state,

leaving a surplus of spin down electrons. The strip on the graph that represents the

change is roughly

∆E = 2µBBapp

and the number of electrons in this strip would be

∆N =
1

2
V g (E) fFD (E)∆E

where we recognize the FermiDirac distribution and the multiciplicity function g (E) .

And the 1/2 comes from the fact that we start with half of the electrons in the spin

up state and half in the spin down state. Usually ∆E is very small, so the drawing

exaggerates the effect. If we concentrate on very low temperatures, near T = 0, then

we know the FermiDirac distribution goes to 1 for E < EF

∆N =
1

2
V g (E) (1)∆E

=
1

2
V g (E) 2µBBapp

= V g (E)µBBapp

and the switch of the electrons is all near the fermi energy so we can approximate with

∆N ≈ V g (EF )µBBapp
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The z component of the magnetization would be

Mz =
1

V

�

i

µiz

and if we take the case where all the atomic magnetic moments are aligned this is just

Mz =
1

V
µB∆N

and we can write the susceptibility as

χ =
µoM

Bapp
=

µo
1
V µB∆N

Bapp

=
µo

1
V µBV g (EF )µBBapp

Bapp

= µoµ
2
Bg (EF )

Pauli estimated g (EF ) in this case to be

g (EF ) =
3N

2V EF
and with this assumption we have

χ =
3µoµ

2
B

2EF

N

V
where we need to be careful because the number density N/V is the density of electrons

and individual atoms might give more than one valence electron into the electron gas.

This equation is called the Pauli susceptibility.

This only works for substances where saying the valence electrons form gas is a good

approximation. Sodium is one such material and the calculated susceptibility is quoted

as 8.2× 10−6.

But not every substance is well modeled by a lattice of ions with a gas of valence

electrons. Other substances would have an overall spin angular momentum. Let’s give

this the symbol J. It would have a zcomponent

Jz = mJ�

with mJ values

mJ = 0,±1,±2, . . .± J

for a given value of J there are 2J + 1 possible mJ values. If we define a new factor,

g, that ranges from 0 to 1 that depends on the particular combination of spin states that

make J, then the effective magnetic moment for the substance would be

µ = −gµBJ

µz = −gµBmJ

and then the energy of interaction between the applied field and effective magnetic
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moment would be

E = −µ ·B = gµBmJBapp

And the mJ states are not degenerate so we get the number of atoms in each magnetic

substate to be

NmJ =
1

A
e
− E
kBT =

1

A
e
− gµBmJBapp

kBT

where we are using the MaxwellBoltzmann distribution. These are not continuous

states, so we need to sum them rather than integrate. We need to find the normalization

constant, A−1. If we sum over all the states, we should get all the atoms.

N =
+J�

mJ=−J
NmJ = A−1

+J�

mJ=−J
e−gµBmJBapp/kBT

so

A−1 =
N

�+J
mJ=−J e−gµBmJBapp/kBT

so then

NmJ =
N

�+J
mJ=−J e−gµBmJBapp/kBT

e
− gµBmJBapp

kBT

and then the zcomponent of the magnetization is the average magnetic moment per

unit volume, and now we can find that

Mz =
1

V

�

all atoms

µz =
1

V

+J�

mJ=−J
NmJgµBmJ

=
1

V

+J�

mJ=−J

N
�+J

mJ=−J e−gµBmJBapp/kBT
e
− gµBmJBapp

kBT gµBmJ

=
N
V gµB

�+J
mJ=−J mJe

− gµBmJBapp
kBT

�+J
mJ=−J e−gµBmJBapp/kBT

and if our Bapp is also in the z direction, then

χ =
µoMz

Bapp
=

µo
N
V gµB

�+J
mJ=−J mJe

−gµBmJBapp
kBT

Bapp

�+J
mJ=−J e−gµBmJBapp/kBT

This tells us that paramagnetism is temperature dependent. It is traditional to plot χ as

a function of 1/T which puts high temperatures on the left and low temperatures on the

right.
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For high temperatures we get a nice linear behavior. Believe it or not, this is just what

our equation predicts. We can take T as large then terms like e
− gµBmJBapp

kBT are like

ex ≈ 1 + x for small x so

χ =
µo

N
V gµB

�+J
mJ=−J mJ

�
1− gµBmJBapp

kBT

�

Bapp

�+J
mJ=−J

�
1− gµBmJBapp

kBT

�

or

χ =
µo

N
V gµB

�+J
mJ=−J

�
mJ − gµBBapp

kBT
m2
J

�

Bapp

�+J
mJ=−J

�
1− gµBBapp

kBT
mJ

�

and it is easier to look at some of these sums on their own.
+J�

mJ=−J
1 = 2J + 1

and
+J�

mJ=−J
mJ = 0

and finally
+J�

mJ=−J
m2
J =

1

3
J (J + 1) (2J + 1)

and we can write our equation as

χ =
µo

N
V gµB

)�+J
mJ=−J mJ − gµBBapp

kBT

�+J
mJ=−J m2

J

*

Bapp

)�+J
mJ=−J (1)−

gµBBapp
kBT

�+J
mJ=−J (mJ)

*

χ =
µo

N
V gµB

)
0− gµBBapp

kBT
1
3J (J + 1) (2J + 1)

*

Bapp [2J + 1− 0]

χ =
−µo

N
V gµB

)
gµBBapp
kBT

1
3J (J + 1) (2J + 1)

*

Bapp [2J + 1]

χ =
−µoNg2µ2B [J (J + 1)]

3kBTV
which sure enough is linear in 1/T. We did make quite a few assumptions and
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approximations, but we can see that our ideas about molecular spin states causing

paramagnetism seem to be useful in explaining the phenomena.

Ferromagnetism

Neither of these methods of inducing magnetism are the basis of permanent magnets.

Permanent magnets happen because of molecular orbital states that depend on electron

spin. These states depend on the interatomic spacing. If the spacing is just right, we

get permanent magnets. We can get a small idea of how this works by using our band

model. For iron, when the magnetic interaction is in place each atom contributes 3

electrons to the molecular states, and the spin up and spin down states are at the same

energy.

But if the magnetic interaction is in place, the molecular structure changes and each

atom gives 4 electrons with spin up and 2 with spin down.

which provides a net magnetic moment.

It will take a bit more (in another class) to finish how this works.

We have studied the electron orbitals in an atom and found that chemistry resulted. We

also found an explanation for the atomic spectra. It is time to take on the nucleus of the

atom and see what wonders are waiting there.

Matter and Energy

To study the nucleus, we need to use Einstein’s relationship between matter and
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energy.

Erest = mc2 (27.1)

Let’s review what this means. This equation tells us that mass and energy are really the

same thing. They are related through a constant of proportionality, but really they are

the same stuff. When we talk of mass, we call it the rest energy, that is, the amount of

energy an atom has at rest (no kinetic energy).

Nature of the Nucleus

From your high school chemistry classes, you know that the nucleus has two different

types of particles. They are protons and neutrons. Generically we refer to both as

nucleons. The protons are positively charged, the neutrons are negatively charged.

These nucleons exist in close packed form at nearly the same density in all nuclei. We

use some symbols to describe the parts of the nucleus. The first, Z, we already used

in our model of the atom. It is the atomic number. It tells us the number of protons.

The others are N, the number of neutrons, and A the mass number which is really the

number of neutrons and protons.

The nucleons can be roughly modeled as spheres. In the nucleus, they are close packed,

like nesting pingpong balls.

Each chemical element has a unique number of protons, but it may have different

numbers of neutrons. As we have already found in our quantum atom, the chemical

properties of an atom come from the electron orbital structure. And an atom has the

same number of electrons as protons. So we expect the chemical properties to vary by

Z and to mostly not depend on N. So carbon with 12 neutrons and carbon with 13

neutrons is still carbon. We call atoms of the same element with different N values

isotopes.

You may have heard of one of the isotopes of carbon which has 14 nucleons. This

isotope is quite famous because it is radioactive and is somewhat prevalent. It is used in
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dating artifacts up to about 1000 years old.

We have a standard notation for a nucleus
A
ZXN (27.2)

where X is the chemical symbol for the atom, and we already know A, Z, and N. Note

that the N is redundant and is almost always left off. But in the full notation our isotope

of carbon with 14 nucleons would be written as
14
6 C8

Normal carbon is written as
12
6 C6 (27.3)

to represent carbon with 12 neutrons. And we can see that really the Z subscript is

also redundant because the chemical symbol tells you what the number of protons will

be. So you will often see our carbon isotopes written as 14C or 12C. Note that the

subscripts are on the other side of the element name so we won’t forget this is nuclear

physics and not chemistry!

Nuclear Size and shape

But so far we have found that our high school physics was a rough approximation to

our current models. We could guess that a quantum view of the nucleus will need to fill

in some missing details. Nucleons are really not little hard balls. They are wavicles. So

our last figure might not be so accurate. Nucleons are fuzzy in size because they are, of

course, waves.

Rutherford found the approximate size of the atom. We did this problem earlier but

let’s review.
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Rutherford shot α particles toward gold foil. By using the conservation of energy, he

found when the α particles turned around. That would have to be at about the size of the

nucleus, or at least we know the nucleus would have to be smaller than that distance.

We start the alpha particle with an initial kinetic energy

Ki =
1

2
mv2i (27.4)

and let’s start the α particle far enough away that the potential energy is essentially

zero. When the α makes it’s closest approach, the potential energy will be maximum

and the kinetic energy zero. The potential energy for the Coulomb force will be

Uf = ke
q1q2
rf

(27.5)

so then

1

2
mv2i = ke

q1q2
rf

(27.6)

We can identify q1 for the α particle, and q2 for the gold atom
1

2
mv2i = ke

(2e) (Ze)

rmin
(27.7)

rmin = ke
(2e) (Ze)

1
2mv2i

where the rmin is the distance of closest approach. If we solve for rmin

rmin = ke
(2e) (Ze)

1
2mv2i

(27.8)
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This gives a very small number

rmin = 3.2× 10−14m (27.9)

We often use femptometers (1 fm = 10−15m) as our unit for such small distances. This

would be

rmin = 32 fm

We get the impression that the nucleus is roughly spherical. We can give an approximate

equation for the radius that follows Rutherford’s findings

r = roA
1
3 (27.10)

where ro = 1.2× 10−15m and where r is the radius for any atom we choose. A is the

atomic mass number.

The number of nucleons per unit volume seems to be approximately constant, so we

could say
Nnucleons

Vnulceus
=

A
4
3πr

3
≃ constant.

The density of the nucleus is fairly high. We can give an good estimate of this. A times

the mass of a nucleon would be the mass of the nucleus. Since protons and neutrons

have about the same mass, let’s just use the mass of a proton in our estimate. For 12C

we would have

ρ =
Nnucleonsmnucleon

Vnulceus
≈ Amp

4
3πr

3

=
Amp

4
3π

�
roA

1
3

�3

=
12

�
1.6726231× 10−27 kg

�

4
3π

�
(1.2× 10−15m) (12)

1
3

�3

= 2. 310 8× 1017
kg

m3

which is very dense! We describe the nucleon mix in a nucleus with the term nuclear

matter and this nuclear matter has very high densities.



28 Nuclear Binding Energy and

Radioactivity

12.312.6

Fundamental Concepts in the Lecture

• Radioactivity

• Alpha Decay

• Beta decay

• Gamma Decay

Now that we know a little about the nucleus, it is time to ask about how nuclei are held

together. From the start, we know that the positively charged protons will have a strong

electrical repulsion force. We can draw on our models of electron states in atoms and

our understanding of thermal statistical mechanics to build intuition into the dynamics

of nucleons.

Binding Energy

The mass of the nucleus is less than the sum of the masses of the nucleon’s from which

it is made! This seems a little strange. But think of our atom with electrons. We found

that when an electron approaches a proton and it falls into the potential well we get a

release of a photon with energy of about 13.6 eV. The newly formed hydrogen atom

would still have a proton and an electron, but it would have 13.6 eV worth of mass less

than the two combined masses before they were bound together. And mass is a form of

energy

Erest = mc2

and the bound hydrogen atom has less energy than the separate proton and electron, so

it has less mass than a separate proton and electron. The missing mass left in the form

of the energy of the photon. This is something we discovered in this class some time
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ago. You might object. Isn’t it really just that we have changed the potential energy

U = − 1

4πǫo

e2

r

by making r much smaller? The answer is, of course, yes! But this change in potential

energy is a change in... energy, and the mass of the hydrogen atom system is formed

from the rest energy of the hydrogen atom system. So if we change the rest energy

we change the mass. Internal potential energy of a system on the quantum scale is

expressed as part of the system mass.

But we should ask if this would be true for the nucleus. If we bring a proton and a

neutron together to make a nucleus
�
2
1H

�
then there must be a binding energy holding

the proton and neutron together. Would the mass of the nucleus be less than the mass of

a separate proton and a separate neutron?

It takes energy to remove nucleons from the nucleus. This energy to remove a nucleon

is the binding energy of a nucleon. We lose this energy when the nucleons are brought

together. The energy will leave in the form of photons. A photon is released, a gamma

ray in this case. So the nuclear mass will be less than the mass of the separate nucleons.

Let’s do the numbers for 2
1H . The binding energy would be

B = mass of the separate nucleons− mass of the nucleolus

=
�
mnc

2 +mpc
2
�
−mDc2

where mD is the nuclear mass of 2H (because 2H is called “deuterium”). We can play

a clever trick to make this calculation easier. Note that the rest mass energy of the 2H

atom includes an electron mass. So

m[2H]c
2 = mDc2 +mec

2 − 13.6 eV

where of course the −13.6 eV is the binding energy that holds the electron bound to the

hydrogen atom. We could do this for 1H as well

m[1H]c
2 = mpc

2 +mec
2 − 13.6 eV

Now if we add the rest mass energy of 1H to the rest mass energy of the neutron we get

m[1H]c
2 +mnc

2 =
�
mpc

2 +mnc
2
�
+mec

2 − 13.6 eV

and the part in parenthesis shows up in our nuclear binding equation. Let’s solve for

that part in parenthesis and substitute it back into our binding energy equation

m(1H)c
2 +mnc

2 −mec
2 + 13.6 eV =

�
mpc

2 +mnc
2
�



Binding Energy 463

so

B =
�
mnc

2 +mpc
2
�
−mDc2

becomes

B =
�
m[1H]c

2 +mnc
2 −mec

2 + 13.6 eV
�
−mDc2

We could rearrange this as

B = m[1H]c
2 +mnc

2 −
�
mDc2 +mec

2 − 13.6 eV
�

and now we recognize that the part in parenthesis is the rest energy of a 2H atom

(including the electron and it’s binding energy).

B = m[1H]c
2 +mnc

2 −m[2H]c
2

This might not be exciting at first, but there are many collected tables of the masses

of whole atoms, but few tables of masses of nuclei. With what we have done we

recognize that we can put in the masses of the full atoms, knowing that under the hood

the electron masses and binding energies will cancel out. Let’s look at our 2H binding

energy one more time and write out the atomic masses so we can see the electron rest

mass energy and binding energy cancel explicitly.

B =
�
mpc

2 +mec
2 − 13.6 eV

�
+mnc

2 −
�
mDc2 +mec

2 − 13.6 eV
�

= mpc
2 +mnc

2 −
�
mDc2

�

just as it should.

We did this with the simplest of nuclei. But it works for any nucleus. We could write

this in general for an atom,

B = Nmnc
2 + Zmpc

2 −m[A]c
2

where N is the number of neutrons, Z is the number of protons, and A is the atomic

mass, so it tells us which atomic nuclei we have. But We could use the atomic masses

to write this as

B = Nmnc
2 + Zm[1H]c

2 −m[AZXN ]c
2

where we used the letter X as a generic atomic symbol (like C or carbon or Na for

sodium). Just as in our 2H case the electron contributions cancel out leaving us with

our nuclear binding energy. Let’s try this for a few atoms.

For iron, 5626Fe30, we have N = 30, Z = 26, and A = 56. So we can find a binding

energy of

B = 30mnc
2 + 26m[1H]c

2 −m[5626Fe30]
c2
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The masses are (from the table in our book11)

mn = 1.0086649160 u

m[1H] = 1.0078250u

m[5626Fe30]
= 55.934937u

and we know the conversion

1 u = 931.49406
MeV

c2

so the rest energies are

En = 1.0086649160 u
931.49406 MeV

c2

1u

= 939. 57
MeV

c2

E[5626Fe30]
= 55.934937 u

931.49406 MeV
c2

1u

= 52103.
MeV

c2

E[1H] = 1.0078250u
931.49406 MeV

c2

1 u

= 938. 78
MeV

c2

Then our binding energy is

B = 30 (939.56538MeV) + 26 (938. 78MeV)− 52103.MeV

= 492. 24MeV

but because we did two unit conversions from u to MeV/c2 it is easier to do everything

in terms of u and convert at the end.

B =
�
30 (1.0086649160 u) c2 + 26 (1.0078250 u) c2 − (55.934937u) c2

� 931.49406 MeV
c2

u
= 492. 26MeV

This is the total binding energy holding all the nucleons together. We could get an

estimate of how much binding energy an individual nucleon would have by calculating

the average binding energy per nucleon
B

A
=

492. 26MeV

56
= 8. 790 4

MeV

nucleon

Let’s do this again for a larger atom, say, uranium 235
92 U146

11 I am still working on this table. But the most current data on atomic masses is from the US National
Institute of Standards (NIST). https://www.nist.gov/pml/atomicweightsandisotopiccompositionsrelative
atomicmasses
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B = 146mnc
2 + 92m[1H]c

2 −m[23592 U146]
c2

and from our table.

mn = 1.0086649160u

m[1H] = 1.0078250 u

m[23592 U146]
= 235.043930u

The our binding energy is

B =
 
143 (1.0086649160 u) c2 + 92 (1.0078250 u) c2 − (235.043930u) c2

! 931.49406 MeV
c2

u
= 1783. 9MeV

with the binding energy per nucleon being
B

A
=

1783. 9MeV

235
= 7. 591 1

MeV

neucleon
Notice that the binding energy per nucleon for iron is bigger than for uranium. How

about for something like Lithium, 63Li3?

B = 3mnc
2 + 3m[1H]c

2 −m[63Li3]
c2

and

mn = 1.0086649160 u

m(1H) = 1.0078250u

m(63Li3)
= 6.015123 u

which gives a binding energy of

B =
 
3 (1.0086649160 u) c2 + 3 (1.0078250u) c2 − (6.015123u) c2

! 931.49406 MeV
c2

u
= 31. 994MeV

with the binding energy per nucleon being
B

A
=

31. 994MeV

6
= 5. 332 3

MeV

neucleon

It appears that iron, 5626Fe30, has a higher binding energy than both 6
3Li3 and 235

92 U146.

Nuclear Stability

You might be wondering why the protons agree to sit calmly in the nucleus next to each

other. They do have positive charges. There must be some force that is stronger than

the Coulomb force that keeps them in place! That is exactly what we believe happens.

It is called the nuclear force, but this force has to be very strong to keep the protons

together, stronger than the Coulomb force. So most often the nuclear force is called the
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strong force. It drops dramatically as a function of distance. After about 2 fm it is very

weak, but at closer distances it is much stronger.

For small atomic numbers, even numbers of protons and neutrons make stable atoms,

but for larger atoms it seems to be better to have more neutrons than protons. For large

atoms, the Coulomb force will be large, so spreading out the protons helps to reduce the

repulsion. Thus, for large atoms, more neutrons make the atom more stable.

You might guess that there is a limit to all this. At some point the Coulomb force would

just be larger. You would be right. Z = 83 seems to be the limit for stable atoms. In

the next figure the binding energy per nucleon of all isotopes of all atoms are show.

Lithium, iron, and uranium are called out on the graph.

We can see that atoms with the highest binding energies per nucleon are right around

iron with iron having the highest binding energy. That means that iron is the most

stable, holding it’s nucleons the tightest. Then, there are two ways to get energy from

the nuclear reactions. We could liberate energy by splitting heavy nuclei into smaller,

more stable products. This is what we call nuclear fission. The other route would be to

take smaller nuclei and combine them to form larger, more stable nuclei. This is what

we call nuclear fusion. Both can provide a release of energy as the product nuclei move

toward the more stable region near iron.
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Nuclear energy states

Let’s return to our discussion of the strong force. We expect the strong force to form

a potential energy well. Then, as we bring in a new nucleon, we would expect the

quantum well to have many allowed energy states like the Coulomb force well has for

electrons in the orbitals. For deuterium, there doesn’t seem to be any excited states.

If we take a neutron and bring it into a proton, it falls all the way to a ground state

emitting just one photon of energy 2.224MeV. In nuclei with more nucleons, we do

see energy levels.

Deuterium studies do teach us some characteristics of the strong force. The strong force

is very short range. It is limited to distances of about 1 fm.

The size of a proton is on the order of a femptometer and so is the size of a neutron, so

this means the strong force can only tie nearest neighbor nucleons together. This is a

little like a crystal, where the atoms are usually bound to their nearest neighbor. The

strong force appears to be the same for protonproton bonds, and neutronsbonds, and

protonneutron bonds.

The strong force is usually modeled as an attractive exchange force. But it is more

complicated than, say, the Coulomb force. And this takes some explaining. What

happens in this model is that one of the nucleons emits a particle to which it and other

near by nucleons are attracted. Thinking of 2H we would have a proton and a neutron.

If the neutron emitted such a particle then both the proton and the neutron would be

attracted to the particle. It’s like having a pillow fight, and both you and your opponent

grab the same pillow and pull on it. You and your opponent would move together

because you are both moving toward the particle. The proton and neutron would appear

to be attracted to each other in this way. they are both attracted to the mitigating

exchange particle. But, you may object, wouldn’t constantly emitting particle reduce
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the rest energy of the nucleons?

Let’s consider our uncertainty principle again.

∆E∆t ≈ �
or

∆t ≈ �

∆E
and if the exchange particle has mass m we need energy ∆E = mc2 to create the

particle. Then if the particle exists for less than about

∆t ≈ �

mc2

to within what we can know, we have not violated conservation of energy. But this

says that the exchange particle must have a limited lifetime. The particle can exists,

borrowing an amount of energy ∆E so long as within the time ∆t that energy is

returned to the system as the particle rest mass energy mc2 when the particle is

destroyed. Under this condition energy conservation is not violated.

This may sound crazy, but remember that our “particles” are not really “particles” but

waves. No one is surprised at the beach when occasionally there is a bigger wave.12

And that is what we have going on here. And the energy in our nuclear wavicles

is spread out physically and temporally. We are really exchanging potential energy

between two nucleon waves with an intermediate exchange wave. A sort of “splash in

the middle.”

We could see how far this exchange waveicle would go, assuming its speed is not

relativistic

∆x = c∆t

=
c�

mc2

which gives a limit on the range of our strong force. The strong force can’t exist when

the particle ceases to exist. So if the nucleons move beyond this distance the strong

force will be essentially zero and the nucleons won’t seem to attract each other. This is

how it is that the strong force only attracts nearest neighbor nucleons.

But we should ask if we can identify this exchange particle. We can’t open up a nucleus

and peer inside with a microscope. And the exchange particles don’t travel outside

the nucleus because of their limited lifetime. If the particle left the nucleus we would

violate conservation of energy. But suppose we provide the energy ∆E by sending in a

12 Well, they may be surprised, and that is the stuff of funny YouTube videos. But no one finds it strange.
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photon. Then the particle could be released without violating conservation of energy.

When this experiment is tried, we get particles with mc2 = 140MeV. These particles

are given the name π mesons. Our model would predict

mc2 =
c�

∆x

≈ 197.326972MeV fm

1 fm
≈ 200MeV

which is a rough estimate but matches the rest energy of a π meson fairly well.

We will return to exchange particles and the strong force when we study quantum

chromodynamics later in this course.

Separation energy

Armed with a model for the strong force, let’s look at the energy required to remove the

least tightly bound nucleon from the nucleus. This is like removing an upper electron

from an atomic electron state. We know how to do this with electrons. We called this

the ionization energy and it is given by

Ei = mX+c
2 +mec

2 −mXc2

= (mX+ +me −mX) c2

where X is a generic element symbol. We write the reaction that creates the ion as

X → X+ + e−

We want to do the same sort of thing for a nuclear separation energy

Sp =
�
m[A−1Z−1XN ] +m[1H] −m[AZXN ]

�
c2

where we have used atomic masses because the electrons will once again cancel out

and we have tables of atomic masses. This is at least a very good approximation. We

could write the reaction as
A
ZXN →A−1

Z−1 XN + p

where we assumed that the most loosely held nucleon is a proton which makes sense

due to the Coulomb repulsion for small nuclei. But for larger nuclei it could be a

neutron.

Sn =
�
m[A−1Z XN−1] +mn −m[AZXN ]

�
c2

A
ZXN →A−1

Z XN−1 + n

By inserting gamma rays on the order of 5− 10MeV we can remove a nucleon, so the

separation energies should be on this order.
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But if we can remove a nucleon by inserting it’s separation energy, this reminds us so

much of removing an electron by inserting it’s ionization energy. We could even call

the most loosely held nucleon a valence nucleon. We would expect excited states for

nucleons.

Nuclear energy states

We studied deuterium and found we could separate the two nucleons if we inserted the

right amount of energy. But it turns out that with just two nucleons we only found a

ground state and separate particles. In our analysis we didn’t see discrete energy states

in between these two extremes like we found for an electron in hydrogen. But if we

allow more nucleons the situation is more complicated. Three nucleons is a multibody

problem and we would have to approach it numerically. We might gain some insight

by looking at a onedimensional infinite potential well for nucleons. We would expect

we would get a number of energy states En as we did for electrons in atoms. And

because neutrons and protons are Fermions, we would expect to have two neutrons or

two protons in each state. The potential energy for neutrons is different that for protons

because protons have Coulomb forces. So neutrons and protons would have different

energy levels. Schematically13 this could be visualized like this

These energy levels will lead us into a theory for radioactive decay. Which will study in

13 Remember that “schematically” means we are drawing like an artist. We didn’t calculate the energy
states and plot them. The figure is just to get an idea of what it might look like.
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our next lecture.





