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1 What is Physics

This chapter is sort of an introduction. All the regularly structured chapters will start

in a particular way. I will give you the main topic(s) in the title, and then give what I

think are the four most significant concepts in the chapter. That will give you a warning

about what is important in what you will read. You will read a chapter before each

lecture and the list of important topics will act as a study guide both for the reading and

for the lecture. You should test your reading after you read by reviewing this list of

important topics and making sure you can explain each of them to someone else. Find a

class mate or roommate, or spouse or minister or dog or whatever you have, and explain

these concepts to them. By teaching, you will learn more completely. But for this first

chapter, you will likely not yet have your book nor will you have read in advance. So I

structured this chapter differently. We will talk about this together, then you will have

this printed text to refer to later. Think of this chapter as a set of instructions for the rest

of the course.

Most of you will have taken some science classes in high school. Before we start

learning how to solve detailed problems in physics, we should pause to discuss why

this science called physics is different from what you already know. Let’s start with the

scientific method–something that you do know–and show how it is applied differently

in this new science.

The scientific method

Most of us in this class are not science majors. So we should talk for a moment about

what science is, and in particular, what physics is. Let’s start with, the scientific method.

The scientific method

In your high school Earth science or biology class (or even a high school physics class)

you probably learned the scientific method. It is usually presented as shown in figure



2 Chapter 1 What is Physics

(1.1) on the left hand side (green bubbles).

We remember that first you must have an idea about how some part of the universe

works. After studying the idea, noting what others have said on the subject we form a

mental model that incorporates this new idea. This idea is formally called a hypothesis.

To be science, we will have to test this hypothesis through experiment. That means

you have to think of a consequence of the new idea of how the universe works, and

try it out. You have to see if the universe really works according to your idea. If the

experiment can be interpreted as a positive result, then we declare that we have learned

something through the scientific method. We call our hypothesis that is now tested a

theory. We publish our result so the rest of the scientific world can learn of our results.

Here at BNYU­Idaho the details of doing this are taught in PH150 in the Physics

department (our first lab class) and in other classes in the Geology, Biology, Chemistry,

and Psychology departments. But we won’t do all the steps in this class.

So what will we do?

We will practice just part of the scientific method. The part where we use math

and physics we know to solve physics problems. If you are a physicist that has a

good hypothesis to test, you need to use the physics we know and math to form a

prediction that can be tested in an experiment. The physics majors in our class need this

experience. For example, Einsten’s theory of relativity predicted that light rays would

be bent by the gravity of large objects. Einstein calculated how much light would be

bent by the Sun’s gravity. This took understanding of the physical theory and a bunch

of math. Eddington measured the light deflection, and found it in agreement with

Einstein’s calculations. This is the stuff physicists do.

But it turns out that we can use the same combination of physics and math to predict

how many things will operate if we build them. And this is really useful for engineering!

In this class we will just deal with this little bit of the scientific method because it is so

useful for engineering. If you are an engineer, just realize that there is much more to

science than what we will do.

If you are achemist, your goal is to get ready to understand the electrical and quantum

mecanical processes in chemical bonding, etc. It is even a thinner slice of the scientific

method for you chemical scientists. For physicists, well, this is still a thin slice of the

scientific method, but a really important slice for us!

For both engineers and scientists, you should know that, although this is a good
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statement of the scientific method, it is really not the end of the story in physics (or

other sciences, for that matter). The story continues with the experiment that you did

being repeated by other researchers.

An odd but important belief that rests at the heart of the scientific method is that we

cannot prove something to be true through scientific induction1. We can only prove

things to be false! Thus every time you hear a news reporter say that “scientists have

proven...” you should be sceptical! After you have tested your hypothesis, and declared

it to be a theory, the theory must go through a rigorous set of attempts to prove it false.

We call this process falsification. Many researchers over some time test the predictive

power and consistency of the theory with new results from their experiments and the

results of previous theories.

If these researchers agree with your conclusions, the idea you tested may become

an accepted model. I have used the word “model” to describe a theory of limited

applicability or a step on the way to becoming a general theory. Not all scientists use

this term. Sometimes scientists use “model” to describe their mental image of how

things work. I will use the word “model” as a limited theory, but I may slip occasionally

and call my mental picture a “model.”

If the theory is able to predict correct behavior beyond the experiment you used to test

your hypothesis, and it’s results are all positive, then the theory may become accepted

as a general theory. In earlier times this would have been called a scientific law.

Now the use of the words “scientific law” usually means a well established empirical

relationship. This means a well tested equation which concisely embodies the ideas

contained in our theory. Notice that if there are negative results, it is back to the drawing

board! The whole scientific process must start over.

Also notice that no theory is beyond doubt! New experiments may bring new results

that will cause new hypothesis and new theories to be formed that will take the place of

the old, established theories.

This makes the scientific method look a little complicated, but very ordered. In reality,

the steps are not always done in order. Worse, the different branches of science disagree

on the method of doing science a little. For example, in biology and psychology

predictive experiments are harder to do! There is less emphasis on prediction in these

sciences. But the green bubble steps are usually agreed on in introductory descriptions

of science.

1 The process of inferring a general law or principle from the observation of particular instances (OED)
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There are also differences in what the steps of the scientific process mean in different

branches of science. Most are the same, but in physics the hypothesis is generally

reduced to a mathematical equation that predicts an outcome for the experiment. In

physics concepts are transformed into equations that give predicted results. Even when

the idea becomes accepted theory, with an accepted scientific law like

E = mc2

Einstein’s famous equation, you can see that complex ideas (the ideal that energy and

mass are sort of equivalent) is expressed as an equation that can be used to test the

idea. In physics we talk of Einstein’s theory, but physicists talk more about solutions to

Einstein’s equations–that is the real test of an idea in physics because solutions to the

equations are predictions of what will actually happen. And if the predictions don’t

come true, we have falsified the theory!.

In our class, you won’t be required to invent new ideas about how the universe works.

We will be learning about the collection of ideas that others have already tested for the

motion of single objects. But in our homework and tests, we will use this difference

between physics and other branches of science. We will always try to find an equation

as a solution. This will be our standard way to do physics. This might seem a little

scary at first, but we will get used to it quickly. So in this class we will use two parts

of the scientific method in each problem. We will make a mathematical expression

of our hypothesis. We will call this a symbolic answer. It is the embodiment of our

scientific theories that we will study in each chapter or lecture. The numerical answer

is a numerical prediction from our hypothesis. When the problem is graded, you will

know if your if your prediction is good!

A good theory is able to predict things that will happen. It must not predict anything

that does not happen. When a theory’s predictions are wrong, it must be changed or

even abandoned.

Notice that this expression of the scientific method does give theories that explain many

things. But explaining is not enough to be accepted in physics. A theory must be able

to predict in order to become named a scientific law or a general theory.

Identify several scientific laws, theories
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Scope of Physics

Scope is a word which here means a limitation in topics (not a mouthwash). There

must be some limitation in topics, or physics would be synonymous with biology or

chemistry (or both). In practical usage, physics is not the study of living things and is

generally not the study of how atoms form compounds. So what is physics?

It is the study of how things move. This may seem very restrictive, but it really is not.

Physics incorporates everything from the motion of a ball at a play ground to the mo­

tion of atoms in a star to the motion of ions through a cell lining.

Classical Physics

(PH115)

Modern Physics

(PH116)

Our approach to physics will divide the world of physics into two main parts. The

first part is called “classical” physics. It contains the theories that explain and predict

motion of large objects at fairly slow speeds. It takes us three courses to cover all of

classical physics, PH121, PH123, and PH220.

The second part is called “modern” physics. It contains the theories that explain and

predict motion of small objects or very fast objects. We start studying modern physics

in PH279.

In our PH121 class we will start with the part of classical physics called “mechanics.”

Mechanics deals with the motion of every­day objects like cars, or balls, or people. We

will start with a one to a few objects. We will let those few objects travel in straight

lines at first, but soon we will allow the objects to follow more complex paths or even

to rotate.

But how does physics relate to biology, or chemistry, or any other branch of science?

Purists think that everything is physics. That is, if you knew all the particles that make

up something, and knew how they moved, you could apply the laws of physics, and

predict the behavior of any object. When it comes to chemistry, this is true. We can

explain what we see in chemistry by applying what we know from physics to the atoms

and particles of mater. We can explain much of biology this way as well.

We would like to explain psychology with basic physical laws, but this has yet to be
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done. I believe, in part, this is because there are actions by our spirits that physics does

not yet recognize that affect the science of psychology. Maybe in your life this will

be shown. But for now this is just speculation. What we will say for the purposes of

PH121 is that physics is the basic underlying rules behind the other sciences, but at

some point the mathematical book­keeping to use the basic laws becomes too difficult,

so we tend to study compounds or whole animals rather than keep track of all the

motions of their individual atoms.

Course Structure

This class is designed into several parts:

1. How we describe motion

2. Motion in one dimension

3. Motion in more than one dimension

4. Forces and motion

5. How objects interact

6. Impulse and momentum

7. Energy

8. Rotation

9. Equilibrium

10. Deformation

11. Gravitation

These topics will let you know everything you need to know to understand how things

move and to solve motion problems.

By the time we are done, you can explain how bungee jumping, skydiving, scuba

diving, and other fun things work. Let’s take some examples

Four Ball Toy Experiment

Rotating Wheel Experiment

Just a note on testing: all tests are cumulative, in that the material builds. If you learn
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one chapter, and then figure you can forget all you learned because we are on the next

chapter, you will be less pleased with your performance.

There is less emphasis on memorizing in this class. In Biology, and even in Chemistry

much of what you need to know is memorized. In Physics, there are an infinite number

of physics questions I could ask you. The only hope of getting any one of them right is

to understand the concepts behind how things move (that is what we will learn!) and

to have a systematic approach to solving the problems. So that is just what we will do.

And I hope we will have fun along the way!

Now, on to our study of motion!



2 What is Motion?

We have said that we will study motion in this class. But what is motion?

The answer will take the rest of this class, most of PH 123, PH220, and PH 279. But we

will have to start somewhere. Let’s make a provisional definition of motion, one that

we can refine as we become more knowledgeable.

Definition 2.1 Motion is the change of an object’s position in an amount of time

Fundamental Concepts

• Motion Diagrams

• Particle Model

• Time and duration or “elapsed time”

• Distance and displacement

• Vectors

• Postion vs. Time graphs

How do we depict motion?

An early photographer named Étienne­Jules Marey developed a way of showing how

an object’s position changed in time. He made several photographs of the object on the

same piece of photographic film, each exposure being a set time later than the previous.

Here is his photograph of a pelican.



Photograph of flying pelican taken by Étienne­Jules Marey c. 1992. (Image in the Public

Domain)

In this case, the object is the pelican, and we see that the pelican has changed position

in the time between exposures. But this photograph also shows the problems with our

simple definition. So far, we have considered the pelican as the object. So we could

define a single position as the location of the pelican. In the next figure, a red dot

represents the “location of the pelican” and we see that the position of this dot changes

in time.

But if we had chosen the pelican’s wing tip, the positions might be very different.
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So when we say “an object” is in motion, just what do we mean? In the next figure, a

man is jumping. But once he has left the ground, the middle of the man will follow the

same path a ball would follow if it had the same mass and was launched at the same

speed.

Man in White Jumping, Étienne­Jules Marey. (Image in the Public Domain)

The man could wave his arms or do a summersault in the air. But his middle would

follow the same path. Then, we could start our study of motion by studying how the

middle of things move. This is a good representation of the motion of the object as a

whole. And we only need one dot to represent this middle location.
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Of course this is an approximation. We could think of a case where the man was holding

a ball and threw the ball part way through his jump. Then the “middle” of the man­ball

system might move in a different way than the man. But that is a complication we will

take on later. For now, we will deal with the motion of objects that can be described as

begin one whole object that won’t come apart during the motion we observe.

The photos we have used are tricky to take, so we will switch to diagrams that we can

draw, but that represent the same thing. An object is shown at several positions with

each new drawing representing the position of the object a set time ∆t later. Here is

such a diagram

The object is a ball. The motion starts from the left. Note that the position changes

between the first two drawings of the ball. So the ball is moving. But also notice that

the position change is less between the second and third drawings of the ball. We can

tell from this that the ball is slowing down.

Let’s give some names to what we have learned so far:

Definition 2.2 Particle model: Using a “middle” point on an object to represent the

location of the object

Definition 2.3 Motion diagram: A diagram that shows drawings of an object where

each drawing shows the object a set time later.
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How do we describe when and where something happened?

Motion is the change of an object’s position in an amount of time. Then we are going to

have to have a way to express the time at which something happened and we are going

to have to be able to express the position where it happened. Let’s see how we do this

in physics.

Duration: Experimental time

Let’s consider measuring time in an experiment. Ideally, we would start timing our

experiment right when the experiment begins. So we start with an initial time of ti = 0.

We could, say, start a stop watch right when the experiment starts, and stop the stop

watch when we are done. I have an ap that I can use to do this on my phone. Then the

reading on the watch is the duration of the experiment. But this ideal situation is not

always possible. For one thing, you may be working in a team, and your lab partner

may be slow (or fast) in starting the stop watch. But even more importantly, we may

need to consider parts of an experiment. Think about our motion diagrams. We could

consider the entire motion of an object as our experiment. Then each new position in

our motion diagram represents part of the entire motion. And there is a beginning time

and ending time for each part of the motion. We need a way to express both the starting

and stopping times for parts of experiments and the duration of the part.

We can use a math symbol to represent our set time between two drawings in a motion

diagram. That symbol is ∆t. The first part is the Greek letter ∆ pronounced “delta.” We

will use this symbol to mean a difference between two times.

∆tfi = tf − ti

where tf is the final time we are considering (for either the whole experiment or for the

part of the experiment on which we are concentrating) and ti is the initial time. For

example, we could go back to our jumping man. We could number each of the positions

where the middle of the man shows up in the photo.
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Then the entire duration of the whole experiment would be

∆ttotal = t6 − t1

and the duration of the first part of the experiment, the time between when the man was

at position 1 and when he was at position 2, is given by

∆tpart 1 = t2 − t1

When we were making our motion diagrams we said we would make a series of

pictures with each picture “being a set time later than the previous.” We can use our

new notation to see how to write our “set time.” By “set time” we mean that ∆t is not

changing as we go from one part of the experiment to another. So for the first part of

the diagram we can write the duration as just

∆t = t2 − t1

and since the duration of each part of the experiment is the same we could write

∆t = t3 − t2

∆t = t4 − t3
...

and so forth.

This is not really too strange. If I ask you how long your physics class lasts, you would

tell me “an hour.” This is correct. It really does not matter if class starts at 9:00AM or

3:15PM. The class is still an hour. We could say that the duration of the class is a ∆t so

that

∆tclass = 10:00am− 9:00am

or

∆tclass = 4:15am− 3:15am

The duration is the same. And that hour is only part of your day. Some books call

duration “elapsed time.”
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We will use the symbol ∆ to mean a difference between two quantities, like time, often

in this class.

Note that writing duration this way solves a lot of our experimental problems. If

your lab partner starts the stop watch too late, then you just record the beginning and

ending times and you can still find the duration. Beginning times can even be negative!

Think of a rocket launch. The NASA official always starts the countdown by saying

“t− 10 s.” The time is measured from the launch time. If the launch time is t = 0, then

before the launch time is negative time. But our ∆t notation for duration handles this

just fine. Suppose you try this. Suppose you are going out on a date. You tell yourself

that t = 0 is the start of the date. But you have to get ready for the date and you start

getting ready an hour before the date starts. Then the beginning of the date experience

is at ti = −1h. Further suppose you go for a movie and ice cream and arrive home

three hours after the start of the date. Then you could write

tf = 3h

and the duration of your date experience would be

∆t = tf − ti

= 3h− (−1h)
= 4 h

Position and Displacement

Now that we have a way to write the time involved with an experiment, let’s find a way

to describe how the object’s position changes. Happily, we can use nearly the same no­

tation!
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We can mark the position of the man at each part of his jump. In each segment of the

jump he will arrive at a different position. You can see this as red dots plotted on an

axis under the picture of the man. Each of the positions (red dots) is labeled with a

position label ( x1, x2, x3, etc.). Then we can write how far he traveled in the horizontal

direction as

∆x = xf − xi

We can write a displacement for the entire jump as

∆x = x6 − x1

we are using the ∆ in the same way we did for time to mean a difference between two

quantities, this time two positions.

Our jump picture has images of the man at equal time intervals. But the distance the

man travels in each time interval is not necessarily the same. We could write the

displacements for each part of the jump as

∆x21 = x2 − x1

∆x32 = x3 − x2

∆x43 = x4 − x3
...

In each case, there are two subscripts. For example ∆x21 has the subscripts “2” and

“1.” It may look like a single subscript of “21,” but it’s not usual that we will mark up

positions above 9 and if we do, we use commas. For example

∆x43,42 = x43 − x42
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So we would interpret ∆x21 as the displacement between positions x1 and x2.

Note that displacement is a little different than distance. Displacements can be negative.

If I am going to the right, my displacement is positive, but if I am going to the left my

displacement is negative. For example, suppose we pick an origin for motion to be the

center of Rexburg. And suppose we start our experiment a block north of the center of

town and we walk until we are three blocks north of the center of town.

Then our displacement is

∆x = 3blocks − 1block

= 2blocks

We could also go south. So suppose we start again one block north of the town center,

but we walk until we are four blocks south of center.
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The our displacement is

∆x = −4blocks − 1block

= −5blocks

In effect, displacement gives not just the distance we traveled, but also tells us the

direction we went. In our walking example, negative means “going South” and positive

means “going north.” Directions will be very important in our study of motion, so we

will prefer to use displacement rather than just distance in this course.

In the case of the man jumping the ∆x values do look like they are all equal. But in the

ball diagram we can see that this is not the case.

Note that in this figure we picked an origin as the starting point for measuring position.

We label that x = 0 (in our case x1 = 0, the first position of the ball). And we measure

the other positions from this origin. We could pick the origin any where, but often it is

nice to pick the origin at the starting position of the object in our experiment.
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Two dimensional displacement

So far our displacement is only been in the x­direction, but our man’s jump was not just

horizontal motion, nor was it just vertical motion. It is really both at once. We should

find a way to describe a motion that is part horizontal and part vertical. To do this let’s

step back and look at our jump again.

Notice now we have both x postions and y positions. We could write this with two

quantities, one an x­part and one a y­part. Then the first red dot position could be

written as (x1, y1) and the second as (x2, y2), etc.

Alternately, we could represent each position of our jumping man with new quantity.

This new quantity must somehow have a vertical and a horizontal part to it.

Let’s take the point we labeled r1 in the last figure and look at it carefully. We can see

that r1 must be made from x1 and y1 in some way.
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If we think about it for a moment, this reminds us of polar coordinates. The distance

r1 at the angle θ1 is related to the distances x1 and y1. So it really is quite natural to

describe our position of point 1 by the line from the origin, r1.

Notice in the figure we have drawn this new quantity like an arrow. And notice that this

new quantity has not only a length, r1, but also a direction, θ1. We will call this new

type of quantity a vector.

Specifically, the vector−→r 1 is a position vector. It gives the location of one of our points

(x1, y1). Now let’s consider both −→r 1 and −→r 2.

If these vectors represent our first and second positions, then it should be true that in

some way

∆−→r = −→r 2 −−→r 1
must represent the displacement from point 1 to point 2. But what does it mean to

subtract and add vectors?
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2.1 Vector Addition (and Subtraction)

In our example of the jumping man, the displacement from point 1 to point 2 would be

given by another arrow. After all, a displacement tells us how far we got and in what di­

rection. The man jumping went a distance and in a particular direction. We use arrows

to show how far and in what direction.

So this new arrow is also a vector, it has a length and a direction. it is the displacement

that we need to add to −→r 1 in order to get to −→r 2 or in equation form
−→r 2 = −→r 1 +

−→
∆r21

But what does it mean to add vectors? We thought about this before in one dimension.

In just the x­direction to add displacements we would go the first displacement, then go

the second displacement starting at the end of the first displacement.

This works the same way for a set of displacements in the y­direction. And this was

easy in one dimension, but now we are in two dimensions! But it’s not different. We

start by thinking of r1 as the distance from the origin and imagine going that distance

so we are at the locatoin of r1
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Then from the locatoni of r1 we start going a distance of ∆r in the direction of
−→
∆r21

The sum −→r 1 +
−→
∆r21 is found by drawing a line from the tail of −→r 1 to the tip of

−→
∆r21.

But notice! This dotted line is just −→r 2.

So by adding −→r 1 +
−→
∆r21 we did get −→r 2. This works with any two vectors. For a sum

of any two vectors,
−→
V1+

−→
V2 We
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1. Draw
−→
V1

2. Draw
−→
V2 but start

−→
V2 at the place

−→
V1 stopped. We sometimes call this drawing the

vectors “tip­to­tail.” It’s like two directions in a compass course for those of you
who were Boy Scouts.

3. Finally draw a new vector from the tail of
−→
V1 to the tip of

−→
V2.
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this new vector is
−→
V1+

−→
V2.

Let’s think about if this makes sense. If I tell you to walk in the
−→
V1, a distance V1 and

then to stop and turn into the
−→
V2 direction and walk a distance V2. You would get to

the same place as if you walked in the direction of the red arrow marked
−→
V1+

−→
V2. So

this does seem to be the sum of two vector displacements.

But in the last section we said that

∆−→r = −→r 2 −−→r 1
That make some sense. If we know that

−→r 2 = −→r 1 +
−→
∆r21

then is seems we should be able to solve for
−→
∆r21

−→r 2 −−→r 1 =
−→
∆r21

so then
−→
∆r21 =

−→r 2 −−→r 1

But then somehow we need to take −→r 1 and −→r 2, subtract them, and end up with
−→
∆r21.

How do we subtract vectors?

Let’s make a helpful definition: The negative of a vector is a vector of the same size

going the opposite direction. So if I have a vector,
−→
V , as shown in the next figure

then −−→V will be the vector shown. Think, a negative sign gives us the opposite of a

number (at least additively). The opposite of North is South, so with directions the

negative of a direction should be “the other way.”
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The negative of
−→
V is just as long as

−→
V , and goes the opposite direction. Then in our

jumping man case we can see that

∆−→r = −→r 2 −−→r 1
= −→r 2 +

�
−−→r 1

�

must mean to take −→r 2 and add to it a vector that has the length r1 but goes the opposite

direction of −→r 1. Let’s draw−−→r 1 first

Our displacement is

∆−→r = −→r 2 +
�
−−→r 1

�

We will travel −→r 2 and then travel −−→r 1.

So after going the distance r2 in the direction of r2 we then turn into the direction of

−r1 and travel the distance r1. The result is our red vector shown in the next figure



26 Chapter 2 What is Motion?

Notice that if we compare this to the displacement of our jumping man

that the two red vectors are exactly the same length and that they point at exactly the

same angle! This process seems to have worked!

For subtracting two vectors, we just add one additional step. We have to reverse one of

the vectors because we are adding a negative displacement For a difference of two vec­

tors,
−→
V1−

−→
V2

1. Draw
−→
V1
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2. Draw−−→V2 the inverse of
−→
V2

3. Now move−−→V2 so that it starts at the place
−→
V1 stopped. We are adding−−→V2 to

−→
V1

4. Finally draw a new vector from the tail of
−→
V1 to the tip of −−→V2.

this new vector is
−→
V1−

−→
V2.

We will use vectors for the rest of this class, for much of PH 123 and all of PH220. If

you are a physics major or a mechanical engineering major, you will use vectors for the

rest of your career. So it is worth getting used vectors and how to use them.

Now that we can describe how the time in an experiment changes, and we can describe

how the position in an experiment changes, we can mathematically describe motion. In
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our next lecture, we will find that the velocity of an object is a combination of position

(using displacement) and time
−→v =

∆−→r
∆t

but this is not too much of a surprise. After all displacement is measured in miles

sometimes, and time in hours, and we have been measuring velocities in miles per hour

for years now. So we will be on familiar ground!

Position vs. time graphs

We have already used graphs in this class. But so far our graphs have given the position

of an object, say, our jumping man.

There is another kind of graph that is useful in describing motion. Since motion

requires position and time, a graph of the position and time of the moving object helps

us to know how the object is moving. We choose one of the axis of our graph to be

time, usually the horizontal axis. Then the vertical axis will be position.
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Here is an example for the jumping man.

Let’s take a moment and see how we formed this graph. The horizontal positions are

placed on the vertical axis.
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and we have assumed that the camera took pictures in even time increments. So each

position is plotted a ∆t away from the last along the t­axis. Since cameras usually

operate in even time increments, but it is not required that the time steps be equal. But

it is often convenient to use even time steps because it allows us to easily see changes

in motion by noting the changes in position.