29 Radioactive Decay

Fundamental Concepts in the Lecture

• α, β, and γ decay

• HalfLife and Rate of Decay

• Calculations Involving Decay Rates and HalfLife

Radioactivity was discovered, like many things, by accident. In 1896 Becquerel found

that uranium salt would darken photographic paper. This launched a field of study that

has, at it’s head, one of the first recorded great women scientists, Marie Curie.

Radioactive decay basics
Question 30.4 ac

Question 30.6 ac We now know from our study of binding energy per nucleon that radioactivity is the

decay of large nuclei that are unstable. There are three basic types of nuclear decay. we

can describe all of them with reference to our nuclear energy level diagrams.

1. Gamma (γ) emission: the emission of a high energy photon. This is the easiest to

understand. A nucleon in an excited state drops down into a lower state.
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From what we know of electron energy levels we would expect a photon to be produced

with

∆E = hf

The existence of gamma emission is good evidence for nuclear excited states.

2. Beta (β) emission: The emission of an electron or it’s antiparticle, the positron. This

is more complicated because it involves one nucleon changing into a different type of

nucleon. For example a neutron could become a proton.

But to maintain conservation of electrical charge this would mean a negative charge

equal to the new proton charge must be created, and this is what happens. A new elec

tron is created. But electrons don’t interact by the strong force. So the electron will

leave the nucleus. And thus an electron is emitted. Because early researchers didn’t

realize that β particles were electrons they gave them the symbol β to distinguish be
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tween this kind of emission and γ emission (and α emission). The process we described

can work the other way as well. We could convert a proton into a neutron. But we need

to remove the positive proton charge to do this. So an antielectron, a positron, is pro

duced.

3. Alpha (α) emission: The emission of a 4
2He nuclei. This one is not at all obvious. We

will study this in more detail later, but under some circumstances it is more probable

that a group of two protons and two neutrons will leave the parent nucleus than a single

proton or neutron leaving. When this happens the resulting emission was called an α

particle by early researchers. Two protons and two neutrons make a helium nucleus,

and helium nuclei are still referred to as α particles.

Often β or α decay will leave the parent nucleus with some nucleons in excited states.

So often α or β decay are accompanied by γ emission. We can actually observe these

particles leaving nuclei, We use a device like the one shown below

You would expect α particles to be positively charged, and electrons to be negatively

charged. So if they travel through a magnetic field as shown, they will deflect different
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directions. γ particles will not deflect at all. We use a cool device to detect these parti

cles. We make a cooled chamber and fill it with alcohol vapor (or similar gas that can

supersaturate). The chamber is placed in the path of the particles. Then, when the parti

cles cross the chamber, they make condensation trails like jet airplanes. We can see the

path they take!

One of the first photographs taken with the thirtyinch bubble chamber at NAI, June 15, 1972. A

twohundred GeV proton enters the chamber and interacts with liquid hydrogen. The resulting

collision produces a spectacular event with ten visible nuclear fragments emerging. The tracks

are nearly thirty inches long. Photo Courtacy US Department of Energy.

Since γ rays have shorter wavelengths and higher energies than Xrays, you might

guess that they are hard to stop. They can penetrate through lead. The heavier electrons

(β particles) can penetrate an aluminum plate, and the α particles have trouble going

through a piece of paper.

In the next figure is a chart taken from Brookhaven National Laboratory that shows all

the different combinations of neutron and protons that we know occur. Each different

combination is called a nucleoid. The little boxes show different nucleoids, but the

boxes are so small you can’t read that there are tiny words (no doubt not reproduced

either by the printer or your screen and maybe not even by my software). But notice

there is a color coding. The black boxes represent stable nuclei. The yellow is for α

decay, light blue is β+decay and pink is β− decay.
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Table of the nucleotides (live version at https://www.nndc.bnl.gov/nudat2/)

Here is a small section of the chart expanded so we can see the individual nucleotides

boxes and that there are more details in our color scheme.

Zoomed in view of the Table of the nucleotides (live version at

https://www.nndc.bnl.gov/nudat2/)

Near the middle of the figure you can see 235U with a black box to note it’s long half

life (discussed below). It is interesting that so many nucleoids are unstable. Let’s look

at the decay processes in detail.
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Details of the decay processes

Knowing the basics of how nuclei decay, let’s now take a deeper look at each of the

decay processes.

Alpha decay

Let’s take a generic nucleus called X and create a new nucleus called Y . The equation

for producing Y from X by αdecay is
A
ZX ⇒ A−4

Z−2Y +4
2 He (29.1)

We call the original nucleus the parent nucleus. That would be A
ZX. We call the new

nucleus the daughter nucleus.14 That would be A−4
Z−2Y.

Let’s take a real example.
226
88 Ra⇒ 222

86 Rn+4
2 He (29.2)

This is almost like chemistry! All we have to do is to balance the equation so the mass

numbers, A, and the atomic numbers Z add up to the same thing on each side of the

reaction!

There is a small catch, the parent nucleus must have a larger mass than the combined

mass of the daughter and the α particle. The lost mass is converted into the kinetic

energy of the daughter particles (and sometimes other forms of energy).

The αparticle will have the higher kinetic energy because it’s mass is smaller. This is

like an explosion problem from PH121!

14 “Daughter nucleus” is what we find in the literature. I may call this a “child nucleus” to be less gender
specific, although the use of “daughter” was in part to balance gender references in physics. This part of
language has become difficulty to navigate. Please be patient while society settles on new rules.
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Let’s find the amount of energy liberated in this decay.
226
88 Ra⇒222

86 Rn+4
2 He

We start by finding the mass of the parent nucleus. We look at a table of isotopes to find

this

mRa = 226.025403u (29.3)

and then we sum the masses of the daughter products (the Ra nucleus and α particle)

mRn = 222.017570 u (29.4)

mα = 4.002603 u (29.5)

so

mRn +mα = 222.017570u + 4.002603u (29.6)

= 226. 020 173 u (29.7)

then the lost mass is

∆m = mRa − (mRn +mα) (29.8)

= 226.025403 u− (226. 020 173 u) (29.9)

= 0.005 23 u (29.10)

= 4. 871 7MeV/c2 (29.11)

This change in the rest mass energy is called the Q value and we can write our process

as

Q = (mRa − (mRn +mα)) c
2

We will often find problems like this that ask us to find the binding energy or the

energy released. You should be familiar with this process. The αdecay is a form of

spontaneous decay. Remember we studied spontaneous emission of light. That was

emission that happened on its own without something causing it to happen. The word

spontaneous means the same thing here.

Quantum Tunneling and αDecay

But how would an α particle just leave a nucleus? We know that there would be a

Coulomb potential of

UB =
1

4πǫo

q1q2
r

=
1

4πǫo

2e2 (Z − 2)

r
and we know that there is a strong force potential. We don’t have a simple mathematical
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form for the strong force potential15. But the combined potential looks something like

this

Less than a separation distance (R) the potential is large and negative due to the strong

force. At R the potential jumps up and is positive (repulsive) preventing the α particle

from leaving. This is an energy barrier that the α particle must overcome to leave the

nucleus. Classically it doesn’t have enough energy. However, we know about barriers

and wave functions. We know that there is a chance of the α particle tunneling because

it really is a waveicle. And that is what happens in α decay. We could plot the α wave

function, ψ (r) squared (to get the probability) for this set of boundaries. The result

would look something like this.

The probably per unit time, λ, of actually detecting an α particle outside the atom

depends on both the probability of the α particle penetrating the barrier and the number

15 We won’t give the numeric solution in this class, we save that for a graduate level nuclear physics or
quantum chromodynamics class.
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of times per second that the α particle/wave strikes the barrier.

Beta decay

Beta decay can emit either electrons or positrons. We write the electron symbolically as

e− and the positron symbolically as e+.The electron or positron is emitted because a

neutron decays into a proton plus a beta particle. We can write this as
1
0n→1

1 p+ e− (29.12)

but this is not what we actually see. If we just had the creation of a β particle all the β

particles would have exactly the same energy (like atomic transitions create exactly the

same wavelength photon). But that is not what we see. The reason is that in β decay

there is a third particle created, and that particle will have both energy and momentum.

The particle is vary small, small enough that there is still debate about it’s mass. It is

called a neutrino and it is given the symbol ν (which is not a “v,” it is the Greek letter

nu, pronounced “new”). So what we have is the decay process
1
0n→1

1 p+ e− + ν (29.13)

where ν is actually an antineutrino, the neutrino’s antiparticle (like the positron is the

antiparticle for the electron).

Note that all this happens in a nucleus, the mass number will not change, there are the

same number of nucleons (protons and neutrons). But the atomic number will change.

Chemically, the atom will act differently. Let’s try one
14
6 C ⇒ 14

7 N + e− + ν (29.14)

This is the famous carbon14 that is used in dating things. The mass number did not
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change, but the atomic number did. We can run the process backwards
1
0n+ e+ →1

1 p+ ν (29.15)

so there are two types of beta decay processes. Generically we can write
A
ZX ⇒ A

Z+1Y + e− + ν (29.16)

A
ZX ⇒ A

Z−1Y + e+ + ν (29.17)

with a minimum Q value of

Q =
�
m(AZX)

−m(AZ+1Y )

�
c2

where we have ignored the neutrino mass because it is very small and the electron is

taken care of by using atomic masses. For β+ decay we would have

Q =
�
m(AZX)

−m(AZ−1Y )

�
c2

But let’s think about this a little further. For a single neutron decay, we get a Q value of

Q = (mn − (mp +me +mν)) c
2

where in practice mν is small enough that it is ignored, but we could have kinetic

energy of the products! This kinetic energy must come from our released Q energy.

Then for a neutron decay in an nucleus we would get a Q value of

Q = Eν +Ke +KY

where Eν is both the kinetic energy and rest energy of the neutrino and Ke is the kinetic

energy of the electron and KY is the kinetic energy (recoil) of the nucleus.

Of course momentum must be conserved, so finding the exact values for the kinetic

energy is a small amount of work.

Gamma Decay

As you can imagine, if we remove part of the nucleus, or change a neutron into a proton,

the potential energy of the nucleus will change. The remaining nucleons won’t be in the

right positions to be in the new well’s ground state. The nucleons will eventually drop

down to a lower energy state by emitting a photon. The photon will have a very short

wavelength and a very high energy. It will be a γ ray.

Often the mechanism for getting the nucleon into a higher energy state is through beta

decay. For example when Boron12 decays into carbon12
12
5 B ⇒ 12

6 C + e− + ν̄ (29.18)

but the 12
6 C has a nucleon in an excited state. We usually write this as

12
5 B ⇒ 12

6 C∗ + e− + ν̄ (29.19)
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to show that the carbon is excited. Then we have a second reaction
12
6 C∗ ⇒ 12

6 C + γ (29.20)

The values of γ energy are more complicated to calculate than we have said so far. For

small nuclei we have to take into account the recoil of the nucleus that happens when

the γ particle is created.

Eγ = Ei −Ef −Krecoil

And there are other ways to excite a nucleus. We could take the whole nucleus and

force it to vibrate. The nucleons are only nearest neighbor attracted, so the nucleus is

deformable The nucleus, as a whole can exhibit oscillation modes. Water drops can do

this when hit by an acoustic wave. You can imagine a water droplet oscillating between

two elongated spheroidal shapes.

Our nuclei can do this as well.

Nuclei can also rotate. And that would mean we have angular momentum, and a

possible magnetic moment. Nuclear rotations must be quantized just like electron

angular momentum. So it will have
�

I (I + 1)� rotational states where I is a new

quantum number. If I = 3/2 we would have the following possible orientations for I
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and the magnetic moment would be µ measured in units of the nuclear magneton

µn =
e�

2mp

where mp is the proton mass. If we put our nucleus in a magnetic field, like all objects

with magnetic moments we get a potential energy

Unuc = −µ ·Bext

and our nucleus will precess as it spins. The precession frequency is called the Larmor

precessional frequency and it is given the symbol ωL. This precession frequency is pro

portional to the external field. If the nuclear magnetic moment lines up with the field

(as closely as quantum mechanics allows) there is a minimum energy, and when it is

antialigned there is a maximum when it is aligned.
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We can use this to image inside of things like people. The person is placed inside a

large coil that makes a specially varying magnetic field. The protons in the hydrogen

atoms in the body will precess at different frequencies in different parts of the body, and

in this way the different parts of the body are spatially coded. Adding in a mechanism

to flip the direction of the protons, we can cause a detectable signal. And this is the

basis for an MRI machine.

Conservation of energy and momentum and charge

In radioactive decays we need to obey the conservation laws that we have learned over

the last few years. Conservation of energy is really what we were talking about when

we defined Q values. For

X → Y + x

Q = (mX − (mY +mx)) c
2

Momentum must be conserved. In the rest frame for the parent particle, the momentum

of the products would be

pY + px = 0

We also must have conservation of angular momentum. So the parent angular

momentum must equal the product combined angular momentum. An example would

be a neutron decay. Neutron decay into just a proton and an electron is forbidden

because

ms,p = ±1

2

ms,e = ±1

2
so the total spin angular momentum would be either 0 or 1, but the neutron has spin

±1
2 . So angular momentum would not be conserved in this case. We need a neutrino

with spin ±1
2 to make the reaction work.

We also have to conserve charge. We learned this is introductory electrodynamics.

But here it is more serious. A proton could capture an electron with the result being a

neutron, so far as conservation of charge is concerned. The net charge did not change.

But a proton cannot capture an positron to be come a neutron, because a neutron has no

charge and the parent particles would have charge 2e.

We also have a new conservation law. It is the law of conservation of nucleon number.

In a nucleus we can create π mesons or other particles, but not nucleons. So in nuclear
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reactions, the total nucleon number won’t change. We can convert neutrons to protons

and protons to neutrons, but we can’t create new nucleons out of energy (that is a job

for particle physics). The proof of this is beyond this course (stay tuned for Nuclear and

Particle Physics in your junior or senior year).

Mathematically describing radioactive decay

Let’s take a sample of radioactive material that has N radioactive nuclei at t = 0. We

would like to know how many nuclei decay in a time dt. We will call this number that

decay dN. Experiment shows that these quantities are related by
dN

dt
∝ N (29.21)

Notice that this is not an equality, we will do the normal physics thing to make it an

equality. We will find a constant that contains the material properties of the particular

nuclei buried in it.
dN

dt
= −λN = −a (29.22)

NOTE: this is NOT a wavelength! We are reusing the letter λ with a totally new

meaning, so be careful. The quantity a is called the activity and it is the number of

decays per second.

This λ is called the decay constant. We describe dN
dt as a decay rate. We sometimes call

the decay rate R for “rate” but when we do this we usually define R to be positive.

R =

����
dN

dt

���� (29.23)

Our decay rate equation is a differential equation in N
dN

dt
= −λN (29.24)

we need a solution, and it looks like we need a function that is very like it’s own

derivative. Exponentials come to mind.

N = Noe
−λt (29.25)

This is an exponential decay, much like a wave function tunneling within a barrier. The

amplitude is going to die off to zero.
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Let’s try it, first find the derivative
dN

dt
= No (−λ) e−λt

so then
dN

dt
= −λN (29.26)

becomes

No (−λ) e−λt = −λ
�
Noe

−λt� (29.27)

after substitution which clearly works. The coefficient No must be the original number

of radioactive atoms.

We could multiply our solution by λ on both sides

N = Noe
−λt (29.28)

λN = λNoe
−λt (29.29)

−a = −aoe
−λt (29.30)

a = aoe
−λt (29.31)

which gives us an equation for the activity as well.

But we don’t usually hear about a material’s decay constant. Usually we describe the

material by saying how long it takes for half of the nuclei to decay. This is called the

half life of the material. We often write the half life with the symbol T1/2 or τ . I will

use T1/2. We can give an equation for the half life by considering the time finding N

such that n half lives have passed.

N = No

�
1

2

�n

(29.32)

Then we could find the time it takes for n half lives. Let’s choose n = 1 then to find the
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time for one half life.

N = Noe
−λt

No

�
1

2

�n

= Noe
−λT1/2

�
1

2

�1

= e−λT1/2

ln

�
1

2

�
= −λT1/2

T1/2 = − 1

λ
ln

�
1

2

�

T1/2 =
1

λ
ln (2)

We did this for n = 1, but we could have n be anything. Usually we use the letter n to

mean an integer, but it can be any fraction as well. To find n, take

n =
t

T1/2
(29.33)

Units of decay

We have some units to describe radioactive decay. Since we are talking about a rate of

decay we expect units like other rates we have used. Let’s remind ourselves of our first

rate we studied, speed.

v =
∆x

∆t
which had units of meters/second. We expect a similar type of unit, something per

second. We will take decays per second as the basis of our units. Madam Curie and

others did not start knowing λ for their studies, so she picked a convenient number of

decays per second to use as a unit.

1Ci = 3.7× 1010decays/second (29.34)

This may seem like a lot, but some materials decay quite rapidly, and this unit makes

sense for them.

The SI unit for decay rate is the Becquerel

1Bq = 1decay/second (29.35)

which seems to make more sense, but is not used much in the US.
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Natural Reactions

People today often forget that radioactivity was discovered by accident. It is a naturally

occurring phenomena. In fact, in Africa’s rift valley, the naturally occurring uranium

concentration was so high that for many years the whole valley operated as a low level

nuclear reactor! This was before Africa had a human population, so there were fewer

antinuke protests.

When the Earth was formed there were likely many radioactive elements. But only a

few radioactive nucleotides have half lives that are longer than the Earth is old. So

only a few natural radioactive elements remain. The process of decaying from one

radioactive nuclei to another until the process produces a stable nucleus is called a

decay chain. The decay chains for the few natural radioactive elements that remain

are called the Uranium, Actinium and Thorium chains. They start with 238U for the

Uranium chain, 235U for the Actinium chain, and 237Th for the Thorium chain.

The Actinium decay chain starting with 235U is shown below superimposed on the

chart of the nucleotides.

With this type of plot, we can follow the parent and daughter nuclei through the entire

series or chain of reactions until a stable nucleus is produced. You can see that this

decay chain is a series of alpha and beta decays. And we can see that alpha decays are

a diagonal line downward and to the left that skips one row of nucleotides and betta
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decays are diagonal upward to the left one nucleotide.

As interesting as it is to find natural radioactivity, we can benefit from the careful

creation of artificial radioactive nucleotides and from artificial radioactive reactions.

Let’s take on this topic in the next lecture.
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12.10  13.2

Fundamental Concepts in the Lecture

• Particle capture as a way to induce nuclear reactions

• Cyclotrons

• Van de Graaff accelerators

• Nuclear spectroscopy

• Nuclear Cross Sections

Knowing more about the nucleus, we could understand natural radioactivity. But

knowing that nuclear reactions happen, we can force such reactions and learn more

about the nucleus by watching what happens. In this lecture we contemplate shooting

protons or neutrons at a nucleus to see what happens.

Producing nuclear reactions

We can force a nuclear reaction by attacking the nucleus with another particle. For

example we could bombard copper with deuterium nuclei.
2
1H1 +

63
29 Cu34 → n+64

30 Zn34

We force a collision by accelerating one particle
�
2
1H1

�
and directing it at a nucleus

�
63
29Cu34

�
to see what happens. In this case there is a product particle (n) and a product

nucleus
�
64
30Zn34

�
. Generically we could write this as

x+X → y + Y

where the capital letters represent nuclei and the small letters represent particles. It is

probably good to remember that all of these things are waves. But in this case they

approximately act like particles.

You might wonder how we could get a hydrogen nucleus to accelerate. There are many
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ways, but two popular devices are the cyclotron and the van de Graaff accelerator.

Cyclotrons

In the next figure you can see an early cyclotron (1939).

Photograph shows the 60inch cyclotron at the University of California Lawrence Radiation Lab

oratory, Berkeley, in August, 1939. The metal frame at left is the machine’s huge electromagnet.

The flat vacuum chamber in which the particles are accelerated is located in the narrow space be

tween the magnet’s 60 inch (152 centimeter, 5 foot) pole pieces. The beamline which analyses

the particles resulting from the collisions is at right.

The cyclotron uses powerful magnets to turn charged particles. In the schematic

drawing part of the figure, you can see the path of a charged particle. The magnetic

fields make it turn because

FB = qv×B
The center of the cyclotron has large D shaped areas where the particle moves. These

Ds are connected to an alternating voltage source. So at any given time one of the Ds

is positive and one is negative. There is a gap in between the Ds and because the Ds

are charged there is a potential difference between the two Ds. So when the charged

particle crosses the gap it is accelerated. By the time the charged particle gets to the

gap again, the polarity of the Ds has changed so the particle is accelerated again. As

the particle accelerates, it spirals outward until it leaves the cyclotron and can impact a

nuclear target.
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Van de Graaff accelerators

Another method of accelerating charged particles is the van de Graaff accelerator. If

you were paying attention back in your introductory electrodynamics class (PH220 at

BYUI) you would remember the van de Graaff generator.

Usually a professor uses one of these devices in class as a demonstration. The device

has a large metal ball on top of a tube. The tube has a rubber belt in it. A device in the

base of the generator sprays charge onto the belt. because the belt is an insulator, the

charge is stuck in place as the belt moves upward. At the top of the tube, inside the

large metal ball, there are a second set of brushes that collect the charge. The charge is

motivated to leave the belt because of Coulomb repulsion. The brush is attached to the

metal ball, so the metal ball get’s charged. This device can’t make large currents, but it

can create large electric potentials between the base and the ball (ours easily produces

30000V). And that large electric potential could accelerate charged particles.

In a van de Graaff accelerator an insulating belt is used in the same way to separate

charge.

Van de Graaff Accelerator (Photo courtesy US Department of Energy)
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The belt is usually not vertical in this case. But it works the same way. Charge is

sprayed on the belt and the belt moves the charge to a large shell on one side of the

accelerator. The shell can reach high voltages as the belt transfers more and more

charge to it. If a radioactive isotope is placed in the accelerator at the high voltage end,

then charged decay products can be accelerated down the beam tube and out toward a

target nucleus.

But what would we see from such an experiment? Well, a particle detector might

measure the y (particle) product and it’s energy. The particle counter could count the

number of product particles as a function of energy and form an energy spectrum graph

like this

There is a reason that we choose to measure the y particle. Usually the Y nucleus is still

buried in a sample of material. We couldn’t get to it without cutting into the sample.

And that would take time. The collision takes on the order of 10−20 s so we wouldn’t

have time to observe the Y nucleus until it came to rest in the material latus. But we

can see the y particles because they escape the sample. Usually we measure two things

about y. The particle energy (that is where the peaks show up on the energy spectrum

graph) and the reaction probability. That is how often a particular reaction happens, and

that shows up as the height of the peak on the graph.

By making these measurements we can find the ground state and the excited states

of the nucleus. Suppose we have x (the incoming particle) with an energy of about

10MeV. If we measure the energy of our y particle to be, say 8MeV, and we assume

that the number of nucleons does not change (so the before and after rest mass energies
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are the same) then the Y product nucleus must be left in it’s excited state with about

2MeV of energy.

10MeV = 8MeV + 2MeV

That would be the highest nuclear energy state represented on the graph (see the little

energy state graph in the upper right hand corner). The other states can be found by

looking at the peaks and doing the conservation of energy calculations. And in this

way we have learned something about the nuclear energy states even though we can’t

calculate them. Energy spectra have been collected for many different nuclei under

neutron or proton bombardment. Using these standard tables, you can excite a nucleus

using a bombardment, and collect its energy spectrum. By matching that spectrum to

the tables, you can identify an element in your sample. Though it is often just as good

to look at the secondary γ spectrum from your sample because bombardment will leave

the Y nuclei in the sample in an excited state.

The height of the peaks is proportional to the probability that a particular reaction

will happen. The vertical axes on our graph is the number of times y is found with

a particular energy. So if we take the total number of reactions (counts) for a given

energy and divide by the total number of reactions we would get the probability of

that particular reaction with that particular energy happening. So the height gives us a

measure of probability of that particular reaction that is nicely visual.

Reaction probabilities are most often expressed in a new term, the cross section

Cross Sections

The idea of a cross section is easy. For example, if we took a broom handle and cut it in

half we could look at the end of one of the halves and see a circle. That circle has an

area and that area is the physical cross section of the broom handle. A cross section is

an area. But suppose we had a flux of something, say, arrows from one of our favorite

comic book characters, the Green Lawn Dart!
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A flux is a number of something that penetrates an area per unit time. This is close to

the definition we gave to flux back in introductory electrodynamics (PH220) but there

we were dealing with field fluxes (how much electric field penetrated an area) and our

fields didn’t change in time. But if we are shooting arrows (or protons) the arrows will

pass through the area and now it is meaningful to ask how many arrows (or protons)

pass through the area per unit of time. We will use the same symbol we used in the past

for flux, Φ, but remember that now it is a number per area per time. So we have our

arrow flux. Suppose that flux is incident on another comic book hero, Super Person.

It would be a bad day for Super Person. Super Person would have arrows on half of Su

per Person’s body. The arrows would hit in an area that would be the size and shape of

a Super Person shadow with the light coming from the arrow direction. That area would

be Super Person’s cross section. But suppose our intrepid hero has a shield.



Cross Sections 497

Super Person could increase his cross sectional area with this shield. The arrows would

hit in an area that would be the circular cross section of the shield plus the cross sec

tional area of Super Person’s boots. A better shield would include the boot area.

Not that now not only is Super Person safer, but Super Person’s cross sectional area

is larger than the actual cross sectional area of Super Person’s body. And this cross

section would give a measure of how likely it is that the Super Person system (Super

person plus shield) would interact with an arrow. The larger the area, the bigger the

probability of some part of Super Person getting hit (hopefully all on the shield).

We could take this analogy and apply it to nuclear bombardment. Suppose we take a

proton (x) and send it flying into a nucleus (X) what would be the cross section for

nucleus X?
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We could guess that it should be something like the physical cross section of the

nucleus. But let’s adjust our experiment so the proton doesn’t come centered on the

nucleus. We have done the centered problem and we know the proton bounces back.

But if it comes in offcenter something like this might happen.

It looks like the X nucleus has had an effect that goes beyond it’s physical dimensions

(whatever that means for a wavicle based thing). And that is true. The protons in the

nucleus will have an effect on the incoming x proton that extends beyond the physical

detention of the nucleus due to Coulomb force. So the nuclear cross section might be

larger than the actual nucleus. Remember that we want a probability of an interaction.

And in our offcenter case the x and X did interact. The proton didn’t just pass by

unaffected.

Nuclear cross sections should be on the order of the area of the nucleus, which is an

area of about 10−28m2. This is typical for a midrange atom. And nuclear physicists

gave this area a name, the barn

1b = 10−28m2
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and most of the time cross sections are about this size. But sometimes something

changes, and that tells us much about the nucleus. For example

Xe+ n→ Xe+ n

is an inelastic scattering with a cross section

σ = 4b

but if the neutron is captured, then

Xe+ n→ Xe∗ + γ

and the cross section for this interaction is

σ = 106b

which says that neutron is much more likely to be captured by the Xe atom for some

reason (like Super Person’s shield might be more likely to “capture” arrows than to

deflect them). And by measuring the two cross sections, we have learned something

about Xe nuclei.

Like Rutherford, modern physicists like to do bombardment experiments with thin film

targets.

This makes the math easier because if we look at the target sideways we see that to a

fair approximation the probability of hitting a target nuclei is like Nσ where N is the

number of target nuclei in the film.
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It would be much harder if the target nuclei cross sections overlapped. If the total thin

film area is S, then for this condition the reaction probability would be proportional to

the number of incoming particles, Io and the ratio of the number of particles times a

cross section to the total area of the film Nσ/S or

R =
σN

S
Io

This accounts for the parts of the film that don’t have a target nuclei in them (the blank

spots in our last figure).

We could write Io as a flux

Io = ΦS

then

R = ΦσN

and we are used to finding the number of atoms in a pure sample

N =
mNA

M
where m is the nuclear mass of the target and M is the molar mass. Then for a pure

sample

R = Φσ
mNA

M

It is worth remembering that flux has units of particles per area per second and cross

section has units of area per nucleus per incident particle. So Φσ has units
particles

At

A

nucleus× particle
=

1

t× nucleus
and φσN then would be just inverse time. That is, reactions per time.

Let’s take an example.

Suppose we have a sample
�
m = 8. 1× 10−5 kg

�
of aluminium foil

�
28Al

�
that is

rolled thin enough to assume it is about one atom thick (this would be hard to do!). And
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suppose the 28Al nuclei undergo neutron capture

n+ 27Al→ 28Al + γ

with a measured cross section of

σ = 2.0× 10−3b = 2.0× 10−31m2

and the incoming neutron flux is

Φ = 5.0× 1012
neutrons

cm2 s
Find the reaction rate R.

We know that

R = ΦσN = Φσ
mNA

M
so we will need the molar mass of Al

M = 27
g

mol
then

R = Φσ
mNA

M

=

�
5.0× 1012

1

cm2 s

��
2.0× 10−31m2

�
�
8. 1× 10−5 kg

� �
6.02× 1023 1

mol

�

27 g
mol

= 1. 806× 107
1

s

or about 1.8× 107 reactions per second.

You might object saying that we can’t always prepare a sample to be a thin foil, and

that is true. If the target atom is only one component of the sample and only a small

component, we can still use our fairly simple formula because the target nuclei won’t

overlap as we look through the sample. But if the target nuclei will overlap, then the

geometry considerations are more difficult and it is time for a solid state physics or

junior level nuclear physics class.

Radioisotope production

We use short half life radioactive materials in medicine. An example would be as

a tracer that allows doctors to image a patient by making some part of their body

radioactive. Technetium99m is 99Tc but in an excited state that is metastable, 99Tc∗.

It has a half life of about 6 hours. So if it is inserted into a part of a patient’s body, that

part will emit gamma rays that can be detected with a gamma ray camera. If the tracer

is placed in the blood stream, we could follow the blood trough the patient’s body with

the gamma camera. We wouldn’t want the person to have radioactivity going on in
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them for a long time, so the 6 hour half life is a good thing (the decay products may be

radioactive, but with long half lives and lower energy β− emission).

“A PA transmission scan of my chest acquired using an uncollimated gamma camera and an 18.5

MBq point source of 99mTc at a focal distance of two metres, on 18 Jan 1984 during the

installation of a GE gamma camera at the Meath Hospital, Dublin. Generated by Kieran Maher

by scanning an original transparency film. marz 04:32, 25 October 2006 (UTC).” This is not the

most detailed gamma image from 99Tc but it is one that Kieran Maher kindly let me use)

But how can we have a radioactive element with a half life of only 6 hours when the

Earth is so much older? Clearly this cannot be an element left over from the creation of

the Earth. And this is true, no short half life radioactive isotopes can exist without more

modern creation. We build such radioactive isotopes through artificial nuclear reactions.

Suppose we want to create a product isotope Y with a short half life. We have the

reaction

x+X → y + Y

but the half life of Y is short enough that there might be significant decay during

production while x is bombarding X.

Let R be the constant rate at which we produce Y by x bombardment. We expect

R = ΦσN
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in a time dt we would expect to produce Rdt new Y nuclei. The number of Y nuclei

that decay in dt is λNdt. So the change in the number of Y nuclei has two parts, the

part where we are making new Y nuclei and the part where Y nuclei decay

dN = Rdt− λNdt

which we can write as
dN

dt
= R− λN

and now all we have to do is to guess an answer. We remember that with no production

we would have N = Noe
−λt. So we expect to have a term in e−λt but we need

something else. Let’s try

N =
R

λ

�
1− e−λt

�

The derivative is

dN

dt
= 0+

R

λ
e−λt (−λ) = Re−tλ

then
dN

dt
= R− λN

becomes

Re−tλ = R− λ
R

λ

�
1− e−λt

�

Re−tλ = R−R
�
1− e−λt

�

Re−tλ = R−
�
R−Re−λt

�

Re−tλ = Re−λt

which is true. So this guessed solution works.

The activity would be λN

a = λN = R
�
1− e−λt

�

We should look at this before we try an example. When t = 0 we have

a = R
�
1− e−λ(0)

�
= 0

no activity since we have not produced any radioactive Y nuclei yet. If we take

t≫ T1/2 we would have

a = R
�
1− e−λ(∞)

�
= R

And we have reached an equilibrium. We have an activity that is equal to the reaction

rate. For an isotope with a 6 hour half life the graph looks like
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Let’s try an example of isotope production. Thirty milligrams of gold are exposed to a

neutron flux of 3.0× 1012 neutrons/
�
cm2 s

�
for 60 s. The neutron capture cross section

of gold is 99b. Find the activity of 198Au.

We have to use the tables from the back of our book or the NIST website and

Brookhaven National Laboratory here. We know

σ = 99b = 99× 10−28m2

Φ = 3.0× 1012neutrons/
�
cm2 s

�

∆t = 60 s

m = 30mg

We look up

A = 197

T1/2 = 2.70 d = 2. 332 8× 105 s

M = 197
g

mol

We also know

R = ΦσN = Φσ
mNA

M
and for the case of production

a = R
�
1− e−λt

�

but we realize we have a problem. Our ∆t isn’t much larger than T1/2 nor is it zero.

In fact, ∆t ≪ T1/2 but not zero. We didn’t look at that case. We can get a good

approximation under these circumstances if we approximate e−λt.

ex =
∞�

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

then
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e−λt = 1− λt+
(−λt)

2

2!
+

(−λt)
3

3!
+ · · ·

and since

λ =
ln 2

T1/2

e−λt = e
− ln 2
T1/2

t
= 1− ln 2

T1/2
t+

�
− ln 2
T1/2

t
�2

2!
+

�
− ln 2
T1/2

t
�3

3!
+ · · ·

and we know that
t

T1/2
will be a very small number so �

t

T1/2

�2

will be even smaller and �
t

T1/2

�3

is frighteningly smaller. We could approximate

e−λt ≈ 1− λt

without too much loss of accuracy. Then

a = R
�
1− e−λt

�
≈ R (1− 1− λt) = Rλt

so our activity for very small ∆t values is linear in t. We need R and λ to finish the

problem

R = Φσ
mNA

M

R =

�
3.0× 1012

1

cm2 s

��
99× 10−28m2

� (30mg)
�
6.02× 1023 1

mol

�

197 g
mol

=
2. 722 8× 1010

s

and

λ =
ln 2

T1/2

λ =
ln 2

2. 332 8× 105 s
=

2. 971 3× 10−6

s
then if we define ti = 0 so ∆t = t

a = Rλt

=

�
2. 722 8× 1010

s

��
2. 971 3× 10−6

s

�
(60 s)

= 4. 854 2× 106
1

s
= 4. 854 2× 106Bq
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This is cool and useful. Medical physicists do this kind of work in major hospitals. We

have several recent graduates that have followed this career path and love their jobs.

Perhaps this is something to consider.

But we haven’t gotten to energy production yet. Let’s take that up in our next lecture.
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13.313.5

Fundamental Concepts in the Lecture

• Nuclear deformations and oscillations

• Slow nuclear reactions

• Threshold kinetic energies

Nuclear Fission

So far we have studied nuclear reactions where a particle comes in and affects a

nucleus, and then a particle and a new nucleus comes out.

x+X → y + Y

But there is also the possibility that when x hits X the X nucleus becomes unstable in

a bigger way. Then we might have

x+X → y + Y + Z

where both Y and Z are smaller nuclei. How can this happen?

Because the strong force is a nearestneighbor type force, we can send nuclei into an

oscillatory resonance. A fairly spherical nucleus will elongate in resonance. We could

roughly model this like a harmonic oscillation. The energy for such an oscillator should

be proportional to the separation distance squared. So as we stretch the nucleon mass,

the energy should increase (because we have done work on the nucleus).
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But not all nuclei are spherical. Some are elongated to begin with. Those nuclei

experience a greater effect from oscillation because the nuclear force is weaker because

along one axis the nucleons are farther apart.

So we still get a dip with a minimum for oscillation, but at some distance the potential

energy begins to diminish as the nucleus flattens and then gets thinner in the middle.

Fewer and fewer nucleons are participating in strong force reactions in that middle

section. At some distance, the parent nucleus breaks apart and the two sides form new

smaller nuclei.

The overall process might look something like this
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A neutron strikes a large nucleus. The nucleus captures the neutron, but this causes

waves in the nucleons. The oscillating nucleus can elongate and reduce the strong force

in the middle leading to the splitting of the nucleus into two smaller nuclei. This is

called nuclear fission.

Slow nuclear reactions

The nuclear fission process isn’t as exact and simple as the reactions we have studied up

till now. One large nucleus might split into many different combinations of two product

nuclei with a number of free neutrons produced as well. We could write this as

n+ 235
92 U → 236

92 U∗ → X + Y + neutrons

The new nuclei, X and Y are called fission fragments. One possibility is

n+ 235
92 U → 236

92 U∗ → 41
56Ba+ 92

36Kr + 3n

If the reaction creates more neutrons, these neutrons can go on to cause additional

reactions.

A chain reaction can form. The fission fragments have positive charge. So they repel

each other. So the reaction will result in kinetic energy of the fission fragments and

some kinetic energy of the neutrons. We can find out how much energy is released by

finding the Q value of the reaction. Symbolically for the reaction

x+X → y + Y + Z
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we would have

Q = (mi −mf ) c
2

= (mx +mX −my −mY −mZ) c
2

The kinetic energy of the products share the Q energy

Q = Ky +KY +KZ −Kx

where I have assumed the original nucleus, X, was not moving in our lab frame.

It might be better to do this in the center of mass frame. In that frame it looks like both

x and X are moving together and in the limiting case the y and Y would seem to stay

at the collision location after the reaction. This would be the minimum case where we

have enough energy to just make the reaction happen, but no extra for kinetic energy of

the products y and Y. We call this a threshold reaction. If you are a nuclear physicist

and want this reaction to happen, you must provide enough initial kinetic energy to

make it happen (Kth) and the way to do this is to shoot in the x particle in the lab frame

with the necessary Kx = Kth. Let’s find Kth for such a reaction.

Let’s assume that our fission products don’t move at relativistic speeds. and let’s take

the simple reaction

x+X → y + Y

Then, thinking of our incoming x and our stationary X. The center of mass would move

with speed

v =
mxvx +mXvX

mx +mX
=

mxvx
mx +mX

The we would have a center of mass frame speed for our threshold case (where y and Y

are just produced, but not moving)

vx,cm = vx − v

vX,cm = −v

vy,cm = vY,cm = 0

And we can write conservation of energy (that includes rest energy)

Ei = Ef
1

2
mx (vx − v)2 +

1

2
mX (−v)2 +mxc

2 +mXc2 = myc
2 +mY c

2

1

2
mx

�
vx −

mxvx
mx +mX

�2

+
1

2
mX

�
mxvx

mx +mX

�2

= myc
2+mY c

2−
�
mxc

2 +mXc2
�

We recognize the right hand side as our Q value for the reaction

1

2
mxv

2
x

�
1− mx

mx +mX

�2

+
1

2
mXv2x

�
mx

mx +mX

�2

= −Q
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1

2
v2x

�

mx

�
1− mx

mx +mX

�2

+mX

�
mx

mx +mX

�2
�

= −Q

1

2
v2x

�

mx

�
mx +mX

mx +mX
− mx

mx +mX

�2

+mX

�
mx

mx +mX

�2
�

= −Q

1

2
v2x

�

mx

�
mX

mx +mX

�2

+mX

�
mx

mx +mX

�2
�

= −Q

1

2
v2x

�

mx
m2
X

(mx +mX)2
+mX

m2
x

(mx +mX)2

�

= −Q

1

2
v2x

�
mxm

2
X

(mx +mX)2
+

mXm2
x

(mx +mX)2

�

= −Q

1

2
v2x

�
mxm2

X +mXm2
x

(mx +mX)2

�

= −Q

1

2
v2x

�
mxmX (mX +mx)

(mx +mX)2

�

= −Q

1

2
v2x

�
mxmX

(mx +mX)

�
= −Q

Now let’s take out mx
1

2
mxv

2
x

�
mX

(mx +mX)

�
= −Q

and identify Kth = 1
2mxv2x so

Kth



 1�
mx

mX
+ 1

�



 = −Q

and finally

Kth = −Q

�
1 +

mx

mX

�

So we need at least Kth to make the nuclear reaction happen. In our 235
92 U example, the

n in the left hand side of

n+ 235
92 U → 236

92 U∗ → 41
56Ba+ 92

36Kr + 3n

would carry this kinetic energy. But this is not the only possible set of products Another

possible uranium 235 reaction would be.

n+ 235
92 U143 → 236

92 U∗
144 → 93

37Rb56 +
141
55 Cs86 + 2n

The percentage of fission fragments by atomic mass number is given in the next figure.
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The distribution is bimodal and that makes sense. We expect to see the 235
92 U143 split

into two nuclei. But notice the broad peaks. We can get many many different fission

reactions from the same input particle and nucleus.

Also notice that the reactions produce extra neutrons. These come from the product nu

clei being ripped from the parent. These product neutrons can hit other target nucleus

and cause other nuclear reactions.

If we start with K > Kth we get kinetic energy of the products, and the kinetic energy

of the products becomes thermal energy of the material and this type of chain reaction

can get out of control quickly. The result would generally be bad, from a melting of the

radioactive material to a nuclear explosion like in nuclear bombs.

Control rods

To control such a chain reaction we can introduce a material that captures neutrons but

does not produce a nuclear chain reaction. Cadmium has a large neutron absorption

cross section and is often used in reactors. In one design for a nuclear reactor the target

nuclei, say, 235U is placed in rods in the reactor. These fuel rods contain the 235U and
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cladding to keep the radioactive material contained.16

Rods of control material are included to slow down the production of new neutrons so

the reactor doesn’t overheat and melt. The control rods are designed to be raised or

lowered to allow more or less neutron production so they can slow down or speed up

the nuclear reaction.

Enrichment

To make a safe reactor, we want a nuclear chain reaction that produces one new reaction

for every reaction. If the chain produces even a fraction more than a one for one chain,

the reaction will go out of control. If it produces even a little less than one for one,

then the reaction will die out. Both are bad for energy production (but one is far worse

than the other!). The number of reactions that result from the products of the previous

reaction is called the reproduction constant. To understand how to control the reaction

we need to look at the specific reaction we are to use. So suppose it is

n+ 235
92 U143 → 236

92 U∗
144

Natural uranium only has about 0.7% 235
92 U143 and the rest 23892 U146 and that 23892 U146

won’t participate in our chain reaction. This means the neutrons that should keep

our reaction going will likely be captured by 238
92 U146 and the reaction will die out.

One solution is to artificially increase the percentage of 235
92 U143 to somewhere in

between 3% to 5%. Then there is enough 235
92 U143 to sustain a reaction. This process of

increasing the amount of fissile material (235U in our case) is known as enrichment. A

richer fuel mix would need less control. But there is another complicating factor.

16 INL and our own Grain Boundary Group study the physics of nuclear fuel rod design.
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Moderators

We can enrich less if we can make it more likely that the neutrons will be captured.

We can look at the neutron capture cross section. We find that it is not constant, but is

different for different initial kinetic energies of the incoming neutrons.

Notice that the higher the neutron energy the lower the cross section. We could get

more reactions if we slowed down the neutrons. And we know how to do that, we let

them collide with something that won’t absorb them. The collision will transfer some of

the neutron’s energy, slowing them down. Water is a good choice because the neutrons

tend to strike the hydrogen atoms in the water molecules. But normal hydrogen can

also capture the neutrons

n+ p→ H2 + γ

It is more efficient if we use water made with deuterium instead of hydrogen. Then

the cross section for neutron capture is very low. Some reactor designs use more

enrichment, some choose deuterium based “heavy water.”

Natural control through delayed reactions

Some decay products have longer half lives than others. This is a benefit to reactor

design. 93Rb is one such fission product from 235U. It has a half life of 6 seconds. This

isn’t the most probable decay route, but remember we need our reaction to produce

exactly one more reaction to keep the chain going. The control rods in a reactor can be

adjusted, but not infinitely quickly. If we plan for quick reactions to keep our reactor

at just under one reaction per reaction, then the slower but less probable reactions can

make up the difference. And we can move control rods within a 6 second window. This
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makes fine control of a uranium reactor possible.

Power reactors

The next figure is a schematic of a power generating reactor.

Pressurized Water Reactor (Image courtesy the US Government Accountability Office)

This is just one of many designs. This design is called a pressurized water reactor

because is uses pressurized water to transfer thermal energy. The pressurized water

(yellow arrows in the figure) is heated by the reactor. That pressurized water in turn

heats nonpressurized water which is turned into steam and drives turbines to generate

electrical power. The water that passes through the reactor might be activated by

the neutrons from the nuclear reactions. The pressurized water reactor ensures no

radioactive water is involved with the steam turbines so the process is much safer.

The next figure shows a reactor at INL. This is a research reactor, not designed for en

ergy production. We can see many of the same design items as in the energy producing

reactors. There are fuel and control rods (both vertical in this reactor) and water as a

moderator. Often this kind of reactor also used carbon rods as a moderator.
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Fusion

Ages ago (a few lectures ago) we said iron was the most stable element and we could

get energy from the nucleus in two ways. We could take large nuclei and split them,

allowing the nucleons in the product nuclei to achieve lower energy states. Or we could

combine smaller nuclei, once again allowing the nucleons in the combined nucleus to

have a lower energy state. Both methods release energy. We now know the first method

is called Fission. The second is called fusion.

An example reaction would be
2
1H1 +

2
1 H1 →3

1 H2 +
1
1 H0

We take two deuterium nuclei and combine to get tritium and a normal hydrogen nuclei

(a proton). If we calculated the Q value for this we would get about 4MeV which

doesn’t sound like much but if we compare energy per nucleon it is about the same as

fission.

The trick in doing this is to squeeze the deuterium nuclei close enough that the strong

force can act. But of course the deuterium nuclei repel each other because of the

Coulomb force. The deuterium radius is about

r = roA
1
3 = 1.2 fm (2)

1
3

= 1. 511 9× 10−15m
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The electrostatic potential energy for two deuterium nuclei that just touch (r = 3 fm) is

U (3 fm) =
1

4π (8.854187817× 10−12 Fm−1)

�
1.60217733× 10−19C

�2

3× 10−15m

= 4. 799 9× 105

= 0.5MeV

so if we supply about 0.5MeV to one of the deuterium nuclei, we should have a

reaction in which about 4MeV + 0.5MeV = 4. 5MeV of energy is released. Of

course, you have to use energy to accelerate the deuterium nucleus, and you must keep

this reaction going to be practical. Particle accelerators are not good approaches to this.

A different approach would be to heat deuterium gas until each nucleus has 0.25MeV

of energy. Then the collisions between the deuterium atoms would produce fusion. But

to do this for a large number of atoms requires temperatures on the order of 109K. If

you are not doing this in a star, this is difficult to achieve.

Fusion reactors

Another approach is to switch to a different reaction. There are several promising

fusion reactions that might produce energy. Some of these are

Reaction Q (MeV)
2H + 2H → 3H + p 4.0
2H + 2H → 3He+ n 3.3
2H + 3H → 3He+ n 17.6

The last seems most promising because it yields the largest release of energy. It is

called the DT reaction for deuterium and tritium.

There are two promising designs for fusion reactors. One method uses high

temperatures (only on the order of 108K) combined with high density to push the

nuclei together. The other uses powerful lasers to force the nuclei together. In both

cases, the trick is to not spend too much energy causing the reaction so that there is

more energy left over after the reaction.

The first kind of fusion reactor needs to hold the nuclei at a high temperature and in

close proximity. And the nuclei need to be kept in those conditions for a long time. The

temperatures are too high to use a physical bottle. So one method of providing long

confinement times is to use a magnetic field. The standard configuration is a toroid.

And the kind of reactor that uses such a magnetic field confinement is called a Tokamak
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(Russian acronym for “toroidal magnetic chamber”).

Tokamak magnetic fields, image courtesy United States Department of Energy

To achieve a net energy, the reactor needs to heat the gas to a plasma with an amount of

power proportional to the number density, n, of atoms. The power from the reaction is

proportional to n2τ where τ is the confinement time. To achieve net energy, the product

nτ > 1020 sm−3

which is known as Lawson’s criterion. The International Thermonuclear Experimental

reactor (ITER) in France is projected to surpass the break even point where net energy

is produced. A research group at China’s Experimental Advanced Superconducting

Tokamak (EAST) announced last year that they had achieved 1.6 × 107K which is a

new record. They are also close to sustained fusion.
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Tokamak Reactor Interior at Prinston Plasma Physics Labroarory (US Department of Energy)

The second of our methods for producing fusion is called Inertial confinement. The

idea is to fulfill the Lawson criterion by making n large so τ does not have to be so

long. This is done by taking DT fuel confined in a small pellet and hitting the pellet

with intense laser beams from all directions. Recall that these laser beams will have

momentum. So the pellet is vaporized and the atoms are ionized and pushed together.

The resulting plasma can have densities up to 1029/m3. Usually short laser pulses are

used, on the order of a nanosecond. In the next figure you can see the flash of light from

a pellet being irradiated.
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Implosion of a fusion microcapsule on the NOVA laser system. This miniature “star” was created

in the Nova laser target chamber as 300 trillion watts of power hit a 0.5millimeterdiameter

target capsule containing deuterium–tritium fuel. (Lawrence Livermore National Laboratory)

Here is another setup with several laser beams visible

View inside the OMEGA chamber at the moment of operation of the 24beam, 12terawatt

OMEGA laser (U.S. Department of Energy)

And finally a design for a reactor.
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Image showing the arrangement of the later versions of the MEF or LIFE.1 power plant. The

grey boxes arranged in groups at the top and bottom (just visible, shaded) are the laser

beaminabox systems. Their light, in blue, shines through the optical system into the yellow

colored target chamber in the center. The machinery on the left pumps liquid lithium or flibe into

the target chamber walls to cool the reactor, extract energy for generation, and produce tritium.

(Lawrence Livermore National Laboratory)

But no research group has produced a sustained fusion reaction that provides more

output energy that was required to make the reaction happen. Several research groups

seem so close, but we are not there yet.

Fusion in stars

But what if you do have a star? The temperatures are high, the pressures are high,

Lawson’s criterion would be much easier to satisfy. This doesn’t help us make reactors

on Earth, but it does provide us with energy from the Sun. The fusion reaction in stars

is really a chain of reactions.
1
1H0 +

1
1H0 → 2

1H1 + e+ + ν

which yields deuterium. Then
2
1H1 +

1
1H0 → 3

1He1 + γ

giving us helium. This reaction must happen twice before the next reaction can happen.
3
1He1 +

3
1He1 → 4

2He2 + 211H0

the net process is

411H0 → 4
2He2 + 2e+ + 2ν + 2γ

The Q value is a little bit hard to calculate. Our trick of using atomic masses is not as
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straight forward here. We need four electrons to be added to the left hand side to make

the hydrogen nuclei into atoms. That means we need four electrons on the right side as

well. Two would go with the helium nucleus to make a helium atom. The remaining

two would combine with the positrons making more gamma rays. So we could write

the Q equation as

Q = (mi −mf ) c
2

�
4m(1H) −m(4He)

�
c2

= ((4 (1.007825 u)− 4.002603u)) c2
�
931.5MeV/c2

u

�

= 26. 731MeV

This is likely the principal source of solar energy. But with such enormous densities
�
ρ = 1. 5× 105 kg/m3

�
and temperatures

�
107K

�
as are found in the center of the

Sun, we can have larger elements fuse. An example is the carbon cycle
12C + 1H → 13N + γ

13N → 13C + e+ + ν

13C + 1H → 14N + γ

14N + 1H → 15O + γ

15O → 15N + e+ + ν

15N + 1H → 12C + 4He

The net process is

411H0 → 4
2He2

and we end up with the same amount of carbon as we started with. But the carbon is a

catalyst that allows the reaction to happen faster. A new star would have to synthesize

carbon before this process could start. This process likely dominates with star core

temperatures above 20× 106K, much hotter than our Sun. Let’s continue to look at

making atoms in stars in our next lecture, and that will lead us to a taste of particle

physics.