We will often use position vs. time graphs. Note that there are some difficulties with

this type of graph. One is that we only plotted the x­position. But we know that we also

have changes in the y­position for the jumping man. We could make another position

vs. time graph for the jumping man for the horizontal (y) position. Immediately we

realize that this will be more difficult because the y­positions don’t fall in order on the

y­axis. This is because the man goes up, and then comes back down.
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But that is no problem. We can still make the graph, but this time we just have to be

more careful about making the y­position axis.

We are left with a graph that shows the vertical motion of the jumping man.
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It is probably not to difficult that to see that we could combine these two graphs and

plot r vs. time. But we will save that for another lecture.

It should also be clear that we have just plotted part of the jumping man’s motion. We

only have points for the positions where a photo was taken. But the man exists and is

moving between the points. Sometimes we connect the dots with a line to show this

missing motion

but it is important to realize that this is an estimate. We don’t have data (photographs)
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to show us for sure where the man was in between our known points.

Still, a position vs. time graph is a powerful visualization tool that helps us understand

the motion of an object.
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Now that we have a way to describe the time and the displacement of an object, we are

ready to describe how the object moves using mathematics. For example, how fast is

our jumping man going?

If we know how far he has gone

∆xtotal = xf − xi

= x6 − x1

and how long it took for him to travel that displacement,

∆ttotal = tf − ti

= t6 − t1

can we find his speed?

The answer is of course yes! From everyday experience with motion, we know speed

is how far we travel divided by how long it took to travel. So our speed should be

something like

speed =
∆xtotal
∆ttotal

We can see from measuring that the man travels about 1.5m in each part of the jump.

Then the total displacement is

∆xtotal = 5∆x21 = 5× 1.5m = 7. 5m
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and suppose it took 1.07 s for the complete jump

∆ttotal = 1. 07 s

Then the man’s speed would be

v =
∆xtotal
∆ttotal

=
7. 5m

1. 07 s
= 7. 01

m

s

Let’s take another example. Say you go From Rexburg to Idaho Falls (IF). The

displacement would be

∆x = 35.0mi

and let’s say it takes you a half hour to get to IF. Then the time would be

∆t =
1

2
h

The speed we travel to IF is the displacement divided by the duration

v =
∆x

∆t
=

35.0mi
1
2 h

= 70.0
mi

h

This is a general formula. Speed is always how far we go divided by how long it took

to get there.

Of course we don’t want to use English units in this class, so we would say that

∆x = 56. 33 km

and

∆t =
1

2
h = 1800.0 s

so we would usually say

v =
56. 33 km

1800.0 s
= 112. 66

km

h
= 31. 3

m

s

In each example, notice that our equation has a displacement in it. And we found before

that displacement can be negative. That means the speed could end up being negative.

But negative speed does not seem to make much sense. What do we mean when we say

speed is negative?

Average Velocity

Remember our example of walking through town. We found that if we started a block

north of the center of town and we walk until we are three blocks north of the center of

town. Then our displacement was

∆x = 3blocks − 1block

= 2blocks
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If we started again one block north of the town center, but we walk until we are four

blocks south of center. The our displacement would be

∆x = −4blocks − 1block

= −5blocks

One displacement is positive and one is negative. What makes the difference?

Direction! In our example, walking south gave negative displacement and going north

gave positive displacement. So our speed quantity that we got for the jumping man is

really more than speed. Using the displacement to find the speed gives us the speed we

travel and the direction we travel. We need a new name for our speed term so we know

it has both how fast we travel and which direction we travel. We will call this velocity.

Note that in physics speed and velocity are similar, but not the same. We will continue

to call how fast we are going the speed. It won’t be positive or negative. It is just a

value that says how fast we go. But velocity will mean both the speed and the direction.

So properly we should say that

v =
∆x

∆t
is a velocity, not just a speed. But

|v| =
����
∆x

∆t

����
is just a speed.

The absolute value signs are awkward, so lets make a new symbol that tells us we have

not just a value for the speed, but also a direction. Let’s put an arrow over any term that

has direction in it.

−→v =

−→
∆x

∆t
then −→v means velocity.

Without the arrow, v, means just the speed. Note that v won’t ever be negative.

As an example, suppose it takes us 20 minutes to travel our 5 blocks. We say our

walking velocity is

−→v =

−→
∆x

∆t
=

5blocks
20min

= −0.24blocks
min

or about a quarter of a block a minute. Our speed would be

v = 0.24
blocks
min

and our direction is given by the negative sign, where we have collectively agreed that

South is the negative direction for our experiment.
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Of course we know a name for a quantity that has both an amount and a direction. This

is like our position vectors which had a length and a direction. Only now the length

is a speed, and that is kind of strange. That length or speed part is the “amount” part

of our quantity. Let’s call the amount­part of a vector the magnitude of the vector and

the direction part we will just keep calling “direction.” So for a velocity vector the

magnitude of the vector is the speed and the direction of the vector is which way the

object is going. For position the magnitude of the position vector is how far away from

the origin your position is, and the direction is the angle measured from the x­axis.

Both position vectors and velocities are vectors because they have magnitudes and

directions. But you can see that what they represent is quite different!

Before we go on, we should think about speed one more time. We have defined it as a

displacement over a duration. But common use of the word defines speed as distance

over duration.

v =
d

∆t
Are these definitions different? Of course, they could be very different. For example,

we have considered walking from one block north of the town center to four blocks

south of the town center in a straight path. Let’s call this path 1.

But what if we took path 2 as shown in the figure? And suppose we arrived in the same

time for both paths. Clearly in some way we would have to be going faster if we take

path 2 and arrive in the same time as we did in taking path 1. The distance traveled
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in path 2 is much larger. So to go farther in the same time we have to go faster along

path 2. But our physics definition of speed marks our progress, not our total distance.

So it won’t show a difference between the speeds of the two paths. This is because our

definition of speed (so far) gives an average speed. And on average, the speeds are the

same for the two paths. Note that on path 2 sometimes we are going backwards. That

cancels out some of our progress! So on average we are traveling the same speed. We

will have to watch out for these two different definitions of speed as we go. But for now

realize that

v =
d

∆t
gives a speed and

v =
∆x

∆t
gives an average speed.

Vertical motion and equations

You might have objected to our analysis so far. It is true that our man travels

horizontally, but he also travels vertically. How do we express displacement that is

upward?

In the next figure we have marked the first three positions of the jumping man.
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We can’t use the variable x to describe how high up he went, because we have already

used that variable for the horizontal displacement. So we picked another variable, y.

And now we do just the same thing we did with horizontal displacement. We label the

location of the center of the man at the first position as y1 and the position of the center

of the man at the second position as y2 and so on until we have labeled each of the

vertical positions of the center of the man.

Now we can define a vertical displacement

∆y = yf − yi

so that the total vertical displacement would be

∆ytotal = y6 − y1

and we could find the displacement for each part of the man’s jump

∆y21 = y2 − y1

∆y32 = y3 − y2
...

We could even define a vertical velocity

−→v y =
−→
∆y

∆t
that would tell us how fast the man is going vertically and which direction he is going
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(up or down).

Of course, if we now label the vertical motion with the variable we chose for

displacement in the vertical direction, we could also label the horizontal motion with

the variable we chose for horizontal motion

−→v x =
−→
∆x

∆t
and this is just what we normally do.

It is convenient to add velocity vectors to our motion diagrams. Then we can know for

sure which direction our object is going (we can even dispense with the numbers!).

Here we have a ball traveling at a constant velocity (both speed and direction are con­

stant!).

and here we have a ball changing speed so it is changing velocity (even though the di­

rection does not change)

Often you will see motion diagrams where we have represented the object as just a dot

(particle model) with the velocity vector attached to the dot.

It is important to realize that the vector is the average velocity of the object as it goes

from x1 to x2, so it is might not be the velocity right at x1 or at x2. This is like driving

to IF with an average velocity of 31.3 ms . Your speedometer right when you start and

right when you end your trip might not be exactly 31.3 ms . In fact, you will find that

your speed changes a little along the way due to traffic conditions. What we have

calculated is only an average. So it might be better to think of the average velocity

vector as being somewhere in between x1 and x2. Soon we will calculate instantaneous
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velocity vectors, the kind of measurement made by your speedometer (plus a direction).

Then the value for the velocity will be the speed and direction exactly at a point, say,

x1.

It is also good to realize that the artist that drew the last figure was being a little lazy.

Here is a displacement vector ∆x21.

The magnitude of ∆x21 should be exactly the distance from x1 to x2. So the arrow is

drawn correctly. It’s length is just the distance from x2 to x2. But in the previous figure

the artist drew the velocity vector as filling the space between x1 and x2.

Should the velocity vector be the same length as the displacement vector? The answer

is likely “no.” Consider that

v =
∆x

∆t
Unless we are very lucky, ∆t would not likely be exactly 1 s. So the numerical value

for the speed won’t be the same as the numerical value for the displacement. Unless we

know the time, ∆t, we don’t even know how how long to make the vector −→v ! So we

could draw the velocity vector in any of the following ways
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I think it is confusing to make the velocity vector fill the space between x1 and x2, so I

will try to not draw velocity vectors that way. Velocity is a different thing that displace­

ment. So it is hard to compare their “lengths.” So I recommend not trying to do so. If

you don’t know the time, ∆t, but need to draw a velocity vector on your motion dia­

gram (and we often do), just pick a length for −→v . Make any changes to the velocity

proportional to the original length you chose, so you can see how the velocity changes.

For example, once you have picked a length for a velocity, if the velocity is slower by

half later in your diagram, choose a velocity vector for the new point that is half the size

of the original.

Uniform velocity

Uniform motion is a special case of motion that is useful, because we often have uni­

form motion. Think of driving your car. For long periods of time you may travel at

70mi/ h along the freeway. That is uniform motion. Here is a position vs. time dia­

gram for uniform motion and a motion diagram for the same uniform motion.
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Let’s take a specific position vs. time graph for a specific motion as an example. The

following position vs. time graph describes a constant motion. What is the speed of the

object?

The speed would be

v =
∆x

∆t
=

xf − xi
tf − ti

where, because the motion is uniform, we can choose any two points for the final and

initial points. Let’s try x0 and x5 as our two points. Then we can see that
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v =
x5 − x0
t5 − t0

=
0.8m

0.4 s

= 2
m

s
Notice that this is just the “rise” over the “run” or the speed is just the slope of the line

of a position vs. time graph!

Suppose that you know your speed, v, and your starting location, x0 and you know how

long you want to drive, could you find how far you will go? Of course! this just takes a

little math. We just rearrange our equation to solve for xf .

v =
xf − xi
tf − ti

v (tf − ti) = xf − xi

xi + v (tf − ti) = xf

so

xf = xi + v∆t

Let’s try such a problem. You wish to drive for half an hour, that is

∆t =
1

2
h = 1800.0 s

and you wish to drive at

v = 70mi/h = 31. 293
m

s
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and let’s define our starting location as

x0 = 0

how far will we go?

We should draw a diagram for this motion

and realize that it is uniform motion, then we can use the equation for xf that we just

found

xf = xi + v∆t

and fill in the pieces

xf = 0 +
�
31. 293

m

s

�
(1800.0 s)

= 56327.m

= 56.327 km

= 35. 00mi

If you are taking this class in Rexburg, you might recognize this as a trip to Idaho Falls.

Let’s look at two position vs. time graphs for uniform motion.

We know that the slope of the line in a position vs. time graph tells us the speed, but

look at these two graphs carefully! Notice that they graph the same motion. One

graph just has it’s time graph compressed (kind of squished smaller) than the other. So

although the second graph’s slope looks steeper, this is only because of how we graphed

the motion. If we had the same axes on both graphs, then they would look exactly the

same. This means that we will have to be careful in how we interpret graphs of motion.

We need to actually calculate the rise over the run or the numeric slope instead of just

looking at the picture.



Instantaneous Velocity 47

Armed with understanding how to interpret graphs for uniform motion, we can take on

a new quantity.

New Math

Likely your FDMAT 112 class is still teaching you how to take limits. And that is

fine because we are going to use one today. Within the next three weeks, however,

your calculus class will teach you... calculus! and calculus was invented by Newton to

describe motion. So calculus is the mathematics of motion. We need to know how to do

a little calculus today. I am going to let your math professor teach you the “why” of this

new math. I am only going to teach you a little bit of “how” to do the new math.

Our new math is called a derivative. And for polynomial terms there is a procedure for

taking a derivative.

If we have a function like

u = atn

where a is a constant, then the derivative of this function is written as
du

dt
= antn−1

where du/dy is the complicated symbol for the derivative of the function u, and the

new function that results from taking the derivative of the function, u is the constant a,

times n, times t to the n− 1 power.

Suppose we have a polynomial with two terms so a function w is given by

w = atn + btm

the derivative of the sum of two functions is just the sum of the derivative of the two

functions. We can treat atn as a function (it’s just our old function u) and we can treat

btm as another function. Then we use our derivative rule twice and add the results
dw

dt
= antn−1 + bmtm−1

Notice that to use a derivative, we need a function. We will use this new math shortly.

Instantaneous Velocity

You may have thought as we have been talking that average velocity and average speed

are nice, but generally when you think of speed, you are looking at a speedometer. The

speedometer does not seem to be measuring average speed. It gives the speed you are
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traveling right now, an instantaneous speed. If we add in the direction we are going, we

may also talk about an instantaneous velocity

For a constant velocity, the instantaneous velocity and the average velocity must be the

same (no mater how small ∆t, if v is constant, then it is constant). But what happens if

we have a changing velocity so the velocity is a function of t?

One such function is drawn in the next figure.

­20 ­10 10 20 30 40 50 60

­20

20

40

60

time (s)

Position (m)

Let’s start our experiment when the object is at position A as shown in the next figure.

The position A we will call our initial position at our initial time, and position E as our

final position and time, we have the average velocity given by the slope of the dashed
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line in the next figure that makes a chord­like cut across the function in the top part of

the graph.

For this case the average speed vEA measured over the time ∆tEA is really different

that the instantaneous speed. In fact, between C and D the slope of our actual curve

is zero. And the slope of the line through points A and E is really not zero. We can

interpret that as meaning that the object stopped with zero speed between C and D!

The time that the object stopped will affect the average speed. Think of going to Idaho

Falls. You may travel at 70mi/h on the freeway, but your average speed would be less

if you stopped for lunch in Rigby.

But suppose we changed our interval from ∆tEA to ∆tDA.

Notice that the slope of the dashed line is closer to the slope of the actual curve near

point A. And we believe from our uniform motion analysis that the slope of a curve in
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a position vs. time graph is the speed!

So by making ∆t smaller, we got closer to what we have reason to believe is the

instantaneous speed.

We can keep getting closer to A, The results of trying this are in the bottom two parts

of the next figure. We see that if we take smaller and smaller time intervals (∆t → 0),

we see the dashed line becomes a tangent!

R. Todd Lines 23
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And now you will recognize what you have been studying in FDMAT 112! We are

really taking a limit. We are taking the limit of the average velocity as ∆t → 0.

Definition 3.1 Instantaneous velocity v is the limit of the average velocity as the time

interval∆t becomes very small.

Algebraically we can write this as

v (t) = lim
∆t→0

∆x

∆t
(3.1)
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where the symbol

lim
∆t→0

simply means that we let ∆t become infinitesimally small. When

vave =
∆x

∆t
has a ∆t that is infinitesimally small we write it as

v (t) =
dx

dt
to show that ∆t is really small. The “d” tells us this delta is really really small. But

notice that this is just the notation of our new derivative math! And this similarity in the

notation is on purpose. This is great! The instantaneous velocity can be found using our

new derivative math.

We can plot all these lines on one figure (just because it was fun!)
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and even zoom in on the part right around our starting point. We see that the dashed

lines do become more and more tangent.
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This situation is general for any function (well, any function for which we can find the
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derivative). We can state that

The instantaneous velocity is defined as the slope of the line tangent to the
position vs. time curve at a given time.

Definition 3.2 The instantaneous speed is the magnitude of the instantaneous velocity.

Remember that speed has no direction. This instantaneous speed is usually what we

just call “speed.”

Let’s try an example:

Suppose the position vs. time has a functional form like

x (t) = −
�
2
m

s5

�
t5 +

�
3
m

s3

�
t3

Recall that x (t) means that x is a function of t, that is, x depends on t. It is not

multiplication.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t(s)

x(m)

What would the velocity as a function of time be?

We can use our new math! the speed will be

v =
dx

dt
=

d

dt

�
−
�
2
m

s5

�
t5 +

�
3
m

s3

�
t3
�

= −
�
10

m

s5

�
t4 +

�
9
m

s3

�
t2

The graph of the speed as a function of time looks like this.
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Let’s look at these two graphs. The v (t) graph should be the derivative, that is the

slope, graph of x (t). So if we find the slope at several places along the x (t) graph, the

value of that slope should correspond to the velocity on the v (t) graph below.
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So at about 0.1 s we see we have a small, nearly zero positive slope on the x (t) graph.

And in the v (t) graph at t = 0.1 s we have a small positive value for v. At about 0.65 s

we have a large positive slope on the x (t) graph, and at 0.65 s on the velocity vs. time

graph we see a large positive value. At 0.95 s, we have zero slope, and in the v (t) graph

we have a speed of zero at 0.95 s. At 1 s we have a negative slope on the x (t) graph,

and at 1 s we have a negative value on the v (t) graph. Since our one­dimensional graph

of speed can have positive or negative values, we realize that this is really a velocity

graph! So we are justified in writing our derivative equation as

−→v =
d−→x
dt

including direction.

Note that this new math is a powerful new tool to describe motion of a moving object.

We will use the idea of a derivative of position as our velocity for the rest of this course,

and if you are lucky and are majoring in physics, for many courses to come!

Speed, Average Speed, Instantaneous Speed

It’s probably time to clarify our physics language a bit. Speed is how fast we are going.

But we could define speed as how far we have gone (a distance) divided by how long it

took (a duration).

speed =
distance
∆t

We could also define average speed and average velocity as

v =
∆x

∆t

−→v =

−→
∆x
−→
∆t

which tells us how far we have gotten toward some goal. Consider the car race shown

below in a top­down view.

One car (the green one if you are seeing this in color) has clearly gone farther. Since the

two cars are arriving at the finish at the same time, the green car must have gone faster

since it traveled farther on it’s zigzag path. To find out how fast the green car went we
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would indeed take

speed =
distance
∆t

But in some since, the two cars started at the same place and ended at the same place,

and they did this in the same time. Their average speeds must be the same!

vave =
∆x

∆t
=

xf − xi
tf − ti

We can see that both ideas, speed and average speed, are valuable. For this class, if a

problem just asks for speed, we usually want distance traveled over time (duration). If

the problem asks for average speed, we will report the magnitude of the displacement

over duration.

Of course each of our cars has a speedometer reading the instantaneous speed of the

cars. This instantaneous speed might be very different than the average speed or the

speed of the car for the entire trip. For example, the blue car might have slowed down

to avoid hitting a deer (that happens in Idaho!). Then he would have speed up again.

During some part of the blue car’s path, the blue car instantaneous speed would have

been zero! But just for the time the car was stopped for the deer.

We will have to keep these three ideas in our mind. Speed, average speed, and

instantaneous speed (and of course, average velocity and instantaneous velocity as

well).





4 Acceleration

In today’s lecture we are going allow our velocity to change. We have a name for

changing velocity. That name is acceleration. From what we have done so far you

might expect us to define an average acceleration and an instantaneous acceleration.

And you would be right. Let’s start with average acceleration.

Average Acceleration

Let’s look again at our moving ball case. Notice that at the first part of the motion the

ball moves farther in ∆t21 than it does in ∆t65. Since we draw motion diagrams with

equal time increments, and the displacements are different, the ball’s velocity must be

changing. We need a way to express the change in velocity mathematically if we are

going to be able to understand this motion. And our example of velocity can show us

a way to express this. In finding velocity we found a change in displacement in an

amount of time

−→v =

−→
∆x

∆t
=

xf − xi
∆t

Now we want a change in velocity in an amount of time

−→a =

−→
∆v

∆t
=

vf − vi
∆t

To show the change in the velocity we compare the velocity two points vf − vi and
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divide by the time it took to make the change. Let’s draw our balls with particle model.

and pick just the end points.

Our process will be to find an average velocity v21 and average velocity v65, and then

use these to calculate the change in velocity

∆v = v65 − v21

and then we divide by the amount of time that it took for the ball to go from about

position x1 to about position x6. Here is a drawing of what we will do.

Suppose our ball may have moved 3m between points x1 and x2. Suppose ∆t1 = 1 s.

Then between points x1 and x2 the average velocity would be

−→v 12 =
3m− 0m

1 s
= 3

m

s
but suppose by the time we get to points x5 and x6 the ball has moved from x5 = 9.75m



Average Acceleration 59

to x6 = 11m so
−→v 56 =

11m− 9.75m

1 s
= 1. 25

m

s
Note that the velocity −→v 12 happens at some time in between t2 and t1. We are not

exactly sure when. Let’s say it is close to half way in between the two times, so

t12 ≈ 1.5 s. Likewise t56 ≈ 5.5 s

Then the change in the velocity is

−→a =

−→
∆v

∆t
=

1. 25 ms − 3 ms
5.5 s− 1.5 s

= −0.437 5 m
s2

Notice that the units of our answer are m/ s2 or (m/ s) / s. This is vaguely familiar.

Think of how your car accelerates. We could go from 0 to 100 km/ h in 3.6 s. It is a

change in our velocity in a given amount of time.

Also notice that the answer is negative! But what does this mean?

Like everything else that has a direction, if the acceleration points to the left we call

it negative and if it points to the right we call it positive. But really what is more im­

portant is that if the velocity and acceleration are in the same direction the mover is

speeding up. likewise if the velocity and acceleration are in opposite directions the

mover is slowing down. It matters whether the acceleration is in the same direction as

the velocity or not.

We can represent all this graphically by drawing the arrows. In the figure, we see a

green arrow representing velocity and a yellow arrow representing acceleration. If they

point the same way, the object is speeding up. If they point different directions, the

object is slowing down.

There is a curious thing about acceleration in physics. We don’t use the word
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“decelerate.” We only use the word “accelerate.” If we are slowing down, we are

accelerating in the opposite direction we are going. It is important to notice that a

negative acceleration is not necessarily slowing down. To see this, think about the

following situation.

We have a velocity vector and an acceleration vector. We also have a coordinate

system. The velocity would be negative simply because points in the negative direction

(toward more negative numbers on the x­axis). The acceleration is also negative

because it points in the negative direction. But if we had an object going in the

negative x­direction an the acceleration was negative, the object would speed up. The

acceleration and velocity are pointing the same way, so this is speeding up.

The coordinate system makes our velocity or acceleration negative or positive. We

could define our coordinate system backwards so positive values were toward the left.

Then both velocity and acceleration would be positive, but still the object would be

speeding up.

Since we are talking about coordinate systems, let’s set up some standards for thinking

about motion. We could define a coordinate system so that positive values are to the

left, but usually we won’t do that. Usually we will say that to the left in our coordinate

system is negative and to the right is positive.
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For the y­direction, we choose the upward direction to be positive and the downward

direction to be negative.

Sometimes we will choose to break these standards, but for the most part these choices

represent how we will define positive and negative directions in our study of motion.

Instantaneous Acceleration

We started with displacement and duration and defined average velocity

−→v =

−→
∆x

∆t
and then we use the idea of a limit to find the instantaneous velocity

lim
∆t→0

−→
∆x

∆t
=

−→
dx

dt
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and we defined

−→v instantaneous =

−→
dx

dt

−→v (t) =

−→
dx

dt
and identified it as the velocity our object has at just one instant of time. Could we do

the same for acceleration?

We defined average acceleration as

−→a =

−→
∆v

∆t
could we take

lim
∆t→0

−→
∆v

∆t
=

−→
dv

dt
= ainstantaneous

so that

−→a (t) =

−→
dv

dt
What would this mean? If acceleration changes, then we must have a different

acceleration at different points in time. The instantaneous acceleration would be the

acceleration of our object at just one point in time.

We should pause to notice something cool. The velocity is the derivative of the position,

and the acceleration is the derivative of the velocity. Our new math relates position,

velocity, and acceleration in a cool easy way!

−→v (t) =

−→
dx

dt

−→a (t) =

−→
dv

dt
we can use our new math to relate x (t) , v (t) , and a (t) .

Constant Acceleration

Physicists seem to like old words. The Greek work κινεω (kineo) means to move. And

the ancient Greeks though a lot about the motion of things like rocks and arrows and

spears. These things were all thrown at their enemies near the Earth’s surface. And

it turns out that near the Earth’s surface we experience a nearly constant acceleration

because of the Earth’s gravity. So the study of motion with constant acceleration

is often called kinematics. Since we live near the Earth’s surface, we will start our

mathematical study of motion with kinematics.