32 Nucleosynthsis and the

Particle Zoo

13.6  14.2

Fundamental Concepts in the Lecture

• How new elements are produced in stars

• CAT Scans, MRI

• The four fundamental forces

• Classification Schemes, Leptons, Hadrons

In our last lecture we hinted about something about the formation of atoms in stars. We

learned that large stars probably use the carbon cycle to turn hydrogen into helium. But

were did the carbon come from?

Making the atoms

As stars age they will use up their hydrogen. This leaves an abundance of helium but

without the nuclear fusion the star collapses inward due to gravitation. The rushing

inward of the star matter raises the temperature of the matter to about 108K (recall that

thermal energy is strongly related to kinetic energy). The higher kinetic energy of the

atoms will drive atoms into atoms. And some will have enough energy to overcome the

Coulomb repulsion between the nuclei. And this starts a second set of nuclear fusion

reactions.
4He+ 4He→ 8Be
8Be+ 4He→ 12C

and this is where the carbon comes from to start the carbon cycle. This reaction has a Q

value of 92keV. Carbon is not produced quickly because the 8Be has a half life on the

order of 10 fs, so the second reaction is not very probable. But stars are big and hot so
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at 108K there will be some 8Be all the time and the 8Be+ 4He reaction has a large

cross section so carbon is slowly produced.

Once there is enough 12C a new fusion chain can start
12C + 4He → 16O

16O + 4He → 20Ne

20Ne+ 4He → 24Mg

All of these reactions contribute energy to the star and therefore raise the star’s

temperature. When the temperature gets high enough the kinetic energy of the atoms is

large enough to fuse carbon and oxygen atoms
12C + 12C → 20Ne+ 4He

16O + 16O → 28 Si+ 4He

There are many more such process leading to eventually produce iron. Noting the

pattern of these processes we expect to find in stars many light even Z elements, and

much less abundant odd Z elements. Notice also that we skipped Li, Be, and B so

these elements should be less abundant. And eventually we should see lots of Fe

because it is so stable.

We will get some of the odd Z elements through less probable reactions, for example
12C + 12C → 23Na+ 1H

produces sodium.

We can plot the relative abundance of different elements and find that there are indeed

quite a lot of hydrogen and helium atoms in the universe, fewer Li, Be, and B, and lots

of Fe.
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Beyond iron we need to have free neutrons available to create the neutron heavy nuclei.

Without the extra neutrons the heavy nuclei above iron are not stable. Reactions like
13C + 4He→ 16O + n

could contribute to large nuclei production. With free neutrons we could have a chain

like this
56Fe+ n → 57Fe

57Fe+ n → 58Fe

58Fe+ n → 59Fe

58Fe+ n → 60Fe

60Fe+ n → 61Fe

61Fe → 61Co+ e− + ν

61Co → 60Ni+ e− + ν

Many of the nuclei in this chain are unstable but with half lives that allow the chain to

function in a star. Here are two example processes for generating heavy nuclei. The

sprocess works by beta decay and it is slower (hence the s). The rapid rprocess is

quicker but goes quickly away from the stable region where the sprocess sticks close

to the stable region. The rprocess is likely to happen in supernova explosions.
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Only a few possibilities are shown in the figure. There are many such r and sprocesses.

Applications of Nuclear Physics

Here are a few more practical applications of nuclear physics

CAT Scans

A computed axial tomography (CAT) scan finds tissues of different composition by

sending Xrays though the body at many different angles. As an idea of how this works,

let’s take a region of the body and mentally divide it up into four smaller volumes.

I will use my Xray source and detectors to find out how many of the Xrays are

absorbed. I will use generic units so we won’t spend time worrying about the actual

doses of radiation. We just need to know that big numbers tell us there has been more

absorption.
Dual Xray Detector

Xray Source

A B

C D

Tissue 

Region

Dual Xray Detector

Xray Source

A B

C D

Tissue 

Region

I move the xray source, and have a detector array so I can see what the combined

absorption was for subregion A and C together. I now move the source so I can find the

absorption of subregion D and B together.
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Attenuation factor of 

8

Attenuation factor of 

8

The results are as shown

Result of first scan

Attenuation factor of 

8         10

Result of first scan

Attenuation factor of 

8         10

for A and C together I have an attenuation of 8 generic units, for B and D together I

have 10 generic units. I guess that half the attenuation of the combined A and C scan is

due to the material in each subregion equally
Attenuation factor of 

8         10

4

4

5

5

Attenuation factor of 

8         10

4

4

5

5

Likewise I assume half the attenuation from regions B and D together is due to each

cell, B and D equally. It is a little like Suduku puzzles.
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A B

C D

7

A B

C D

7

11

A B

C D

7

A B

C D

7

11

A B

C D

7

A B

C D

7

11

Now I turn my Xray source and detector array. I scan A and B together and C and D

together giving two new combined attenuation values.. The first tells me that I over es

timated. My first guess would have given an attenuation factor for the sideways scan of

9 for A and B together. So I reduce each guess by one. Likewise, the bottom row, C and

D would have given and attenuation factor of 9, but I got 11 with the sideways scan. I

will change my guesses for C and D by adding one to each. My guesses now look like

3

5

4

6

3

5

4

6

I convert my guesses into a grayscale image

which tells us instantly that subregion D has the most dense material. The images are

easier to see and can be quite detailed if many more than just two different directions

are taken to form the image.
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CAT scan of a human brain of a patient with AIDS (Image courtesy of the National Cancer

Institute)

MRI

We already discussed the MRI technique. It really has nothing to do with a nuclear

reaction , but it does deal with the nucleus. We already found that MRIs come from

placing the person in an magnetic field that makes the nuclei align their spins. Then,

when microwaves hit the atoms, nuclei with just the right spin energy, the nuclei flip

their spin state. This causes the microwave radiation to be absorbed, and it is this

absorption that we use as the MRI signal.

Originally, this technique was called Nuclear Magnetic Resonance, but the word

“nuclear” scared patients, so the name was changed to MRI.

Let me emphasize this. A MRI is far less damaging to tissue than a radiation based

imaging technique. MRI does use microwaves (like your cell phone) but the risk is very

much less that with a CAT scan.
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Magnetic Resonance Imaging of Primitive Neuroectodermal Tumor of the Central Nervous

System. (Image courtesy of the National Institute of Health)

Fundamental forces

We found that matter is made of atoms, and atoms are made of electron orbitals

and nuclei, and nuclei are made of proton and neutron wave functions. But what

are electrons, protons and neutrons made from? And we found that the strong force

was mediated by mesons, what is a meson and how does this work? To answer these

questions we need to go back to the fundamental forces that hold the universe together.

In the last four physics classes (including this one) you have learned about four basic

force types.
Fundamental Forces

Gravitation
Electric

Magnetic
Strong

Usually we combine the Coulomb and magnetic forces and just call them the

electromagnetic force. From our introduction to electrodynamics (PH220) we can see

why. Electric and magnetic fields are dependent on our reference frame, so what is an

electric field in one reference frame is a magnetic field in another frame. Electrical and

magnetic forces are really part of the same electromagnetic field interaction.
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Fundamental Forces

Gravitation

Electromagnetic
Strong

Note that there is an open spot in our table. There is actually one more force. It is a

nuclear force like the strong force, but, well, it is weaker–about 10−6 times the strong

force magnitude. Thus the name. The weak force is a shortrange force. It is responsible

for instability that causes beta decay. The weak force doesn’t play much of a role in

holding nuclei together. So we haven’t needed it up till now. The week force has an

interaction range that is about 0.001 fm, so it is even more short range than the strong

force. Really it only acts inside a nucleon. Our fundamental forces are

Fundamental Forces

Gravitation
Weak

Electromagnetic
Strong

Particles can interact thorough any of these forces. We can describe the four

fundamental forces by their range, relative strength, characteristic time, and the

particles that use this force to interact.

Force Type Range
Relative

Strength

Typical

Lifetime

Particles acted

on by force

Mediating

particles

Gravitational ∞ 10−38 ? all particles None needed

Electromagnetic ∞ 10−2 10−14 to 10−20 s charged particles Virtual Photon

Weak 10−3 fm 10−7 10−8 to 10−13 s quarks, leptons W±, Z0 bosons

Strong 1 fm 1 < 10−20 quarks, hadrons Gluon

Some of the words in this table are strange still. We will get to them shortly. It is a

little bit wrong to think of the weak and strong force going to zero on the order of a

femtometer. Really they approach zero asymptotically. But they approach zero so much

faster than the gravitational and electromagnetic forces that this is practically correct.

The last column of the table may be strange. It talks about a mediating particle. We

spoke of this back when we first encountered the strong force. The strong force is well

modeled by assuming a nucleon emits a particle, and that all nucleons are attracted to

that particle. The nucleons are not so much attracted to each other, but are attracted

to the mediating particles. So two nucleons will move closer to a mediating particle,

and therefore move closer to each other. For the strong force the mediating particles
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have been named gluons. It turns out that quantum electrodynamics models the

electromagnetic field force as also mediated by a particle, and an obvious choice would

be the quantized bit of field we know as a photon. The weak force also has mediating

particles.

You might ask if gravitational forces have a mediating particle. And the answer depends

on how you view gravity. Einstein’s general theory of relativity (something we have not

gotten to yet) would say no mediating particle is needed. But Einstein’s theory is not

complete, it has singularities in the center of black holes, for example. Quantum gravity

theories seek to fix the holes in general relativity and to merge quantum mechanics

and general relativity. There are competing theories (quantum loop gravity, modified

gravity, etc.) and some of these postulate a particle that has been called the graviton.

No evidence for this particle exists yet. But from theory we might have some idea

of what it’s properties would be if it did exist. Here is a table of mediating particle

characteristics.

Force Type
Mediating

Particle
Symbol Charge Spin

Rest

Energy

Gravitational Graviton? g 0 2 0

Electromagnetic Photon γ ±1 1 0

Weak
W±

Z0 W±, Z0 0 1
80.4GeV
91.2GeV

Strong Gluon 0 1 0

Note that for the strong force we found before that a π meson might be a good candidate

for the gluon. A better theoretical fit is the virtual π meson, and that will need to be

something we explain a bit further as we go.

Richard Feynman developed a way to draw particle interactions to show the workings

of the exchange particles. Here is such a diagram for the strong force interaction be

tween a proton and a neutron.
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In the diagram you can see a proton approaching a neutron. And at some point an ex

change particle, π0, is emitted. Notice that time moves from the top to the bottom of a

Feynman diagram. Here is another example for the electromagnetic force.

Antimatter

We already have found that electrons have antiparticles, positrons. The existence of

the positron was predicted by relativistic quantum theory (Dirac). This was my last

class in graduate physics. It took the professor about two weeks of class time to do a

problem. We won’t do any in this class (sigh). But the results of the theory predicts

that every particle will have an anti particle. This has been great for the science fiction

writers, but despite this, it seems to be true. In nuclear reactions we used neutrinos and

antineutrinos (some theories allow particles to be their own antiparticle, the neutrino

may be one of these).

The positron and electron are good examples of the strange things that happen with

antimatter.

e− + e+ → γ1 + γ2
if we allow a positron and an electron to collide, they destroy each other, converting

their rest mass (and any kinetic energy ) to photons with an energy of 0.511MeV. A

way to think about this might be to envision the free positron and the free electron as

still begin waves (they are) with wave functions. But these wave functions can interfere

with each other to the point of destroying their wave functions. The energy that was in

these wave packets must be released. And the easiest way to release energy is to create

photons. This will happen for protons and antiprotons as well

p+ p→ γ1 + γ2

with a photon energy of 938MeV. We call such reactions annihilation reactions. This

is the Star Trek matterantimatter annihilation that you see in SiFi literature. SiFi might
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exaggerate what we can do with annihilation, but the reactions are reality. PET scanners

use this. They use a positron emitting substance (beta decay) in a patient, usually mixed

in a glucose solution. Then the gamma emission due to the positrons annihilating with

electrons can be detected. Since the brain uses more glucose when it is active, this is

one way we have mapped the brain to the actions or functions for which each part of

the brain takes control.

A high energy gamma ray can strike a nucleus and convert it’s energy into mass.

Because charge must be concerned, we expect either a neutral result or a pair of

particles, one of which is positive and one of which is negative. Experiment tells us

that we get an electron and a positron. We create mass by converting the gamma ray’s

energy into particles. We often call this pair production.

Classification Schemes

We know about protons, neutrons, electrons, neutrinos, and π mesons. There are many

more particles. Before we study individual particles and their properties, let’s group

them into categories based on those properties.

Leptons

The word leptons comes from the greek word for “small” (think of leprechauns). We

have not been able to split apart this kind of particle, so we don’t know of any internal

structure. Since (we think) leptons are unique and different with no internal parts,17 we

must conserve something leptonish in reactions. We assign a lepton number to each

lepton like a charge. We demand lepton number to be conserved like charge. This

means the wave functions must have a particular characteristic that would have a lepton

quantum number come out in the solutions to the Schrödinger equation. Here are the

leptons

17 By “no internal parts” of course we mean that their intrinsic wave functions are simple and not a
combination of other wave functions that we recognize as independent particles. Protons, however, do seem
to be a combination of three quark wave functions.
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Leptons Symbol
Lepton
Number

Charge (e) Spin
Mean
Life (s)

Anti
particle

Lepton
Number

Rest
Energy (MeV)

Decay
Products

Electron e− Le = +1 −1
1

2
∞ e+ Le = −1 0.511

ElectronNeutrino νe Le = +1 0
1

2
∞ ν̄e Le = −1 really small

Muon µ− Lµ = +1 −1
1

2
2.2× 10−6 µ+ Lµ = −1 105.7 e− + νe + νµ

MuonNeutrino νµ Lµ = +1 0
1

2
∞ ν̄µ Lµ = −1 really small

Tau τ− Lτ = +1 −1
1

2
2.9× 10−13 τ+ Lτ = −1 1784 µ− + νµ + ντ

TauNeutrino ντ Lτ = +1 0
1

2
∞ ν̄τ Lτ = −1 really small

Notice that all leptons have spin of 1

2
. Leptons interact using the electromagnetic or weak forces.

Hadrons

There are two subclasses for Hadrons. Baryons and mesons. We have talked recently about
mesons. Baryons are more “normal” particles like protons and neutrons. The Baryons have a
baryonness that we also say is conserved like a charge. The Baryons interact through the strong
force.

Baryons Symbol
Baryon

Number

Particle

Charge (e)
Spin

Strange

ness

Mean

Life (s)

Anti

particle
e

Baryon

Number

Rest

Energy (MeV)

Decay

Products

Proton p +1 +1 1

2
0 ∞ p̄ −1 938.3 None

Neutron n +1 0 1

2
0 886 n̄ −1 939.6

−p+ e−+νe
lambda Λ0 +1 0 1

2
−1 2.6× 10−10 Λ̄0 −1 1115.6 p+ π

Sigma Σ+ +1 +1 1

2
−1 8.0× 10−11 Σ̄+ −1 1189.4 p+ π0

Σ0 +1 0 1

2
−1 7.4× 10−20 Σ̄0 −1 1192.5 Λ0+γ

Σ− +1 −1 1

2
−1 1.5× 10−10 Σ̄− −1 1197.3 n+ π−

Xi Ξ0 +1 0 1

2
−2 2.9× 10−10 Ξ̄0 −1 1315 Λ0+π0

Ξ− +1 −1 1

2
−2 1.6× 10−10 Ξ̄− −1 1321 Λ0+π−

∆∗ +2,+1, 0,−1 3

2
0 5.6× 10−24 ∆

∗
1232 p+ π

Σ∗ +1, 0,−1 3

2
−1 1.8× 10−23 Σ

∗
1385 Λ0+π

Ξ∗ −1, 0 3

2
−2 7.2× 10−23 Ξ

∗
1533 Ξ+ π

Omega Ω− +1 −1 3

2
−3 8.2× 10−11 Ω̄− −1 1672 Λ0+K−

Here are the mesons

Mesons Symbol
Particle

Charge (e)
Spin

Strange

ness

Mean

Life (s)
Antiparticle

Rest

Energy(MeV)

Decay

Products

Pion π+ +1 0 0 2.6× 10−8 π− 139.6 µ++νµ
π0 0 0 0 8.4× 10−17 π0 (self) 135.0 γ + γ

Kaon K+ +1 0 +1 1.2× 10−8 K−
493.7 µ++νµ

K0
S

0 0 +1 0.89× 10−10 K̄0
S

497.7 π++π−

K0
L 0 0 +1 5.2× 10−8 K̄0

L 497.7 π±+e∓+νe
Eta η 0 0 0 5.1× 10−19 η (self) 548.8 γ + γ

η′ 0 0 0 3.2× 10−21 η′ (self) 958 η + π++π−

ρ+ +1 1 0 4.4× 10−24 ρ− 775 π++π0

D+ +1 0 0 1.0× 10−12 D−
1869 K−+π++π−

J/ψ 0 1 0 7.1× 10−21 J/ψ (self) 3097 e++e−

B+ +1 0 0 1.6× 10−12 B− 5279 D−+π++π−

Υ 0 1 0 1.2× 10−20 Υ (self) 9460 e++e−
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For hadrons, it was noticed that some of the particles are only produced in pairs.
They also seemed to experience weak force decay (e.g. beta decay) even though they
were particles that usually are governed by the strong force. Since this is strange, the
property that allowed these behaviors is called strangeness. We give them a strangeness
number that must be conserved, S.

We can use the leptonness, baryonness, and strangness to predict the outcome of
particle interactions. We will do this in the next lecture.



33 Particle Conservation Laws

and particle detectors

4.3  14.6

Fundamental Concepts in the Lecture

• Conservation of Lepton Number

• Conservation of Baryon Number

• Detecting particles: Geiger tubes, Diodes, Scintillators, PMT, Cloud and Vapor
chambers

• Energy and momentum in particle interactions

We introduced the classifications of particles in our last lecture. Now let’s look at
those classifications and the interactions between particles of different classification.
We will also need to know a little bit about detectors that we can use to verify particle
experiment predictions.

Conservation laws

The classification system we introduced in our last lecture is more than just a nice
way to see the different kinds of particles. The classification system is designed to
help with a new set of conservation rules that come from experiment and theory. Like
the conservation rules we have had so far, selection rules tell us what reactions are
likely to take place without solving a very large differential equation. This was true for
conservation of energy and momentum. But we found more conservation laws as we
went.

For example, we had a conservation law that said in chemical reactions we couldn’t
destroy electrons. So if I have

2H2 +O2 → 2H2O

you would know that there are ten electrons in four hydrogen and two oxygen atoms
and ten electrons in two water molecules. No electrons created or destroyed. Electrons
are leptons. We will find that there is something conserved in lepton interactions.
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In nuclear reactions we found a conservation of nucleons. So in

n+235
92 U →236

92 U∗ →141
56 Ba+92

36 Kr + 3n

we can count up all the neutrons and protons and we should get the same number of
nucleons on both sides. Nucleons are baryons. There seems to be something conserved
in a baryon reaction.

In each case we could introduce a new quantum number to allow us to figure out what
reactions are more likely. We did this with electrons states. Our n, l, ml, and ms

really stood for different wave functions. We need something like this for leptons and
baryons. The details of the math are the part of physics called quantum electrodynamics
or QED. QED is a graduate level physics topic (and really fascinating). For now we
will introduce and use the selection rules to find what reactions are possible. This is a
little like using n, l, ml, and ms without ever seeing the Schrödinger Equation or the
solutions for hydrogen. But we can get a good conceptual idea of what happens this
way, so let’s get started.

Lepton Number

Let’s look at a typical lepton interaction

n→ p+ e− + ν̄

Another is
p→ n+ e+ + ν

But it never happens that in the first interaction we get a neutrino instead of an
antineutrino even though they have the same very small mass. Conservation of energy
would allow it, but something else makes the reaction not happen. Something inherent
to the lepton type of wave functions. We can assign a quantum number to leptons that
shows if a reaction is probable or not. In our lepton table there were actually three new
lepton quantum numbers Le, Lµ and Lτ . Let’s see how these work in our example
interactions. For the first reaction we mentioned above

n → p + e− + ν̄
Le 0 → 0 + 1 + −1

The neutron and proton are baryons, so their lepton number has to be zero (no

leptonness). But the electron and the antineutrino are leptons and now we see that to
balance the lepton number we do need an antineutrino, not a neutrino. Likewise for the
second reaction

p → n + e+ + ν
Le 0 → 0 + −1 + 1

and Le balances, on both sided of the reaction. We could write similar reactions

involving Lµ and Lτ .

νµ + n → µ− + p
Lµ 1 + 0 → 1 + 0
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or even

µ− → e− + ν̄e + νµ
Le 0 → 1 + −1 + 0
Lµ 1 → 0 + 0 + 1

Of course our use of lepton quantum numbers obscures a lot of math. But it does allow
us to see what would come from individual particle reactions easily.

Baryon Number

In our baryon classification table there is a baryon quantum number listed for each
baryon. We already know this conservation rule because we used it before, but we
called it conservation of atomic number or conservation of nucleons. But by careful
observation we can assign specific baryon numbers to baryons and then use this to
predict the outcome of interactions. Let’s look at one of our previous examples. We
now know the proton and neutron should have had baryon numbers

n → p + e− + ν̄
Le 0 → 0 + 1 + −1
B 1 → 1 + 0 + 0

For this reaction we have not employed a conservation rule for all the particles. We
need to do this for every interaction in order to predict outcomes accurately.

Perhaps the most famous (or at least the very cool) baryon interaction is

p+ p→ p+ p+ p+ p

which is the reaction that produces an antiproton. We could write this with the baryon
numbers to see why this must be the right interaction.

p + p → p + p + p + p
B 1 + 1 → 1 + 1 + 1 + −1

what this means is that we accelerate one (or both) of the initial protons in an accelera
tor and direct them to have a collision. The kinetic energy of the collision is converted
into a proton and an antiproton. CERN is one laboratory that can produce antiprotons
and the first place to make antihydrogen (an antiprotron with a positron orbital cloud).
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CERN Low Energy Antiproton Ring (LEAR) where anti hydrogen was first produced.

Strangeness number

Lepton number and baryon number proved to be great predictors of which interactions
would happen, but this didn’t work for mesons. This is one of the reasons for the meson
category. Mesons are frustrating because they don’t seem limited in interactions like
baryons and leptons so that the interactions

p+ p → p+ n+ π+

p+ p → p+ p+ π0

p+ p → p+ n+ π+ + π0

p+ p → p+ p+ π+ + π−

are all possible! But there are some mesons that seemed to act strangely. For example
the reaction

p+ p→ p+ n+K+

seems like it should happen but it doesn’t. If the energy of the protons is higher we can
get

p+ p→ p+ n+K+ +K−

It looks like we can only make Kaons in pairs. We can assign another quantum number
to mesons to describe this restriction.

p+ p→ p+ n+K+ +K−

p + p → p + n + K+ + K−

S 0 + 0 → 0 + 0 + 1 + −1

This strange behavior was given the name strangeness and the quantum number is the
strangeness quantum number. All Hadrons can have strangeness. For strangeness, there
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is a further restriction, the weak interaction can only change strangeness by one unit.

∆S = ±1 (Weak interactions)

which of course is a new selection rule!

Detecting particles

The next figure is the CERN Compact Muon Solenoid (CMS) detector is a 15m high,
21m long “compact” detector specifically designed to detect muons. The detector
system includes huge liquid helium cooled magnets to make charge particle trajectories
curve. It has layers of detectors that track the path of the particles through the detector
system. It is an engineering marvel designed to do exacting scientific tests. The CMS is
pictured below during routine maintenance. Notice the size of the workers compared to
the size of the huge cylindrical CMS system.

Superconducting Compact Muon Solenoid (CMS) at CERN. The detector system is two stories

tall and normally kept at 3K. In this photo the detector is separated into two halvs (one side is not

visible in this photon) for maintainance.

But just how would such a detector system work. Let’s look at the basic strategies for
detecting particles.

Basic detection strategies

We can’t see or hear particles. We don’t feel electric or magnetic fields. So the question
should be raised, just how do we know all these particles exist? Here are some detention
strategies used in particle physics.

We will look at smaller versions of particle detectors, but the principles used in simple
hand held detectors are the same as those used in monster detectors like the CMS. Our
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detection strategies will take advantage of the energy of the particles that come from
our reactions to move charges on collision. This is similar to photoelectric effect.

Geiger counter

The Geiger counter will count radiation that passes through it’s tube. You have seen
these on SiFi shows, no doubt. We know enough physics to see how it works. We have
a wire at a high positive potential compared to the metal tube that surrounds it. The
tube is filled with a gas.

As radiation enters the tube, it ionizes the gas by knocking an electron off a gas atom.
The electrons from the atom accelerates toward the wire. On the way it hits other atoms
and knocks off more electrons. This is called and electron “avalanche.” The avalanche
is a burst of current (it is moving charge) which can trigger a counter or speaker to let
you know ionizing radiation passed through the tube.
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This avalanche is the “click” you hear when a Geiger counter detects radiation.

Semiconductor diode

This is just a pn junction. When ionizing radiation hits within the depletion region, it
separates an electron from it’s atom. We know this now as an electronhole pair. The
electron and hole will move in the depletion zone field, creating a small current pulse
that can drive a counter or speaker. This is very like the photodiodes we used in lab,
only we now have small particles that can remove electrons as well as photons.

scintillation counter

These are fun. Scintillation crystals glow when struck with radiation. The radiation
excites an atom, and then the atom returns to the ground state. This sometimes is
complicated, because the atom is often in a crystal, so crystal excited states are
involved. But the photon is detectable, using photomultiplier (next section) or avalanche
photodiodes (not discussed here).

Photomultiplier

Photomultipliers are another tube device like the Geiger tube. The difference is that a
photomultiplier has several dynodes, extra electric connections at different potentials
along the tube. It starts with a scintillation crystal that emits a photon. the photon ex
cites an electron using the photoelectric effect. This electron causes an avalanche at
each dynode. The avalanche grows to the point at which it can be detected. Photomulti
pliers can be very sensitive. They can detect individual photons from the scintillation
crystal, so they can detect single particles.
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Photomultiplier with a scintillation crystal (Image courtesy Colin Eberhardt)

The tube photomultipliers are now being replaced with silicon based photomultiplier
technology. But the older tube based version are in some ways more rugged. The new
devices are lower power, and not made of glass tubes, so they have some important
advantages.

A Photomultiplier Tube. Photo courtesy Antonio Pedreira.

The image intesifiers used in night vision goggles work on the same principle as
photomultipliers.

Track detectors (cloud, bubble and, wire chambers)

These are cool. The bubble chamber uses a liquid near it’s boiling point. As a charged
particle passes through, it ionizes atoms breaking their bonds to the rest of the fluid.
This leaves a bubble trail. For both cloud chambers and bubble chambers you have to
photograph the trail quickly because it will dissipate. More on this later. The reverse
situation of a vapor cooled to super saturation also works. The charged particles ionize
the vapor by collision, forming nucleation centers. So you get a particle vapor trail
through the vapor. Here is a picture of a bubble chamber from CERN.
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But a picture of a chamber in operation is better and we will get a few such pictures in
the next section.

Wire track detectors

The wire track detectors use thousands of wires in two grids, one perpendicular to the
other. As the charged particle passes a wire, it creates ions in the gas surrounding the
wire grid. The electrons collect on the nearest wire in each direction. This is sort of a
very fancy Geiger tube. Since there are two directions of wires, we can use the two
wires that feel a current to give an x and a y location for the particle.

Film Badges

A simple radiation detector is photographic film, like the kind used in old cameras.
Some of you may remember that the xray machines at airports can hurt your vacation
photos if you are still using filmbased cameras. Many of us have had xrays taken of
our bones. We know film reacts to xrays and other ionizing radiation. Many people
who work with radioactive materials wear a “film badge” that simply contain a piece
of film. Periodically the badge is submitted to the radsafety people that service the
business. They develop the film. The darkness or lightness of the film tells how much
radiation the badge has experienced, and therefore, how much exposure the person
wearing the badge has had.
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Older design of a Film Badge. You can see the Front View, the Back view, and the badge

disassembled in the middle.

Detection strategies

To detect particles we need not only a detector that can stop them and determine the en
ergy they had, but we need to see the path they take so we can determine life of the
particle and, with a magnetic field, determine charge. The first detectors to do all this
were called bubble chambers. In the picture below you see a bubble chambers tank
filled with liquid hydrogen. Charged particles cause tiny bubbles to form as they pass
through the liquid hydrogen.

The first use of a hydrogen bubble chamber to detect neutrinos, on November 13, 1970. A neu

trino hit a proton in a hydrogen atom. The collision occurred at the point where three tracks

emanate on the right of the photograph. Image courtesy of Argonne National Laboratory.

Here is another example of a bubble chamber trail showing several reactions The
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positive charged particles make circular paths.

Photograph of bubble traces with drawing of traces from a specific particle interaction. Neutral

or uncharged particles do not leave tracks. (Courtesy United States Department of Energy)

A typical particle experiment accelerates a charged particle like protons an collides
them into a target material. From that interaction many particles are formed and the
scientist can select a secondary particle type and form it into a beam which is directed
into a detector like a bubble chamber.

Another typical experiment uses a radioactive source to produce particles, and then
accelerates those particles with a liner accelerator (like our van de Graff accelerator we
studied earlier).

The next figure is a photograph of the CERN Low Energy Antiproton Ring (LEAR) ini
tial proton source.
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The protons are accelerated in a linear accelerator

The orange accelerator stages each have an electric potential difference so each
produces acceleration.
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From here the protons are often turned by a powerful magnet. In this case the LEAR
uses magnets (large orange corner pieces) to direct charged particles in the square ring.

And somewhere along the path there will be detectors to study either the secondary
particles themselves, or their collision products.
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You might notice that our secondary particles have traveled some distance. If the
particle travels about 10m it would take about 10−7 s with the particle going near the
speed of light. It would seem that CERN made the ring too big! But we have to include
the effect of time dilation because in most particle experiments the particles are going
at speeds that are significant fractions of the speed of light.

Energymomentum in particle experiments

In analyzing particle interactions we use all the physics we have learned. We need
conservation of energy (calculated as a Q value) and conservation of momentum and
all of our quantum conservation laws. But usually in such experiments the particles
are going at speeds that are significant fractions of the speed of light. This high energy

physics requires us to consider relativistic energy momentum. Let’s try an example

Suppose we have an Λ0 particle18 and it is at rest and decays

Λ0 → p+ π−

Let’s find the kinetic energy of each product particle.

We can use conservation of energy to find the Q value

Q = (mi −mf ) c
2

and now we need our tables to find the masses

mΛ = 1115.6MeV/c2

mP = 938.3MeV/c2

mπ = 139.6MeV/c2

18 Λ is the capital λ so it is pronounced “lambda.”
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Then

Q = 1115.6MeV− 938.3MeV− 139.6MeV

= 37. 7MeV

and we can say that
Kp +Kπ −KΛ = Q

We know that KΛ = 0 but we don’t know how much of the 37.7MeV belongs to the
proton and how much belongs to the π−.

Kp +Kπ = Q = 37. 7MeV

We do know that relativistic kinetic energy is given by

K =



(pc)

2
+ (mc2)

2 −mc2

which we can use for both product particles

Q = KP +Kπ =



(ppc)

2 + (mpc2)
2 −mpc

2 +



(pπc)

2 + (mπc2)
2 −mπc

2

and we also know from conservation of momentum in the center of mass frame

pΛ = pp − pπ = 0

so
pp = pπ

then

Q =



(ppc)

2 + (mpc2)
2 −mpc

2 +



(ppc)

2 + (mπc2)
2 −mπc

2

Q+mpc
2 +mπc

2 =



(ppc)

2 + (mpc2)
2 +



(ppc)

2 + (mπc2)
2

Most textbooks tell us that we could solve this with “a little algebra.” And that is true,
just like there is a little water in Lake Eyre. I decided to do this numerically

Q+938.3MeV+139.6MeV =



(ppc)

2 + (938.3MeV)2+



(ppc)

2 + (139.6MeV)2

37. 7MeV+938.3MeV+139.6MeV =



(ppc)

2 + (938.3MeV)2+



(ppc)

2 + (139.6MeV)2

1115. 6MeV =



(ppc)

2 + (938.3MeV)2 +



(ppc)

2 + (139.6MeV)2

We want pp in terms of MeV/c so we can solve for x where x = pc

1115. 6MeV =



(x)2 + (938.3MeV)2 +



(x)2 + (139.6MeV)2

x = ppc = 100. 38MeV

then

Kp =



(100. 38MeV)2 + (938.3MeV)2 − 938.3MeV = 5. 354 1MeV

Kπ =



(100. 38MeV)2 + (139.6MeV)2 − 139.6MeV = 32. 343MeV

We will continue looking at energy and momentum in particle interactions in our next
lecture.
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in a Nut Shell

14.7 14.8

Fundamental Concepts in the Lecture

• Strange Particles? Charm? Maybe a New Model is Needed!

• Quarks

• The “Standard Model”: Quantum Chromodynamics (QCD) and the Electroweak
Theory

• Grand Unification Theories

• Strings and Supersymmetry

Momentum and Energy in particle interactions

In particle physics today there are two standard techniques for producing collisions and
their products. Along the way we have talked about both techniques.

One is to have a stationary target made of some material and to accelerate charged
particles toward that target. In such a reaction so long as Q is negative, the reaction has
a possibility of occurring due to conservation of energy. If we have the reaction

x1 + x2 → y1 + y2 + y3 + · · ·
then

Q = (mx1 +mx2 −my1 −my2 −my3 − · · · ) c2
gives us the change in rest energy. But in the lab frame for this experiment we know
that x2 is stationary and x1 is not. So there is some initial linear momentum.
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And we know that momentum is conserved so

px1 + px2 = py1 + py2 + py3 + · · ·
which tells us that the product particles must have some kinetic energy or they would
have no momentum and we would break conservation of momentum. So we need Q to
be large enough to not only allow the product particles to form, but also to supply them
with some kinetic energy such that we conserve momentum. And of course x1 has
some initial kinetic energy to contribute to the conservation of energy equation.

The second particle physics technique is to accelerate two charged particles and to have
them collide. In this case the initial momentum can be zero, so the product momentum
can be zero and we would not need to use any of the rest mass energy to provide kinetic
energy for the product particles.

In either case if Q is negative, we need to add energy into the reaction to make it go.
This is done in the form of initial kinetic energy of one or both initial particles. Then
there must be a threshold kinetic energy below which the reaction won’t happen. This
is why we build huge supercolliders. We need to give the particles enough kinetic
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energy so that the theoretical reactions would be possible, and then we try it and see if
the reaction happens in real experimental life.

The most efficient way to distribute the final momentum to the group of product
particles is to have them move off together with their velocities equal in the xdirection.

If we say the group of product particles has a combined mass M then we can use
relativistic energy and momentum. The energy conservation equation is (for the lab
frame)


(px1c)
2 + (mx1c2)

2 +



(px2c)

2 + (mx2c2)
2 =



(pMc)2 + (Mc2)2

and we know px2i = 0 in the lab frame so

(px1c)

2 + (mx1c2)
2 +

�
mx2c

2
�
=



(pMc)2 + (Mc2)2

We can square both sides
�


(px1c)
2 + (mx1c2)

2 +
�
mx2c

2
��2

= (pMc)2 +
�
Mc2

�2

and write out the left hand side

(px1c)
2+

�
mx1c

2
�2
+2



(px1c)

2 + (mx1c2)
2 �mx2c

2
�
+
�
mx2c

2
�2

= (pMc)2+
�
Mc2

�2

Solving for the term with the square root gives


(px1c)

2 + (mx1c2)
2 =

(pMc)2 +
�
Mc2

�2 −
�
mx2c2

�2 − (px1c)
2 −

�
mx1c2

�2

2 (mx2c2)
and we know from conservation of momentum that

px1 = pM
so then



(px1c)

2 + (mx1c2)
2 =

(px1c)
2 +

�
Mc2

�2 −
�
mx2c2

�2 − (px1c)
2 −

�
mx1c2

�2

2 (mx2c2)

or, after canceling the (px1c)
2 terms,



(px1c)

2 + (mx1c2)
2 =

�
Mc2

�2 −
�
mx2c

2
�2 −

�
mx1c

2
�2

2 (mx2c2)
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And we recognize the left hand side as part of the relativistic kinetic energy so

Kx1 =



(px1c)

2 + (mx1c2)
2 −mx1c

2

=
+

�
Mc2

�2 −
�
mx2c2

�2 −
�
mx1c2

�2

2 (mx2c2)
−mx1c

2

and we need a common denominator

Kx1 =
−

�
mx1c

2
�2

+
�
Mc2

�2 −
�
mx2c

2
�2

2 (mx2c2)
− mx1c

2
�
2
�
mx2c

2
��

2 (mx2c2)

Kx1 =
−

�
mx1c2

�2
+

�
Mc2

�2 −
�
mx2c2

�2 − 2
�
mx1c2

� �
mx2c2

�

2 (mx2c2)
The numerator can be written in a tricky way.

M2c4−m2
2xc

4−2m2xmxc
4−m2

xc
4 =

�
Mc2 −mx1c

2 −mx2c
2
� �

Mc2 +mx1c
2 +mx2c

2
�

so then

Kx1 =

�
Mc2 −mx1c

2 −mx2c
2
� �

Mc2 +mx1c
2 +mx2c

2
�

2 (mx2c2)
and we recognize the first term in the numerator as Q and the second term as the sum of
the masses times c2

Kx1 =
−Q (M +mx1 +mx2) c2

2 (mx2c2)

=
Q ((my1 +my2 +my3 + · · · ) +mx1 +mx2) c

2

2 (mx2c2)
which gives us

Kth = −Q
total mass of all particles involved

2 (mass of target particle)
And this would be the kinetic energy required to make the reaction take place.

We are now going to leave particle physics as a broad topic, and concentrate on a
special part of particle physics that deals with making up hadrons. To do this we need
to introduce a new particle, the quark.

Quarks

Leptons seem to be truly fundamental particles, but we know that some baryons decay
(like the neutron). We assume that they must have internal structure if they decay. So
what are they built from?

The answer is that there is some wavicle more fundamental than hadrons, and hadrons
are made of those fundamental wavicles. Here is an example.
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Notice in the figure the baryon is made of three quarks with different properties. The
original quark theory included three types of quarks. All quark names are weird. I guess
that the particle physicists expressed the difficulty with visualizing these ultrasmall
wavicles and their behaviors with the names they gave them. These three quarks are
called the up, down, and strange quarks. Since these early days, new properties of
quarks were discovered, and new odd names resulted. Now we have properties of not
only topness, bottemnes, and strangeness, but we have properties of charm and color.

These are just names, though. Of course the color of a particle that is much smaller that
any wavelength of visible light is not something that even makes sense. Here are some
properties of the quarks

Quark

Name
Symbol Spin Charge

Baryon

Number
Strangeness Charm Bottomness Topness

Up u 1
2

2
3e

1
3 0 0 0 0

Down d 1
2 −1

3e
1
3 0 0 0 0

Strange s 1
2 −1

3e
1
3 −1 0 0 0

Charmed c 1
2

2
3e

1
3 0 +1 0 0

Bottom b 1
2 −1

3e
1
3 0 0 +1 0

Top t 1
2

2
3e

1
3 0 0 0 +1

and the antiquarks.

Antiquark

Name
Symbol Spin Charge

Baryon

Number
Strangeness Charm Bottomness Topness

Antiup ū 1
2 −2

3e −1
3 0 0 0 0

Antidown d̄ 1
2

1
3e −1

3 0 0 0 0
Antistrange s̄ 1

2
1
3e −1

3 +1 0 0 0
Anticharmed c̄ 1

2 −2
3e −1

3 0 −1 0 0
Antibottom b̄ 1

2
1
3e −1

3 0 0 −1 0
Antitop t̄ 1

2 
2
3e −1

3 0 0 0 −1

Here are a few recipes for making larger particles out of quarks. In the recipes, the up
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quark is given the symbol u, the down, d, and the strange s.

Particle Quark Combination
p uud
n udd
π+ d̄u
π− ūd

This is all part of a complicated mathematical theory called Quantum Chromo
Dynamics or (QCD). It is a field that takes some of the largest experiments (Fermi lab
or CERN) and is at the cutting edge of physics.

But let’s back up and see how the quark model was able to describe the particles we
know to exist from our particle physics experiments.

Two physicists (GellMann and Zweig) independently used geometry to solve this
problem of how hadrons are built. They constructed charts like the one below.

Notice that the charts are the same, but one has slanted axes. GellMann liked the
slanted axes and we will use his axis structure. when the mesons were plotted in this
fashion, a clear pattern showed up (for GellMann it was a hexagon).

The Baryons follow the same basic structure
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GellMann gave the structure a very farEastern name, the eight fold way. This structure
was useful in understanding the underlying wave functions. For example if we plot the
high mass spin 3/2 baryons that were known at the time GellMann was working you
get this triangular pattern.

But the pattern was missing the tip of the triangle. GellMann could predict that there
would be a new particle discovered with the characteristics of this vertex in the graph.
He called it the Ω−particle and it was later discovered in an experiment at Brookhaven
National Laboratory.
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Traced bubble chamber trails from the Brookhaven National Laboratory experiment that found

the Ω− particle.

But the symmetry of the eightfold way diagrams can easily be explained by assuming
that the baryons are made from combinations of three particles from a set of three
particle/antiparticle groups. These are the up, down, and strange quarks in our last
table. Mesons, in this model, are made from combinations of two particles from the set.
GellMann named the new particles quarks. Here is the meson graph but made from
quarks.

And by matching the mesons to the quark combination version of the graph, we can
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identify the makeup of many mesons.

and many baryons.

Electron scattering experiments found that protons seem to have three charge centers
within a single proton. This is consistent with the quark model for baryons. To make
the electric charge of particles like the proton work in this model, the quarks must have
fractional e amounts of charge. The same is true for baryon number. Here are more
quark particle recipes.
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Mesons Baryons
Particle Recipe Particle Recipe
π+ ud̄ p uud
π− ūs n udd
K+ us̄ Λ0 uds
K− us̄ Σ+ uus
K0 ds̄ Σ0 uds

Σ− dds
Ξ0 uss
Ξ− dss
Ω− sss

At the time the quark model was proposed, it explained the known particles. But
particle physics didn’t stop and soon many more particles were discovered. And some
of the new particles seemed to break the quark model. By 1967 it was evident that the
u, d, and s quarks couldn’t be the only quarks. A new quark, symbolized with the letter
c and called charmed was postulated. Charmdness, like strangeness, is conserved in
strong and electromagnetic interactions, but not in weak interactions. The discovery of
the J/ψ mesons lead to evidence for the c quark.

The discovery in 1975 of the τ lepton lead to two more quarks called top, t, and bottom,
b. Of course adding in charm, bottomness, and topness to GellMann’s diagrams makes
them four dimensional and hard to draw, but still useful in describing the quark makeup
of particles and predicting new particles that are to be discovered.

We should think of these properties, charm, topness, etc, as being a little like electrical
charge. They represent wave forms that govern how the quarks will interact. So there
are forces lurking behind these quantum numbers much like there is the electromagnetic
force lurking behind our electric charge number in units of e. The calculations that
show the force interactions are lengthy and beyond our course, but let’s take a small
look at how these interactions work.

Strong Force and QCD

Let’s look again at strong force and exchange particles. Our early model for a strong
force interaction might look like this protonneutron interaction
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where a π− particle is the exchange particle. But now that we have quark theory, we
can expand our understanding of strong force interactions. We know the proton and
neutron are made of quarks. We could draw the interaction with a line for each quark.

In the interaction, a down quark in the neutron emits a virtual gluon, g, which then
creates a uu pair through pair production. It must be a uu pair because pair production
can only produce particleantiparticle pairs. But what happens next is that the d joins
with the u part of the pair and they are transmitted to the proton. This is the same
quark recipe as a π−. The transmitted u must combine with the proton’s u to annihilate
within a short time ∆t to preserve conservation of energy by the Heisenberg uncertainty
principle. This annihilation creates another virtual gluon. This leaves a d on the left
where a u used to be. So the left hand side is now a neutron. And of course on the right
hand side we left a u from the uu pair behind, so where the d was we now have a u. So
the right hand side is now a proton.

The QCD interactions are a bit complicated, and for those who are lucky enough to go
on to do graduate work there are whole courses in QCD (usually electives for those
choosing to go into the field).

Quark changes by weak force

We really haven’t dealt much with the weak force. It’s time to figure out what it does.
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The weak interaction can change quarks from one type into another. In each such case
the reaction uses W+ or W− particles, the mediation particle for the weak force.

Charge (e) Baryon Charm Spin Strangeness Topness Bottomness Rest Energy (GeV)

W+ 1 0 0 1 0 0 0 80.4
W− −1 0 0 1 0 0 0 80.4

Here is an example

s→ u+W−

This is a little like changing a neutron into a proton plus an electron (and an
antineutrino). Note that baryon number is conserved, and charge is conserved because
W− has a charge of −1 and u has a charge of +2/3. So the right hand side has a total
charge of −1/3 which is the charge of the s quark. Strangeness changes by 1, but this
is a weak force interaction, so that is fine.

s → u + W−

B 1
3 → 1

3 + 0
Cg −1

3 → 2
3 + −1

S −1 → 0 + 0

Other examples might be

u → d + W+

B 1
3 → 1

3 + 0
Cg 2

3 → −1
3 + 1

S 0 → 0 + 0

d → u + W−

B 1
3 → 1

3 + 0
Cg −1

3 → 2
3 + −1

S 0 → 0 + 0

In each case the W+ or W− decay by the weak interaction into leptons. A typical
decay might be

W− → µ− + νµ
Quark changes only happen by the weak interaction.

Colored quarks

We have learned a lot about building particles from quarks. But you might object, if I
put two up quarks and a down quark together to make a proton, don’t I have three spin
1/2 particles, two of them identical, all in the same system. Won’t that violate the Pauli
exclusion principle? The predicted Ω− particle is even worse with its recipe of sss.

The answer is that there must be some other property at play that splits the energy levels
in nucleons so that we are not violating the Pauli exclusion principle. Back in 1965
Han MooYoung and Nambu Yoichiro proposed a solution by postulating that there was
an additional property of quarks. They called it color charge. Each of the quarks in a
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baryon would need to have a different color charge to exist together The three color
charge values are given the name red, green,and blue even though this color charge
has nothing at all to do with actual colors from optics. This model gives the name to
this field of Quantum chromodynamics or QCD. This is one of the fields at the forefront
of physics.

But if the energy levels separate when we bring in three s quarks to build a Ω− particle,
then there must be a force involved because different potentials require different forces.
And that is exactly what QCD studies. The color force is the force between quarks.
Like in electrostatics, two red charged quarks will repel but a red and a green will
attract. Stable mesons and baryons must be color neutral, that is, the color force must
essentially cancel out in the stable particles. But it doesn’t quite cancel out, and the left
over part is our model for what makes the strong force that holds nucleons together
in the nucleus. This is a bit of a modification of our strong force model. There is still
an exchange particle, but this time it is a massless gluon. So the color force is, in this
sense, unified with the strong force.

Experimental evidence

The QCD model has been very good at explaining what we see, but to date there has not
been any direct measurements of single isolated quarks. This is not really surprising. It
would be a little like looking at a major storm system, and expecting one funnel cloud to
stay stable if we somehow take away the rest of the storm. The quark wavicles are only
stable when they are inside the potential well of a hadron. Another example would be
waves on strings. The standing waves are only stable so long as we don’t free the string
ends. But This means all of our evidence for quark theory is from groups of quarks and
it is therefore secondary. Though the evidence is compelling, this should give us pause.

The Standard Model

Particle physicists have spent many years looking for the interaction particles associated
with each fundamental force. The resulting model tells us that the world we can see and
touch is made of four fermions and their antiparticles two of which are leptons and two
quarks

(e, νe)

(u, d)

Protons and neutrons are made from u and d quarks. and atoms are made form protons,
neutrons, and electrons. We need the neutrinos to include radioactive decay. With
the possible addition of photons, this is our world. And we know that the world
is held together by gluons, photons, Z bosons and W bosons. These are the force
mediation particles. You can see these listed in the following table in column I (and the
antiparticles in the next column I in the middle of the chart).
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Standard Model of Elementary Particles (Image courtesy CUSH)

We should think about what this means. Let’s start with what it doesn’t mean. It does
not mean that there are tones of electrons, neutrinos, up and down quarks sitting around
in the universe and that we assemble matter from them. These are still wavicles. A
better model is that these four wavicles, electrons, neutrinos, up and down quarks,
are the stable wave functions that exist in the potential wells of atoms, baryons, and
mesons.

High energy physics brings another four particles, two leptons and two quarks (column
II)

(µ, νµ)

(c, s)

and even higher energy experiments bring four more

(τ , ντ )

(t, b)

This set of six leptons and six quarks (and their antiparticles) describe every one of
the hundreds of particles we have discovered. At the time of this writing, there are no
particles that don’t fit this model. This model for particles is called the standard model.

and it has been very successful. So are we done discovering the fundamental particles
(still wavicles) that make up the universe?

There is current debate on this. Many physicists want to build a collider bigger than
CERN’s Large Hadron Collider in hopes to find more particles. Others point out that
there isn’t a theoretical bases for expecting new particles. Time (and funding) will tell.

The current research is in unifying the forces in the standard model. When we say
“unifying” in this sense it is like when we found that magnetic forces and electrical
forces really came from the same source.
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The electromagnetic and the weak forces were unified (shown to be from the same
origin) by Stephen Weinberg and Adus Salam in 1967. Their theory is known as the
electroweak theory. Work is underway to unify the strong and electroweak forces.
The candidates for this theory are given the name GUTS which stands for grand
unification theories. The ultimate grand unification would be to combine gravity with
the electroweakstrong force. But let’s save that topic for a little later in our course.

If the standard model has been so successful, why are we still working? the answer is
that the standard model doesn’t explain why the particles we see have the masses we
observe. A model of the masses has postulated another energy field that interacts with
particles that have mass. The interaction slows the particles, giving them inertia. The
field is called the Higgs field, and an evidence for the existence of this field is the Higgs
Boson.

Another shortcoming of the standard model is that it assumes neutrinos have no
mass. We gave them a mass upper bound in our tables, but the theory suggests that
the neutrino mass should be exactly zero. But there are problems with solar neutrino
measurements that have called this into question.

String hypothesis is a potential challenger to the standard model.19 String hypothesis
postulates eleven dimensions of space time and that all particles are oscillations
(standing waves) on one dimensional strings in the eleven dimensional space. The
idea is intriguing because it would not only predict which particles exist, but could
also predict their masses. But the theorists can’t make exact predictions due to the
tremendous mathematically complexity of solving partial differential equations in
eleven dimensions. So, String Hypothesis has not been tested to date. This is why I am
calling it String Hypothesis because it can’t yet be String Theory until there has been
experimental verification.

In our next few lectures, we will try to build an entire universe using the Standard
Model.