Let’s think about driving a car. Hopefully the car is stopped when you first get in. We
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must get the car going. When we come to our destination, we must slow down. We

need to change our velocity. We called a change in velocity acceleration. Recall that the

average acceleration ā during time interval ∆t is the change in velocity ∆v divided by

∆t

Algebraically we may write

−→a ave =
∆−→v
∆t

=
−→v f −−→v i

tf − ti
Since we are dealing with velocity, we would expect acceleration to be a vector quantity

and we know that is true. In one dimension, we can indicate direction with a plus or

minus sign. So we could write the equation above without the vector signs for one

dimensional motion,

aave =
∆v

∆t
=
vf − vi
tf − ti

but we should remember that acceleration is a vector. Just for review, we should recall

what the direction of acceleration means.

We have to consider the direction of both the acceleration and the velocity before we

can determine the effect of acceleration on the motion of the object.

Let’s start with a positive velocity and a positive acceleration.

In this case, we have a positive initial velocity, and we would expect the velocity to get
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larger, so vf − vi is positive. Then

a =
vf − vi
tf − ti

is also positive. This is just what we expect. Having both a and v positive is consistent

mathematically with speeding up.

Suppose we have a positive velocity and a negative acceleration.

This means that vf − vi is negative (tf − ti is never negative). For this to be true vf

must be smaller than vi. Then

a =
vf − vi
tf − ti

will me negative. So having a negative and v positive is mathematically consistent with

slowing down. Our equations work.

If we use average velocity as an example, we can guess that if the acceleration is

constant, then the acceleration is the slope of the line in a velocity vs. time graph.
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There are many physical phenomena that can be represented as a system with constant

acceleration. Neglecting air resistance, all bodies attracted by gravitation near Earth’s

surface act under uniform acceleration (we will find out why later!).

We can build our list of basic problem types by adding the special case of constant
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acceleration. Let’s do that now.

What we will do is to do four problems, then we will save the results at the end and

use these results over and over again when we have a problem to solve that involves

constant acceleration. We will add four new equations to our list of basic equations! I

suggest you label these equations “constant acceleration” or something like that, since

we are going to assume constant acceleration when we form the equations, they will

only work for constant acceleration cases. We are also adding a new problem type:

constant acceleration or kinematics.

Lets start with our definition of average acceleration

aave =
∆v

∆t
=

vf − vi
tf − ti

(4.1)

since we are limiting ourselves to one dimension at first, we will use a + or a − sign to

indicate direction. Also, since acceleration is constant for this problem type, we have

aave = a

so

a =
vf − vi
tf − ti

Remember, this is for our special case! What follows is not true in general! The

equations we get only work if the acceleration does not change. We defined before

∆t = tf − ti so let’s use it here

a =
vf − vi
∆t

Rearranging gives

vf = vi + a∆t (4.2)

This is the first of our new set of basic equations. And notice that is is the equation

in the form of a straight line just like we expect from our velocity vs. time graph for

constant acceleration.

vf = a∆t+ vi

y = mx + b

For constant velocity problems, the velocity is a straight line with the acceleration as

the slope on a velocity vs. time graph.
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We have come up with the first in our new set of equation tools for our new constant

acceleration problem type.

vf = vi + a∆t Constant a (4.3)

If we have constant acceleration we can write the average velocity vf and vi (normal

definition of average, not our new definition of average velocity!!!!). Let’s see that this

is true. In the next graph the acceleration is constant (we have a straight line in a v vs. t

graph).

In this case the average velocity as we have
vf − vi
tf − ti

=
40 ms − 20 ms
2 s− 1 s

= 20
m

s2

But now look what would happen if the acceleration wasn’t constant.
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We can see if the acceleration changes as the last figure the velocity is always higher

than it was in the constant acceleration case. In this case the average speed won’t

be just 12 (vf + vi). So this won’t always work. But for the special case of constant

acceleration it does work. So

vave =
vf + vi

2
Constant a (4.4)

If acceleration is constant, this vave will also be equal to our new v definition so

vave =
vf + vi

2
=

∆x

∆t
for this specific case. Then we can write out

vf + vi
2

=
∆x

∆t
as

∆t

2
(vf + vi) = xf − xi

or even as

xf = xi +
∆t

2
(vf + vi)

I like this final form. We can interpret this as xf consisting of the initial position plus

how far our motion took us from xi. This is the second of our new set of equations.

We can find another expression for how far will an object go that is experiencing

constant acceleration in time ∆t. This one is harder to find, but could be useful (think if

you are an ancient Greek trying to get your rock to land on your enemies; it might be

worth some extra work to get a good equation!). Let’s start by using our last equation

for xf under constant a,

xf = xi +
∆t

2
(vf + vi) (4.5)

or, by rearranging,

x = xi +
1

2
vi∆t+

1

2
vf∆t Constant a (4.6)

We can add this equation to our list of basic equations for constant acceleration

problems. But let’s take equation ??
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vf = vi + a∆t

and substitute it into equation 4.6.

x = xi +
1

2
vi∆t+

1

2
(vi + a∆t)∆t (4.7)

= xi +
1

2
vi∆t+

1

2
vi∆t+

1

2
a∆t2 (4.8)

xf = xi + vi∆t+
1

2
at2 Constant a (4.9)

This one we definitely want in our new list of basic equations for constant acceleration

problems. It tells us how far we get from our starting point as we move with constant

acceleration. We should interpret this equation as well. Think, the first term on the

right is where the object started. The second term is how far it would have gotten if the

motion was constant, and the third term is how much farther the object got because it is

accelerating.

There is one more, let’s go back to equation ??

vf = vi + a∆t (4.10)

and solve for ∆t

vf − vi = a∆t (4.11)
vf − vi

a
= ∆t (4.12)

now let’s use this equation for ∆t in equation 4.5

xf − xi =

�
vi + vf

2

�
∆t (4.13)

=

�
vi + vf

2

��
vf − vi

a

�
(4.14)

=
1

2
(vf + vi)

1

a
(vf − vi) (4.15)

=
1

2a

�
v2f − v2i

�
(4.16)

so

∆x =
1

2a

�
v2f − v2i

�
(4.17)

or

2a∆x = −
�
v2f − v2i

�
(4.18)

Finally we can write this as

v2f = v2i + 2a (xf − xi) Constant a (4.19)

This is the final equation of our new set. It is a good equation for problems where you

are not given the time.
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The Kinematic equations for constant acceleration

We have derived four main equations

vf = vi + a∆t Constant a (4.20)

xf = xi + vi + φ1∆t+
1

2
a∆t2 Constant a (4.21)

v2f = v2i + 2a(xf − xi) Constant a (4.22)

xf = xi +
1

2
(vf + vi)∆t Constant a (4.23)

The last one was used in deriving the second and third equation, so the four equations

are not independent. The first three are the most useful. The first two are the most

important for this chapter. The third is often convenient. The strategy for solving

kinematic problems in this chapter should include (after restating the problem, drawing

a diagram, and stating variables) selecting an equation from these three or four

equations. This set of equations is so useful that it has a name. They are called the

kinematic equations.

Graphs of kinematic equations

The graph of constant acceleration on an acceleration vs. time graph is not very

exciting.
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and knowing that

a =
∆v

∆t
we can see that the acceleration will be the slope of the velocity vs. time graph. We can
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also see this from equation (4.20)

vf = vi + a∆t

which is linear in t. The slope of a v (t) vs. time graph will be the value from our a vs.

time graph.
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We know that the velocity is the slope of a position vs. time graph, and now our velocity

is changing. But we can use one of our kinematic equations (4.21)

xf = xi + vit +
1

2
a∆t2

to realize that the position vs. time curve must be quadratic. It is a parabola!
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Now we know how to draw figures for constant acceleration problems, and we have

constant acceleration equations. Let’s try an example problem.

You build a new electric car. It has an acceleration of 0.5m/ s2. You start on your way

to class with an initial velocity of vi = 0m/ s. After ∆t = 3 s, how fast are you going?

Lets list what we know:
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a = 0.5m/ s2

vi = 0m/ s
∆t = 3 s

The acceleration is constant, so this is a kinematic type problem, and we know the

kinematic equations!

vf = vi + a∆t Constant a

xf = xi + vi∆t+
1

2
a∆t2 Constant a

v2f = v2i + 2a(xf − xi) Constant a

xf = xi +
1

2
(vf + vi)∆t Constant a

But what equation do we use? We can mark the parts we know in each of the equations,

say, by underlining them

vf = vi + a∆t

xf = xi + vi∆t+
1

2
a∆t2

v2f = v2i + 2a(xf − xi)

xf = xi +
1

2

�
vf + vi

�
∆t

And remember we want vf . At this point is is clear that we can use equation (4.20)

vf = vi + a∆t

Putting in numbers gives

vf = 0 +
�
0.5m/ s2

�
(3 s)

= 1. 5
m

s

If we define your house to be the xi = 0 position, how far from home are you after

∆t = 3 s? Now that we know xi we can add it to our list
a = 0.5m/ s2

vi = 0m/ s
∆t = 3 s
xi = 0

and mark it in our equations

vf = vi + a∆t

xf = xi + vi∆t+
1

2
a∆t2

v2f = v2i + 2a(xf − xi)

xf = xi +
1

2

�
vf + vi

�
∆t

Again we can see that in the second equation we know all by xf , so we use equation
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(4.21)

xf = xi + vi∆t+
1

2
a∆t2

Putting in numbers gives

xf = 0 + 0 +
1

2

�
0.5m/ s2

�
(3 s)2

= 2. 25m

You might need to put a bigger motor on your electric car.

You probably know that the Earth pulls on us to keep us from flying away as it turns

through the Solar system. This pull is called gravity. The pull causes a constant

acceleration for things falling near the Earth’s surface. And that is just the sort of

situation our new equations can handle. We will take up this case in the next lecture.
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You may have taken some physics in high school. Or you may have watched cool

physics videos on YouTube. Just watching physics happen is like a real­world magic

show! But our study of physics will be for more than entertainment and will be more

than an introduction. Engineers use physics to build real world things. Chemists and

biologists use physics to understand how chemical and biological systems will operate.

So our study of physis will emphasis preicting the behavior of objects (how they will

move). To do this we will use a lot of math. Math is very powerful. It allows us to

predict the future in a way! We want to apply the power of mathematics to finding the

future motion of an object. It is time to get ready to do that.

Parts of a problem:

Here are the steps of our problem solving process. You received a copy of this process

as part of the Syllabus package on the first day and it is posted on I­Learn under Course

Description.

Restate the Problem

The first thing to do when working a homework problem (or a problem given to you in

your job, or a problem to test with an experiment, or whatever problem you are assigned

to solve), is to restate the problem. You don’t get as many points if you solve a different

problem than was asked! It is common, especially on tests, to misread the problem. So

take some time and make sure you are answering what was asked. In industry, I used to

email my boss a restatement of each assignment to make sure I understood what I had

been assigned!

Identify the type of Problem

If you can look at the problem and see it as part of a class of problems, then you know
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 Problem Solving Process 
 

Process Step Purpose 

V
a

lu
e

 i
f 

P
re

s
e
n

t 

V
a

lu
e
 i

f 
A

b
s

e
n

t 

1. Label the problem with 

c hapter and problem number   

Thi s is essential  i f I am  to figure out what 

problem to grade 
0 0  to -20 

2. R estate the problem in 

your own words. One line 

m ay do! List any 
assumptions you are 

m ak ing . 

Most ma jor mistakes com e from 
misinterpre ting the problem. This step asks you 

to slow down and determ ine what the problem 
really is asking 

1 -1 

3. D raw a picture, labe l item s, 

define coordina te systems, 

e tc. 

Many mistakes happen because we do no t 
have a clear picture of the problem. This s tep 

may save hours of grief.  Also, many physics 
problems will have different symbolic answers 

because of the freedom to choose coordinate 
systems, etc. Drawing a diagram gives the 

reader the ability to understand your vision of 
the problem. 

2 -2 

4. D ef ine variables used, 

Identify known and unk nown 
quanti ties 

Choose reasonable names for physica l 

quantities, and let m e know what they are. 
Don’t forget to include units . 

2 -2 

5. L ist basic equat ions that 

app ly to the problem 

This step gives you a firm  starting p lace. 
2 -2 

6. Solve the  problem 

a lgebraically starting from 

the basic equations,  

This is the heart of the solution. The symbol ic 

answer tells you the relationsh ips between 

physical  quantities.  

10 -10 

7. D etermin e numerical 
answer  

The specific numerical answer is no t the point 
of doing the problem in this  class, but is a great 

ind ica tor that you have succeeded in 
understand ing the physics.   

1 -1 

8. C heck units .  If you  have 

not done the algebra on the 
uni ts ear lier, do  it here. 

Many mistakes are evident in a units analysis.  

It is a good habit to  always check units. 1 -1 

9. D etermin e if the numerical 

answer is reasonable.  
Indicate if you are 

c omfortab le  with the  result, if 
you  have  litt le experience 

w ith the resu lt and can’ t tel l if 

i t is reasonable, or if it is not 

reasonable, but you don’t 
k now why (or e lse you would 

fi x it) . 

From your understand ing of the physics, s ta te 

whether the answer  is reasonable.  For 
example, if you are calcu lating  the mass o f a 

ping pong bal l, and ge t an answer that is many 
times the mass of the ear th, you should  note 

that there may be a  problem  even if you do not 

know where you went wrong.   

1 -1 to -25  

T otal Possible   20 ­25 

 

Figure 5.2.

which equations to try, and what techniques to attempt. So far all we have are speed.

But soon we will have many other types.

Suppose you are asked to find the displacement of an object that starts at position

xi = 5m and ends at position xf = 12m. The equation

−→v =

−→
∆x

∆t
is a great resource if you are looking for velocity, but not so great if you trying to find

the displacement. Identifying that the problem asks for displacement helps you realize

that the equation

∆x = xf − xi

might help. Some problems might be a combination of more than one problem type. It
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is easier to solve problems if we view them as combinations of simple problems that we

know how to solve. Identifying the problem type(s) for a homework or exam problem

(or industry task) can save you hours of wondering.

Drawing the question

We have spent several lectures learning how to draw diagrams describing motion.

We will spend more lectures learning how to draw diagrams for force problems, and

equilibrium problems, and rotational problems. You would think it was an art class!

But seriously, learning to express the problem as a visualization is a large part of “doing

physics,” and the diagram is often the key to seeing how to solve the problem. It is

tempting to skip this step. But you must convince yourself to learn how to make the

diagrams and to use the diagrams in solving problems.

Defining Variables

Let’s look at our jumping man again. It is a great help to realize what you know.

Suppose that we know xi = 5m and xf = 12m for our man. And suppose we want to

find the man’s total displacement. It is much easier to see the known values if we call
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them out

xi = 5m

xf = 12m

By placing these on your paper so you can see them, it is easier to find an answer.

Seeing the positions like this it is obvious that all you need to do is subtract to get

the answer. As the problems become more complicated, this will be an even more

important step. It also lets the grader (or in your job, the reader of your report) know

what the variable symbols mean. Not every field uses the same letters for the same

quantities. And we reuse some letters! The letter T could be “tension” or “period of

oscillation.” By writing down what the letters mean, you avoid confusing yourself and

others.

But what kinds of things are variables? Let’s take some time to see what quantities we

might define.

Objects

We have been talking about objects, like a person, a bird, or a ball. But what is an

object? What is the universe made of?

The startling answer is, we’re not entirely sure! Oh, we know that the universe is made

of stars and planets and galaxies and dust and many other things, but what are the things

made of?

Answering that question is the job of particle physics, and the answer is still in the

making. For our study of motion, we will assume there are fundamental things in the

universe, and more complicated things are made of these fundamental things. Lets look

at three quantities as our initial building blocks. Mass, Length, and Time.

Mass

When we think of an object, we usually think of something that has mass. Mass is an

amount of matter. Exactly what matter is, still somewhat of a question (Job security for

Physicists). Einstein equated mass and energy. The great experiments at the Conseil

Européen pour la Recherche Nucléaire (CERN) are trying to understand exactly what

mass is. You may have heard of the Higgs boson, a particle discovered at CERN that

gives us a hint that our theory of what mass is might be right. But that is current

on­going research. So for this class we shall take mass as just the amount of matter
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and trust our intuition on what that means. The standard unit of mass is the kilogram,

abbreviated “ kg.” It is the mass of a standard piece of platinum alloy, again kept in

France.
Question 1.1.3

US National Institute of Standards standard kilogram.

Note that mass and weight are very different quantities. you can see this if we use a

bathroom scale. On earth the scale gives a reading that is proportional to the amount of

matter in our bodies, but if we took it on a space craft in orbit, it would not measure any

weight at all. Yet the amount of matter in our bodies has not changed!
Question 1.1.4

Length

Perhaps we should really say “space” here. We need to have some idea of how far away

things are or how long or tall things are. In this class our view of space will be that it

is a container in which things happen. When you study Einstein’s Relativity we will

change that a little, but for now space is a container, and length is a measure of how far

away in this container something is.

In ancient Egypt, the standard of measuring length was when Pharaoh took his

ceremonial reed and measured the length of the foundation for the temple (a little like

our standard kilogram for mass). This might sound strange, but in essence this is what

we all did until 1960. Prior to this, a meter, our unit of length, was defined as one ten

millionth of the distance from the North Pole to the equator. Since this was not a very

practical day­to­day measuring device, a standard “reed” (this time made of platinum)

was kept in France, and meter sticks were made to match this standard. There are

terrible problems with this! Each stick of a different materials changes length with

temperature! So in 1983 the meter was defined as the distance light traves in vacuum

during a time interval of
1

299792458
s

The abbreviation for meter is “m.”
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Time

You might object that time is not a thing. But we have already used time in our study

of motion. It must be something! We should define it before we get to familiar with

using time. But what is time? It turns out that time is hard to define. We usually use the

idea that time is how long we wait.2 That can be tricky to measure. Let’s start with

something simple. How much time will you spend in this class today? That is a time

we can wait, about an hour. But it is harder to answer questions like “how long does it

take for light to travel a foot.” The answer is about a nanosecond. We cannot perceive

of times this small. Likewise, we cannot wait for a million years (well, we could, but

our vantage point might change after the first 70 years or so).

To measure time we use events that are periodic, that is, they occur at regular intervals.

An early example is the pendulum of a clock. From a fundamental periodic phenomena,

we can build up larger or smaller units of time.

The current unit is the second, abbreviated “ s,” which is given as 91926317000 times

the period of oscillation of radiation from the cesium atom. But if you are lucky enough

to go on in physics, you will find that this definition of time (like our simple definition

of space) is not enough. But we can save that for a future class. For what we will study,

the periodic motions in simple clocks or watchs are accurate enough to measure time in

this class.

The standard for time is the atomic clock.

Atomic Clock

2 Feynman, Richard, Robert Leighton, Matthew Sands, The Feynman Lectures on Physics, Vol. I,
Addison­Sesley, Reading Massachusetts, 1963
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Other fundamental quantities

There are other fundamental quanties. The amount of electric charge, for example

(sometimes expressed as part of electric current). And Temperature is another example.

We will deal with electric charge and temperture and other fundamentals in the next

few physics classes. For this class, time, space (distance), and mass will get us a long

way toward understanding motion.

Derived quantities

So we have objects made of mass and space (length) and time to use in describing their

motion.
Question 1.1.1

When we combine quantities we derive new quantities that are useful from the basic

length, time, mass set. For example, we know speed is a combination of length and

time.

speed =
distance traveld

how long it took to travel
quantities like acceleration, force, momentum, etc. are derived quantities.

Dimensional Analysis

Analysis of the units in a measurement can be very useful. For example, if we take

theequation

v =
∆x

∆t
and look at the units, we find that ∆x is a length in, say, meters. We find that ∆t is

a time in, say, seconds. Then when we calculate v we should have units of m/ s. If,

instead, we have m3 at the end of our calculation, something must have gone wrong!

Sometimes it is useful to use generic units for our analysis. That is, any length is given

a unit L and any time is given a unit T. So our equation gives
∆x

∆t
⇒ L

T
To see this lets take and acceleration (something we will study soon). It is given by

a =
∆v

∆t
⇒

L
T

T
=

L

T 2

so from dimensional analysis, we expect that acceleration would be something like

a = c
x

t2
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and we could deduce that

x =
1

c
at2

note that I included a constant, c. Dimensional analysis cannot tell you the constants in

an equation. We will see later that in this case c = 2 so

x =
1

2
at2

We will find out that our dimensional analysis did not hit too far off the mark. This is

part of the equation for position for an accelerating object.

Units

No value in physics is useful without a unit. For example, if I tell you to jump from a

height of 100, it makes a difference whether it is 100 cm or 100m! Units tell us what

standard was used to make the measurement so all who see the result can correctly

interpret what it means.

System of Units

You will notice that we have only given metric units. We will use the Système

International or SI units. There are, of course, other systems of units. We will try to

ignore them in this class. Occasionally we may use feet for length and slugs (yes, slugs)

for mass. we will usually use the following SI units for our basic quantities.
Quantity Unit Symbol
Mass Kilogram kg
Length meter m
Time second s

The SI system makes use of prefixes to modify the basic unit, like centimeter to mean

1/100 of a meter. You should be familiar with the following prefixes.

Prefix Symbol Power Prefix Symbol Power
nano­ n 10−9 giga­ G 109

micro­ µ 10−6 mega­ m 106

mili­ m 10−3 kilo­ k 103

centi­ c 10−2 deka­ da 101

deci­ d 10−1

We can already see that our unit for mass, the kilogram, must be 1000 grams. A

centimeter must be 1/100th of a meter. We obviously will need to be able to convert
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from centimeters to meters from time to time. We should be able to convert from any

prefixed unit to any other prefixed unit. We need a strategy to do this.

Unit Conversions

Let’s do a unit conversion that most of you do in your head. Let’s convert hours to

seconds. We know that

1 h = 60min

and we know that

1min = 60 s

Suppose we have 5 hours. How many seconds is this?

Most of us would say multiply by 3600, and that is right, but let’s do it one step at a

time so you can see the process. I want to multiply 5 by something, but I can’t change

the duration. At the end of our calculation, it still has to be a wait of 5h even though we

now give the value in seconds. For a person waiting 5 hours and a second one waiting

18 000 s they must feel the same amount of time. So we need to adjust our 5 hours by

something that does not change the wait.

I think you will agree that if I multiply by 1 nothing changes

5× 1 = 5

We can do this with units

5h× 1 = 5h

Notice that the 1 can’t have any units or this won’t work. Now let’s take our equation

relating hours to minutes.

1 h = 60min

and let me divide by 1h
1 h

1 h
=

60min

1 h

1 =
60min

1 h
On the left hand side the h units cancel. So the 1 has no units just like we needed in our

5h× 1 = 5h

equation. I can multiply by

1 =
60min

1 h
and all I am doing is multiplying by 1!

5 h× 60min

1h
= 5h
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This still must be true, but let’s do the math

5 h× 60min

1h
= 300min

This is how many minutes are in 5 hours. We can play the same trick with minutes to

seconds
1min

1min
=

60

1min
s

1 =
60 s

1min
so we can take our 300min and find out how many seconds we have!

300min× 60 s

1min
= 18000.0 s

Now we could do this all in one equation, using our strange way of writing 1 that

converts from hours to minutes and our strange way of writing 1 that converts from

minutes to seconds.

5h× 1× 1 = 5h

5h× 60min

1 h

60 s

1min
= 18000.0 s

Notice that the units cancel like variables in algebra!

We will treat units like algebraic quantities that can be canceled. Let’s do another

example. We want to convert 10mi (ten miles) to kilometers. We can look up that

1mi = 1609m (5.1)

and we know that

1 km = 1000m (5.2)

Start with conversion from miles to meters. We recognize that with a small use of

algebra

1 =
1609m

1mi
(5.3)

then we can write

10mi = 10mi
1609m

1mi
= 16 090m (5.4)

Then we also recognize that

1 =
1000m

1km
(5.5)

or

1 =
1km

1000m
(5.6)

then

16 090m = 16090m
1km

1000m
= 16.0900 km (5.7)

so

10mi = 16km (5.8)
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We could do this all in one large, chained, conversion

10mi = 10mi
1609m

1mi

1 km

1000m
= 16 km (5.9)

If you think about it, to convert units, we have multiplied by 1 several times. So as you

multiply to convert units, make sure your factors you multiply are equal to 1.

For our problems, it is normal to convert all lengths to meters, all times to seconds, and

all masses to kilograms.

Uncertainty in measurements

In science, we must face the fact that no measurement is completely accurate. The

reasons for uncertainty are limitations in our human sensory system or sensing

apparatus. For example, if I measure a square of metal with a ruler. I am likely not

able to tell the length to better than a tenth of a centimeter (1mm). This is because of

inaccuracies in the ruler and in my own ability to see the ruler clearly and consistently.

So suppose I have a measurement of 16.3 cm. I can really only tell you that the

measurement is between 16.4 cm and 16.2 cm. we could write this as 16.3± 0.1 cm.

We will study uncertainty in measurements in some detail in PH150. But for PH121 we

will need some provisional rules that let us make a guess on now good our answers are.

Significant figures

Scientists have devised a clever way to include the level of uncertainty in the statement

of the measurement result. This is referred to as significant figures and it basically

means to keep only the digits in a number that contain well known information. In

the above example, we would say that in 16.3 cm that the 3 is the least significant

digit. Now suppose we use the same ruler to measure the same object, but I tell you

that the measurement is 16.3259357 cm. If we know the measurement is only good to

±0.1 cm, what can we say about the digits 259357? We can say they are worthless!

They are nonsense, so we cleverly leave them off! There are a series of rules to tell

us which digits are significant. It is important to realize that zeros that just mark

where the decimal place goes are not significant (e.g. in 0.00163 cm the three 0’s are

not significant, but in 1.400 cm the digits mean that the measurement is known to

±0.001 cm). We have to be careful when we use zeros!

We usually express numbers in scientific notation.
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Propagation of uncertainty

Suppose we take two measurements, like measuring the sides of a rectangle.

l = (2.3± 0.1) cm

w = (4.5± 0.1) cm

and we wish to find the area

A = l ×w

A = 2.3 cm× 4.5 cm

= 10. 35 cm2

But we were a little uncertain about the length and width, wouldn’t we also be uncertain

about the area that we made from the uncertain length and the width? Of course there is

some uncertainty in the area. Let’s see how we could deal with this.

The length could have been as much as

l = 2.3 cm + 0.1 cm = 2. 4 cm

and the width could be as much as

w = (4.5 + 0.1) cm = 4. 6 cm

So the area could be as much as

A+ = 2.4 cm× 4.6 cm

= 11. 04 cm2

But the length could be as little as

l = 2.3 cm− 0.1 cm = 2.2 cm

and the width could be as little as

w = (4.5− 0.1) cm = 4.4 cm

So the area could be as little as

A− = 2.2 cm× 4.4 cm

= 9. 68 cm2

We can see that these differ by about ±1 cm2 total.

A+ −A− = 11. 04 cm2 − 9. 68 cm2 = 1. 36 cm2

Thus the tenths and hundredths places in our calculated area cannot be very certain. We

drop these and write

A = 10± 1 cm
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Notice that our length and width had two digits,

l = (2.3± 0.1) cm

w = (4.5± 0.1) cm

with the uncertainty in the second digit, and notice that our answer for the area has two

digits, and the uncertainty is in the second digit!

In general:

In multiplying or dividing two quantities, the number of significant figures

in the product or quotient is the same as the number of significant figures

in the least accurate of the factors being combined.

In our example, l and w both have two significant figures, so the result should be limited

to two significant figures

For addition and subtraction the rules is:

The number of decimal places in the result should equal the smallest

number of decimal places in any term in the sum or difference.
These two rules will help us determine how many digits to keep for most
problems. You may know that there are several other rules, and thought we
wont derive them like we did for multiplication, we will use them in our
problems. Here they are in a table

Significant Figure Rules

1. Non­zero digits are always significant

2. Embedded (i.e. captive) zero­digits are always significant

3. For the number zero only the zero­digits after the decimal are significant

4. Leading zero­digits are not significant

5. Trailing zero digits:

If the number has a decimal, the trailing zero digits are significant

If the number does not have a decimal, the trailing zero digits are not significant
6. The final result of multiplication or division operation should have the same number

of significant digits as the measured quantity with the least number of significant
digits used in the calculation.

7. The final result of an addition or subtraction operation should have the same number
digits to the right of the decimal as the measured quantity with the least number of
decimal used in the calculation.

8. For a mixture of operations, work from left to right, do mathematical hierarchy of operations
(× or ÷, then + or −).

This system of significant figures works, but there are better ways of dealing with

uncertainty. In our PH150 class we teach standard error propagation. Engineers will get

this in their classes as well. Chemists will get a different method in their quantitative
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analysis class. But for now sig figs will do.

Basic Equations

Equations are relationships in physics. The equation

−→v =

−→
∆x

∆t
tells us how the displacement and duration combine to form velocity. These equations

are our way of expressing motion. They are the tools in our toolbox for solving

problems. Once you have identified the type of problem you have, you can quickly

write down a list of equations (tools) that you could use to solve that problem. You

might write down more equations than you end up using for a particular problem.

That’s OK. You don’t empty your tool box of all tools but the ones you think you might

use when you start a fix­up job in your house! You should not do so when starting

a problem. List your equations, then choose the ones that seem to work given your

known values in your list of variables.

Solving with symbols

For years now, you have worked with numbers and answers that are numbers. And that

is what the teacher was looking for. But in physics the equation is the important thing.

It tells you how things relate to each other. Let’s try an example. We will develop

the equations for this example in the next few lectures, so don’t panic if this seems

mysterious!

The initial speed of an object is 3m/ s and it’s accelera­

tion is 2m/ s2 in the same direction as the velocity. Find

the speed half a second after the experiment start.

We want to start by restating the problem:

Find the final speed knowing a and vi

Next identify the type of problem. I think it is an acceleration problem:

PT acceleration

Next we want to draw the picture



Solving with symbols 87

Our variables list is next:

VAR

vi = 3
m

s

a = 2
m

s2

∆t = 0.5 s

and now basic equations:

BE:

−→a =

−→
∆v

∆t−→
∆v = −→v f −−→v i
−→v =

−→
∆x

∆t−→
∆x = −→x f −−→x i

Note that I underlined the known values from my list variables. The first two equations

have vf in them and they contain my known values, so it looks like they are the ones to

use in my solution.

Solve Algebraically

Now we try to solve for the speed, but we do so symbolically. We already believe that

the first two equations in our basic equation list will be helpful, so let’s start with

−→a =

−→
∆v

∆t
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and put in
−→
∆v = −→v f −−→v i

−→a =
−→v f −−→v i

∆t
At this point I recognize that I can solve for vf and everything else is known. I could

plug things in my calculator and have it solve for vf using numbers, but we won’t do

that! We will continue with algebra
−→a∆t = −→v f −−→v i

and
−→a∆t+−→v i = −→v f

or
−→v f = −→v i +−→a∆t

Since −→a and −→v i are in the same direction, their magnitudes just add so

vf = vi + a∆t

This is the symbolic answer. It has the thing I want, vf , an equals sign, and then

symbols for what vf is equal to.

Numeric answer

The numeric answer is easy. Just plug in numbers to your symbolic answer

vf = vi + a∆t

vf = 3
m

s
+
�
2
m

s2

�
(0.5 s)

= 4.0
m

s

Reasonableness check

If we had gotten 400000000000m/ s in our example, we would know something went

wrong. Nothing can go this fast! It is good to check your answer and see if it seems to

make sense. But how do we do that? One way is to do a quick estimate.

Estimates

Question 1.3
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There are times when we simply do not have all the information we need, but we need

a number for something anyway. There are also times when we wish to make a quick

calculation (like checking on the reasonableness of a calculation). In such cases, we

estimate. Many people in science are somewhat uncomfortable with estimates, because

they are not “correct” (In business and politics, people may be a little too comfortable

with estimates). But as a check on our exact calculations, estimates are very valuable!

Let’s do a few examples together.

Example 1: How many sheets of paper fit between the Earth and Moon?

To do this calculation, we need to know how far away the Moon is and how thick a

piece of paper is. I looked up the earth­moon distance and found

DEM = 3. 844 7× 105 km (5.10)

This might be a good number, but since I am building an estimate, I will round to the

nearest power of 10.

DEM ≈ 4× 105 km (5.11)

I got some paper and measured 28 pieces of paper, then took the measurement and

devided by 28 to get the estimated thickness of just one piece.

t =
3mm

28
= 1. 071 4× 10−4m (5.12)

≈ 1× 10−4m

So the number of pieces of paper would be

N =
DEM

t
=

4× 105 km

1× 10−4m

1000m

km
(5.13)

= 4000 000 000 000

= 4.0× 1012

≈ 1× 1012 (5.14)

Is this reasonable?

Example 2 How much sand is in the world’s beaches?

We start by looking for a fundamental element of a beach, say, a grain of sand. We can

calculate the total volume of the beaches, and divide by the volume of a grain of sand.

This will tell us how many grains of sand there are in the world’s beaches. If we can get

an estimate of the mass of a grain of sand, then we can answer how much sand is in the

world’s beaches.
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10m

200m

Figure 5.3.

Let’s estimate the grain of sand to have a mass of

m = 0.005 kg (5.15)

Let’s guess a volume of

Vs = 1.0× 10−15m3 (5.16)

We can estimate the length of the world’s coastline to be

L = 40000000000m (5.17)

we need the volume of the coast line, lets say the beach is

w = 200m (5.18)

wide and

d = 10m (5.19)

deep.

Then the volume of the world’s beaches would be

V = Lwd = (40000000000m) (200m) (10m) (5.20)

= 8.0× 1013m3 (5.21)

and the number of grains of sand would be

N =
V

Vs
=

Lwd

Vs
= 8.0× 1028 (5.22)

which gives us

Mbeach = Nm =
�
8.0× 1028

�
(0.005 kg) (5.23)

= 4.0× 1026 kg (5.24)

I looked up the mass of the Earth
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ME = 5.98× 1024 kg (5.25)

Our answer doesn’t seem too reasonable Where did we go wrong?

Consider silicon oxide. It has a density of

ρ = 2200
kg

m3
(5.26)

If our estimate of

m = 0.005 kg (5.27)

is good, then we should have used a volume of

V =
m

ρ
=

0.005 kg

2200 kg
m3

(5.28)

= 2. 272 7× 10−6m3 (5.29)

for a grain of sound. So one problem is that our estimate of the volume of a grain of

sand is very bad.

In general, you can be creative in making estimates, but you do have to be careful.

Units Check

We already have discussed units. But it is important to check your units in your final

answer. Suppose we want to find the speed of something. The final units must be a

length unit divided by a time unit. For speed this must be the case. If we had gotten a

length unit divided by a time squared, then we would know something went wrong in

our algebra. If the units don’t work the answer is wrong. If the units are wrong, the

anser can’t be reasonable. So especially on a test (or in your real job) checking units is

important!

Problem Solving Process

I have assembled all of the problem solving pieces that we have studied into a process

that leads us to our solution. Here is the process we will use in a table:
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 Problem Solving Process 
 

Process Step Purpose 

V
a

lu
e

 i
f 

P
re

s
e
n

t 

V
a

lu
e
 i

f 
A

b
s

e
n

t 

1. Label the problem with 

c hapter  and problem number   

This is essential  i f I am  to  figure out what 

problem to  grade 
0 0  to -20 

2. R estate the problem in 

your own words. One line 

m ay do! List any 
assumptions you are 

m ak ing. 

Most major mistakes com e from 
misin terpreting the problem. This step asks you 

to slow down and determ ine what the problem 
really is asking 

1 -1 

3. D raw a picture, labe l item s, 

define coordinate systems, 

e tc. 

Many mistakes happen because we do not 
have a clear picture  of the problem. Th is s tep 

may save hours of grief.  Also, many physics 
problems will have different symbolic answers 

because of the freedom to choose coordinate 
systems, etc. Drawing a diagram gives the 

reader the ab ility to understand your vision o f 
the problem. 

2 -2 

4. D ef ine variables used, 

Identify known and unk nown 
quanti ti es 

Choose reasonable names for physica l 

quantities, and le t m e know what they are. 
Don’t forget to include un its . 

2 -2 

5. L ist basic equations that 

app ly to the problem 

This step gives you  a firm  starting p lace. 
2 -2 

6. Solve the  problem 

algebraically starting from 

the basic equations,  

This is the heart of the so lu tion. The symbol ic 

answer tells you the relationsh ips between 

physical  quantities.  

10 -10 

7. D etermin e numerical 
answer  

The specific numerica l answer is not the point 
of doing the p roblem in this  class, but is a  great 

ind icator that you have succeeded in 
understanding the physics.   

1 -1 

8. C heck units .  If you have 

not done the algebra on the 
uni ts ear lier, do it here. 

Many mistakes are evident in a units analysis.  

It is a good habit to  always check units. 1 -1 

9. D etermin e if the numerical 

answer is  reasonable.  
Indicate if you are 

c omfortab le  with the result, if 
you have little experience 

w ith the resu lt and can’ t tel l if 

i t is reasonable , or if it is not 

reasonable, but you don’t 
k now why (or e lse you would 

fix it) . 

From your understanding of the physics, s ta te 

whether the answer  is reasonable .  For 
example, if you are calcu lating the mass of a  

ping pong bal l, and get an answer that is many 
times the mass of the ear th , you should  note 

that there may be a problem  even if you do not 

know where you went wrong.   

1 -1 to -25 

T otal Possible   20 ­25 

 

Notice that I have assigned point values to each part. So if you leave out a part you will

know how many points you will miss. Also notice that there are a lot of points for the

symbolic answer and only a one for the numeric answer. Physics is about relationships

that describe motion, the numbers just aren’t that important. So it is not a winning

strategy to only give me the numeric answer for a problem. you only get one out of

twenty five points!

Also notice that if I ask for the mass of a ping pong ball, and you give me an answer that

is three times the mass of Jupiter, I can take off more than one point for the very wrong

numeric answer! Since you will be doing a reasonableness check, you won’t have this

problem. But what if you don’t know if an answer is reasonable? Then say you don’t
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know! You will act differently as a physicist, engineer, doctor, etc. if you admit in your

calculations that you are not certain of the result. And this is very valuable! It can save

your job! So if you are not sure, say so.

We will use this process for the rest of the semester, and this or a similar process for

PH123, and PH220 (or PH223) and if you are a physicist for the rest of your career.

This is also the process I used in engineering in industry. So it is worth practicing in our

problems. It is also how I will grade the tests!





6 Motion near the Earth’s

Surface

You may have noticed that falling things speed up as they fall. You may even have no­

ticed that heavy things like rocks tend to fall with about the same motion. It would be

convenient if falling objects experienced constant acceleration. Then we could use our

kinematic equation set for falling object problems.

At the end of the 16th century Galileo Galilei tried an experiment to see how falling

things fell. The legend says that Galileo dropped two balls with different masses off of

the leaning tower of Pisa. Galileo predicted that the motion of the two balls would be

nearly the same. Galileo’s experiment was successful in that he was able to show his

model for motion was more correct than Aristotle’s. But it was only an approximation

to motion with constant acceleration. The reason for this is that on the Earth there is an

atmosphere, and the air get’s in the way. You may have heard of “air resistance” and
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you may have experienced it on a windy day. This resistance due to the air getting in

the way slows the fall of the balls, but not by much. By using smooth round balls, the

air resistance was limited, so Galileo did not notice the problem.

But the experiment was repeated a few centuries later–on the Moon–where there is no

air. In the figure below, the Apollo 15 astronauts dropped two objects, a hammer and a

feather. The feather would have been strongly effected by air as it fell, but there is no

air on the moon, so both the hammer and the feather experienced constant acceleration.

Applo 15 test of Galeleo’s experiment on the moon. For a video, go to

http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_15_feather_drop.html

We will give a name to such a situation, where objects fall with nothing, not even air, to

get in their way. We will also use the same name for situations where the motion is so

close to having no impediments that we would not know the difference, like Galileo’s

experiment. We will call such a motion free fall. And what is great, free fall is just a

special case of our kinematics problem type!

Free Fall

If we don’t go too far above the surface, and if we pick an object for which we can

neglect air resistance (like a smooth ball, and not like a feather), then we can use our

constant acceleration equations for the falling object! Under these conditions, falling

objects act like they are under the influence of constant acceleration.
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It is a little counter intuitive, but the mass of the object does not matter in this type of

problem! Think of dropping a large rock and a small rock off a bridge. They seem

to fall at the same rate even though one rock is much less massive than the other.

All objects that are truly in free fall have the same acceleration. We will call this

acceleration free fall acceleration.

For the case of free fall near the surface of the Earth, we even give free fall acceleration

a specific symbol, the letter “g.” The value for this free fall acceleration near the Earths

surface is about

g = 9.8
m

s2
(6.1)

but for rough estimations

g ≈ 10
m

s2
(6.2)

Because g really varies with height, it is closer to 9.81m/ s2 in New York and is about

9.8004m/ s2 in Rexburg. For our class 9.8m/ s2 is close enough most of the time.

Tradition guides us to choose an x­axis parallel to the ground. This leaves a chose

between y and z for the axis perpendicular to the ground. Tradition again tells us to

choose y. So heights are measured on the y axis3.

y

x

y

x

Now you can define the axis any way you want, but if you do something different, you

should warn people who might read your work (like our grader). With this choice of

3 This will change later in our course and in higher level physics classes.



98 Chapter 6 Motion near the Earth’s Surface

axis, “down” is in a negative y­direction. So our free fall acceleration near the Earth’s

surface is
−→a ff = −g = −

�
9.8

m

s2

�
(6.3)

where g is the magnitude of the vector, and the minus sign is telling us that aff points

down. Notice that g is a magnitude, so it isn’t negative. The minus sign for pointing

down is in front of the g.

Let’s try a problem

An object is dropped from rest near the Earth’s surface and we can say that free fall

conditions apply. Determine the position of the object after 4.00 s.

g
Vo=0

yo=0

y

g
Vo=0

yo=0

y

We can choose yi = 0.00 as the point where the ball starts.

We could choose anywhere for y = 0.00, our origin, and the math would work out just

fine. But for this problem I choose yi = 0.00. We recognize that vi = 0.00 (that is what

is meant by the words “from rest”).



Free Fall 99

So here is what we know

yi = 0.00m

vi = 0.00
m

s
∆t = 4.00 s

g = 9.80
m

s2

aff = −g = −
�
9.80

m

s2

�

Since free­fall motion is constant acceleration motion, we can use our constant

acceleration equation set:

vf = vi + a∆t Constant a

xf = xi + vi∆t+
1

2
a∆t2 Constant a

v2f = v2i + 2a∆x Constant a

xf = xi +
1

2
(vf + vi)∆t Constant a

but we can write them in terms of y because our motion is in the y­direction

vf = vi + a∆t

yf = yi + vi∆t+
1

2
a∆t

v2f = v2i + 2a (yf − yi)

yf = yi +
1

2
(vf + vi)∆t

We know vi, ∆t, and we know yi and we know a, and we want yf .

vf = vi + a∆t

yf = yi + vi∆t +
1

2
a∆t2

v2f = v2i + 2a
�
yf − yi

�

yf = yi +
1

2

�
vf + vi

�
∆t

It looks like the second equation in our constant acceleration set will do for the final

position

yf = yi + vi∆t +
1

2
a∆t2 (6.4)

only we need to change a to −g

yf = yi + vi∆t− 1

2
g∆t2 (6.5)

If a known value is zero, input it now. If it is not zero, it is better to wait to use it. We

will use yi = 0 and vi = 0 now.

yf = −
1

2
g∆t2 (6.6)
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This is our symbolic solution! We can now put in the rest of our numbers

y = −1

2

�
9.80

m

s2

�
(4.00 s)2 (6.7)

= −78. 4m (6.8)

Let’s do another example:

What is the velocity of the object (same as in the last example) at t = 4.0 s?

Since everything is the same as in the previous example, we know that

yi = 0.00m

vi = 0.00
m

s
∆t = 4.00 s

g = 9.80
m

s2

aff = −g = −
�
9.80

m

s2

�

and we can use the same equation set:

vf = vi + a∆t Constant a

yf = yi + vi∆t +
1

2
a∆t2 Constant a

v2f = v2i + 2a
�
yf − yi

�
Constant a

yf = yi +
1

2

�
vf + vi

�
∆t Constant a

We know vi, a, and ∆t, so we can use the first equation

vf = vi + a∆t

Let’s put in a = −g

vf = vi − g∆t

We now use any zero terms

vf = −g∆t
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and we have a symbolic solution. We input numbers

vf = −
�
9.80

m

s2

�
(4.00 s)

= −39. 2 m
s

Let’s take a third example: An object is dropped from rest near the Earth’s surface and

we can say that free fall conditions apply. A short time later the object has dropped

80.0m. What is the velocity of the object at this point?

This is still free­fall

But this time we don’t have a time

yi = 0.00m

yf = −80.0m
vi = 0.00

m

s

g = 9.80
m

s2

aff = −g = −
�
9.8

m

s2

�

We can use the same set of equations

vf = vi + a∆t Constant a

yf = yi + vi∆t +
1

2
a∆t2 Constant a

v2f = v2i + 2a
�

yf − yi
�

Constant a

yf = yi +
1

2

�
vf + vi

�
∆t Constant a

but since we know vi, ∆y, and a, and we want vf , we should choose the third equation

v2f = v2i + 2a
�

yf − yi
�

and solve for vf

vf =

�
v2i + 2a

�
yf − yi

�
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and use our zeros

vf =

�
2a
�
yf − yi

�

and recall that a = aff = −g

vf =
	
−2g (yf − yi)

this is the algebraic answer. It might worry you that we have a negative sign inside a

square root. Is this a problem? Won’t we get an imaginary number?

But let’s put in our values and we will see that this is not the case.

vf =

�
−2
�
9.80

m

s2

�
(−80.0m− 0.00m)

= ±39. 598 m
s

We have to remember that if we set y = 0 at yi then our yf is negative, so we have

another negative sign that cancels the first! Note that we got two answers, because from

a square root we don’t know if the quantity that was squared was positive or negative,

think

22 = 4

(−2)2 = 4

but we can have only one velocity at a time for our object! We need to choose the

answer that fits our situation. We know (from our picture) that the object is falling, so

we will choose the negative value

vf = −39. 6
m

s

Constant acceleration changes and Free­fall

Let’s say that we restart a BYU­I rocket team. You launch the rocket (and this

time it does not blow up). The rocket moves upward with a constant acceleration

a = 30.0m/ s2 as long as the rocket fuel lasts, which is ∆t1 = 4.00 s. Once the fuel is

spent, the rocket continues up for a while, then it begins to fall back to the ground (the

parachute did not open. . . again). Find

a) the velocity of the rocket and at the time when the fuel is spent

b) the position at the time when the fuel is spent

c) the maximum height of the rocket

We can only do problems for constant acceleration. But in this problem the acceleration
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changes! Fortunately, the change in acceleration is instantaneous, and the rest of the

time we have constant acceleration, but we have two constant accelerations to deal with.

One while the rocket is firing, and then free fall after the rocket fuel is spent. To deal

with this we divide this problem into two phases of it’s motion, one for each constant

acceleration. In effect we make our one problem into two related problems. The first

problem is the powered flight up. The second problem is after the fuel is spent and the

rocket is in free fall.

Solution:

PT: constant acceleration problem and a free­fall problem. While the rocket engine is

working it is constant acceleration, afterward, it is free­fall. We will divide the problem

into two parts, one constant motion, the other free­fall.

Here is what we know from the problem statement

a1 = 29.4 ms2
t1 = 4.00 s
a2 = −9.80 ms2
y1i = 0.00 (ground)

Let’s use y as position. We will choose y = 0 to be the ground. We will use v and a as

velocity and acceleration, and g as the acceleration due to gravity. Our basic equations
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are

vf = vi + a∆t Constant a (6.9)

yf = yi + vi∆t +
1

2
a∆t2 Constant a (6.10)

v2f = v2i + 2a∆y Constant a (6.11)

yf = yi +
1

2
(vf + vi)∆t Constant a

Parts a) and b) Find the rocket’s velocity and position after 4.00 s which is when the

rocket fuel has just run out. These values are both from the first part of the problem

where we have an acceleration a1 (the rocket is firing). We can guess that v1i = 0

(when the rocket starts, it is not moving) and y1i = 0, and we are given a1 = 29.4 ms2 so

a1 = 29.4 ms2
∆t1 = 4.00 s
y1i = 0.00 (ground)
v1i = 0

We choose from our kinematic equations. Let’s write them for part 1, and mark them

for what we know. The subscript 1 means this is the first position value we will find for

part 1 of the motion.

v1f = v1i + a1∆t1 (6.12)

v1f = y1i + v1i∆t1 +
1

2
a1∆t21 (6.13)

v21f = v21i + 2a1
�
y1f − y1i

�
(6.14)

yf = y1i +
1

2

�
v1f + v1i

�
∆t1

For part b) position, we might use

v1f = y1i + v1i∆t1 +
1

2
a1∆t21 (6.15)

Using our zeros gives

y1f =
1

2
a1∆t21 (6.16)

Now we can use numbers

y1f =
1

2

�
29.4

m

s2

�
(4.00 s)

2 (6.17)

= 235. 2m (6.18)

= 235. m (6.19)
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Now let’s find the velocity at this altitude (when the rocket engine just runs out of fuel).