19 See for example, The Ellegent universe, by Brian Greene.
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15.115.3

Fundamental Concepts in the Lecture

• Expansion of the universe and Hubble’s law

• Cosmic microwave background

• Dark Matter

Armed with the standard model and statistical physics and special relativity, it is
almost time to build the universe! We will start with a description of the universe we
experience. After all, if we want to design a universe we should know what a universe
is like. And then we will find we need one more piece, General Relativity, to complete
the picture. In this lecture we will start this process with a description of the universe.

We already know quite a lot about parts of the universe because we live in it. So we
won’t talk about the details of dirt and air and water, those we did in pervious classes
(and chemistry if you have been lucky enough to take it). But we will look at the
universe on a universal scale.

Expansion of the universe and Hubble’s law

The first thing we need to make sure we have in our model of the universe is the
proper size and shape of the universe. In particular, the universe we live in seems to be
expanding!

The evidence for this comes from atomic spectra and special relativity. Recall that
earlier we found that the relativistic Doppler shift is given by

f ′ =
f

�

1− u
c

�


�
1 + u

c

�

and we know that
c = λf
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so we can write this as

c

λ′
=

c

λ


�
1− u

c

�


�
1 + u

c

�

λ


�
1 + u

c

�


�
1− u

c

� = λ′

where λ is the frequency as measured if you are traveling with the moving object and
λ′ is the wavelength we would measure if we were in a reference frame watching the
moving object rush by.

Suppose our moving object is a star, and we are watching the star move relative to us.
The if the star moves toward us we would find that u is negative so

λ′ = λ


�
1 + −u

c

�


�
1− −u

c

�

and therefore the wavelength would be shorter (the numerator would be smaller than
the denominator). Since blue light has shorter wavelength than red light we would say
that the wavelength has been shifted in the blue direction. If our wavelength is part of
an atomic or molecular spectrum then the spectral line has shifted to the blue side of the
spectrum. This is called a blue shift. On the other hand if the star is moving away from
us we would have +u and then

λ′ = λ


�
1 + +u

c

�


�
1− +u

c

�

and the wavelength we measure on Earth would be larger than the one measured on
the star. In the visible spectrum, red light has a long wavelength so we would say our
wavelength has been shifted in the red direction or it has been red shifted.

Astronomers did the measurements for stars near us, and some were blue shifted and
some read shifted. Relative speeds were on the order of u = 30km/ s. This is a tiny
fraction of the speed of light so the red and blue shifts were small.

Astronomers were fascinated with nebula. If you have seen a picture of the a nebula
you can see why. Especially with the help of a telescope, nebula are large beautiful as
tronomical objects.
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But once it was discovered that some of the fuzzy “nebula” were actually made of stars,
the newly renamed galaxies could be recognized as being farther away. When these
galaxies were studied astronomers had a shock. Nearly all the galaxies are red shifted,
and the farther the galaxy is from us the more it is red shifted. Astronomy had already
traveled the path that said the Earth was not the center of the universe, to realizing that
the Sun was the center of the solar system and then that the sun and it’s solar system
were a very small part of a galaxy.

But now the red shift seemed to imply that outside of the local group of galaxies,
everything is moving away from us. It is like we moved back to the theory that we are
the center of everything again. This seemed unlikely to be true.

An alternate (and better) interpretation of the red shift data from galaxies is that the
universe, itself, is expanding. Think of a balloon surface.
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We can mark spots on the balloon surface as shown. As the balloon is inflated (an
expansion) the dots move farther apart. This is not because the dots are traveling on the
balloon surface. They are painted on, they can’t move of their own accord. But rather,
it is because the balloon material is stretching in between the dots, so the distance
between the dots increases.

Let’s take the point of view of dot A.

From A’s point of view B has a speed. That is why later it is farther away. And from
A’s point of view C and D also have speeds. Notice that from A’s point of view, C and
D’s distance from A increased more than the distance from A to B increased. And we
moved everything in the same time ∆t, so we would conclude that from A’s view, the
farther from A the dot is, the faster it appears to go such that the dot can be in the final
position we see it in later. This is just what we see when we look at galaxies!

But now look at the situation from the reference frame of point C.
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A person viewing from dot C would see dot A move away from C and would also see
dot B and dot D moving away. Notice once again the speed C associates with each dot
depends on how far away from C the dot is. From C’s point of view all the dots move
away from C. So at A all the dots move away from A, but at C all the dots move away
from C. This is the nature of an expansion, everything moves away from everything in
an expanding system.

If we interpret our atomic spectral red shift data as coming from an expansion, then all
parts of the universe would see the same thing, and we would not have the very special
case of happening to be at the center of the universe. This seems more likely. Note also
that C assigns different speeds (even different directions) to the points than A did. This
is characteristic of an expansion.

Hubble discovered the recession of the galaxies and quantified his findings in an
equation

v = Hod
where v is the speed we assign to the galaxy and d is the relative distance of the galaxy
from us. The quantity Ho is known as the Hubble parameter. Note that it would have
units of inverse time (1/ s) .

Ho = 72
km

s ·Mpc
but the length units will cancel leaving just 1/ s.
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Hubble’s original graph showing the linear Hubble law. (Hubble, E. 1929b, Proc. Nat. Acad.

Sci., 15, 168., image courtesy NASA, https://apod.nasa.gov/debate/1996/hub_1929.html)

Let’s try Hubble’s law in a rectangular coordinate system. What Hubble says
is that each dimension will increase in magnitude by some amount k. So the
position (x (t+∆t) , y (t+∆t) , z (t+∆t)) depends linearly on the old position
(x (t) , y (t) , z (t))

x (t+∆t) = kx (t)

y (t+∆t) = ky (t)

z (t+∆t) = kz (t)

Then the distance, d at time t

d (t) =
�

x2 + y2 + z2

becomes

d (t+∆t) =



(kx)2 + (ky)2 + (kz)2

=
�

k2x2 + k2y2 + k2z2

= k
�

x2 + y2 + z2

= kd (t)

and

v =
d (t+∆t)− d (t)

∆t

=
kd (t)− d (t)

∆t

= d (t)
k − 1

∆t
and if we look at two galaxies to compare their speeds

v1
v2

=
d1 (t)

k−1
∆t

d2 (t)
k−1
∆t

=
d1 (t)

d2 (t)
=

d1
d2

then we could measure d1 and d2 to find that the speed of galaxy 1 as measured from
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galaxy 2 would be

v1 =
v2
d2

d1

which is essentially Hubble’s law. The model of a universal expansion seems to fit what
we see very well.

If we borrow from our next lecture (you need a time machine to make this class work!)
we can see from Einstein’s theory of General Relativity that spacetime can stretch,
like our balloon surface (but spacetime is three dimensional). This gives us a potential
mechanism for our universal expansion red shift. While the photons from distant galaxy
1 are traveling to galaxy 2, the space they are in stretches, lengthening the wavelength
because the wave is being stretched. We could say that

λ (t+∆t)

λ (t)
=

R (t+∆t)

R (t)
where R is a length scale for the universe that depends on time.

But now that we see that the universe is expanding, we should ask if that means the
universe started from a much smaller space, or if as space expands somehow matter is
created in the gaps so the universe seems to look somewhat the same over time.

The theory that says the universe was once more compact is called the Big Bang Theory.
It tells us that the universe was born from a singularity, a point where all energy was
located. In the original theory, this really was a point – no volume. The universe
erupted from this point. That happened 15− 20 billion years ago. One weakness of this
theory is it has no explanation of what happened before this!

In the big bang theory, as the universe worked it’s way to the current system, the
fundamental forces split from an ancestral unified force. It only took about a second
after the initial “Big Bang” for protons to form. Shortly after, atoms could form. So for
most of the age of the universe, the four forces seem to have been much as they are
today.

Let’s go back to our stars that were blue shifted. How come they weren’t red shifted
due to expansion as well? In our balloon analogy we had dots that didn’t have any
independent motion. All of their motion came from the universal expansion. But
suppose we replace our dots with ants that can walk around on the balloon surface.
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Now we see we have a set of ants wandering, with their little ant velocities shown as
black arrows. Notice that near ant A the crawling velocity of the ant might be larger
than the apparent velocity due to the expansion. So from ant A’s view point ant B might
be blue shifted. But the crawling velocity of ant C and ant D are not even close to the
apparent velocity due to expansion. So ant C and D would be red shifted no matter
which direction they crawled. Note also that if the ants were crawling away from ant
A there would be two contributions to the red shift, a crawling contribution and an
expansion contribution. It is the same way with stars. If they are close, their relative
motions to us matter. If they are far, the relative motion of the star is not so important,
the expansion motion dominates.

The Cosmic Microwave Background

By social media standards we are now “experts” in statistical mechanics. We know
how to do calculations for a gas of photons. Suppose the universe did start as a hot
dense high energy state, and has expanded and cooled. This would be modeled as a
free expansion, and like anything, the universe would glow (emit photons) and the peak
energy of those photons would change as it cooled and expanded. We should be able to
predict what the peak energy of photons from the big bang would be now. This would
be a test of our expanding universe model.

We want to use the number of photons per unit volume to find the temperature of the
photons. If we know the energy density in a volume, and we know that energy is
divided into N photons, we should be able to find the energy of the photons and this
should depend on temperature. We are back to finding N (E) dE

The number of photons with energy between E and E + dE would be found just in the
same way we found this for any thermal radiator. We now just have a universe sized
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thermal radiator.
N (E) dE = V g (E) f (E) dE

We could envision a cubical universe (to make the math easier). The universe would
be a “box” confining the photons. That universal “box” would be an infinite potential
well, because we don’t believe the photons can leave the universe. So we want the
density of states function for a “gas” of photons confined in a reflective box with walls
at temperature T.

Inside the box we have photons with energies from 0 to∞. And like before we take

f =
E

h
so we get frequencies for 0 to∞. And we know

E =
hc

λ
so we get

λ =
hc

E
so our wavelengths go from∞ to 0. And

E = pc

for photons so

E = c



p2x + p2y + p2z
We are going to get standing waves in all three directions in our box. The wave
function must go to zero at the walls because they are reflective (photons can’t leave the
universe, so let’s say the reflect at the end of the universe!). Then each photon would
have quantized momentum

px =
hnx
2L

and similarly for py, pz. So

E = c

��
hnx
2L

�2

+

�
hny
2L

�2

+

�
hnz
2L

�2

=
ch

2L



n2x + n2y + n2z
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and this seems very familiar. We could write this as

E =
ch

2L
n

where
n2 = n2x + n2y + n2z

just like before.

Remember that photons have spin s = 1. So we expect a factor of 2s + 1 = 3 but
photons are polarized perpendicular to their direction of travel so one of the spin
components must be zero. Let’s set sz = 0 so we only get 2 instead of 3 for our spin
state multiplicity. So let’s assemble our g (E) . Starting with

g (n) dn =
1

8

2s+ 1

V
4πn2dn

because of photon polarization

g (n) dn =
1

8

2

V
4πn2dn

and

E =
ch

2L
n

so

n =
2L

ch
E

and

dn =
2L

ch
dE

so

g (E) dE =
1

8

2

L3
4π

�
2L

ch
E

�2 �
2L

ch
dE

�

g (E) dE = π

�
2

ch
E

�2 �
2

ch
dE

�

g (E) dE =
8π

h3c3
E2dE

so our density of states function is

g (E) =
8π

h3c3
E2

And we know that photons are governed by BoseEinstein statistics so

fBE (E) =
1

ABEe
E

kBT − 1

so, we expect20

N (E) dE = V

�
8π

h3c3
E2

��
1

e
E

kBT − 1

�

dE

20 Where we set ABE = 1. This is an approximation. Because the number of photons is not constant we
don’t really know what ABE should be (we can’t be sure we can use normalization to find it). If we are
content only knowing the shape of the N (E) dE curve and rough estimates for our energy density, this is
not too bad. We did this before for a photon gas.
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To find the total number of photons per unit volume we need to integrate
N

V
=

1

V

	 ∞

0

N (E) dE

=
1

V

	 ∞

0

V

�
8π

h3c3
E2

��
1

e
E

kBT − 1

�

dE

=
8π

h3c3

	 ∞

0

�
E2

e
E

kBT − 1

�

dE

and if we take

x =
E

kBT
then

dx =
1

kBT
dE

so
dE = kBTdx

and
E = kBTx

then
N

V
=

8π

h3c3

	 ∞

0

�
(kBTx)2

ex − 1

�

kBTdx

and the limits don’t change

N

V
=

8π (kBT )
3

h3c3

	 ∞

0

�
x2

ex − 1

�
dx

and we are back to looking up integrals in tables or integrating numerically. Numerically
I got 	 ∞

0

�
x2

ex − 1

�
dx = 2.40411

so then
N

V
=

8π (kBT )
3

h3c3
(2.40411)

Now we need the energy density in the volume. Fortunately we did this earlier as well!
We once again start with

dN = N (E) dE = V g (E) f (E) dE = V
8π

(hc)3
E2 1

e
E

kBT − 1
dE

The photons will have different energies. We know that the number of photons
with energy between E and E + dE would be

�
EdN but for small dE we could

approximate this by just EdN = EN (E) dE. So the energy density in the cavity
(universe) would be.

u (E) dE =
EN (E) dE

V

=
8π

(hc)3
E3 1

e
E

kBT − 1
dE
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and the total energy density is

U =

	 ∞

0

u (E) dE

=

	 ∞

0

8π

(hc)3
E3 1

e
E

kBT − 1
dE

=
8π

(hc)3

	 ∞

0

E3

e
E

kBT − 1
dE

Another integral, this time from a table we find
	 ∞

0

x3

ex − 1
dx =

π4

15
and we can use this with

x =
E

kBT
xkBT = E

and

dx =
dE

kBT
kBTdx = dE

so that

U =
8π

(hc)3

	 ∞

0

(xkBT )
3

ex − 1
kBTdx

U =
8π (kBT )

4

(hc)3

	 ∞

0

x3

ex − 1
dx

U =
8π (kBT )

4

(hc)3

�
π4

15

�

U =

�
8π5 (kB)

4

15 (hc)3

�

T 4 (35.1)

Now we have the number of photons and the energy density, We just need to divide to
get the average energy per photon per unit volume

Eave =
U

N/V
=

�
8π5(kB)

4

15(hc)3

�
T 4

8π(kBT )
3

h3c3 (2.40411)

= 0.027 73π4TkB

= 0.027 73π4T

�
8.617385× 10−5

eVK−1

photon

�

= 2. 327 7× 10−4T
eV

K(photon)
So the average energy of the photons left from the big bang is temperature dependent.
21

Measurements of this cosmic background radiation were done by accident when

21 We kind of ignored our ABE constant. But it would have affected both the numerator and the
denominator, so it are sort of OK in our approximation that ABE = 1.



Expansion of the universe and Hubble’s law 581

microwave communications dishes found an annoying hum on their communications.
Isolating the hum proved difficult because the hum came from everywhere! And that
is just what the big bang theory predicted. The universe should be a thermal system
radiating but by now with a much cooler temperature. If we use the measured 2.7K as
the temperature we get

Eave = 2. 327 7× 10−4 (2.7K)
eV

K (photon)

= 6. 284 8× 10−4
eV

photon
Plotting the predicted and measured intensity vs. frequency we see the cosmic
background data fits the model of a thermal radiator very well.

Cosmic Microwave Background (CMB) spectrum plotted in waves per centimeter vs. intensity.

The solid curve shows the expected intensity from a single temperature blackbody spectrum, as

predicted by the hot Big Bang theory (Image courtesy NASA)

It was largely this measurement that solidified acceptance of the Big Bang Theory.

In 1989 NASA flew the Cosmic Background Explorer (COBE) mission that studied
the cosmic microwave background radiation. The question to be solved was why is
matter clumped into galaxies and stars and planets? Why would the big bang not be
uniform. This is still a question in astrophysics, but if the clumpiness was fundamental
to the big bang, itself, then there should be a clumpiness to the microwave background.
COBE found that clumpiness. So cosmologists now work to explain this fundamental
inhomogeneity in their models of the creation of the universe.



582 Chapter 35 Cosmology

The extremely faint cosmic microwave background fluctuations are only one part in 100,000

compared to the 2.73 degree Kelvin average temperature of the radiation field. The cosmic

microwave background radiation is a remnant of the Big Bang and the fluctuations are the

imprint of density contrast in the early universe. The density ripples are believed to have given

rise to the structures that populate the universe today: clusters of galaxies and vast regions devoid

of galaxies. (https://lambda.gsfc.nasa.gov/product/cobe/dmr_image.cfm)

Dark Matter

We are familiar with pictures of galaxies full of stars. The stars are easy to see because
they glow. But until 1992 we didn’t know for sure that there were any nonglowing
planets outside our solar system. That seems amazing when you consider audiences
were treated to imaginary adventures of a young man and his droids on planet called
Tatooine back in 1977! The matter that does not glow is called “dark.” And this was the
original version of “dark matter.”

From way back in PH121 (or your introductory mechanics class) you learned Kepler’s
laws. Kepler’s third law tells us that the period, T of an orbit is proportional to the
distance from the center of the orbit r cubed. For a circular orbit this is

T 2 =

�
4π2

GM

�
r3

where G is the gravitational constant and M is the mass of the object being orbited.
The orbiting object must have an orbital speed of

v =
2πr

T
for a circular orbit. and we can find that orbital speed from Newtonian dynamics. The
mass of the object being orbited would be the central mass of the galaxy plus all the
galactic mass closer to the center than the star we are observing. Then the gravitational
force on the star due to the galaxy would be

WSG = G
MGmS

r2GS
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and from Newton’s second law we know

Fnetr = msar
but we only have one force so

msar = G
MGmS

r2GS
and WSG is toward the center of the orbit so it is centripetal, thus

ar = ac =
v2t
rGS

or

ms
v2t
rGS

= G
MGmS

r2GS
and some things cancel

v2t = G
MG

rGS
leaving the orbital speed

vt =

�
G

MG

rGS

This might be a little to simple, but it gives an estimate of the rotation speed of stars
in a galaxy. The rotation rate should go down with rGS for stars on the outer part of
the galaxy. Near the center there is little mass closer to the center so for small rGS the
MG grows with rGS so for small (on a galactic scale) distances we expect the speed to
increase with distance. Somewhere between the two extremes, there should be a peak
velocity. Observations of stars do give the expected behavior near the center of the
galaxy, and there is a maximum velocity. But past the maximum, the curve flattens out.

https://wwwspof.gsfc.nasa.gov/stargaze/Sun4Adop3.htm

One way to explain this departure from theory would be to assume that there is more
mass in the flat galactic disk that we can account for by just counting the bright glowing
stars. This dark matter would be distributed in a “halo” out away from the galactic
center.
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Now that we can find exoplanets, there do not seem to be enough of them (normal
baryonic dark matter sources) to make up for the large discrepancy between prediction
and reality. The dark matter content of a galaxy would need to be about 10 times the
mass of the stellar objects. If our solar system (and the few exoplanet systems we
know) are normal, then planets are not enough to fix the prediction.

Two solutions have been proposed. One called Massive Compact Halo Objects
(MACHOs) postulate that we should find black holes, neutrons stars, white dwarf stars,
and other massive but dark objects in the galactic halo.

The second proposed solution is that there are Weakly Interacting Massive Particles
(WIMPs) that are not baryonic that could congregate in the galaxy. Neutrinos are the
right kind of particle, except that neutrinos have very little mass. Particle physicists are
looking for good WIMP candidates, but none have been found yet.

We now have a description of a universe, we need to patch our theory of relativity to
start the job of building a universe to specification. We will do that in the next lecture.



36 General relativity

15.415.6

Fundamental Concepts in the Lecture

• General Relativity and gravity

• All reference frames are equivalent

• Gravitational fields are equivalent to accelerated reference frames

• Curved spacetime

So we described the universe, but we said that universe had an expansion of space.
How can that be? Before we build a universe, we need to modify our understanding of
space. In Neutonian physics, space is just a place where things happen. But for General
Relativity, space is a lot more exciting.

General relativity

Einstein was not content with Special Relativity. It bothered him that his theory
couldn’t handle accelerating reference frames. And if you remember, it bothered us that
Newtonian gravity didn’t work in Special relativity. There was something missing. He
spent the next decade after publishing Special Relativity working on the problem. His
answer was the theory of General Relativity. General relativity has two fundamental
ideas

1. All the laws of nature have the same form for observers no matter whether their
frame of reference is accelerating or not.

2. The gravitational field is equivalent to an accelerated frame of reference without a
gravitational field.

The first one lets us do problems like the twin paradox problem correctly accounting
for the acceleration (it is a wonderful nasty problem, I did it on my comprehensive
exams for my Ph.D.). It is an extension of Special Relativity where we said all inertial
reference frames were equivalent. Now all reference frames, inertial or not, will be
equivalent.
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The second idea is more subtile. It says that if I put you in a box sitting on the Earth so
you feel gravity, you could not tell the difference between this and if I am pulling the
box, making it accelerate.

Let’s look at these postulates in more detail.

I said that Einstein didn’t like the limitation built into special relativity that you
could only use inertial reference frames. Einstein wanted any reference frame to be
equivalent. That is, he wanted the laws of physics to be the same in any reference
frame, even an accelerating reference frame. But how do these new postulates help?

In special relativity, to make c a constant in any inertial frame we had to give up the
absoluteness of space and time. We got length contraction and time dilation. To make
c constant in any reference frame, even accelerating reference frames, we will have to
give up more classical ideas. But because we have watched enough science fiction, they
are not strange ideas to us. A major thing we need to give up is viewing space and time
as a container in which things happen. Space and time (combined into one, spacetime)
are malleable, warpable, flexible and stretchable things. Spacetime can act on an object,
and it is an active player in the universe. All this comes from the first postulate.

The second postulate directly addresses the missing law of gravity in special relativity.
Special relativity didn’t include an update to Newtons’ law of gravity, but it is
immediately apparent that the Newtonian form when combined with special relativity
did not give good predictions.

General relativity fills that void with a new theory of gravity that depends on both
postulates. Let’s see how it works.

Let’s start buy remembering Newton’s second law. This is one of the laws of physics
that we want to be true in any reference frame. Here is a person standing on a spring
scale.

The person will come to equilibrium so the net force Fnet = ma = 0 and we have two
vertical forces, a spring force from the scale, and a weight force. Now suppose we put
our person in a box that is sealed so the person can’t see the environment around the
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box.

Here the box is suspended on a cable, and the person in the box would see the same
weight on the scale as before. Classically we would say that this is because the box and
its contents are in a gravitational field indicated by the gravitational acceleration −g.
Newton’s second law tells us that the scale would register a force

ma = 0 = SGS −WGE

SGS = WGE

= mg

and our person could write down this reading from the scale.

But suppose we move our box far away from everything else in the universe, and attach
rocket boosters to our box, and accelerate the box through space.
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The person in the box would see a reading on the scale

ma = SGS − 0

SGS = ma

and if the box accelerates with a = +g the person in the box would get exactly the
same reading on the scale as the person saw when the box was hanging.

SGS = mg

Einstein thought of these two experiments, and noted that the person in the box could
not tell the difference between being in a gravitational field and being accelerated. And
he asked the question, are the two situations different? Maybe a gravitational field is an
acceleration.

Let’s take another case, say we cut the cable for our Earthbound box, and remove the
rockets from our space box.

In the case of cutting the cable we would have a scale reading of

−ma = SGS −WGE

−mg = SGS −mg

0 = SGS
There would be no spring force. In the case of being in space with no rockets,

0 = SGS − 0

SGS = 0

and once again the person could not tell the difference. Einstein decided that if we
consider gravitation and acceleration equivalent, then all the laws of physics would
already work in any coordinate system!

But you might object. If we gave the person some scientific equipment they could
surely tell if they were accelerating or if they were in a gravitational field. So let’s try
that. A simple beginning physics lab experiment might include a ball.
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Would the ball bounce the same way in both cases? The answer is yes! Suppose we
give the person a pendulum (we have upgraded our equipment by a semester!)

We would find that the pendula swing the same, but with one provision. The
gravitational field of the Earth is not uniform. So if we make our box big enough we
would see that the gravitational field lines are closer together at the bottom of the box
than they are at the top. But if we have a sufficiently small box (or a real uniform
gravitational field) the person could not tell the difference.

We could upgrade our equipment to an electrodynamics experiment.
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If we have a light source at the top of the box and a detector at the bottom we could
detect the light and measure it’s frequency. And here you might think there should be a
difference. Shouldn’t there be a Doppler shift for the case of the accelerating box? The
light will leave the detector and the detector will move toward the light. That is exactly
the situation that produces a Doppler shift.

f ′ = f

�
1 + ∆v

c

1− ∆v
c

In our box, ∆v would be small if the acceleration is equal to g, so ∆v/c will be very
small so �

1− ∆v

c
≈ 1

and so

f ′ = f

�
1 + ∆v

c

1− ∆v
c

≈ f

�

1 +
∆v

c

and we can approximate the numerator as not too different than 1 + ∆v
c without too

much error if ∆v is small. so

f ′ ≈ f

�
1 +

∆v

c

�

f ′ ≈ f + f
∆v

c
then

f ′ − f

f
≈ ∆v

c
and if we start our box with vi = 0 then vf = 0 + a∆t

∆f

f
≈ a∆t

c
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and our light is traveling at

c =
H

∆tso
H = c∆t

so then
∆f

f
≈ aH

c2

But how about the box hanging in the gravitational field? If Einstein is correct, then we
would predict that the person in the box sitting on the Earth should see a frequency shift
as well! The experiment was done in 1959 at Harvard, and there was such a frequency
shift!

This really destroys our theory of gravitational fields! But it really works. The GPS
satellites direct a beam of light at the earth (radio waves) and as the beam travels
downward the frequency shifts. The amount is tiny, but relevant to the operation of
the GPS system! If we don’t account for the frequency shift, your GPS in your phone
would not work.

We could see this shift more easily if we were on a more dense planet or star.

Note that near the Earth we can use

U = −mgh

but for a larger h we have to use

U = −G
mM

r
= m

�
−G

M

r

�

In our box formula we recognize aH = gh as the gravitational potential energy per
unit mass. We could fix our formula by replacing gH with

�
−GM

r

�
for a distance

comparable to the size of the star or planet. Then our frequency shift would be
∆f

f
≈ G

M

c2r

So our gravitational and accelerating cases are the same! And this new view point
predicts a frequency shift that exists, but our old gravitational field model misses!

This is important. We are saying that there is no gravitational field.

The equating of gravitation and accelerated reference frames is called the principle of

equivalence and really it was hiding in our Newtonian physics in a way. We have said
for semesters now that the mass that makes things hard to accelerate

Fnet = ma

is the same as the mass that causes gravitation. This is a statement that acceleration is
equivalent to gravitation!

But we had to give up something classical to make all this work. What we gave up
was a container spacetime. Einstein’s spacetime warps and bends. A two dimensional
analog of a warped three dimensional space is shown below.
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A particle traveling along this space will change direction because of the warped part.
But what can warp space?

Einstein postulated that mass warps space. So the situation in the last figure could be
a photon passing by a super heavy object like a star. This warping of space was the
first experimental evidence for general relativity. The experiment took place during a
total eclipse of the sun. Stars that were behind the sun became visible earlier than they
should have because their light was bent in the warped space due to the mass of the Sun.

An artificial version of this experiment can be done by emitting a radio beam at another
planet as it orbits the Sun

The light has to travel farther because it must traverse the warped region near the Sun,
so there is a measurable delay in the signal. The closer to the mass you get, the more
warped the space is. We would expect, then, to see an effect of this warping of space
in the motion of planets that are close to the Sun. And we do! The orbit of Mercury is
affected by the warping of space when it is nearest the Sun at its parhelion. In the next
figure the eccentricity of an orbit is exaggerated. An orbit without space warping would
be a perfect ellipse. But if the space is warped the planet must travel through more
space in the warped part, and this delays the planet a little causing the ellipse to deform.
The orbit precesses or wobbles into a new direction.
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The change in direction is small, for Mercury it is only of 10−6 rad per orbit, but the
effect is cumulative, making the orbit more off every time the planet goes around the
Sun. Measuring this in Mercury’s orbit is hard, because there are other reasons for a
precession of Mercury’s orbit due to the gravitational effect of the other planets. But in
the orbit calculations there was always a missing piece, until Einstein.

But there is more than just the thought that mass curves space. Look at the following
figure. A particle moves in a flat space from A to B.

If the flat spacetime was in a classical gravitational field then the particle would “fall”
as it traveled toward B.

But we get the same result if we allow a curved space.
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Here the particle isn’t attracted to the mass that causes the curve. The particle is just
following along the curved space. But it looks just like the Newtonian gravity case. The
implication is startling. There isn’t a force of gravity! The apparent force of gravity is
just movement of objects in a curved space time. The reason it looks like the objects
are attracted to a mass is because the mass caused the curvature of the space, but not
because the objects actually attract each other.

Indeed we did give up a cherished classical notion to make all reference frames
equivalent. We gave up the force of gravity!

Curved spacetime

But what is a curved spacetime like? A small distance in space time is symbolized by
ds. In general relativity we define

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2

This quantity is invariant under the Lorentz transformation. So it is a good way to
describe a change that does not depend on reference frame. Note that we have included
time in our ds vectors (with a c to make distance units).

This definition of ds is for a flat spacetime. But in general relativity, spacetime is
something that can stretch and bend. If our spacetime is curved we would have
curvature coefficients.

(ds)2 = g0 (cdt)
2 − g1 (dx)

2 − g2 (dy)
2 − g3 (dz)

2

The mathematics of general relativity is beyond what most of us have had. You need
tensor calculus. But we can look at the results of thinking of the consequences of a
curved spacetime. and we need to think about this to build our universe. If we draw
shapes in a flat spacetime.

They will look different in a curved space time.
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In this curved space time straight lines have become curved due to the curvature of the
space. So triangles have interior angles that sum to greater than 180 ◦ and the diameter
line of a circle is now longer so

C

D
< π

We could envision another way to curve spacetime where the circumference would
grow so that

C

D
> π

Let’s look at this curvature in the context of our box experiment. If we have a light
source that crosses the box, then the moving box would see the light hit lower on the
opposite wall. In a warped space, the same would happen due to the curve of the space.
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There must be a mass causing that curvature, but the light travels the curved path
because the space it is in is curved. The light is not attracted to the mass. The light
travels through space as it always does. But because of the mass, the space that is
curved where the light is, so we see the light travel a curved path.

We can describe the curved spacetime with Einstein’s equations. In the notation of this
class we would write

curvature of space =
8πG

c4
(massenergy density)

Why not use more symbols? The symbols use a notation we have not yet learned. If
general relativity interests you, stay in physics and plan on graduate school. General
relativity is usually a graduate level course.

Gravitational waves

In Einstein’s general relativity a moving mass can make waves in the stretchy
spacetime. The waves travel at the speed of light. But for normal masses (like stars and
planets) the waves are very small. However, large events like the collision of two black
holes or neutrons stars could make a measurable wave. The LIGO detector first found
gravitational waves in 2018.
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Concept of LIGO: A schematic diagram of a laser interferometer with light storage arms.

The top two plots show data received at Livingston and Hanford, along with the predicted shapes

for the waveform. These predicted waveforms show what two merging black holes should look

like according to the equations of Albert Einstein’s general theory of relativity, along with the

instrument’s everpresent noise. Time is plotted on the Xaxis and strain on the Yaxis. Strain

represents the fractional amount by which distances are distorted.

Stellar Evolution

So now, with all of our studies, we can finish the story of the life of a star. We know
from before that stars fuse elements starting with hydrogen. As the hydrogen is
exhausted, helium is fused, and so on up until iron is produced. Then neutron capture
can make heavier elements.. But at each stage, the star collapses inward and the kinetic
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energy of the collapse provides the thermal energy needed to induce the fusion of
heavier elements. But at some point the gravitational pull of the star’s mass demands
further collapse. If a star is about 1.4 times the mass of the sun, then the gravitational
squashing of the star’s matter (remember it is the contraction of space that is pulling
the material together!) can overcome the Pauli force. The Pauli exclusion principle
can hold a star from collapsing if the star’s mass is less. But above 1.4 solar masses
gravitation wins and the star further collapses. The 1.4 solar mass cutoff is called the
Chandrasekhar limit. With a Fermi energy of about 0.3MeV, the electrons on the
higher energy end of the Fermi distribution will have enough kinetic energy to pass the
threshold of the reaction

e− + p→ n+ νe
and then the protons in the atoms begin to turn into neutrons. This will destroy atoms.
This causes a further collapse, and this fuels more proton to neutron conversion.
Eventually the star is mostly made of neutrons. It is sort of one giant nucleus.

Neutrons stars

Neutrons are still fermions, and they also obey Pauli exclusion principle and the Pauli
force can keep the star from further collapse for a while. This what we call a neutron
star.

This seems very exotic, but neutrons stars are relatively easy to observe. This is because
the neutron stars create strong magnetic fields. And the neutron star collapse increases
the rotation rate of the star (like a solar sized ice skater pulling in arms an legs to
increase the spin rate).
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Charged particles will be propelled out along the magnetic field axis, and the star
will spin on its spin axis. This makes a rotating beacon of radio frequency (and other
frequency) waves due to the accelerated charged particle beam. As the star turns this
beacon of radio frequency waves periodically hits Earth. Radio receivers hear a “pulse”
repeated over and over. These pulsating neutron stars are called pulsars. Pulsars were
discovered by Jocelyn Bell in 1976 when she was a graduate student. She found a
regular series of radio frequency bursts that were found to be the rotating beacon of a
neutron star.

The details of the collapse of a star into a neutron star seems to be a violent episode.
Pulsasrs are often found in the middle of nebulae, which are the result of supernova.
The Crab Nebula is an example.

NASA composite image of the Crab Nebula

In the center of the nebula is a pulsar. The Candra Xray Observatory has imaged this
pulsar.
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The Crab Nebula’s Xrayemitting pulsar wind nebula. The pulsar is the white dot near the center

of the image. The polar jets of charged material are visible, as well as a clound of paticles with

the pulsar rotation in the middle which generates a particle “wind.” (image courtesy

NASA/CXC/SAO/F.Seward et al, https://chandra.harvard.edu/photo/2008/crab/)

The images show the jet of charged particles emanating from the pulsar.

Black Holes

If a star is very massive, the gravitational squishing overcomes the neutron Pauli
force, and the star further collapses. This time with little to stop the collapse. General
relativistic equations are used to describe this collapse. Our spactime interval in
spherical coordinates for a black hole would be

(ds)2 =

"
1− 2GM

c2r

#
(cdt)2 − 1 

1− 2GM
c2r

! (dr)2 − r2 (dθ)2 − r2 sin2 θ (dφ)2

where the terms in square brackets would reduce to 1 for low gravity. But black holes
are not low gravity. Noted that in the radial term there is a problem. If"

1 =
2GM

c2r

#

then the equation has an infinity. We could rewrite this as

r =
2GM

c2
At this distance from the center of the black hole something must happen. But for a
probe falling into a black hole it wouldn’t notice anything different at this distance from
the black hole. That is, nothing until it tried to get back out.

For observers outside the black hole, they would see the probe falling, but the fall
would appear to get slower and slower. The probe would seem frozen in place and
the gravitational warping of space would make the light from the probe ever more red
shifted until we could no longer detect it. The probe would disappear.

Meanwhile the probe might have been programed to cross this distance and turn around
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and fire it’s rockets. But it would be to no avail. The escape velocity goes infinite at this
special distance away from the center. Nothing can escape once it crosses this line, not
even light. So we would have lost contact with the probe as well. The name of this
distance away from the center of a black hole is the Schwarzschild radius but you may
have heard of it refereed to as the event horizon.

So what is the state of the matter inside a black hole? No one is really sure. At some
point the neutrons collapse, but what form the matter makes is a mystery that is the
subject of active research. The collapse of a black hole to a singular point would violate
our quantum uncertainty principle. So most physicists believe that the collapse must
end before this happens.

This is the part of physics called quantum gravity, where gravitation has shrunk size
into the quantum realm. There are several quantum gravity hypothesis (string theory,
loop quantum gravity, asymptotically safe gravity, causal dynamical triangulation, and
emergent gravity and others).

Evaporation of black holes

in 1974 a young physicist found another way to combine general relativity and quantum
behavior. He envisioned pair production right at the Schwarzschild radius. The
tremendous potential energy just outside of the black hole can provide the energy for
this to happen in the quantum sense that the pair can be produced and fall providing the
energy needed to create the pair so long as this all happens within

∆t ≥ �

2∆E
(remember these are waves, so we have a large range of available energies if ∆t is very
small) so we can get a positron and an electron created just outside the Schwarzschild
radius falling inward. If one of the pair (preferably the electron) has enough energy to
escape, this leaves the positron to enter the black hole.

It took energy to do this, so effectively we will reduce the mass of the black hole.
Eventually (like in the age of the universe eventually) the black hole will lose all of it’s
mass. This is known as black hole evaporation.

Black holes are an active area of research. If they intrigue you, a graduate level degree
in physics could lead to a career studying black holes. They may be a part of the
solution to the dark matter problem. It is likely that there are supermassive black holes
in the center of the Milky Way and other galaxies. Could there be black holes in the
halo as well?
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Cosmology

15.7  15.8

Fundamental Concepts in the Lecture

• Friedmann equation

• Mass dominated and photon dominated estimates for the age of the universe

• The history of the universe is governed by energy density because bonding of
particles is governed by available energy to break bonds.

Size and Shape of the Universe

Now that we have some understanding of general relativity, Let’s go back to describing
our universe. Let’s start with our general relativistic equation

curvature of space =
8πG

c4
(massenergy density)

To understand how to make a universe, we should know how big the universe is, and
how curved it is. The massenergy term has to be all the mass energy of the whole
universe, and on this scale we are not too worried about local density changes. Of
course, if we have an expanding universe, the overall density of the universe must
be decreasing. We won’t go through the details, but Friedmann formed a solution to
the general relativistic equation for the whole universe considering only large scale
structure. He got �

dR

dt

�2

=
8π

3
GρR2 − kc2

where R is the distance scale factor (a characteristic size for the universe), G is our old
friend, the universal gravitational constant, ρ is the massenergy density of the universe,
and k specifies the curvature structure of the universe.

If k = 0 the universe is flat. If k = +1 then the universe it closed and curved. If
k = −1 the universe is open and curved. Because R = R (t) if k is anything but exactly
zero then the time dependence of R (t) will increase the curvature over time. Note that
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we are talking about the whole of the universe here. It is true no matter what k is that
space is warped by matter.

Measurements tell us that if k is not zero, it is not very much different than 0, so let’s
take the case of a flat spacetime for a moment. For a rough estimate, we can take
the amount of matter as constant (which is very close to being true) and assume the
universe is homogenous, then

ρm ∝ R−3

since R is a length scale, and we assumed any part of the universe was pretty much like
any other part. So exactly what length R is doesn’t matter much. Then

�
dR

dt

�2

=
8π

3
GρR2 − kc2

becomes �
dR

dt

�2

∝ 8π

3
G

�
R−3

�
R2 − (0) c2

�
dR

dt

�2

∝ 8π

3R
G

dR

dt
∝

�
8π

3R
G

assuming that the amount of mass/energy is not changing, we can fix the proportionality
with a constantC which represents the total mass/energy of the universe.

ρm =
C

R3

so
dR

dt
=

�
8πC

3R
G

We can use this to estimate an age of the universe. Let’s rearrange
√
RdR =

�
C
8π

3
Gdt

and we can integrate this
	 R

0

√
RdR =

�
C
8π

3
G

	 t

0

dt

2

3
R
3
2 =

�
C
8π

3
Gt

so that

R =

�
3

2

�
C
8π

3
Gt

� 2
3

= At
2
3

where
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A =

�
3

2

�
C
8π

3
G

� 2
3

Then we can get an expression for the derivative if R in the Friedmann equation.
dR

dt
=

2

3
At

−1
3

And we could put this back into Friedmann’s equation. Then we can eliminate R and
find a time for the universe to have existed.�

dR

dt

�2

=
8π

3
GρR2 − kc2

becomes �
2

3
At

−1
3

�2

=
8π

3
Gρ

�
At

2
3

�2
− (0) c2

and we can solve this for t to get our estimate for the age of the universe
4

9
A2t

−2
3 =

8π

3
GρA2

�
t
4
3

�

1

3
t
−2
3 =

2π

1
Gρ

�
t
4
3

�

t
−2
3 t−

3
4 = 6πGρ

t
−1
2 = 6πGρ

t ≈ 1√
6πGρ

(37.1)

for a massenergy dominated universe. For the early universe this isn’t so good because
the early universe was photon dominated.

We can try to fix this using what we know about photon gasses. We know how to find
the energy density of a gas of photons. We have done it several times. Let’s use the
result.

u (E) dE =
8πhc

λ5
1

e
hc

λkBT − 1
dλ

which says that our massenergy density has a distance measure due to the wavelengths
that is proportional to dλ/λ5

ρr ∝
dλ

λ5

Because we assumed a homogeneous universe, all lengths scale like R (t) so

λ ∝ R (t)

∆λ ∝ R (t)

which gives us a massenergy density that is proportional to R4

ρr =
C

R4

where once again we have C as a constant of proportionality that is the amount of
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energy in the universe. We can put this into the Friedmann equation
�
dR

dt

�2

=
8π

3
G

�
C

R4

�
R2 − (0) c2

�
dR

dt

�2

=
8πC

3R2
G

dR

dt
=

1

R

�
8πC

3
G

so that

RdR =

�
8πC

3
Gdt

and once again integrate

	 R

0

RdR =

	 t

0

�
8πC

3
Gdt

which once again gives us an expression for R

R =

�

2

�
8πC

3
Gt

1
2

= Bt
1
2

where

B =

�

2

�
8πC

3
G

and we could find the derivative of R
dR

dt
=

1

2
Bt−

1
2

and once again we can put this into the Friedmann equation

�
dR

dt

�2

=
8π

3
GρR2 − kc2

We find �
1

2
Bt−

1
2

�2

=
8π

3
Gρ

�
Bt

1
2

�2
− kc2

and solve for time to find an age of the universe estimate
1

4t
B2 =

8π

3
GρrB

2t

and the B terms cancel. We can solve for t
1

4t
=

8π

3
Gρrt

1

48π3 Gρr
= t2

t =

�
3

32πGρr
(37.2)

for a photon dominated universe.
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Of course our universe started as photon dominated and moved to mass dominated.
So the actual time has to be somewhere in between our two age estimates. Note, that
we assumed that the amount of mass/energy is not changing in the universe in our
estimates for the age of the universe, If C was a function of time in either case, this
would have been more difficult. We believe that energy can’t leave the universe, so this
is a reasonable assumption, but it is an assumption.

We won’t show this, but we can write the Hubble parameter as

H =
1

R

dR

dt
and because R (t) changes in time, so does H. So then, the current value we found, Ho,
will change in time. If the expansion is at a constant rate, linear in t, then

R (t) ∝ t

the age of the universe is

tage =
1

H
but we can see from our two estimates that R (t) ∝ t

2
3 or R (t) ∝ t2. It turns out that in

the first case (matter dominated) that we would get

tage =
2

3

1

H
but that assumes that the universe was always matter dominated. The photon dominated
case gives

tage =
1

2

1

H
Either way, the age of the universe is about H−1. The current best estimate is
13.7 × 109 y. And our two estimates are within about 20% of each other. Of course
20% of 13.7× 109 y is a whopping 2. 74× 109 y. But in cosmology we can’t let little
things like three billion years upset us too much.

It remains as a problem yet to be solved to figure out what age is right. The fields of
astrophysics and cosmology are closely related, and they are active fields of research. If
these ideas intrigue you , these might be a good choices of fields of study for you.

A very brief history of time

Let’s look at how the universe grew, according to our quantum and general relativistic
models. Our expansion model tells us the universe started very small. Since all the
energy that exists in the universe today was in the universe then, it must have also been
hot. We found from our quantum theory that thermal energy will destroy atoms and
particles, providing lots of dissociation energy to break all bonds, so this early universe
was photon dominated. We can use our time equation for photon dominating (Equation
37.2) to find a relationship between time and temperature for this part of our history.

t ≈
�

3

32πGρr
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If we let

ρr =
U

c2
then we have

t =

�
3c2

32πGU
and remember that we found the energy density U for a photon dominated universe
when we described the cosmic background radiation (Equation 35.1).

U =

�
8π5 (kB)

4

15 (hc)3

�

T 4

so our time is about

t ≈
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32πG
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4
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or, taking the temperature out of the square root
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so that

T ≈ D
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2

where
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We can put in all the wonderful constants

D =

&''''(

&'''(
3 (2.99792458× 108ms−1)2

32π
�
6.67259× 10−11m3 kg−1 s−2

��8π5(8.617385×10−5 eVK−1)4

15(1240 eV nm)3

�

= 1. 518 3× 1010
√
sK

so then

T ≈ 1. 518 3× 1010
√
sK

t
1
2

and we could plot this
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And our conclusion is that as the universe starts out it is very hot, so hot that if
photons participated in pair production of matter, that that matter would immediately
be destroyed by other photons which could provide more than enough binding energy
to tear apart any matter formed.

But the universe will cool as it expands. And with our temperature as a function of
time equation we could find the time when the particles that our matter is built on
would appear and not immediately be destroyed. The particles would appear as particle
antiparticle pairs. So, say

γ + γ → p+ p
The two photons mush have at least the rest mass energy of both particles. Since
mp = 938.27MeV/c2 we need each photon to have this amount of energy. We can
approximate the energy as Eγ ≈ kBT so

T =
Eγ
kB

=
mpc2

kB
=

938.27MeV

8.617385× 10−5 eVK−1
= 1. 088 8× 1013K

and we can put this in our equation for temperature as a function of time and solve for
the time.

T =
1. 518 3× 1010

√
sK

t
1
2

t =

�
1. 518 3× 1010

√
sK

T

�2

t =

�
1. 518 3× 1010

√
sK

1. 088 8× 1013K

�2

= 1. 944 5× 10−6 s

So we start making baryonic matter at around 2× 10−6 s.

What happens before that? Using the same procedure we can trace back what could
exist in the universe as a function of time. Let’s do this for our Big Bang.

We can’t go right back to t = 0 because of the unsolved quantum gravity problem for
singularites. Before 10−43 seconds, all of what we have said breaks down. This is
called the Planck time. We don’t yet know how to solve the equations for times shorter
than the Plank time, so we don’t understand what this very early part of the universe’s
life was like. So let’s start just after the Planck time.
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After 10−43 s but before 10−6 s

As the universe cools we have the ability to create particles that are not immediately
destroyed by high energy photons. So first the most massive particles are created, and
then less massive particles are created. The temperature decreases as shown in our last
figure.

After 10−6 s but before 10−2 s

There are about as many neutrons as protons and there are not enough high energy
photons to destroy the nucleons. As time goes on the cooler universe can start to create
small nuclei without those nuclei being immediately destroyed. Very few neutrons have
decayed, because they just haven’t existed long enough yet. We get particles like p,
n, e−, µ−, π0, π− and others plus their antiparticles. Increasingly matter begins to
dominate, so our graph of temperature vs. time is not so accurate.

After 10−2 s but before 1 s

The universe is becoming increasingly matterdominate. Our temperature vs. time
graph is less and less accurate. We could switch to our equation for the matter
dominated universe. But looking at our calculations we expect temperature will
continue to fall. Photon energy falls with temperature, so now the photons can’t make
pions and muons, and because the universe is becoming old enough to exceed pion and
muon lifetimes, the number of unstable particles drops off dramatically toward the end
of this period. At this point there must have been an imbalance between antimatter
and matter. All the particles were produced by particleantiparticle production, but for
some reason less antiparticles survive. The reason for the lack of visible antimatter
in the universe is an active area of research with some experimental verification, but
much work to do. If this imbalance didn’t exist, then all the protons and antiprotons
(and neutrons and antineutrons) would have annihilated, leaving no baryon matter. We
are evidence that this didn’t happen. In this time range we have p, n, e− and their
antiparticles. The ratio of neutrons to protons begins to fall.

After 1 s but before 6 s

Temperature continues to fall. We get to the point when electron positron pair
production is no longer routinely possible and we get the particle antiparticle culling for
electrons that we had before for protons and neutrons. The ratio of neutrons to protons
continues to fall due to neutron decay.
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After 6 s

Nuclei and then atoms form. We start with reactions like

n+ p→ 2H + γ

we at first we destroy as many nuclei as we create. But as the temperature drops there
are fewer particles with high energy so as the nuclei are formed it is less likely that they
are destroyed. Eventually we get reactions like

2H + p→ 3He+ γ

and then as time goes on
3He+ n→ 4He+ γ

and

3H + p→ 4He+ γ
These are still nuclei, it takes a while before the universe cools enough that
kBT < 13.6 eV so electrons can be captured without being immediately freed again.

Now we need gravity to work. The inhomogenaities we saw in the cosmic background
radiation tell us that the early universe wasn’t uniform. The denser parts could at this
point coalesce into stars, and we know that stars are element factories. NASA produced
a nice figure that describes the history of the universe on a scale that the time after 6
seconds shows well.

History of the Universe (Image Courtesy NASA)
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In the figure we see the big bang, then we see the cosmic radiation period (shown with
the cosmic background radiation inhomogeniaty map superimposed on it) and then the
time when photons are not dominant and we just have nuclei and atoms forming. Then
we pick up the story of stars forming, then galaxies, and we get the universe we see
today.
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15.9  15.10

The universe today

We now have a universe that has matter in it and the mater is more prevalent than
photons. We have stars formed, but the most prevalent form of matter is still hydrogen
and helium.

We have an expanding universe. And there is some evidence that this expansion is
accelerating. This brings up another area of research. If we look as far as we can see
the universe is surprisingly uniform. Here is a picture take by Hubble of a dark spot in
the sky, at least, we saw it as dark with Earthbound telescopes.

NASA Hubble Ultra Deep Space Image

and what do we see? Galaxies. Why is this surprising? Well if the universe is
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13.7× 109 y old then the farthest light could travel to us is

∆x = c∆t

=
�
2.99792458× 108ms−1

� �
13.7× 109 y

�

= 1. 296 1× 1026m

= 4. 199 9× 109pc

If there is something farther away from us, we would not have seen it yet. So this dis
tance represents the edge of what we can know about the universe. The feeling is that
whatever is along this edge would be seen by us as very young. After all, the light from
it has traveled the entire time the universe has existed, so the image that this light gives
us must be from the dawn of the universe. It would be like mailing a letter to yourself
when you were two years old and just receiving it today. The letter would represent a
much younger you.

Signal from the Ultra Deep Field Galaxies (Image Courtesy NASA)

The Ultra Deep Field galaxies are approximately 1. 248 8× 1026m away giving their
light 13.2× 109 y to get to us. Then the universe was only 0.5× 109 y when the light
left. and the picture looks very like the region of space around us. Worse yet, if we
point our telescope in the other direction the deep space view is much the same. How
can the universe be so uniform? It can’t be that parts of the universe are cooperating.
Think, if there were someone building the galaxies and groups of galaxies on the
opposite ends of the universe, they would have to communicate at twice the speed of
light to stay in sync.
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Rather than believe this, it seems more likely that the uniformity came when the parts
of the universe were close together. The inflation hypothesis explains this by assuming
that the universal expansion was much bigger for a short time in the past. In our NASA
history of the universe figure the inflation period is labeled just after the big bang.

I am not sure how you get spacetime to experience a rapid expansion. Einstein taught
us that space is something and it is a stretchy something. But how do you make the
whole universe of space stretch? The early universe had lots of energy, but what would
the mechanism be for stretching space? But still, this would solve what has been called
the horizon problem.