We choose the equation

v1f = v1i + a1∆t1 (6.20)

and recognize that v1i is still zero, so

v1f = a1∆t1 (6.21)

Now we use numbers

v1f =
�
29.4

m

s2

�
(4.00 s) (6.22)

= 117. 6
m

s
(6.23)

= 118
m

s
(6.24)

Part c) Find the maximum Height. After the rocket fuel is spent the rocket keeps going

up. But now the acceleration is due to just gravity. So for part 2 a2 = −g. But this part

2 starts where part 1 stoped. We will use the ending values from part 1 that we found in

questions a) and b) to be our starting values for part c). We will go back to all the digits

we had before we rounded for sig­figs. That is because we keep all the digits from a

calculation and only round at the end. At the end of part a) we did round because we

reported v1f and y1f , but now we are continuing to calculate, so let’s keep all the digits

we have until the end once more. Here is where we start:
v1f = v2i = 117. 6 ms
y1f = y2i = 235. 2m
a2 = −9.80 ms2
t2i = t1f = 4.00 s

We know the initial speed, position, and acceleration. Since the rocket engine stopped

working the acceleration is now −g. We are in free fall (but we are going up!). We

know that at the highest point in the flight the velocity must be zero, so we can write

another known value

v2f = 0

We again need our kinematic equations, marked with what we know, and a subscript

“2” to distinguish this set from the new part 2 set from part 1. We want y2f .

v2f = v2i + a2∆t2 Constant a (6.25)

y2f = y2i + v2i∆t2 +
1

2
a2∆t22 Constant a (6.26)

v2f
2 = v2i

2 + 2a2
�
y2f − y2i

�
Constant a (6.27)

y2f = y2i +
1

2

�
v1f + v2i

�
∆t2 Constant a
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It looks like we could use the second equation

y2f = y2i + v2i∆t2 +
1

2
a2∆t22

but we don’t know what ∆t2 is. But we can solve for ∆t2 from the first equation.

Notice how we did this. After marking our equations with what we know, we looked for

a way to solve for what we want, y2f . But we could not do it with any one equation on

it’s own. So we looked at the other equations to find the missing parts in our equation

for y2f . Let’s get the time ∆t2 first,

v2f = v2i + a2∆t2

using our zeros

0 = v2i + a2∆t2

and −g

v2i = g∆t2

so

∆t2 =
v2i

g

∆t2 =
v1f

g
We don’t need to know the value of ∆t2, but let’s calculate it anyway.

∆t2 =
120.0 ms
9.80 ms2

(6.28)

= 12. 245 s (6.29)

so the rocket goes up for 12. 2 s after the fuel runs out!

Now that we know ∆t2 we can use the second of our equations to find y2f

ymax = y2f = y2i + v2i∆t2 +
1

2
a2∆t22 (6.30)

= y1f + v1f∆t2 −
1

2
g∆t22 (6.31)

= y1f + v1f

�
v1f

g

�
− 1

2
g

�
v1f

g

�2
(6.32)

= y1f + v1f

�
v1f

g

�
− 1

2g

�
v1f
�2

(6.33)

Notice that even though I calculated the value of ∆t2 I still put in the symbolic ∆t2 into

my equation. Now we are ready for numbers

ymax = 240.0m+

�
120.0 ms

�2

9.8 ms2
− 1

2
�
9.8 ms2

�
�
120.0

m

s

�2
(6.34)

= 974. 69m (6.35)
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Motion on an inclined plane

Let’s take on an example that is almost free­fall. Suppose we have a person sledding

down a (perfectly) frictionless surface

would this be free­fall? First, we should test for constant acceleration. So suppose we

record video of a person sledding down a hill. The motion diagram looks like this

which we recognize as acceleration. But only if the slope angle θ were 90 ◦ would we

have free­fall

And our intuition tells us that the guy who tried to sled off a vertical cliff will reach the

bottom faster than the guy that slid down the slope. So we can guess that our slope has

an acceleration that is less than the aff = g = 9.8m/ s2. It is as though only part of the

free­fall acceleration is able to pull the sled down the hill. The hill seems to be getting

in the way!

Being physics students The obvious thing to do is to record video of sledders going

down many different hills with different slopes to see if the acceleration is dependent

on the steepness of the slope. You might guess that the steeper the slope the larger the

acceleration.
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Such an experiment has been done, and the result is

aslope = g sin θ

From our trigonometry experience, we recall that sin θ goes between 0 and 1 as the

slope angle goes from 0 ◦ to 90 ◦. Indeed, we seem to have only part of the free­fall

acceleration. We have a fraction of the total possible falling acceleration with the

fraction given by sin θ. But why sin θ? That is something we will take up next lecture.

Even Galileo actually used ramps to do his motion studies. By using a ramp (shown

above) he could have constant acceleration, but a smaller constant acceleration than g.

That made it easier to see the motion. Galileo did not have digital cameras to record the

motion, instead he used bells along the ramp to tell where the balls were so he could

make his motion diagrams.



7 Undoing Differentiation, and

Two Dimensional Motion

So far we have found how far we go from

v̄ =
∆x

∆t
but solving for

∆x = v̄∆t

xf = xi + v̄∆t

but this assumed constant motion. We made it better by allowing for constant

accelertion

xf = xi + vi∆t+
1

2
a∆t2

What if our acceleration isn’t constant? We don’t have a way to deal with this. We need

more new math!

More New Math ­ Integration

We now know how to take a derivative, but you were probably wondering if there is a

way to undo the process of taking a derivative. We could call that an anti­derivative.

Such a thing might be useful. If we consider that

v (t) =
dx

dt
(7.1)

then undoing this process might be able to give us x (t) if we know v (t) . Say, you

record your speed as you travel from your speedometer, but you want to know how far

you have gone.

There is such a process. Let’s think about what the process might be. From equation

(7.1) we can solve for the small displacement dx

dx = v(t)dt

This is a small amount of displacement dx in a small amount of time, dt. If I only want

to go a very small distance, dx, then this in enough. The speed v (t) won’t change much
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at all over a small time dt, so dx is just how far I can go in dt. That is, with a small

enough dt we can consider v (t) to be constant no matter if we are accelerating or not.

But if I want to go farther than and infintisimal dx, We need to do more.

Consider a larger displacement ∆x. We could view this larger displacement as made up

of a huge number of infintismal displacements, dx.

To find ∆x we could just sum up all the little displacements to get the whole ∆x. So

we can write our big displacement like this

∆x = dx1 + dx2 + dx3 + · · · dxN

where dxN is the last of our small dx pieces. In math we can write this as

∆x =
N


i=1

dxi

but since the dx units are so small, we give this a special, calculus notation for

summation

∆x =

� xN

x1

dx

where the curly thing,
�

, has replaced the Σ. The curly thing is a stylized “s” for sum.

The Σ is a Greek “s” for sum. So they are doing the same operation, but
�

let’s us know

that we are working with infinitesimally small displacements, dx. We still go from the

first dx to the N th dx and that is shown by the “lower limit,” x1 and the “upper limit,”

xN on the
�

.

Recall that ∆x = xf − xi so

xf = xi +∆x

= xi +

� N

1

dx

but from what we said before each dx is given by

dx = v (t) dt

so we will substitute this in for dx

xf = xi +

�
v (t) dt

But when we change from the counting over the number of dx elements to counting

over time elements, dt, we also changed the limits. The first dx was traveled at ti, the
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first time. The last was traveled at the final N th time so the upper limit is tf , so

xf = xi +

� tf

ti

vdt

This is our notation for taking the anti­derivative of v (t) . But we don’t want to actually

have to measure each v (t) dt and sum them by hand. We need a procedure for finding

the result of
� tf
ti

vdt. Once again I will let your calculus professor explain why this

works. For this class I will just give a procedure. Let’s take a function

u = atn

then the anti­derivative of u between two times t1 and t2 is

� t2

t1

udt =

� t2

t1

atndt =
atn+1

n+ 1

����
t2

t1

=
atn+12

n + 1
− atn+11

n+ 1

The strange bar |t2t1 just keeps track of our upper and lower limits. But notice that the

way we use the upper and lower limits is to substitute both limits into the equation that

is sitting just before the bar, and subtract the equation with the lower limit from the

equation with the higher limit. This isn’t so strange if you remember that we are adding

up something like ∆x which would have a xf and an xi and we would subtract the two.

Like with derivatives, antiderivatives of sums of functions are just the sums of the

antiderivatives � t2

t1

(u +w) dt =

� t2

t1

udt+

� t2

t1

wdt

It is also important to notice that antiderivatives require us to know a function, just like

derivatives do. In our case, we need to know the function v (t) , that is, the velocity as a

function of time.

Let’s try this on the case of constant motion. Then v (t) = vo where vo is some constant

speed. In this case,

xf = xi +

� t2

t1

vodt

doesn’t seem to have a t in it. But remember 1 = t0, so we can write our xf equation as

xf = xi +

� N

1

vot
0dt
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and use our formula for antiderivatives

xf = xi +

� t2

t1

vot
0dt

= xi +
vot

0+1

0 + 1

����
t2

t1

= xi + vot|t2t1
= xi + vot2 − vt1

= xi + vo∆t

which is not much of a surprise for constant motion. This is just

vo =
∆x

∆t
rearranged a bit!

Let’s try another problem. Let’s take a ball falling from yi and let’s start our experiment

at ti = 0. Then we would have a = −g. Let’s find an expression for the final position

yf as a function of time. We can start with our new math

yf = yi +

� tf

0

v (t) dt

and for free fall we know that

v (t) = vi + a∆t

= vi − g(t− ti)

and use our ti = 0 up front

v (t) = vi − gt

so our new math formula is

yf = yi +

� tf

0

(vi − gt) dt

We can split this into two pieces

yf = yi +

� tf

0

vidt−
� tf

0

gtdt

We have two antiderivitives. The first antiderivitive is just like the previous problem.

Let’s do it first.

yf = yi +
vit

0+1

0 + 1

����
tf

0

−
� tf

0

gtdt

yf = yi + vIt|tf0 +

� tf

0

atdt

yf = yi + vitf − v (0)−
� tf

0

gtdt
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yf = yi + vitf −
� tf

0

gtdt

Now let’s do the second antiderivitive

yf = yi + vitf −
gt1+1

1 + 1

����
tf

0

yf = yi + vitf −
gt2

2

����
tf

0

yf = yi + vitf −



gt2f
2
− g (0)

2

�

yf = yi + vitf −
1

2
gt2f

which looks amazingly like one of our kinematic equations for free fall.

This seems like a lot of trouble to go through for constant motion or even constant

acceleration problems. We got just what we would expect to get, and we already knew

the equations. But not all motion is constant motion! And in many cases we have

an v (t) and a (t) that really depend on t in complicated ways. In such a case, our

antiderivative method may be the only way to get an answer for x (t) knowing v (t) .

Before we take on such a case, there are a few more things about antiderivatives we

should know.

The first is that the official modern name for an antiderivative is “integral” and to find

an antiderivative is called “taking an integral” or simply “integrating.”

The second thing is a graphic interpretation for integrating. Let’s graph the velocity vs.

time for a constant motion case.

v =
∆x

∆t
Let’s say we have an object leaving the origin at ti = 0 and traveling at 2m/ s. The

graph would look like this
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Let’s calculate the final position when tf = 5 s. Our basic constant motion equation

gives us

xf = xi + v∆t

= 0 + v∆t

= v∆t

=
�
2
m

s

�
(5 s− 0 s)

= 10m

Looking at our graph we see that one axes is the time axes and the other is the velocity

axis. We could define a kind of area for the surface of the graph, the part where we

do the plotting, that would be length times width. But the length would be ∆t and the

width would be v. So the total “area” would be just v∆t.
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Notice that this “area” would be

“area” = ∆t× v = (5 s− 0 s)
�
2
m

s

�
= 10m

It seems that the area under the red v (t) line is equal to the final position, xf ! Of course

real areas are constructed of lengths and widths that are both in the same units. So we

don’t mean that actual rectangle area as measured on the page with a ruler. What we

mean is that if we take the value from the graph for the length, ∆t, and multiply by the

width, v, we get xf . And this is what anti­derivatives or integrals do. they find the area

under a curve. And this works for a v (t) that is not constant as well. Consider the next

graph.
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We could find the “area under the curve” by splitting up the “area” into two pieces. A

rectangle and a triangle.

The yellow rectangle has a width of 4m/ s and a length of 5 s. So the rectangle has an
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“area” of 20m. The triangle has a height of 53.0 ms and a base of 5 s. So the area is

Atriangle =
1

2
bh

=
1

2
(5 s)

�
53.0

m

s

�

= 132. 5m

so the entire “area” is

xf = 20m+ 132. 5m

= 152. 5m

And, indeed, if we were to plot the position vs. time graph for this motion we would

see that xf = 152.5m is a reasonable answer.
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Of course we could do much more complicated motions.
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and with such a complicated motion we can see why our limiting process can turn a

sum

∆x =
N


i=1

v∆t
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into an integral

∆x =

� tf

ti

vdt

If ∆t is large, our “areal under the curve” is only approximate because v∆t is a box

shape and although we could take many boxes and add them up (that is what the sum

says to do) we miss pieces or get extra bits that are not under the curve

But if we let ∆t get smaller our sum becomes a better approximation to the actual “area

under the curve.”

and each time we shrink ∆t it gets better
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until we finally get to an infinitesimal length for ∆t, which we called dt.

and now the “area under the curve” is exact.

If I have a complicated velocity vs. time graph, then my object must be changing its

speed or direction (or both). And we have a name for changing speed or direction. This

is acceleration. Now that we have more powerful ways to think about changing velocity,

it’s time to reconsider acceleration. We will do that after practicing our new math a bit.

Examples of integration

Let’s practice our integral procedure on some example functions. Suppose we have the

function

v (t) =
�
5
m

s3

�
t2

What is the integral from ti = 0 s to tf = 3 s?
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Our procedure tells us to do the following:� tf

ti

udt =

� 3s

0

�
5
m

s3

�
t2dt

=

�
5 ms3

�
t3

3

�����

3s

0

=
5 ms3 (3 s)

3

3
− 5 ms3 (0)

3

3
= 45.0m

Let’s try another. Suppose we have the function

v (t) = 5
m

s
What is the integral from ti = 0 s to tf = 3 s?

This function doesn’t seem much like a function, but we remember that 1 = t0 so we

could write our function as

v (t) = 5
m

s
t0

Then we just use our integration procedure:� tf

ti

udt =

� 3s

0

�
5
m

s

�
t0dt

=

�
5 ms

�
t1

1

�����

3s

0

=
5 ms (3 s)

1

1
− 5 ms (0)

1

1
= 15m

We will have many more opportunities to practice this new math skill!

Velocity from acceleration

We can use our new math in another way! Recall that we started with constant motion,

v =
∆x

∆t
and we found that for constant motion

v =
dx

dt
and we rewrote this to be

xf = xi + v∆t
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If we plot the constant motion velocity, we get a straight line

0 1 2 3 4 5
0

5

10

15

t(s)
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and then we interpreted v∆t as the area under a v vs. t graph

xf = xi + area under a v vs. t graph

and we found that if we added up many v∆t segments with ∆t very small so we called

it dt, we could always find the area under a v vs. t graph using an integral

xf = xi +

� tf

ti

vdt

But earlier in our lecture we have been working with constant acceleration. And we

recall that acceleration is

a =
∆v

∆t

We could rewrite this as

vf = vi + a∆t

and we recognize this as one of our constant acceleration equation set of equations. If

we make ∆t so small that we could call it dt, we would have

a (t) =
dv

dt
and we have something grand! We recognize this derivative of the velocity as a function

of time is the acceleration! Now suppose we know our acceleration. We cam use our

new math to find our velocity from our acceleration! We could write our acceleration

equation as

dv = a (t) dt

to find an infinatismal change in velocity dv in a infinatismal elapsed time dt. To find a

bigger change ∆v we would add up a whole lot of smaller chagnes dv.

Think, if we plot a constant acceleration, we get a straight line
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It sure looks like we could interpret a∆t as the area under a a vs. t graph

vf = vi + area under a v vs. t graph

So if we add up many a∆t segments with ∆t very small so we called it dt, we can find

the area under a a vs. t graph using an integral

vf = vi +

� tf

ti

adt

We have a way to find the velocity as a function of time knowing the acceleration! We

get to use our integral process again! Let’s try some problems using these new ideas.

Look at the graph below. If the initial velocity is zero, what would be the final velocity?
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The “area” under the curve would be

Acurve =
1

2
bh

=
1

2
(10 s)

�
20

m

s2

�

= 100
m

s

Let’s try the same problem, but using the integral. The acceleration function is a straight

line

a (t) =
�
2
m

s3

�
t + 0

so

vf = vi +

� tf

ti

adt

would be

vf = 0 +

� 10 s

0

�
2
m

s3

�
tdt

=

�
2 ms3

�
t2

2

�����

10 s

0

=
� m
s3

�
t2
���
10 s

0

=
� m
s3

�
(10 s)2 − 0

= 100
m

s

What we have done is quite profound. We developed a process that will allow us to find

the acceleration as a function of time given the velocity as a function of time, and the

velocity as a function of time given the acceleration as a function of time. And we have

a process to find the velocity as a function of time if we know the position and position

as a function of time if we know the velocity.

position and velocity velocity and acceleration

v = dx(t)
dt

x (t) = xi +
� tf
ti

v (t) dt a = dv(t)
dt

v (t) = vi +
� tf
ti

a (t) dt

These equations work for constant motion, constant acceleration, and all motion in

general!

Two dimensional motion

We have talked about motion in the x­direction and motion it the y­direction. So far we
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have our velocity as given by either

−→v x =
−→
∆x

∆t
or

−→v y =
−→
∆y

∆t
depending on which way our object is going. But what if our object isn’t going right

along the x­axis or the y­axis? What if it is going in some direction between these

axes? We should realize that ∆x and ∆y are just parts of our vector displacement ∆r.

So for this case, −→v x and −→v y must be parts of a vector velocity as well! We can write

our velocity as

−→v =

−→
∆r

∆t

This works in any direction or combination of directions. But now our position is given

by a vector. We have learned about vectors already. But there is more to know! Let’s

review what we know so far, then we will launch into new vector understanding.

We already know that some things in the universe have direction. And that direction is

important. If you want to buy groceries in IF but end up in Ashton instead, things are

not so good!

We will use the mathematical idea of a vector to describe these things that have

direction. We draw a vector with an arrow. The arrow seems natural because it has both

a direction that it points and a length. We can use the length of the arrow to show the

magnitude of the vector. For example, a velocity is a vector quantity. We might travel at

26m/ s north. The 26m/ s is the magnitude of the vector. The “north” is the direction.

We could draw an arrow to represent this.
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Notice that we draw the arrow starting at the point (labeled P, for “position point”).

This is always true for instantaneous vector values. We draw the vector starting at

the point. The length of the arrow represents the 26m/ s The direction is given by

the direction the arrow points. In this system for representing vectors, the magnitude

cannot be negative. The magnitude is the amount of something, like speed. Negative

speed does not make sense. We will only use positive values for magnitudes. But, you

might say, I can write a velocity for a one­dimensional problem like −26m/ s. But

remember the minus sign is the direction. In a one­dimensional problem, the minus

sign means “to the left.” So it is a direction. The 26m/ s is still a magnitude and it is

still a positive value. When you put the 26m/ s together with the minus sign, then it is

a vector that tells you that the object is traveling to the left at with a speed of 26m/ s.

Our notion for the magnitude of a vector is a set of absolute value signs

magnitude of −→v =
��−→v
��

but this is a lot to write, four individual characters required to make the symbol for

a magnitude. So it is customary to write the magnitude of the vector with the same

symbol as we use for the vector, but without the arrow.

magnitude of −→v =
��−→v
�� = v

so −→v is a vector and v is a magnitude. Now you see why v is the symbol for speed!

Speed is the magnitude of a velocity. So naturally the symbol for speed is v.Note that

in one dimensional problems being this careful with notation was not so important

because we used the symbol for the vector as the magnitude and a plus or minus sign

for the direction. But as we go to two and three dimensions, just using a plus or minus

for direction won’t work. So it pays to be careful and write −→v for a vector and v for a

magnitude.

It is very important to realize that both the magnitude and direction of an instantaneous

vector quantity like velocity or acceleration represent values at a single point, P. The

vector stretches to the right beyond the point, P, but the magnitude is the speed when

the object was at point P and it does not tell us about any other point. For example,

here is a drawing with the velocity show for a nearby point, Q drawn in blue so we can

see it.
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The green velocity vector from point P would completely cover the point Q and it’s

velocity vector! If we hadn’t changed color, you might not know which arrow head

went with which vector. Notice that the speed at Q is much less than it is at point P.

The green vector −→v P does not represent the speed at Q. A vector will extend beyond

the point, but it only gives us information about what happens at its single point.

You might wonder how long to make the arrows for our drawings. For position vectors

it is easy to know. A position vector must be as long as the displacement between a

point and the origin. For example, here is our point P again, but this time with an ori­

gin drawn so we can see where it is within a coordinate system.

The position vector, −→r p, must reach from the origin to the point P

This is different than the rule we just learned about velocities where the velocity vector

would start at the point, P. But how long should the velocity vector be? Really we can

choose any length we want for a velocity vector. Once we have chosen a length for a

particular problem, we have to draw all other velocity vectors for that problem to the

same scale. So, given our velocity at point P of 26m/ s, a velocity of 13m/s would
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have to be half as long.

I is also important to realize that by “direction” we are talking about a direction like a

compass direction. Both of the vectors in the next figure are pointing the same direction.

Notice that the object passing through P and the object passing through Q are going

the same direction but will never meet. The will not even get closer together! Going the

same compass direction is not “going to the same place.”

Of course there are quantities in physics that don’t have direction. Examples are mass

and temperature. Mass does not have a direction at all. We don’t say “your mass

is 75 kg due north.” That would make no sense. Temperature might seem to have a

direction. We say it temperature is going up or going down. But this is not a compass

direction. By this we only mean the temperature is rising or lowering, not that it is

going north or south. Such quantities are called scalar quantities.

Let’s consider an example. Suppose we are again watching a race from above. One car

travels the straight­line path from Start to Finish. Another travels the curved line. Both

arrive after the same time interval ∆t. Do both have the same displacement ∆x? The

answer is, yes.
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We can see that vector displacement is equivalent to a straight line path, what we might

colloquially call “as the crow flies.” But vector displacement might not be the actual

path taken by the object.

∆−→r = −→r f −−→ri
only deals with the beginning and ending points.

Vector Addition revisited

You have landed a nice job on campus grading papers for PH121 (after you get your

“A” in this class). Suppose you agreed to work for $10.00 an hour. And most grading

jobs allow you to work about 10 hours per week.4 Then in a month you would earn

about $400. But when you get your pay check, will it be for $400 dollars? Of course

you know the answer is “no.” The $400 is called your “gross” pay. It is how much you

earned. But you have to pay taxes, and the taxes, and insurance costs, and so forth are

taken out of your paycheck before you ever see the money. You might get $230 dollars

that actually comes to you. The $230 is called your “net” pay. I’m not sure where these

words come from. I don’t consider the larger amount to be “gross.” I would like to have

all that money to pay for food and rent, etc. But these are the words use by the financial

people to describe our pay. And one of these words is useful in physics.

The word “net” decribes the part of the pay check you can do things with. The word

“net” in physics is the part that actually mattered. Let’s take our race car example

4 If you need more hours, you can grade for two classes.
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again. All that mattered was how far the cars went toward the finish line. Not the actual

distance traveled. Our displacement is a “net” value, because it is the part that actually

mattered. Let’s take another example. Suppose we send a child to a mail box to post a

letter. Here is the path of the child in blue.

The path you wanted the child to travel is in red. The red arrow is the path that would

get the job done. The part that actually mattered to you, the parent. It is the net

displacement you wanted (get the letter to the box).

Notice that if we use vector addition to add up all the blue child displacements, we

would end up with the red displacement! We will use the word “net” to mean “add

vectors” in this class.

Our child going to the mailbox is fun to think about, but to learn the math of vector

addition let’s take on a simpler example.
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and let’s say that

r1 = 40m

r2 = 30m

what would −→r net =
−→r 1 +

−→r 2 be? To answer this we need to find both the magnitude

and the direction of −→r net. Let’s start with the magnitude.

From our trigonometry experience we can see that finding the magnitude is an easy

problem. Our position vectors form a right triangle. We use the Pythagorean theorem

rnet =
	

r21 + r22

to get

rnet =

	
(40m)2 + (30m)2

= 50m

Now we need to find the direction of −→r net. For our class, we will define the direction

like a compass direction measured from the x­axis. We use Greek letters for angles, so

our direction is the angle θ shown in the next figure.
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Recalling our trig knowledge, we can see that

tan θ =
∆r2
∆r1

so the direction θ would be

θ = tan−1
�

r2
r1

�

We can use this to solve for the direction in our example

θ = tan−1
�
30m

40m

�

= 0.643 5 rad

= 36. 870 ◦

= 37 ◦

And we have our solution,
−→r net = 50m at 37 ◦

The answer needs both parts, magnitude and direction.

Of course, this problem would have been harder if our displacement −→r 1 and −→r 2 did

not form a right angle. For such a problem, we could use the law of sines or law of

cosines from trigonometry (but we won’t, we are working our way toward a better way

to do this!).

Let’s go back to our child mailing a letter. Suppose the displacements involved are as

shown in the next figure
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What is the magnitude of the velocity of the child if the trip took 10min? Velocity uses

net displacement. It only cares about what got the job done. So only our starting and

ending positions matter. Then
−→r net =

−→r mailbox −−→r door

and according to the figure, ∆rnet = 2.0m. The duration ∆t is 10min = 600.0 s. So

the magnitude of the velocity is

v =
2.0m

600.0 s
= 3. 3× 10−3

m

s
which is small, but considering all the stops the child actually made, it is reasonable.

Direction would be harder, needing us to actually add up all the vector displacements.

Or we could use a compass or protractor to measure the direction. Let’s do the latter.

It looks like −→r net has a direction of about 45 ◦.

It would be nice if there were a better way to find the magnitude and direction of the net

displacement without resorting to quite so much trigonometry or giving up and doing a

measurement. And our right triangle gives us an idea of what that better way might be.
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We have been using vectors for some time now. And we know how to add and subtract

vectors graphically. In a previous problem we were able to use math to find the

magnitude and direction of the net displacement, but that was a special case because the

displacements −→r 1 and −→r 2 formed a right angle. But in our mailbox problem, this was

not the case. It would have been nice if our child had only made turns at right angles.

But it is not realistic to require that of all moving objects (especially a child).

It would be nice if there were a way to turn a hard problem like the child’s displacement

into an easier problem like the right angle displacements.

And there is....

We will work our way up to making our displacement problems all easier using a clever

trick, one we learned about with our sledder a few lectures ago. It will be easier to see

how this works if we have a problem to work on, so here is one that is simpler than our

child’s displacement.

We wish to find
−→r net =

−→r 1 +
−→r 2

where −→r 1 = 40m and now −→r 2 = 35m. The angle between −→r 1 and −→r 2 must now be

larger than 90 ◦. And our intuition tells us that −→r net must be larger in this case than it

was in our previous problem. But we know that −→r net could come from many different
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paths, and −→r net only depends on the stopping and starting points. So any of these

many paths will work so long as the beginning and ending points are the same.

So suppose that we had two new vectors −→r x and −→r y that also add up to −→r net. And

suppose −→r x and −→r y form a right angle. Then if we knew −→r x and −→r y we could use

the Pythagorean theorem and tangent function just like in our previous problem.

The only problem is that we don’t know the length of −→r x and −→r y. But notice that
−→r x =

−→r 1+ a little bit more. For now let’s call the little bit more −→r a so then
−→r x =

−→r 1 +−→r a

And further notice that there is a relationship between −→r 2, −→r y, and −→r a
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they form a right triangle. Then we can say that
−→r 2 =

−→r a +
−→r y

We have broken −→r 2 into two parts −→r a, and −→r y that form a right angle. Since we can

view−→r a, and −→r y like parts of −→r 2, let’s relabel them

We will call −→r a = −→r 2x so we know it is part of −→r 2. The x is appropriate because
−→r 2x is along the x­axis. We will also call −→r y =

−→r 2y because it is part of −→r 2 but it is

in the y­direction.

Now we can rewrite our solution for −→r net. Before we had
−→r net =

−→r 1 +
−→r 2

but now we can substitute −→r 2x +
−→r 2y in for −→r 2

−→r net =
−→r 1 +−→r 2x +−→r 2y

And we could relabel −→r 1 as −→r 1x to be consistent because −→r 1 is all in the x­direction.

We could even separate −→r net into two parts, a part along the x­axis and a part along

the y­axis.
−→r net = (−→r 1x +−→r 2x) + (−→r 2y)

and we could name the parts. The first part (in parenthesis) could be called
−→r netx =

−→r 1x +
−→r 2x
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and the second part
−→r nety =

−→r 2y

And if you have been following carefully you will recognize that
−→r netx = −→r x

−→r nety = −→r y

where the “net” just tells us we are considering how far we actually got in the x and

y­directions. So we have found a new way to write our two vectors that make the

problem −→r net =
−→r 1 +−→r 2 easier by turning it into a right triangle problem!

Now all we have to do is use the Pythagorean theorem to find rnet

rnet =
	

r2netx + r2nety

=
	
(r1 + r2x)

2 + r22y

and the direction is given by

θ = tan−1
�

rnety
rnetx

�
= tan−1

�
r2y

r1x + r2x

�

No matter how complicated the situation, we can separate every vector that is not along

an axis into parts that are along an axis, and then all we have to do is to add up all the

parts that are along each axis to find the net displacement.

Let’s take on the child displacement case again!

None of the child’s displacements are along an axis, so we need to find x­parts and

y­parts for every vector.
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Once we have the parts, we add up all the x­parts separately, treating them like vectors

so they go head to tail.

We also add up all the y­parts separately, placing them head to tail. The two resulting

vectors are the x­part and the y­part of the net displacement (honest, they really

worked!).

But you might have noticed that there is a part missing. We know how to find the x­part

and the y­part of vectors graphically, just make right triangles. But we need to know

how to mathematically find actual magnitudes for these x and y­parts. Fortunately, we

know a little trigonometry! Since all our new vector­part triangles are right triangles,

we know how to find the side lengths!

Suppose again that I have the following vector.
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where I know from measurement, if nothing else, that θ = 60 ◦ = 1. 047 2 rad. Then if

I make a right triangle with x and y­parts of the vector

and using trig we know that

cos θ =
r2x
r2

so

r2x = r2 cos θ

To find the x­part, all we have to do is multiply the magnitude of the vector, −→r 2 by the

cosine of the angle it makes with the x­axis! So in our case, the x­part is just

r2x = 35mcos 60 ◦

= 17. 5m

Similarly, to find the y­part notice that

sin θ =
r2y
r2

so that

r2y = r2 sin θ

and so all we have to do to find the y­part is to multiply the magnitude of the vector,
−→r 2 by the sine of the angle it makes with the x­axis. In our case this gives

r2y = 35msin 60 ◦

= 30. 311m

Armed with this we can do the problem we suggested so long ago.

Suppose we have two displacements r1 = 40m along the x­axis and r2 = 35m at an

angle θ = 60 ◦. What is the net displacement.
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Our procedure is to divide up −→r 1 and −→r 2 into x and y­parts, add up the x and y­parts,

and then use these to find the magnitude of −→r net.

We first find the x­parts of both vectors. Let’s start with −→r 1

r1x = r1 cos (0)

= r1

= 40m

this is because −→r 1 lies right on the x­axis, so the angle from the x­axis is zero. which

makes sense since −→r 1 is along the x­axis. Now let’s do the x­part of −→r 2
r2x = r2 cos (θ)

= 35mcos (60 ◦)

= 17. 5m

We did the x­parts. Now let’s find the y­parts. For −→r 1
r1x = r1 sin (0)

= 0

which makes sense if −→r 1 is all along the x­axis. It shouldn’t have a y­part. And the
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y­part of −→r 2 is

r2y = r2 sin (θ)

= 35msin (60 ◦)

= 30. 311m

To summarize:

r1x = 40m

r2x = 17. 5m

r1x = 0m

r2y = 30. 311m

Next we add up all the x­parts

rnetx = r1x + r2x

= 40m+ 17. 5m

= 57. 5m

and we add up all the y­parts

rnety = r1y + r2y

= 0 + 30. 311m

= 30. 311m

and now we have the sides for our final right triangle

and we can find rnet using the Pythagorean theorem

rnet =

	
(rnetx)

2 +
�
rnety

�2

=

	
(57. 5m)2 + (30. 311m)2

= 65.0m

But we are not done! rnet is a vector so we need a direction. Since we used the Greek
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letter θ already, I called the −→r net direction φ. So, using our trig knowledge

tanφ =
rnety
rnetx

so

φ = tan−1
�

rnety
rnetx

�

= tan−1
�
30. 311m

57. 5m

�

= 0.485 13 rad

= 27. 796 ◦

= 27 ◦

What we have done is deeply profound. We now have an easy way to find the

summation of any number of vectors. The steps are as follows:

1. We convert every vector in the sum into x and y­parts using

vx = v cos θ

vy = v sin θ

where θ is usually different for every vector.

2. Then when we have the x and y­parts, we sum up each set (x or y) separately to find
vnetx and vnety .

3. We then use the Pythagorean theorem

vnet =
	

v2netx + v2nety

and the inverse tangent

φ = tan−1
�

vnety
vnetx

�

to convert the sums, vnetx and vnety into a magnitude and direction for the net
vector.

What we have done is to turn a two­dimensional problem into two easy one­dimensional

problems, and then recombine the two one­dimensional results at the end to make it

a two­dimensional problem again. We break our hard two­dimensional problem into

parts that we know how to do!

We will do this over and over again in this class and in PH123 and in PH 220 and

forever if you are a physics major or an engineer!

The name “x­part” is not very fancy. So let’s give the x and y­parts of vectors a new

name. We call the parts of vectors components of the vectors. So the x­part is called the



142 Chapter 8 Components of vectors

x­component of the vector and the y­part is called the y­component of the vector.

We are now all set to do motion problems in two dimensions.

Vectors in component form

After last lecture, you might have wondered if it wouldn’t be just as well to give the

components of the net vector and dispense with the magnitude and direction. And

indeed, this is a perfectly fine way to express a vector. But we need a little bit of

notation to help with this.

Unit vectors

To help with expressing a vector as components, consider the following vector.

It has a magnitude of exactly 1 with no units. We give it a name, ı̂, pronounced “eye

hat.” It might sound like a restaurant name, but it is a useful little vector. Using this new

vector we could write the x­component of a vector as
−→r x = rxı̂

The first part, rx is the magnitude of the vector. The second part, our ı̂, has a direction,

and it is along the x­axis. It also has a magnitude of 1, but multiplying anything by 1

does not change a value. So the product rxı̂ has a magnitude of rx and a direction along

the x­axis. By looking at rxı̂ you know the magnitude and direction of the component.

Likewise there is another useful vector, ̂
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that also has a magnitude of 1 with no units, but it points in the y­direction. So we

could write the y­component of a vector as
−→r y = ry ̂

Although this makes sense, the beauty of ı̂ and ̂ may not yet be apparent. Let’s write

out −→r as the sum of −→r x and −→r y

−→r = −→r x +
−→r y

but we have new expressions for−→r x and−→r y in terms of ı̂ and ̂, so let’s substitute them

in
−→r = rxı̂ + ry ̂

This completely defines a vector. And it is nice because you can clearly see that a

2­dimensional vector can be thought of as a sum of two 1­dimensional vectors. But it

still has both the magnitude

rnet =

	
(rnetx)

2 +
�
rnety

�2

and the direction

φ = tan−1
�

ry
rx

�

contained within it. Sometimes it is much easier to express a vector as a sum of it’s

components.

Let’s take last time’s example and write it in component form.

We had two vectors,
−→r 1 = 40m∠0 ◦
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where ∠ is the symbol for “at the angle,” and
−→r 1 = 35m∠60 ◦

and we turned this into two easier vectors −→r netx and −→r nety

and find the magnitude and direction as
−→r net = 65.0m∠27 ◦

We got this by finding the x and y­components of −→r 1 and −→r 2
r1x = r1 cos (0)

= r1

= 40m

r1y = r1 sin (0)

= 0

and

∆r2x = ∆r2 cos (θ)

= 35mcos (60 ◦)

= 17. 5m
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and finally

r2y = r2 sin (θ)

= 35msin (60 ◦)

= 30. 311m

Then we added up all the x­parts

rnetx = r1x + r2x

= 40m+ 17. 5m

= 57. 5m

and we added up all the y­parts

rnety = r1y + r2y

= 0 + 30. 311m

= 30. 311m

But now we see that the result could be written as
−→r net = (r1x + r2x) ı̂ + (r1y + r2y) ̂

= 57. 5mı̂ + 30. 311m̂

Last lecture we found the magnitude and the direction for −→r net, we could have just left
−→r net in this new component form using unit vectors.

Notice that what we have done is very profound. We have written our original vectors in

component form, then added up all the x­components and the y­components separately,

and reported the sums as the components of the net vector. We have effectively turned

a two­dimensional problem into two one­dimensional problems. This is huge,

because we know how to do one dimensional problems already! By using components,

we can turn a new, complicated kind of problem into two easy problems that we know

how to do. We will often do this in our class. So it might be good to do another

example.

Let’s add the following two displacements
−→r 1 = 25m at 10 ◦

−→r 2 = 30m at 20 ◦

To do this problem we need to take components of both vectors, but now we know how
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to do this:

r1x = 25mcos (10 ◦)

= 24. 62m

r1y = 25msin (10 ◦)

= 4. 341 2m

r2x = 30mcos (20 ◦)

= 28. 191m

r2y = 30msin (20 ◦)

= 10. 261m

and to find the net vector, we add up all the x­components

rnetx = 24. 62m+ 28. 191m = 52. 811m

and we add up all the y­components

rnety = 4. 341 2m+ 10. 261m = 14. 602m

Then we can write the net displacement as vector in component form
−→r net = 52. 811mı̂ + 14. 602m̂

Notice that −→r net has a vector sign. It is a vector, not just a magnitude, because we have

expressed −→r net in terms of a sum of terms with unit vectors. So it must be a vector. Of

course we could find the magnitude and direction as well

rnet =
	

r2netx + rnet2y

=

	
(52. 811m)2 + (14. 602m)2

= 54. 793m

= 54. 8m

and

φ = tan−1
�

rnety
rnetx

�

= tan−1
�
14. 602

52. 811

�

= 0.269 76 rad

= 15. 456 ◦

= 15. 5 ◦

So we could write −→r net as
−→r net = 54. 8m∠15. 5 ◦
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but the component form is just as good. Often we prefer the magnitude and direction

form of the vector, because it is easy for us humans to interpret. But both forms are

equally valid,





9 Two­Dimensional Accelera­

tion

We have learned how things move in one dimension. We called the study of motion

with constant acceleration Kinematics. So we know the Kinematics of one­dimensional

motion. But if you have played futbol5 you know that we can have motion in more than

one dimension. We also have studied vectors. With the powerful mathematical notion

of vectors, it is time to see how we can study motion in more than one dimension. We

will start with two dimensions, but the extension to three or more dimensions is trivial6

once we understand two dimensions.

Acceleration in Two Dimensions

We learned in one­dimensional kinematics that acceleration was very important for our

understanding of motion. It is reasonable to assume that it will be just as important

for our understanding of two­dimensional motion. So let’s start by reviewing what we

know about acceleration. Our equation for acceleration is

aave =
∆v

∆t
but now that we know more about vectors, we should ask, is acceleration really a vector

quantity?

Acceleration has a magnitude, we know that. it matters whether the acceleration is in

the same direction as the velocity or not.

5 Americans call this soccer, but if you have played American football, motion in more than one dimension
is just as important.

6 To physicists, “trivial” means that once you have slogged through the hard work you are doing, you
should be able to see how to do a little more without it being so much work to understand the little bit more.
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So acceleration does have a direction . Acceleration must be a vector. We can write our

equation for average acceleration as
−→a ave =

∆−→v
∆t

But this acceleration vector seems different than a position vector. To get a feeling for

what an acceleration vector means, let’s practice our vector principles in one­dimension

with acceleration. Suppose we have an object moving and the object’s velocity is given

by the motion diagram.

Let’s say that the initial speed is 2m/ s and the final speed is 6m/ s and let’s say that

one second has transpired between our initial and final states, ∆t = 1 s. What is the

acceleration? We would take
−→a ave =

6 ms − 2 ms
1 s

= 4
m

s2

and since the answer is positive we would say that the acceleration is to the right.

But we can do this graphically too. Recall that

−→a ave =
∆−→v
∆t

and we know that

∆−→v = −→vf −−→vi
and we even know how to do this graphically. We take −→vi and we turn it around to

make it −−→vi and we add the result,−−→vi, to −→vf by placing the tail of −−→vi on the tip of
−→vf . Then we draw a vector from the tail of −→vf to the tip of −−→vi. It might look a little

like this



151

We could measure out the lengths so that we have vf has a length of 6 and vi with a

length of 2. The we could measure ∆−→v to have a length of 4. But that is a lot of work

to do all the measuring. And since we know the magnitude of −→vf and −→vi, it is easier to

do the math than to draw the picture and measure. We can say that

−→a ave =
4 ms
1 s

= 4
m

s2

and none of this is surprising. This is really just what we have been doing all along.

But we have to give a direction as well as a magnitude. And we can use our new unit

vectors to provide the direction.
−→a ave = 4

m

s2
ı̂

The drawing does remind us of the need for a direction.

You may think that all we have done is complicate things with our new notation, but

now let’s do a problem in two dimensions. Let’s consider an object that is moving in a

circle. We can use the same magnitudes for vi and vf as before.

vi = 2m/ s and vf = 6m/ s with the same ∆t = 1 s. But now the vf has an angle of

θf = −55 ◦ so the vectors are pointing in different directions in two dimensions.

Still, we will do just the same thing we did before. Our acceleration will still be given
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by
−→a ave =

∆−→v
∆t

where∆−→v = −→vf −−→vi. but now we need to add −→vf and −−→vi as vectors. To do this we

take −→vi and we turn it around to make it −−→vi and then add the result to −→vf by placing

the tail of −−→vi on the tip of −→vf . Then we draw a vector from the tail of −→vf to the tip of

−−→vi. It might look a little like this

Notice that I recopied my vectors. I did not do the vector addition on the original dia­

gram. This makes it much easier to do the vector addition. Once we know the length

and direction of ∆−→v , we divide by ∆t and we have our acceleration. Note that ∆t

does not have a direction. The direction of our acceleration must come from ∆−→v . If we

draw our ∆−→v and our −→a ave on our original diagram, it is easy to see they point the

same direction.

Usually we just place −→a ave on our diagram in between vi and vf along the trajectory.
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That is because it is an average value.

But what do we do about the magnitude of the vector −→a ave? In one dimension I could

just add vf − vi and divide by ∆t. But this won’t work here. Look at the length ∆v

compared to the length vf. They are nearly the same. This is really different than when

they were all in the same dimension.

Working in components

The answer to our dilemma from the last section is to do our math in components of

the vectors. Think, back to our one­dimensional problem. All we had to do was just

add up the numbers to get ∆v (remember one was negative, so we added a negative to

subtract). Wouldn’t it be great if we could reduce our difficult two­dimensional problem

to two one­dimensional problems? Then we would know how to do the problem, and it

would be easy!

And that is just what we are going to do. suppose we have

−→a ave =
∆−→v
∆t

and

∆−→v = −→vf −−→vi
as before. But we could make vector components for−→vf and−→vi. Our vector−→vi is shown

below.
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We can use our basic equations for taking components of vectors to find the components

of −→vi

vix = vi cos θi

viy = vi sin θi

but θi = 0 (see the diagram) because −→vi is all in the x­direction so

vix = vi cos (0) = 2
m

s
viy = vi sin (0) = 0

Now let’s do the same process for −→vf

vfx = vf cos θf

vfy = vf sin θf
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and this one is harder because θf is not zero. Suppose θf = −55 ◦ then

vfx = vf cos θf = 6
m

s
cos (−55 ◦) = 3. 441 5

m

s

vfy = vf sin θf = 6
m

s
sin (−55 ◦) = −4. 914 9 m

s
and now we can complete our two one­dimensional problems. First for the x­direction

we now have the one­dimensional problem that looks like this:

and this is just the type of one­dimensional problem we did before! We know how to do

it.

∆vx = vfx − vix

= 3. 441 5
m

s
− 2

m

s

= 1. 441 5
m

s
But we also have a one­dimensional problem in the y­direction. It looks like this:

It might be vertical, but it is just like our x­direction problem. We just take the

difference between vfy and vfi

∆vy = vfy − viy

= −4. 914 9 m
s
− 0

m

s

= −4. 914 9 m
s

And now we have ∆vx and ∆vy! But really, we wanted ∆−→v . We need to combine our

x and y­component solutions into a solution for the two­dimensional problem. And we



156 Chapter 9 Two-Dimensional Acceleration

know there are two ways we could write it. We could give components and unit vectors,

or magnitude and direction. Let’s do both. The first is easy

∆−→v = 1. 441 5
m

s
ı̂− 4. 914 9

m

s
̂

And this is our answer! We have made a two­dimensional motion problem into two

one­dimensional problems, and then combined the results of those two one­dimensional

problems to form the answer of the two­dimensional problem.

But, of course, there is a second way to do the combination of our two one­dimensional

results. We can find the magnitude and direction of ∆−→v . To do this, we need to think a

bit. The vector ∆−→v makes an angle, −θ, with respect to the x­axis.

Note that ∆v, ∆vx, and ∆vy form the sides of a right triangle
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so to find ∆v, we can use the Pythagorean theorem

∆v =
	
∆v2x +∆v2y

and since it is a right triangle, we could find the direction of ∆v using a tangent function

tan θ =
∆vy
∆vx

so that

θ = tan−1
�
∆vy
∆vx

�

Let’s try these for our case,

∆v =

��
1. 441 5

m

s

�2
+
�
4. 914 9

m

s

�2

= 5. 121 9
m

s
and

θ = tan−1
�−4. 914 9 ms

1. 441 5 ms

�

= −1. 285 5 rad
= −73. 654 ◦

so we could report like this our vector ∆−→v like this

∆−→v = 5. 1
m

s
∠− 73. 7 ◦
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Then our acceleration is given by

−→a =
∆−→v
∆t

=
5. 1 ms
1 s

∠− 73. 7 ◦

= 5. 1
m

s2
∠− 73. 7 ◦

Which is our answer. This was a little harder, but often conveys the meaning of the

result better to other humans. But just the same, the component form of the solution is

equivalent and is some times convenient
−→a = 1. 4

m

s2
ı̂− 4. 9

m

s2
̂

and either representation would work.

Again let me mention that we have done something profound. We have split a

two­dimensional problem into two one­dimensional problems. That made it so we

could solve the problem with what we already knew how to do. We did this by using

components of the vectors and treating the x­components as one one­dimensional

problem and the y­components as another one dimensional problem. Then at the very

end we combined the results of our x­problem and our y­problem into the final vector.

Doing this is the heart and soul of two­dimensional kinematics.

Two­Dimensional Kinematics

Armed with this technique, let’s study the motion of things in two­dimensions in more

detail. Let’s start with displacement in two­dimensions

∆−→r = ∆x̂ı +∆y̂

Notice that our displacement, itself, can be split into components.

And recall that average velocity is just

−→v ave =
∆−→r
∆t

=
∆x̂ı +∆y̂

∆t

=
∆x

∆t
ı̂ +

∆y

∆t
̂

but we can recognize ∆x/∆t as vx and ∆y/∆t ad vy so
−→v ave = vxı̂ + vy ̂
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and we also know that
−→a ave =

∆−→v
∆t

=
∆vxı̂ +∆vy ̂

∆t

=
∆vxı̂

∆t
+
∆vy ̂

∆t
= axı̂ + ay ̂

We have proven mathematically that our technique of seeing a harder, two dimensional

problem as a combination of easier one­dimensional problems really does work. It

works for displacement, velocity, and acceleration. All the motion can be described in

terms of components.

We remember that we had a set of equations for one­dimensional motion under constant

acceleration.

∆x = vi∆t+
1

2
a∆t2

vf = vi + a∆t

v2f = v2i + 2a∆x

xf = xi +

�
vf + vi

2

�
∆t

But suppose we now have acceleration in two dimensions. No problem! If our

acceleration is constant, then both ax and ay will be constant. And we can simply

split our two­dimensional constant acceleration problem into two problems, one for

each dimension. But we will need twice as many equations, one whole set for each

one­dimensional problem part.
∆x = vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

xf = xi +
�
vfx+vix

2

�
∆t

∆y = viy∆t+ 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay∆y

yf = yi +
�
vfy+viy

2

�
∆t

You are probably wondering if all this still works for instantaneous velocities and

accelerations. And the answer is yes. We simply take the limit as ∆t → 0 and

−→v = lim
∆t→0

−→v ave =
d−→r
dt

=
dx

dt
ı̂ +

dy

dt
̂

and
−→a = lim

∆t→0

−→a ave =
d−→v
dt

=
dvx
dt

ı̂ +
dvy
dt

̂

= axı̂ + ay ̂

This brings up an interesting question, what happens to our diagram for motion as

∆t → 0? In the next figure, we shorten ∆t from one frame to the next. In the last

frame, ∆t → 0. So ∆t gets smaller and smaller as we go down the page in the figure.
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Notice that ∆v also gets smaller and smaller until in the last figure ∆v → 0. But notice

that the acceleration is not zero. This is what we expect from the math we did above.

The dt may be small but so is d−→v so the ratio of the two is not zero.

But now we have an instantaneous a vector that is right on top of the vi vector. That is

how we will draw the instantaneous value of the acceleration. Also notice that as we

move along the trajectory (the path the object follows), the velocity vectors are always

tangent to the trajectory path. This is also just what we expect from the math.

−→v =
dx

dt
ı̂ +

dy

dt
̂

and dx/dt is the slope of the trajectory in the x direction and dy/dt is the slope of the

line in the y direction. Combining them should give the slope along the trajectory, and

that slope will be tangent to the actual path.

This gives us an idea. We know we can express our acceleration a in terms of ax and

ay,
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but for our circular problem, we realize that as we go around the circle, the velocity will

stay tangent to the circle. Think of the component of the acceleration ax in the picture.