If you once again study the NASA history figure, you notice that the universe has a bell
shape, with a flair on the end. That flair is the recently measured acceleration of the
universal expansion. I don’t know how you get spacetime to once again accelerate it’s
expansion. But whatever the mechanism, it must need lots of energy to do so. And this
is the origin of the dark energy hypothesis that seeks to solve the energy part of the
expansion by assuming there are vast amounts of energy in the universe that we haven’t
yet found. This is another active area of research, one where I am anxious to see if it
will prove true, or if we have some error in our theories.

There is a bit of frustration in this last thought. If there is an acceleration to the
expansion, then some things will move farther away due to the expansion. Their
light will head toward us, but because they are so far away, the expansion will win,
and their light will never reach us. To be clear, they are not moving faster than light
through space. That would be like our ant motion on our stretchy balloon. It is the
cumulative effect of the universal expansion that is pushing them beyond our view. This
is frustrating because we have to ask if the farthest thing we can see is really all there
is. Maybe there are remnants of the big bang just beyond our view and we will never
know. As the expansion accelerates, more and more will go beyond what we can know.
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This is not a pleasant thought to astrophysicists and cosmologists.

Curvature of the Universe

One last question that we haven’t answered (well, one that I am going to try to answer,
there are others that we have left for other classes) would be, is the curvature of our
universe such that it is closed, open, or is it open and flat?

If we go back to the Friedmann equation
�
dR

dt

�2

=
8π

3
GρR2 − kc2

and take our assertion (because we didn’t show it in this class) that

H =
1

R

dR

dt
and combine these to find the density of the universe

dR

dt
= HR

(HR)2 =
8π

3
GρR2 − kc2

and for a flat universe k = 0

(HR)2 =
8π

3
GρR2

so that

ρ =
3 (HR)2

8πGR2
=

3 (H)2

8πG

If the universe has precisely this density, then it is flat. We call this the critical density.
To find it we need a unit conversion with the Hubble constant

Ho = 72
km

s ·Mpc

Mpc

3.086× 1013 km× 1× 106
= 2. 333 1× 10−18

1

s
so our critical density is

ρcr =
3H2

8πG
=

3
�
2. 333 1× 10−18 1s

�2

8π
�
6.67259× 10−11m3 kg−1 s−2

�

= 9. 737 6× 10−27
kg

m3

If the universe has even slightly more density than this, the universe is curved and
infinite and open. If it is slightly lower than this, the universe is curved and closed. It is
customary to define

Ω =
ρ

ρcr
so that if Ω > 1 the universe is curved and open, and if Ω < 1 the universe is curved
and closed, and Ω = 1 would be an infinite flat universe. So what is the answer? We
don’t know. We can tell that Ω isn’t too different than 1. But because we need Ω to
be exactly 1 for a flat universe, the observations have to be very exact. And of course,
accelerated expansion would imply that H might not be constant. So this might be
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a confounding problem. Cosmologists are working on answering this question, but
we don’t have a definitive answer yet. So far the best we can say is that within our
uncertainties, the universe looks pretty flat. But because of uncertainty, all we can say
is that it is not very curved. Perhaps this is a field you would like to join and perhaps
you will solve this problem.

Does it all work?

We talked about relativity, we have studied matter and it’s motion from macroscopic
classical ideas to particle physics and quantum mechanics We should ask ourselves, is
all this real?

Remember, in each age, scientists (or philosophers, or whatever the intellectuals of that
era were called) were sure they had it right. Human kind has a poor track record of
getting it right and a poorer track record of knowing when we are wrong. Aristotle’s
mostly wrong ideas lasted for thousands of years. Galileo was arrested for opposing
Aristotelean ideas! So we should be careful and humble.

Our theories change in time. Might there be a breakthrough that radically changes our
view point in the future. Undoubtedly there will! The race is on now in particle physics,
quantum gravity, QCE and other fields for rewiring our theories to account for the
current missing pieces and for new discoveries. Those new ideas will effect the rest of
physics at some level.

Rodger Penrose from the University of Oxford gave a rating for our theories back in
1989. For each theory he labeled them one of the following “SUPERB,” “USEFUL,”
or “TENTATIVE.” He thought of adding the classification of “MISGUIDED.” But, In
his words, “...then I thought better of it, since I do not want to lose half of my friends.”
Here is his classification including the theories we have studied.

Theory Penrose Classification Theory Penrose Classification

Euclidian geometry SUPERB GellMannZweig Quark Model USEFUL

Newtonian Statics SUPERB Quantum Chromodynamics USEFUL

Newtonian Mechanics SUPERB Standard Model USEFUL

Maxwell’s Electrodynamics SUPERB Big Bang USEFUL

Special Relativity SUPERB KaluzaKlein (supersymmetry) TENTATIVE

General Relativity SUPERB GUT (including inflation) TENTATIVE

Quantum Mechanics SUPERB Superstring TENTATIVE

Quantum Electrodynamics (QED) SUPERB (only on accuracy)

Penrose says his category of “SUPERB” does not mean the theory should apply
“without refutation to the phenomena of the world” But only that “the range and
accuracy with which it applies should, in some appropriate sense, be phenomenal.”

To be in the TENTATIVE category, Penrose says you need a “lack of any significant
experimental support."
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This is interesting and brings even more humility. Yet even with this classification by
one of the prominent mathematical physicists of our era, the categories do not tell us
which theories are correct. They are all useful models, but we cannot really say they are
right. Someone in the future may be looking at QED the way we look at Ether Theory!

Because of this, I believe the work of physics is far from over. I hope in your life time
there will be many exciting changes. As physicists we have a chance to be part of the
continual revolution.

This sounds a little like “Ever learning, and never able to come to the knowledge of the
truth.22” We should ask if this search for how the universe is made is of value. After all,
the experiments are often expensive!

I believe it is. As we have understood the atom, we have learned to do chemistry which
has lead to the development of new medical treatments and new materials. We have
learned to take Xrays to form CAT scans, and we have built MRI and PET scanners
based on our physics understanding. We have used what we learned to treat cancer
in some forms. We have developed microwave ovens and we have electric lighting
and LED flashlights. Even the internet was initially designed to allow the physics labs
to share data and to allow the scientists to talk to each other23. So the benefits to our
curiosity are not just the answers, but the understanding we gain along the way that
benefits our lives.

There are further classes, both at the undergraduate level and at the graduate level for
most of the topics we covered (some are just at the graduate level). There is much to
look forward to! If your curiosity was peaked by any of the topics we covered, consider
going on to graduate school. But even if you don’t, we found that general relativity is
used in engineering, quantum mechanics is used in electronics, and really all of what
we have learned shows up in some form of our modern life. Knowing how it works
is only a benefit. If nothing else, you can bask in the wonder of it all and share that
wonder with the next generation.

22 2 Tim 3:7
23 No, Al Gore did not invent the internet, it was there years before he started his run for vice president.



A Fourier Series Review

Back in section (3) we studied limiting waves in our study of the Heisenburg uncertainty
principle. But Fourier series was more of a “review” for some of us than for others.
In the real world, real waves are not perfect sinusoids. We need a way to represent
nonsinusoidal waves (like our wave packets!).

Music and Nonsinusoidal waves

Let’s take the example of music. From the example of standing waves on strings that
we did back in PH123, we know that a string can support a series of standing waves
with quantized frequencies–the harmonic series. We have also discussed that usually
we excite more than one standing wave at a time. The fundamental mode tends to give
us the pitch we hear, but what are the other standing waves for?

To understand, lets take an analogy. Making cookies and cakes.

Here is the beginning of a recipe for cookies.

The recipe is a list of ingredients, and a symbolic instruction to mix and bake. The
product is chocolate chip cookies. Of course we need more information. We need to
know now much of each ingredient to use.



This graph gives us the amount of each ingredient by mass.

Now suppose we want chocolate cake.

The predominant taste in each of these foods is chocolate. But chocolate cake and
chocolate chip cookies don’t taste exactly the same. We can easily see that the
differences in the other ingredients make the difference between the “cookie” taste and
the “cake” taste that goes along with the “chocolate” taste that predominates.

The sound waves produced by musical instruments work in a similar way. Here is a
recipe for an “A” note from a clarinet.



and here is one for a trumpet playing the same “A” note.

A trumpet sounds different than a clarinet, and now we see why. There are more
harmonics involved with the trumpet sound than the clarinet sound. These extra
standing waves make up the “brassiness” of the trumpet sound. As with our baking
example, we need to know how much of each standing wave we have. Each will have a
different amplitude. For our trumpet, we might get amplitudes as shown.



Note that the second harmonic has a larger amplitude, but we still hear the “A” as
at 440Hz. A fugal horn would still sound brassy, but would have a different mix of
harmonics.

In music, the different harmonics are called partials because they make up part of the
sound. A graph that shows which harmonics are involved is called a spectrum. The next
figure is the spectrum of a six holed bamboo flute. Note that there are several harmonics
involved.

Note that our graph has two parts. One is the instantaneous spectrum, and one is the
spectrum time history.



By observing the time history, we can see changes in the spectrum. We can also see
that we don’t have pure harmonics. The graph shows some response off the specific
harmonic frequencies. This six holed flute is very “breathy” giving a lot of wind noise
along with the notes, and we see this in the spectrum. In the next picture, I played a
scale on the flute.

The instantaneous spectrum is not active in this figure (since it can’t show more than
one note at a time) but in the time history we see that as the fundamental frequency
changes by shorting the length of the flute (uncovering holes), we see that every partial
also goes up in frequency. The flute still has the characteristic spectrum of a flute, but
shifted to new frequencies. We can use this fact to identify things by their vibration
spectrum. In fact, that is how you recognize voices and musics within your auditory
system!

The technique of taking apart a wave into its components is very powerful. With light
waves, the spectrum is an indication of the chemical composition of the emitter. For ex
ample, the spectrum of the sun looks something like this



Solar coronal spectrum taken during a solar eclipse. The successive curved lines are each

different wavelengths, and the dark lines are wavelengths that are absorbed. The pattern of

absorbed wavelengths allows a chemical analysis of the corona. (Image in the Public Domain,

orignally published in Bailey, Solon, L, Popular Science Monthly, Vol 60, Nov. 1919, pp 244)

The lines in this graph show the amplitude of each harmonic component of the light.
Darker lines have larger amplitudes. The harmonics come from the excitation of elec
trons in their orbitals. Each orbital is a different energy state, and when the electrons
jump from orbital to orbital, they produce specific wave frequencies. By observing the
mix of dark lines in pervious figure, and comparing to laboratory measurements from
each element (see next figure) we can find the composition of the source. This figure
shows the emission spectrum for Calcium. because it is an emission spectrum the lines
are bright instead of dark. We can even see the color of each line!

Emission spectrum of Calcium (Image in the Public Domain, courtesy NASA)

Fourier Series: Mathematics of NonSinusoidal Waves

We want to understand the mathematics of nonsinusoidal waves. The strategy we will
take is to make a series expansion of basis functions that when we add up all the parts
of the series are equal to the original wave. This is a lot like taking a Taylor series, but
instead of the series being in powers of x we want a series that is like adding up many
little waves to make a big complicated wave. So let’s start with adding up waves with
different amplitudes and different frequencies.

The math looks like this

y (t) =
�

n

(An sin (2πfnt) +Bn cos (2πfnt))

where An and Bn are a series of coefficients and fn are the harmonic series of frequen
cies. Let’s try a strange wave. Let’s try a wave that has square parts. That is really
really not a sinusoidal wave. Here is a picture.
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Fourier Analysis

In our lecture we let Python do the heavy mathematics. But if you want to know what
Python was doing, read this section. We could represent our square wave function f (x)
with the following series

f (x) = Co +C1 cos

�
2π

λ
x+ ε1

�
(1)

+C2 cos

�
2π
λ
2

x+ ε2

�

(2)

+C3 cos

�
2π
λ
3

x+ ε3

�

(3)

+ . . . (4)

+Cn cos

�
2π
λ
n

x+ εn

�

(5)

+ . . . (6)

where we will let εi = ωit+ φi

The C′s are just coefficients that tell us the amplitude of the individual cosine waves.
The more terms in the series we take, the better the approximation we will have, with
the series exactly matching f (x) when the number of terms, N →∞.

Usually we rewrite the terms of the series as

Cm cos (mkx+ εm) = Am cos (mkx) +Bm sin (mkx) (7)

where k is the wavenumber

k =
2π

λ
(8)

and λ is the wavelength of the complicated but still periodic function f (x) . Then we
identify

Am = Cm cos (εm) (9)

Bm = −Cm sin (εm) (10)



then

f (x) =
Ao

2
+

∞�

m−1
Am cos (mkx) +

∞�

m−1
Bm sin (mkx) (11)

where we separated out the Ao/2 term because it mikes things nicer later.

The process of finding the coefficients of the series is called Fourier analysis. We won’t
do this much in our course, but here is how you could. We start by integrating equation
()
	 λ

0

f (x) dx =

	 λ

0

Ao

2
dx+

	 λ

0

∞�

m−1
Am cos (mkx) dx+

	 λ

0

∞�

m−1
Bm sin (mkx) dx

(12)
We can see immediately that all the sine and cosine terms integrate to zero (we
integrated over a wavelength) so

	 λ

0

f (x) dx =

	 λ

0

Ao

2
dx =

Ao

2
λ (13)

We solve this for Ao

Ao =
2

λ

	 λ

0

f (x) dx (14)

To find the rest of the coefficients we need to remind ourselves of the orthogonality of
sinusoidal functions 	 λ

0

sin (akx) cos (bkx) dx = 0 (15)

	 λ

0

cos (akx) cos (bkx) dx =
λ

2
δab (16)

	 λ

0

sin (akx) sin (bkx) dx =
λ

2
δab (17)

where δab is the Kronecker delta.

To find the coefficients, then, we multiply both sides of equation () by cos (lkx) where l
is a positive integer. Then we integrate over one wavelength.

	 λ

0

f (x) cos (lkx) dx =

	 λ

0

Ao

2
cos (lkx) dx (18)

+

	 λ

0

∞�

m−1
Am cos (mkx) cos (lkx) dx (19)

+

	 λ

0

∞�

m−1
Bm sin (mkx) cos (lkx) dx (20)

which gives
	 λ

0

f (x) cos (mkx) dx =

	 λ

0

Am cos (mkx) cos (mkx) dx (21)



that is, only the term with two cosine functions where l = m will be non zero. So
	 λ

0

f (x) cos (mkx) dx =
λ

2
Am (22)

solving for Am we have

Am =
2

λ

	 λ

0

f (x) cos (mkx) dx (23)

We can perform the same steps to find Bm only we use sin (lkx) as the multiplier. Then
we find

Bm =
2

λ

	 λ

0

f (x) sin (mkx) dx (24)

Let’s find the series for a square wave using our Fourier analysis technique. Let’s take

λ = 2 (25)

f(x) =

�
1 if 0 < x < λ

2

−1 if λ
2 < x < λ

(26)
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since f (x) is odd, Am = 0 for all m. We have

Bm =
2

λ

	 λ
2

0

(1) sin (mkx) dx+
2

λ

	 λ

λ
2

(−1) sin (mkx) dx (27)

so

Bm =
1

mπ
(− cos (mkx) |

λ
2
0 +

1

mπ
(cos (mkx) |λλ

2
(28)

Which is
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mπ
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1 cos
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λ
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so

Bm =
1

mπ
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− cos
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m
2π

λ

λ

2

��
+ cos

�
m
2π

λ
(0)
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�
m
2π
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λ

2

���
(31)

which is

Bm =
2

mπ
(1− cos (mπ)) (32)



Back to our Square Wave

Whether we let Python find the coefficients or we do it ourselves, we now know that
we can find the amplitude for each of the waves that we mix together to make our
complicated nonsinusoidal waves. Our series is then just

f (x) =
∞�

m−1

2

mπ
(1− cos (mπ)) sin (mkx) (33)

and we found the amplitudes for the square wave. It was these amplitudes that we had
Python plot. We can write a few terms

Term
1 4

π sin (kx)
2 0
3 4

3π sin (3kx)
4 0
5 4

5π sin (5kx)

(34)

then the partial sum up to m = 5 looks like

f (x) =
4

π
sin (kx) +

4

3π
sin (3kx) +

4

5π
sin (5kx) (35)
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where the thin read line is our series (up to five terms). It is much less sinusoidal and
much more square than a single sine wave. But it is still not perfect. If we take many
terms,

f (x) =
4

π
sin (kx) +

4

3π
sin (3kx) +

4

5π
sin (5kx) +

4

7π
sin (7kx) +

4

9π
sin (95kx) (36)

+
4

11π
sin (11kx) +

4

13π
sin (13kx) +

4

15π
sin (15kx) +

4

17π
sin (17kx) +

4

19π
sin (19kx)

We see the function get closer and closer to a square wave. In the next figure I expanded
our view so you can see the details of the red series wave. It is still not exactly equal to
the square wave, but the red wave doesn’t change much from the square wave.
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In the limit of infinitely many waves, the match would be perfect. But we don’t usually
need an infinite number of terms. we can pick the part of the spectrum that best
represents the phenomena we desire to observe. We can plot the amplitude of each of
the 20 terms that we used. It looks like this

This is the spectrum of the wave amplitudes that make up this square wave. It says we
have more of the low frequencies and less of the higher frequencies It also shows that
every other frequency has an amplitude of zero. If we mix waves of these frequencies
and amplitudes we get our approximation to the square wave. We can see from this that
the first wave is very important and the 19th wave is less important in some sense. If I
plot just the first term we can see why
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The first term in our series is giving the frequency of the square wave to our series. For
sound, this is what our brains interpret as the musical note we hear. Our wave packets
are built like this. For light, we expect a peak frequency in the spectrum graph that
gives the color of the photon. We add together many partial waves to get the actual
wave packet function that we want. Each of the partial waves will have a different
amplitude and frequency. Usually these frequencies are a group of frequencies that
are close together. So we will say they are in a “band” of frequencies that are ∆f
wide. The ∆f says that we made our actual wave packet out of many partial waves and



that these partial waves give us many frequencies (and therefore many energies). The
principal frequency will have a large amplitude and most others will have much smaller
amplitudes. Here is one of our Python generated graphs.

The graph to the right tells us we have a large amplitude for 200Hz but we have
amplitudes that are not zero for other frequencies. These are all required to make a
limited wave packet.



B Tables

Integral Table and Data Tables

Some useful integrals and trig identities
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Other useful mathematical things

�√
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Some useful quantities

melectron = 9.1093829× 10−31 kg = 0.51099893MeV/c2

mproton = 1.67262178× 10−27 kg = 938.27205MeV/c2

mneutron = 1.67492735× 10−27 kg = 939.56538MeV/c2

1u = 931.49406MeV/c2 = 1.66053892× 10−27 kg

h = 6.6260755× 10−34 J s

= 4.1356692× 10−15 eV s

� = 1.054571726× 10−34 J s

= 6.5821220× 10−16 eV s

c = 2.99792458× 108
m

s
hc = 1240 eVnm

�c = 197.326972 eVnm

e = 1.60217733× 10−19C

kB = 8.617385× 10−5 eVK−1

NA = 6.02× 1023
1

mol

1 fm = 1.0× 10−15m

1Å = 1.0× 10−10m

1nm = 1.0× 10−9m

R∞ =
mee

4

64π3ǫ2o�
3c

= 1.0973731534× 107m−1



Hydrogen Wave Functions

ψ (r, θ, φ) = R (r)Θ (θ)Φ (φ)
where the pieces look like
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Table of Leptons and their Quantum Numbers and Masses

Leptons Symbol
Lepton
Number

Charge (e) Spin
Mean
Life (s)

Anti
particle

Lepton
Number

Rest
Energy (MeV)

Decay
Products

Electron e− Le = +1 −1 1

2
∞ e+ Le = −1 0.511

ElectronNeutrino νe Le = +1 0 1

2
∞ ν̄e Le = −1 really small

Muon µ− Lµ = +1 −1 1

2
2.2× 10−6 µ+ Lµ = −1 105.7 e− + νe + νµ

MuonNeutrino νµ Lµ = +1 0 1

2
∞ ν̄µ Lµ = −1 really small

Tau τ− Lτ = +1 −1 1

2
2.9× 10−13 τ+ Lτ = −1 1784 µ− + νµ + ντ

TauNeutrino ντ Lτ = +1 0 1

2
∞ ν̄τ Lτ = −1 really small

Table of Baryons and their Quantum Numbers and Masses

Baryons Symbol
Baryon
Number

Particle
Charge (e)

Spin
Strange
ness

Mean
Life (s)

Anti
particle

e
Baryon
Number

Rest
Energy (MeV)

Decay
Products

Proton p +1 +1 1
2

0 ∞ p̄ −1 938.3 None

Neutron n +1 0 1
2

0 886 n̄ −1 939.6 −p + e−+νe
lambda Λ0 +1 0 1

2
−1 2.6× 10−10 Λ̄0 −1 1115.6 p + π

Sigma Σ+ +1 +1 1
2

−1 8.0× 10−11 Σ̄+ −1 1189.4 p + π0

Σ0 +1 0 1
2

−1 7.4× 10−20 Σ̄0 −1 1192.5 Λ0+γ

Σ− +1 −1 1
2

−1 1.5× 10−10 Σ̄− −1 1197.3 n + π−

Xi Ξ0 +1 0 1
2

−2 2.9× 10−10 Ξ̄0 −1 1315 Λ0+π0

Ξ− +1 −1 1
2

−2 1.6× 10−10 Ξ̄− −1 1321 Λ0+π−

∆∗ +2,+1, 0,−1 3
2

0 5.6× 10−24 ∆∗ 1232 p + π

Σ∗ +1, 0,−1 3
2

−1 1.8× 10−23 Σ∗ 1385 Λ0+π

Ξ∗ −1, 0 3
2

−2 7.2× 10−23 Ξ∗ 1533 Ξ + π

Omega Ω− +1 −1 3
2

−3 8.2× 10−11 Ω̄− −1 1672 Λ0+K−

Table of Mesons and their Quantum Numbers and Masses

Mesons Symbol
Particle
Charge (e)

Spin
Strange
ness

Mean
Life (s)

Antiparticle
Rest
Energy(MeV)

Decay
Products

Pion π+ +1 0 0 2.6× 10−8 π− 139.6 µ++νµ

π0 0 0 0 8.4× 10−17 π0 (self) 135.0 γ + γ

Kaon K+ +1 0 +1 1.2× 10−8 K− 493.7 µ++νµ

K0S 0 0 +1 0.89× 10−10 K̄0S 497.7 π++π−

K0L 0 0 +1 5.2× 10−8 K̄0L 497.7 π±+e∓+νe
Eta η 0 0 0 5.1× 10−19 η (self) 548.8 γ + γ

η′ 0 0 0 3.2× 10−21 η′ (self) 958 η + π++π−
ρ+ +1 1 0 4.4× 10−24 ρ− 775 π++π0

D+ +1 0 0 1.0× 10−12 D− 1869 K−+π++π−
J/ψ 0 1 0 7.1× 10−21 J/ψ (self) 3097 e++e−
B+ +1 0 0 1.6× 10−12 B− 5279 D−+π++π−
Υ 0 1 0 1.2× 10−20 Υ (self) 9460 e++e−



Some Hadrons and their Quantum Numbers and Masses

Table 1.Q is for charge, S is for strangeness, C is for charm, B̄ is for bottemness, B is
the baryon number

Q S C B̄ B mass
�
MeV/c2

�

π+ +1 0 0 0 0 139.570

π− −1 0 0 0 0 139.570

π0 0 0 0 0 0 134.977

η 0 0 0 0 0 547.853

ρ 0 0 0 0 0 775.49

ω0 0 0 0 0 0 782.65

η′ 0 0 0 0 0 957.66

φ 0 0 0 0 0 1019.46

K+ +1 +1 0 0 0 493.667

K− −1 −1 0 0 0 493.667

K0 0 +1 0 0 0 497.614

K̄0 0 −1 0 0 0 497.614

D+ +1 0 +1 0 0 1869.12

D− −1 0 −1 0 0 1869.12

D0 0 0 +1 0 0 1864.84

D̄0 0 0 −1 0 0 1864.84

D+
s +1 +1 +1 0 0 1968.49

D−
s −1 −1 −1 0 0 1968.49

B+ +1 0 0 +1 0 5279.15

B− −1 0 0 −1 0 5279.15

B0 0 0 0 +1 0 5279.53

B̄0 0 0 0 −1 0 5279.53

B0
s 0 −1 0 +1 0 5366.3

B̄0
s 0 +1 0 −1 0 5366.3

B+
c +1 0 +1 +1 0 6276

B−
c −1 0 −1 −1 0 6276



Table 2.Q is for charge, S is for strangeness, C is for charm, B̄ is for bottemness, B is
the baryon number

Q S C B̄ B mass
�
MeV/c2

�

ηc 0 0 0 0 0 2980.3

J/ψ 0 0 0 0 0 3096.92

η
b

0 0 0 0 0 9388.9

Y 0 0 0 0 0 9460.30

p +1 0 0 0 1 938.272

n 0 0 0 0 1 939.565

∆++ +2 0 0 0 1 1232

∆+ +1 0 0 0 1 1232

∆0 0 0 0 0 1 1232

∆− −1 0 0 0 1 1232

Λ 0 −1 0 0 1 1115.68

Σ+ +1 −1 0 0 1 1189.37

Σ0 0 −1 0 0 1 1192.64

Σ− −1 −1 0 0 1 1197.45

Ξ0 0 −2 0 0 1 1314.86

Ξ −1 −2 0 0 1 1321.71

Ω− −1 −3 0 0 1 1672.45

Λ+
c +1 0 +1 0 1 2286.46

Σ++
c +2 0 +1 0 1 2454.02

Σ+
c +1 0 +1 0 1 2452.9

Σ0
c 0 0 +1 0 1 2453.76

Ξ+
c +1 −1 +1 0 1 2467.9

Ξ0
c 0 −1 +1 0 1 2471.0

Ω0
c 0 −2 +1 0 1 2697.5

Λ0
b 0 0 0 −1 1 5620.2

Ξ0
b 0 −1 0 −1 1 5792.4

Ξb −1 −1 0 −1 1 5792.4