This component is making the object speed up because it is in the same direction as

the speed. But what is the other component, ay doing? Think that acceleration is a

change in velocityso acceleration can change speed or direction. The x component is

changing speed, but the y­component is making the object turn or change direction. It

might be convenient to keep our acceleration in terms of the part that makes the object

speed up and the part that makes the object turn. The part that is parallel to the velocity

is the speed­up­part. The part perpendicular to the velocity is the turn­part. We could

define a component of the acceleration that is tangent to the trajectory. That will be the

speed­up­part. And we could define a component perpendicular to the tangent. That

would be the turning part.

This way we always know what is doing the speeding up and what is doing the turning.

Notice that the turning­part always points to the center of the turn. A line from the
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center to the object would be along the same line. And we call a line from the center

of a circle to the edge of the circle a “radius” so it is tradition to call the turning part

of the acceleration the “radial acceleration” and the speeding­up part the “tangential

acceleration.” These names fit our “speeding­up” and “turning” acceleration parts even

when the object has moved to another part of the circle. A math savvy student would

immediately recognize these terms (radial and tangential) from polar coordinates. We

will often use polar coordinates for motion in a circle.

Two dimensional examples

Let’s try a problem with two­dimensional motion. Suppose we have Duke Mudwalker’s

Q­wing fighter taking off. The Q­wing must go up and forward at the same time.

Suppose the Q­wing has ax = 3m/ s2 and ay = 6m/ s2. What is the speed of the

Q­wing after ∆t = 2 s?

This is a two­dimensional motion problem with constant acceleration. We need to split

our problem into two one­dimensional problems. In the x­direction we have

vix = 0

ax = 3
m

s2

∆t = 2 s

and in the y­direction

viy = 0

ay = 6
m

s2

∆t = 2 s

Notice that the ∆t values must be the same! We need two sets of equations

∆x = vix∆t+ 1
2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

xf = xi +
�
vfx+vix

2

�
∆t

∆y = viy∆t+ 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay∆y

yf = yi +
�
vfy+viy

2

�
∆t

Let’s do the x part first. If we underline the parts we know

∆x = vix∆t+ 1
2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

xf = xi +
�
vfx+vix

2

�
∆t
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We can see that the second equation in the x set will give us the final x speed

vfx = vix + ax∆t

vfx = ax∆t =
�
3
m

s2

�
(2 s)

= 6.0
m

s
Now let’s do the y part.

∆y = viy∆t+ 1
2ay∆t2

vfy = viy+ay∆t

v2fy = v2iy + 2ay∆y

yf = yi +
�
vfy+viy

2

�
∆t

Again the second equation in the set will work

vfy = viy + ay∆t

vfy = 0 + ay∆t =
�
6
m

s2

�
(2 s) = 12

m

s
then our the magnitude of the final velocity will be

vf =

��
6.0

m

s

�2
+
�
12

m

s

�2

= 13. 416
m

s
and the direction will be

θ = tan−1
�
12 ms
6.0 ms

�

= 1. 107 1 rad

= 63. 432 ◦

We followed our pattern for solving a two­dimensional motion problem:

1. Split the two­dimensional problem into two one­dimensional problems by taking
components of the vectors using the general form

Vx = V cos θ

Vy = V sin θ

where θ is measured from the positive x­axis.

2. Solve the two one­dimensional problems separately

3. Combine the results of the one­dimensional problems together using

V =
	

V 2
x + V 2

y

and

θ = tan−1
�

Vy
Vx

�

for the vector V that you are solving for, whether velocity, acceleration, or even
displacement. If we use the first equation in our sets for both x and y we can get the
position vs. time. A plot of the x and y positions for each time gives us a trajectory



164 Chapter 9 Two-Dimensional Acceleration

plot. A plot of the Q­wing trajectory looks like this.

Is it reasonable that the Q­wing goes in a straight line?

We can check this by doing a few calculations. After ∆t = 2 s

∆x = (0) (2 s) +
1

2

�
3
m

s2

�
(2 s)2

= 6.0m

∆y = (0) (2 s) +
1

2

�
6
m

s2

�
(2 s)2

= 12.0m

and after ∆t = 4 s

∆x = (0) (4 s) +
1

2

�
3
m

s2

�
(4 s)2

= 24.0m

∆y = (0) (4 s) +
1

2

�
6
m

s2

�
(4 s)2

= 48.0m

and we can plot these
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to see that we are right. It is linear.

A moment’s thought will tell us that this has to be right. Suppose we rotated our axes

by an angle

φ = tan−1
�
6 ms2

3 ms2

�

= 1. 107 1 rad

= 63. 432 ◦

We’ll, say we rotate by a negative φ so that our points are all on the x axes.
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Then our acceleration would be a constant

a =

��
3
m

s2

�2
+
�
6
m

s2

�2

= 6. 708 2
m

s2

and our graph would look like this.

so indeed, we should have a straight line.

But two dimensional problems aren’t always so easy. What if the Q­wing was already

moving? or if it only experienced acceleration in only one direction?

Let’s try a more difficult problem. Suppose we have a car moving on a circular track.

When we first observe the car it is going 20m/ s at 0 ◦. Then 7 seconds later the car is

going 53m/ s at −50 ◦. What is the average acceleration of the car?



Two dimensional examples 167

This is a two dimensional problem. I don’t know if the acceleration is constant or not.

All I have is a before and after picture. And we want an average acceleration, so I will

call this an average motion problem.

Our basic equations would be
−→v ave =

∆−→r
∆t

−→a ave =
∆−→v
∆t

but we have to split these into x and y­parts. So let’s write these as

vavex =
∆x

∆t

vavey =
∆y

∆t

aavex =
∆vx
∆t

aavey =
∆vy
∆t

We have split our two­dimensional equations into two one­dimensional equations.

We have several known values from the problem statement.

vi = 20
m

s
θi = 0 ◦

vf = 53
m

s
θf = −50 ◦

∆t = 7 s

but we need to split these initial values into x and y­parts. To do this we need to include

our vector components equation set.

vx = v cos θ

vy = v sin θ

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

We use these equations to turn our initial and final velocity vectors into initial and final

velocity x and y­parts.

vix = vi cos θi

viy = vi sin θi
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vfx = vf cos θf

vfy = vf sin θf

Now we can attempt to solve the problem. We are going to want a magnitude and

a direction or at least the component form for the average acceleration. So our plan

should be to find the x and the y parts of the acceleration, and then combine them for

the total acceleration.
−→a ave = aavex ı̂ + aavey ̂

so we need to solve two­one dimensional problems, one for aavex and one for aavey .

Let’s start with aavex .

aavex =
∆vx
∆t

=
vfx − vix

∆t

=
vf cos θf − vi cos θi

∆t
and it looks like we know all the parts, so we have solved for aavex . Now for aavey

aavey =
∆vy
∆t

=
vfy − viy

∆t

=
vf sin θf − vi sin θi

∆t
so we could report symbolically

−→a ave =
vf cos θf − vi cos θi

∆t
ı̂ +

vf sin θf − vi sin θi

∆t
̂

We have some zeros. So let’s use them

−→a ave =
vf cos θf − vi cos (0

◦)

∆t
ı̂ +

vf sin θf − vi sin (0
◦)

∆t
̂

and we know that cos (0 ◦) = 1 and sin (0 ◦) = 0 so we can write our solution as

−→a ave =
vf cos θf − vi

∆t
ı̂ +

vf sin θf

∆t
̂

This might be a better symbolic answer. Then putting in the rest of the numbers gives

−→a ave =
53 ms cos (−50 ◦)− 20 ms

7 s
ı̂ +

53 ms sin (−50 ◦)
7 s

̂

or
−→a ave = 2. 0

m

s2
ı̂− 5. 8

m

s2
̂

and this seems to make sense. From looking at the ∆−→v direction we can see that −→a ave

should point to the right a little and down a little more.
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Of course we could report this in magnitude and direction form as well

aave =

��
2. 0

m

s2

�2
+
�
−5. 8 m

s2

�2

= 6. 135 1
m

s2

and

φ = tan−1
�−5. 8 ms2

2. 0 ms2

�

= −1. 238 7 rad
−70. 972 ◦

which seem reasonable.





10 Projectile Motion

Consider two people playing catch. One person throws the ball toward the other person.

The ball rises in the air as it is thrown. As it travels, it reaches a maximum height, and

then drops down into the glove of the catcher.

This is two dimensional motion, and it is free fall! So we know how to approach this

type of problem. Let’s look at it in details in this lecture.

What is Projectile Motion (and what is not!)

First off, you may wonder, how did this motion start? Well of course the person

throwing the ball must accelerate the ball. To make our problem more exciting, in the

next figure, we have a cannon shooting a ball as our staring point. The cannon somehow

makes the acceleration.
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The important part for now is that while the ball is in the cannon, there is an acceleration

acting on the ball. After the ball leaves the cannon the cannon’s acceleration no longer

acts on the ball (think of our rocket problem when the fuel was spent). For this part of

our problem there is the acceleration due to gravity while the ball is in flight. And then

there is another different acceleration as the ball crashes into the ground that slows the

ball to a stop. Our kinematic equations can only deal with one constant acceleration

at a time. Like in our rocket problem we did, we will need to split this complicated

problem into three simpler problems, one for each time segment when the acceleration

is constant. We would have part 1 when the ball is in the cannon. Part 2 would be when

the ball is in the air. And part 3 would be when the ball is burrowing into the ground.

For today, I want do only one of these parts, part 2 where the ball is in flight. We will

consider the ball’s motion only after it is already moving and out of the cannon. We

will leave parts 1 and 2 for a future lecture.

This special case of part 2 when the ball is in flight should seem familiar. Part 2 is

free­fall with an acceleration of −→a = −g̂.

But notice this is a two­dimensional free fall problem! So of course we would try to

turn it into two one­dimensional problems.

First look at the horizontal motion. The figure above shows the velocity of the ball

broken into components. Carefully look at the velocity component in the x direction.

Notice the magnitude (size) of the vector −→v x. It does not change. Is that a surprise?

Well, not really. To see where velocity will change we look for acceleration. We know

there is an free­fall acceleration, −→a = −g̂. The ̂ tells us that this acceleration is all in
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the y­direction. We could say that

ay = −g

and that is all the acceleration we have for our part 2 of the motion that we are studying.

So we know that

ax = 0

Since ax = ∆vx/∆t so if ax = 0 then ∆vx = 0. The x­component of the velocity

cannot change.

Let’s give this special case of free­fall with ay = −g and ax = 0 its own problem type

name. We will call it projectile motion. Because projectile motion is a two dimensional

free fall type problem, we will need two sets of kinematic equations in our projectile

motion equation set, one for x and one for y.

Example of Projectile Motion

Let’s try an example:

Suppose we have a small spring cannon that launches a metal ball with an initial speed

of 7.00m/ s at an initial angle of 60.0 ◦ starting from 0.270m off the ground. What

will the final velocity be just before the ball hits the ground?

This is a PT=Projectile­motion problem. The ball is in free­fall with ay = −g and

ax = 0.

For our picture, let’s draw the motion of the ball and mark the initial and final positions,

velocities, velocity components, and accelerations.
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For our variables we know

xi = 0

yi = 0.270m

yf = 0

vi = 7.00
m

s
θi = 60 ◦

ay = −g

ax = 0

g = 9.8
m

s2

For basic equations we will need two sets of kinematic equations, one for the x­part and

one for the y­part.

where the angle θo is the angle from the horizontal, the angle at which the ball is

thrown. We call θo the projection angle.

Then we have two sets of our motion equations
xf = xi + vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax (xf − xi)

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t + 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay (yf − yi)

yf = yi +
vfy+viy

2 ∆t

and we will need to split our problem into x and y­parts so we need the component of

vectors set of equations

vx = v cos θ

vy = v sin θ

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

Notice that projectile motion problems take two of our previously collected sets of

equations!

Now we are ready to try to solve for the final velocity.

Our two dimensional problem process tells us to split all of the vectors quantities into x
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and y­parts. Most are already done in our list of knowns.

x­parts y­parts
xi = 0 yi = 0.270m
xf =? yf = 0
ax = 0 ay = −g

But we still need to split vi into parts. We use our vector splitting equations

vix = vi cos θi

viy = vi sin θi

and we may not need numbers for these, but let’s get them to practice.

vix =
�
7.00

m

s

�
cos (60 ◦) = 3. 5

m

s

viy =
�
7.00

m

s

�
sin (60 ◦) = 6. 062 2

m

s
We can add these to our known vales

x­parts y­parts
xi = 0 yi = 0.270m
xf =? yf = 0
ax = 0 ay = −g
vix = 3. 5 ms viy = 6. 062 2 ms

Now we take our basic equations and do the marking for what we know.

xf = xi + vix����∆t+ 1
2ax∆t2

vfx = vix����+ax∆t

v2fx = v2ix����+2ax
�
xf − xi

�

xf = xi +
vfx+ vix����

2 ∆t

yf = yi + viy����∆t + 1
2ay∆t2

vfy = viy����+ay∆t

v2fy = v2iy����
+2ay

�
yf − yi

�

yf = yi +

vfx+ viy����
2 ∆t

And let’s use our zeros, and put in ay = −g.

xf = 0 + vix∆t+ 0
vfx = vix����+0
v2fx = v2ix����+0

xf = 0 +
vfx+ vix����

2 ∆t

0 = yi + viy����∆t+ 1
2

�
−g
�
∆t2

vfy = viy����−g∆t

v2fy = v2iy����
+2
�
−g
� �
0− yi

�

0 = yi +

vfx+ viy����
2 ∆t

or just

xf = vix∆t + 0
vfx = vix����
v2fx = v2ix����

xf =
vfx+ vix����

2 ∆t

0 = yi + viy����∆t− 1
2g∆t2

vfy = viy����−g∆t

v2fy = v2iy����
−2g

�
−yi

�

0 = yi +

vfx+ viy����
2 ∆t
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Now let’s look at our set of equations. To find −→v f we need to at least know vfx and

vfy in order to write −→v f in component form. So we need to search our set of equations

and see if we know enough parts that we can solve for vix and viy.

It turns out that vix is fairy easy. From the second equation in our x­set we have

vfx = vix���� = vi cos θi = 3. 5
m

s
It looks like from our third equation in the y­set we can find vfy

v2fy = v2iy����
−2g

�
−yi

�

We solve for vfy

vfy = ±
	�

vi sin θi
�2 − 2 (g)

�
−yi

�

where we will choose the the negative sign by looking at our picture to know that vfy

must be negative.

vfy = −
	�

vi sin θi
�2

+ 2 (g)
�
yi
�

So our −→v f can be written symbolically as

−→v f =
�
vi cos θi

�
ı̂−

�	�
vi sin θi

�2
+ 2gyi

�
̂

but of course we could find the magnitude and diretion of −→v f using our equations for

putting vectors back together because we have vfx and vfy

vf =

�
�
vi cos θi

�2
+

�
−
	�

vi sin θi
�2
+ 2gyi

�2

=

	�
vi cos θi

�2
+
�
vi sin θi

�2
+ 2gyi

and

θf = tan−1


−

	�
vi sin θi

�2
+ 2gyi�

vi cos θi
�




Then we could write −→v f as

−→v f =

	�
vi cos θi

�2
+
�
vi sin θi

�2
+ 2gyi

∠ tan−1


−

	�
vi sin θi

�2
+ 2gyi�

vi cos θi
�




And we know every part of these equations except what we are solving for. Let’s put in
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some numbers now

−→v f =
��

7.00
m

s

�
cos (60 ◦)

�
ı̂−


���
7.00

m

s

�
sin (60 ◦)

�2
+ 2

�
9.8

m

s2

�
(0.270m)

�
̂

= 3. 5
m

s
ı̂− 6. 484 0

m

s


= 3. 50
m

s
ı̂− 6. 48

m

s


or

−→v f =

���
7.00

m

s

�
cos (60 ◦)

�2
+
��

7.00
m

s

�
sin (60 ◦)

�2
+ 2

�
9.8

m

s2

�
(0.270m)

∠ tan−1


−

	��
7.00 ms

�
sin (60 ◦)

�2
+ 2

�
9.8 ms2

�
(0.270m)

��
7.00 ms

�
cos (60 ◦)

�




= 7. 368 3
m

s
∠− 1. 075 8 rad

= 7. 368 3
m

s
∠− 61. 639 ◦

−→v f = 7. 37
m

s
∠− 61. 6 ◦

This says that our ball is going a little faster at the end than it was at the beginning.

Since it fell a little from the beginning to the end, this makes sense. It also makes sense

that the angle is negative, and −61 ◦ seems reasonable looking at the picture.

You might think this was a lot of work! and it is! So why would human kind want to

go through all this? From safety from falling rocks, to hunting food, to cannon balls in

war, to moon launches, this process has been very useful! Perhaps even more useful is

learning how to structure a solution so you can do a long complicated problem where

you can’t really know the answer intuitively when you start the problem. That kind of

reasoning is useful in every technical field, medicine included! And it is in this kind of

problem that our problem solving process actually saves us time.

Let’s extend our example to ask what the total displacement in the x­direction would

be. We can add to our known values from the work we have done.

x­parts y­parts
xi = 0 yi = 0.270m
xf =? yf = 0
ax = 0 ay = −g
vix = 3. 5 ms viy = 6. 062 2 ms
vxf = 3. 50 ms vfy = −6. 480 ms
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We need an updated set of equations as well.

vix���� = vi cos θi

viy���� = vi sin θi

so we can mark vix and viy as something we can know. Let’s mark these and use our

zeros.

∆x = vix����∆t

vfx���� = vix����
v2fx����

= v2ix����

xf =

vfx����+ vix����
2 ∆t

∆y���� = viy����∆t− 1
2g∆t2

vfy���� = viy����−g∆t

v2fy����
= v2iy����

−2g ∆y����

0 = yi +

vfy����+ viy����
2 ∆t

We can see that if we knew ∆t then the first equation of our x­set would work. But we

don’t know ∆t. But we can find ∆t from the second equation in our y­set!

vfy���� = viy����−g∆t

so

vfy����− viy���� = −g∆t

vfy����− viy����
−g

= ∆t

or

∆t =

vfy����− viy����
−g

then from the x­set

∆x = vix����∆t

xf = vix����




vfy����− viy����
−g




xf = vi cos θi




vfy����−vi sin θi

−g




Putting in values gives

xf =
�
7.00

m

s

�
cos (60 ◦)



−6. 480 ms −

�
7.00 ms

�
sin (60 ◦)

−9.8 ms2

�

= 4. 479 3m

We call this the “range” of the projectile motion. If you are in the army, or just out

hunting, you might want to know this.
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Our problems have become longer, now that we have two­dimensions. But not

really harder if we take a systematic approach. We will continue with the topic of

two­dimensional motion in our next lecture.





11 Beginning of Circular Motion

We have dealt with and linear motion and projectiles that experience curved motion.

But there is a special case of curved motion that is very important to physicists (and

Engineers, etc.) This is the case of an object that moves in a perfect circle. This could

be a satellite moving in a circular orbit, or it could be a geen moving in a circle in an

engine. A circular path could be a part of a more complex motion (like a race track in

the example below). This comes up so often in real applications, let’s take a look at it

now.

Uniform Circular Motion

Think of a race track. Many tracks consist of straight parts, and we know how to deal

with linear motion, so we could predict motion for the straight parts.

We have also dealt a little with the curved parts. And the whole track could be

considered to be a combination of straight parts and curved parts. Once again a

complicated problem can be seen as a combination of simpler parts. But to understand

this complicated problem, we need to know more about the curved parts. Lets consider

what would happen if we have all curved parts.

A completely curved track would be an interesting special case. A completely curved

track would be a circle.
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This would probably not be a fun track to drive on. But if we can find a way to express

motion on a circle, then we could use this circular motion technique and our linear

motion technique combined to deal with the entire track.

Let’s start our analysis by considering uniform motion in a circle, that is, moving in a

circle but not speeding up or slowing down.

This is a lot like a constant motion problem. We would expect to be able to use an

equation like

v =
dx

dt
but there is a problem, We only go purely in the x­direction for a very short time as we

go around the circle. We need a new way to say how far we have gone as we travel

around the circle. We could use our vector components, and that would work. But there

is another way we could express our motion for this special case of circular motion.

From Geometry, way back in junior high school, we know something about measuring

how far we go around a circle. We all know this, but let’s review it just to refresh our

memories.

Lets consider how far we would travel in distance if we went all the way around the

circle. That would be the entire circumference of the circle. So our distance would be

C = 2πr

where r is the radius of the circle and where C is for circumference. But suppose we

just traveled half way around the circle. The distance would be
C

2
= πr

and notice that we swiped out an angle of 180 ◦ (see next figure, green car). How about
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a quarter way around the circle?
C

4
=

π

2
r

Notice that we swiped out an angle of 90 ◦ (seen next figure, blue car).

Now notice that in radians 90 ◦ is π/2 and 180 ◦ is π. Then how far we travel around

the circle seems to be given by

s = (angle in radius) (radius)

= φr

The distance traveled around the circle we give the letter, s from di(s)splacement

around the circle. And it is called the arclength because in geometry the distance we

travel in a circle is given this name. We will just use the names right from geometry.

We also have a name for how long it takes to go around the whole circle. That is called

a period, and it is given the symbol, T. This makes some sense, because a period is a

time for going around the whole circle. We can finally describe the speed of the car as it

travels the circular path

v =
C

T
=

2πr

T
or we could say

v =
∆s

∆t
if we don’t go all the way around the circle.

We remember from geometry that all the way around the circle gives 365 ◦ or 2π rad.

And notice that the arclength is proportional to the angle, and the radius. The radius is

not changing, so if we know the angle part of the displacement, and we know the car

must be on the circular track, then the angle is enough to tell us where the car is.
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This really only works for circular motion. But for circular motion knowing the angle

is usually enough to know the position. Of course we need to know how big the track

is, but if you have a car on a race track that us usually known (or it is at least easy to

measure). We could write ∆s as

∆s = r∆φ

since the r is not changing. Then

vave =
∆s

∆t
=

r∆φ

∆t
and we could even write

vave
r

=
∆φ

∆t
as a sort of scaled speed. This tells us how much the angle changed in an amount of

time. It is a lot like a velocity, but it has units of rad/ s. It tells us how fast the angle

of the car changes. Since for circular motion, this is equivalent to knowing how the

position of the car changes, our new quantity is like a speed. Let’s give it a name an a

symbol. The name is angular speed and the symbol is a Greek letter ω. This is not a

“w.” It is an omega. But you may call it “w­looking thing” if that helps. Still, it is not a

“w” and we should make the distinction because we will use “w” for something else in

physics.

But ω does tell us how fast something spins around. It is how fast the angle changes.

ωave =
∆φ

∆t
notice that we can also write

ωave =
vave

r
from our definition. This relates how fast the object is going to how fast the angle is
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changing for circular motion.

If we take a limit, letting ∆t get very small, then we will have an instantaneous angular

speed

ω = lim
∆t→0

∆φ

∆t
=

dφ

dt

Notice that something wonderful has happened. The equation for angular speed looks

just about the same as the equation for linear speed! It turns out we can make an entire

set of equations for constant circular motion look very much like the equations for

constant linear motion.
Linear Circular
∆r = rf − ri ∆φ = φf − φi
∆t = tf − ti ∆t = tf − ti
vave =

∆r
∆t ωave =

∆φ
∆t

v = dr
dt

ω = dφ
dt

ω = v
r

with an additional equation tying the two types of motion together (so long as the

motion is in a circle).

This means we can use all the graphing techniques we learned for linear motion for our

circular motion equations. For example, we used position vs. time graphs to show lin­

ear constant motion with the slope of the position vs. time graph being the velocity.

Now we could plot φ vs. time to get a plot like this
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For linear constant motion we found that

xf = xi + v∆t

We can take our equation for angular speed

ω =
∆φ

∆t
and write is using ∆φ = φf − φi to get

ω =
φf − φi
∆t

or

φf = φi + ω∆t

Let’s try some problems. First, using the previous figure, what is ω?

ω =
φf − φi
tf − ti

we recognize this as “rise over run” just like it was for linear constant motion. So the

slope of the φ vs. time graph will be ω. We an see that at t = 10 s we have φ = 4 rad

and at t = 0 s we have φ = 0 rad, so

ω =
4 rad− 0

10 s− 0
=

= 0.4
rad

s
For a second example, suppose a child is on a merry­go­round. The child hops

on at φi = 0.0 rad and decides she does not like the ride, so she hops off at

φf = 4.5 rad. Suppose she was on the ride for 0.50 s. What is the angular speed of the

merry­go­round?

We can identify this as a constant angular speed problem
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The final φ is about 258 ◦. So we draw a diagram showing where the child got on and

off.

We know

φi = 0 rad

φf = 4.5 rad

∆t = 0.50 s

and our basic equation is

φf = φi + ω∆t

We can solve this for ω

φf = φi + ω∆t

φf − φi = ω∆t

φf − φi
∆t

= ω

ω =
φf − φi
∆t

Using our numbers we get

ω =
4.5 rad− 0 rad

0.5 s

=
9.0

s
rad

A quirk of history can make rotational problems tricky. sometimes people will talk in

terms of “rotations per second” or, worse yet, “cycles per second.” A rotation is just

2π rad, and so is a cycle. They both mean, “go all the way around.” So if you are given
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a value in rotations per second or cycles per second, just convert to radians per second.

Tangential and Radial Motion

Suppose once again we have a car going on a circular track at a constant speed.

We know the car is accelerating, because it is turning. But it is not speeding up or

slowing down. Notice that the velocity vectors always point along a tangent line to

the circle. We will say they have a tangential direction. Let’s find the direction of the

acceleration. To do this we recopy our velocity vectors

and find

∆−→v = −→v 2 −−→v 1
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and divide ∆−→v by ∆t

aave =
∆−→v
∆t

There is nothing new in all this. We have found accelerations before. But now let’s put

our −→a back on our original diagram

We have placed −→a in between the two points where −→v 1 and −→v 2 are marked, because

we have found an average acceleration. Note which way the acceleration points. It

points into the center of the turn. Let’s look at a few more places around the circular

track.
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We can see that for circular motion with constant speed the acceleration always ponits

to the center of the circle.

Centripetal Acceleration

Notice that no matter where we are on the track, the acceleration for constant circular

motion always points to the center of the turn. We called the velocity “tangential”

because it’s direction was always along a tangent line. Notice that the acceleration is

always along a radial line. So we could call it “radial” and sometimes we will. But the

acceleration is not just radial, along a radial line. It specifically points to the center of

the circular motion. There is a word that means “points to the center” and we will use

this word to describe acceleration for uniform circular motion. That word is centripetal.

like the word “tangential” just described the direction the velocity pointed, the word

“centripetal” just describes the direction the acceleration points. This is not some new

kind of acceleration. You could think of this like a person gaining a new title, say,

“king.” It is the same old person, but “king” does describe the direction their life is

going!

Let’s go back to our traveling car going in a circle
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Notice that the car sweeps out an angular displacement

∆φ = φ2 − φ1

as it goes from s1 to s2. We can use this to find a very useful expression for a centripetal

acceleration. But it will take some geometry. Here is a diagram of our motion with

some extra lines added in.

Recall that the interior angles of a triangle must sum to 180 ◦. So

∆φ + δ + δ = 180 ◦

Also notice that the velocities are along tangent lines, and that the tangent lines and

radial lines meet at right angles. Then

β + δ = 90 ◦
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and notice that 180 ◦ = 90 ◦ + 90 ◦ (you probably already knew that!) so

180 ◦ = 2β + 2δ

then

∆φ + δ + δ = 2β + 2δ

or

∆φ = 2β

Now notice that the angle between v1 and v2 is also exactly 2β = ∆φ

Then in our triangle that defines ∆−→v the angle between −−→v 1 and −→v 2 will be ∆φ.

and these vectors form an isosceles triangle. If ∆φ is not too big, then the tangent of

∆φ is nearly equal to ∆φ, itself. And if ∆φ is small then the angle between −v1 and

∆v is nearly 90 ◦. Then we could write

tan∆φ ≈ ∆v

v1
≈ ∆φ

Then, the length the vector ∆v is nearly equal to the arclength

∆v ≈ v1∆φ

If we let ∆φ get very very small so it becomes dφ, then we can write

dv = vdφ (11.1)

where I dropped the subscript, because the length of v1 is very nearly the same as the

length of v2 so we can write v1 = v2 ≡ vt. And we know the speed must be

v1 = v2 = vt =
ds

dt
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by definition of our tangential speed, and

vt =
ds

dt
=

rdφ

dt
It is not obvious that this will give us anything good, but let’s solve for dt

dt =
rdφ

vt
Now let’s substitute our new expression for dt for uniform circular motion into our

equation for acceleration

aave =
∆v

∆t
but we will need to let ∆t → dt

a =
dv

dt

=
dv
rdφ
vt

=
vt
r

dv

dφ
and use equation (11.1) for dv again

a =
vt
r

vtdφ

dφ

=
v2t
r

This seems like a lot of work to go through for a simple equation

ac =
v2t
r

but it is a very important equation. It tells us that for constant circular motion the

acceleration is equal to the speed squared divided by the radius. If we know the size of

the circle, and how fast we are going, we can know the magnitude of the acceleration

that is just keeping us turning in a circle. Of course the direction of the acceleration is

toward the center of the circle.

It is important to remember that we are studying circular motion at a constant speed–we

are not speeding up or slowing down (yet). Our centripetal acceleration is just making

our object change direction.

Lets try a problem. Suppose we are in our race car and we know from the speedometer

that we are going a constant 26m/ s as we go around a circular track with a radius of

100m (about the length of a football field). What is our acceleration?

We are not speeding up or slowing down, so this must be a turning or centripetal
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acceleration problem. We can use our new equation

ac =
v2t
r

=
(26m/ s)2

100m

= 6. 76
m

s2

Constant Tangential Acceleration

We have dealt with the centripetal acceleration, that is, the part that points toward the

center of a circle. This acceleration makes the object turn. It is in the radial inward

direction. But we know there can be more to acceleration. We could speed up or slow

down.

Remember that speeding up or slowing down comes from acceleration that is in the

same direction or opposite direction of the motion.

Our centripetal acceleration can never make the object speed up or slow down. But we

could have a tangential acceleration as well as a centripetal acceleration! The velocity

as we go around the circle is always tangential.
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so the tangential acceleration will make the object speed up or slow down. Looking

at the figure is should be clear that we could add the centripetal and tangential

accelerations to get a total acceleration.

a =
	

a2r + a2θ

or we could write this as ar = ac for centripetal and aθ = at for tangential.

a =
	

a2c + a2t

Kinematics around the circle

Our arclength, s, is just a distance, and we can define a change in arclength

∆s = sf − si

and we have defined the speed as we go around the circle as

vt =
ds

dt
By now you are probably guessing that I could define a whole set of kinematic

equations for the arclength traveled around a circle using at, the speeding up or slowing

down part of the acceleration for going in a circle.

sf = si + vti∆t +
1

2
at∆t2

vtf = vti + at∆t

v2tf = v2ti + 2at (sf − si)

sf = si +
vtf + vti

2
∆t

but notice that we had to be careful. Only the tangential acceleration, at, will make

the object speed up or slow down as it goes around the circle, so only the tangential

acceleration can appear in our equations for arclength kinematics.

Let’s try a problem using these equations.

suppose you get in your race car and the initial speed is vti = 0 but in 2.00 s you

are going around a circular track with speed vtf = 25m/ s. What is your tangential

acceleration?
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We know

vti = 0

vtf = 25m/ s

∆t = 2.00 s

and our basic equations are

sf = si + vti∆t +
1

2
at∆t2

vtf = vti + at∆t

v2tf = v2ti + 2at∆s

sf = si +
vtf + vti

2
∆t

If we underline what we know and use our zeros we have

vtf = at∆t

sf = si + 0 +
1

2
at∆t2

v2tf = 0 + 2at∆s

sf = si +
vtf + 0

2
∆t

It looks like the first of these equations will work.

vtf = at∆t
vtf

∆t
= at

at =
25m/ s

2.00 s

= 12. 5
m

s2

Kinematics has allowed us to solve linear, two dimensional, rotational, and arclength

motion problems! We have gone a long way with the ideals of displacement, velocity,

and constant acceleration.



12 Relative Motion

We are well into our study of two dimensional motion, but there is a complication that

we have partially ignored. We have considered what would happen to our description

of motion if we move the origin of our coordinate system. But what if we have a whole

coordinate system that moves?

Relative Velocity

Let’s consider a, somewhat far­fetched situation. Suppose we have two alien beings

traveling on platforms, far from anything else in space. We can call the platforms A

and B. Further suppose that each platform has it’s own coordinate system attached to

the platform. And suppose one of the platforms is moving with speed vx to the right.

We will give a name to these separate coordinate systems. We will call them reference

frames. So, we can call the coordinate system of platform A reference frame A and the

coordinate system of platform B reference frame B.

Alien A sees himself as stationary and sees alien B traveling with velocity vx. But sup­

pose only aliens A and B exist on their reference frame platforms and there are no

other objects in the universe to give perspective. Alien B would see himself as station­
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ary, and would see alien A traveling with velocity −vx.

You might ask, who is right, A or B? If there are only these two aliens and their

platforms, is there any way to tell which is “really moving?” It might surprise you to

find out that the answer is ­ “no!” Recall that there is no universal zero point that is the

center of everything in the universe. There is also no universal point that we know to

be not moving. In fact, everything we can see in the universe, stars, planets, galaxies,

etc. all seem to be moving closer to each other or away from each other, including our

planet, Sun, and solar system. We believe we are moving around the galaxy, and that

our galaxy is moving too. So we have no place that we can find that will work as a

point that is not moving. since that is the case, it is the relative speed vx that we must

consider. That is all we can be absolutely sure of. Alien A really sees B moving and

Alien B really sees A moving. And each viewpoint is valid.

We have all tried this experiment in real life, only, in our experiment there were other

objects around us. Consider driving South on I­20. There are two lanes of traffic on the

Southbound side of the freeway. As you drive, consider the cars next to you, also going

south. You are all going south at 70mi/h (carefully obeying speed laws). But think

of the relative speed. Since you are all going about the same speed, the relative speed

between your car and the next is very small. That is why you can wave to the person

in the next car and consider if they are someone you would like to meet of if they are

likely to be a maniac and force you off the road.

Now consider the cars going north. They whizz past seeming to go terribly fast. What

is their relative velocity? If we take a coordinate system that is fixed to our car. The

velocity of our car seems to be zero in our car coordinate system. But then we see the

northbound cars going past us at 70mi/ h + 70mi/h = 140mi/ h. The velocity of the
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two cars add. That is why you want to avoid a head­on collision with the Northbound

traffic at nearly all costs!

But is a moving frame of reference useful–a coordinate system that moves with your

car? Sure, if you want to hand a drink to a passenger, you don’t want to have to consider

where that passenger is with respect to Idaho Falls. You only need to know where the

passenger is with respect to your position within the car. A more dramatic example

might be finding your dining area on a cruse ship (I always wanted to go on a cruse).

You don’t want to have to consider your motion toward the Bahamas. You just need to

know where the dinning area is with respect to your cabin.

Let’s adopt a way to express our viewpoint of who is moving relative to whom.

Returning to the aliens, suppose we again join space guy A and observe space guy B.

The speed of B as observed from A’s reference frame we will call vBA. Note that in

our case vBA = vx in the positive xA­direction.

Also notice the order of the subscripts. First we write a letter that tells us which

object is moving. In the last example it was space buy B. Then we tell what view

point (reference frame) we are using to observe the motion. In the last example it was

reference frame A.

If we jumped to the other platform and observed the motion of A from the perspective

of B’s platform we would see A moving with speed

vAB = −vx

The first subscript is always the moving object or mover, the second subscript tells the
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point of view from which the motion is observed.

In this notation system, it will always be true that

vBA = −vAB

since the relative motion is always seen as opposite in direction when we switch view

points.

Let’s try a somewhat harder problem. Let’s consider our spacemen again. and let’s ob­

serve space guy b in frame B from the viewpoint of A. But let’s have space guy b in

frame B walk along his platform with a velocity −→v bB relative to his own platform. The

b stands for space guy b that is in frame B. How fast would the space guy in frame A

see guy b go?
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It’s not too hard to see that guy in frame A would see guy b go

vbA = vbB + vBA

We would add the platform speed and the walking speed to get how fast guy a in frame

A sees guy b going.

Of course we could consider the spaceman in frame A (let’s give him the subscript, a)

walking on his platform with speed vaA. From the perspective of platform B we would

see spaceman a’s speed as

vaB = vaA + vAB

This gives a pair of equations for relative motion
−→v bA = −→v bB +

−→
VBA

−→v aB = −→v aA +
−→
VAB

or we could write this as
−→v bA = −→v bB +

−→
VBA (12.1)

−→v aB = −→v aA −
−→
VBA

This equation set is often called the Galilean relativity transformation equation set

because they were discovered by Galileo and because they “transform” our velocity

from one perspective to another.

It might be tempting to try to do relative motion problems without the subscripts, but

don’t do it! The subscripts are really important for keeping the motions straight.

Let’s do an example:

Suppose we have a boy (b) in the gym running on a treadmill. Let’s call the room

frame R and the top of the treadmill belt frame B (for belt). Then our transformation
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equations would be
−→v bR = −→v bB +

−→
VBR

−→v aB = −→v ′aR −
−→
VBR

Suppose the treadmill track belt has a relative velocity
−→
VBR = −2 ms ı̂R with respect to

the room. A person standing on the treadmill in frame B could see his/her self as not

moving, and the rest of the room as moving the opposite direction.

The notation
−→
VBR means the velocity of the reference frame B with respect to

frame R or in our case the speed of the treadmill belt top with respect to the room
−→
VBR = −2 ms ı̂R.

Now suppose the person is running at speed −→v bB = 1.9 ms ı̂B on the treadmill in the

treadmill frame B.

What is his/her speed with respect to the room? It seems obvious that we take the two

speeds and add them. This is the first of our Galilean transformation equations
−→v bR = −→v bB +

−→
VBR

−→v bR = 1.9
m

s
ı̂B − 2

m

s
ı̂R = −0.1 m

s
ı̂

since the ı̂B and ı̂R directions are the same (look at the figures). Everyone in the room

frame sees the person moving backward toward the end of the belt. The person is going

to fall off the end of the treadmill unless he/she picks up the pace!

Likewise, if we want to know how fast the person is walking with respect to the

treadmill belt frame, we would use the second of our Galilean transformation equations.
−→v bB = −→v bR −

−→
VBR

We take the room speed −→v bR = −0.1 ms ı̂ and subtract from it the treadmill/room

relative speed
−→
V BR = −2 ms ı̂ to obtain

−→v bB = −0.1 m
s

ı̂R −
�
−2 m

s
ı̂R
�
= 1.9

m

s
ı̂B
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Using the Galilean transformation equations in one­dimension is tricky, but not too

bad if we keep our subscripts straight. But now we can do two­dimensional problems.

And our transformations are vector equations that work just fine for two­dimensional

relative motion. Let’s give this a try.

Relative velocity in two dimensions

The situation is even more complicated in two dimensions. Let’s consider two cars.

We will label them car G (for green) and car B (for blue). We will label the origin T

(indicating that this is coordinate system is fixed with the track) and assume we have a

third person on the track at the origin observing our cars.

Then 3rGT is the position of car G as measured by the person standing on the track, T.

Likewise, 3rBT is the position of car B as measured by the person on the track, T. And

3rGB is the position of car G as measured by the person in car B. The first subscript

tells us which object is being measured, and the second tells us what viewpoint is being

used. Looking at the figure, if we know 3rBT and 3rGT as position vectors. How do we

find 3rGB?

3rGB = 3rGT + 3rTB

= 3rGT − 3rBT
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and we can see that this is just like

∆r = 3rGT − 3rBT

We just use our subscript notation, and relative motion problems become much simpler.

Suppose we want to know the instantaneous velocity of car G with respect to car B. We

know
−→v =

d−→r
dt

so let’s try
−→v GB =

d3rGB
dt

this would be
−→v GB =

d3rGB
dt

=
d3rGT

dt
+

d3rTB
dt

or

3vGB = 3vGT + 3vTB

This is just the same as one of our transformation equations, the first one (plus a little

algebra)
−→v bR = −→v bB +

−→
VBR

only with G for b because the moving object now is the green car, and with T in place

of R because we are on a track and not in a room. The subscript B now means “car B”

instead of “treadmill belt.”
−→v GB = −→v GT +

−→
VTB

Let’s summarize what we have learned about solving relative motion problems.

1. Label each object involved with a letter. Letters that remind you of the object are
better

2. Look through the problem for phrases like “the velocity of object A relative to
object B.” If the velocity of one object is not specifically stated as being relative to
another object, is usually the velocity with respect to the Earth, or a room or track
that is attached to the Earth.

3. Take the velocities you have identified and arrange them into our transformation
equations. If you don’t have the velocities, you may need to look at position vectors
and take a derivative.

4. Solve for the unknown x and y components of the velocity. Remember that we are
still making our two­dimensional problem into two one­dimensional problems!

Example

Problem Statement: You have herd the fishing is great in Idaho and so you rent a boat
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and take your HFE group out fishing on the river. Your heading is due north and your

speed with respect to the water is vBR = 10.0 km/h. The river goes by to the east with

a speed with respect to the shore is vRE = 5.00 km/h. How fast would a forest ranger

see the boat going if the ranger is standing on the shore?

vBR

vRE

vBE

vBR

vRE

vBE

Let’s choose the y axis to be positive in the northern direction. The x axis will be

positive in the eastern direction.

Variables:

3vBR = 10.0 km/ h̂ Velocity of the boat with respect to the river
3vRE = 5.00 km/ ĥı Velocity of the river with respect to the shore (Earth)
3vBE The velocity of the boat with respect to the shore

Basic Equations:

We will use our transformation equations
−→v bA = −→v bB +

−→
VBA

−→v aB = −→v aA −
−→
VBA

but we will also need our vector recombination set

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

Symbolic Solution:

Using the picture we can write the transformation equation with our vectors:

3vBE = 3vBR + 3vRE

this is the first in our transformation set.
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Now this is two­deminsional problem, so we will make it into two one­dimensional

problems by taking components of the vectors.

vBEx = vBRx + vREx

and

vBEy = vBRy + vREy

so

3vBE = (vBRx + vREx) ı̂ + (vBRy + vREy) ̂

this is the vector, but we want the magnitude and direction. Let’s take our direction to

be φ, the angle between the direction we wanted (north) and the direction we actually

go, then

vBE =
	

v2BEx + v2BEy

φ = tan−1
�

vBEx
vBEy

�

Numeric Solution:

We can now plug in the numbers, noting that vRE was conveniently all in the

x­direction and vBE was conveniently all in the y­direction.

3vBE =

�
0 + 5.00

km

h

�
ı̂ +

�
10.0

km

h
+ 0

�
̂

=

�
5.00

km

h

�
ı̂ +

�
10.0

km

h

�
̂

vBE =

��
5.00

km

h

�2
+

�
10.0

km

h

�2
= 11. 18

km

h

φ = tan−1


�
5.00 kmh

�
�
10.0 kmh

�
�
= 26. 565 ◦

That wasn’t too bad, in fact it seamed pretty easy. Let’s do another example

On a distant planet, Duke Mudwalker is traveling due south at a speed of 60.0 km/h

in his land speeder when a dust storm hits with winds from the southwest at a speed of

10.0 km/h. What is the velocity of the land speeder with respect to the planet surface?

Is Duke going to get where he wants to go?

ANSWER:
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PT: Relative motion

Drawing:

VAR:

I decided to convert the velocities to meters per second.

vsA = 60 km/h = 16. 667
m

s

vAT = 10 km/h = 2. 777 8
m

s
θsE = 180 ◦

θsE = 45 ◦

BE

we need our relative motion set of equations

−→v bA = −→v bB +
−→
VBA

−→v bB = −→v bA −
−→
VBA

and our vector component and recombination equations.

vx = v cos θ

vy = v sin θ

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

We have to modify our basic equations for our situation. Let’s say Duke lives on a

planet called Tatoo. So we can let Tatoo’s surface be one reference frame, with label T.

Let’s let the moving air mass be the other reference frame, labeled A. Then we know
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the speed of the speeder (s) with respect to the air (A) and the speed of the air (A) with

respect to Tatoo (T ) . We want
−→v sT = −→v sA +

−→
VAT

−→v sA = −→v sT −
−→
VAT

and we see we want the first of the equations
−→v sT = −→v sA +

−→
VAT

It would be easier to do this in components. So

vsAx = vsA cos θsA

vsAy = vsA sin θsA

vATx = vAT cos θAT

vATy = vsA sin θsA

then
−→v sT = −→v sA +

−→
VAT

= (vsA cos θsA + vAT cos θAT ) ı̂

+(vsA sin θsA + vsA sin θsA) ̂

or
−→v sT =

��
16. 667

m

s

�
cos (180 ◦) +

�
2. 777 8

m

s

�
cos (45 ◦)

�
ı̂

+
��

16. 667
m

s

�
sin (180 ◦) +

�
2. 777 8

m

s

�
sin (45 ◦)

�
̂

= −14. 703 m
s

ı̂ + 1. 964 2
m

s

m

s
̂

and the magnitude would be

vsT =

��
1. 964 2

m

s

�2
+
�
14. 703

m

s

�2

= 14. 834
m

s
with a direction of

φ = tan−1
�

1. 964 2 ms
−14. 703 ms

�

= −0.132 81 rad
= −7. 609 5 ◦

but this can’t be. This is north west, and we can see from the figure we need south east.

It needs to be more than 90 ◦. What went wrong? Recall that tangent is the y part over

the x part. But if one of these parts is negative, tan θ can’t tell which one.

tan θ =
−y

x
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looks just like

tan θ =
y

−x
but the direction of the two θ′s are 180 ◦ from each other!

And our calculator gave us the wrong direction. We need to add 180 ◦.

φ = 180 ◦ +−7. 609 5 ◦

= 172. 39 ◦

where I had to provide my own minus sign from the drawing. Our units check and this

seems reasonable. And Duke better turn into the wind a little or he is not going to get

into town for those power converters.

Often we can arrange our problem to avoid having to deal with relative motion. But

sometimes we can’t. And we must always keep relative motion in mind.





13 Changing Motion: Newton’s

First Law

We have talked at length about displacement, velocity, and acceleration. But so far we

have not discussed how we get motion started. When you get in your car, you know the

engine is involved in changing your speed from 0m/ s to 26m/ s. So there must be an

acceleration. But how does this work? How do we start motion? And then, when you

get to the parking lot, you want to go from your 26m/ s back to 0m/ s. How do we

change motion once we have it?

Really we have discussed this.

We have had spring cannons, and people throwing balls. We divided our problem into

three parts. Part one got the ball going. Part three stopped the ball. And part 2 was the

ball flying through the air. We have concentrated on part 2 so far, but we know that part

1 and part 3 must be there. And it is part 1 and part 3 type problems that we wish to

study now!

From the examples we have had, we really do know how to change motion. To change

motion, we give something a push! The spring in the spring cannon pushes the ball.

The person’s hand pushes the ball. The dirt pushed back on the ball to stop it. The tires
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of the car push against the road, and the road pushes back, making the car go forward.

To change motion we push objects.

Of course, we could also pull something by tying a rope on it and tugging. This may

not sound very scientific, changing motion by pushing or pulling. So let’s give a new

name to a push or a pull. Let’s call a push or a pull a force.

To change a motion, there needs to be two objects involved. One that is doing the

moving, and the other creating the force. In this course, we will call the moving object

the mover. The other object makes the force that causes the change in the mover’s

motion. We will call the object that makes the force the environmental object. This

environmental object is changing the environment in which the mover moves, causing

the motion.

That last sentence was a whopper! What we mean is that the second object is doing the

pushing or the pulling. It is something in the near vicinity of the mover (the mover’s

environment) that pushes or pulls on the mover. The volume of space around the mover

we will call the mover environment. This is why we will call the object in the region

around the mover that does the pushing and pulling the “environmental object” so we

know it is not the object who’s movement we are studying.

Types of forces

Some pushes and pulls are obvious. If I push on a piano, you see me with my hands

on the piano, and watch it change it’s motion. You are justified in concluding that the

contact between my hands and the piano has somehow caused the motion of the piano

to change. The piano is the mover in this example, and I am the environmental object

making the force.
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Likewise, if I tie a rope to the piano, and pull, you would see me, the rope, the piano,

and the change in motion and conclude with justification that my pull from the rope

was responsible for the change in motion. The piano box is still the mover, and now the

rope is the environmental object pulling on the box. You might object to this analysis.

Isn’t it the person pulling that is making the force? of course you are right, ropes don’t

pull on objects unless there is another object pulling on them. But since the box is the

mover, I am only concerned about what is creating the force on the box, not what is

creating the force on the rope. So it is correct to say that the rope is the environmental

object for the box (it’s just not all the story).

In both of these cases, physical contact was necessary for the mover (the piano box) to

change motion. We will call this type of force that requires physical contact a contact

force.

But there are other ways to change motion. Suppose I give you a magnet and have you

walk over to a workbench covered with nuts and bolts. You can predict that the magnet

will change the motion of the nuts and bolts even before it makes contact with them.

The nut (see the figure) is the mover and the magnet is the environmental object making

the force due to magnetism. The magnet doesn’t have to touch the nut to move it, so we

will call this kind of force a non­contact force.

As you sit in your chair reading your physics reading assignment, another non­contact

force is acting on you. It is the force of gravity. The Earth is the environmental object

making the force due to gravity that is pulling you down.7 Right now you are probably

in contact with the Earth, but the force of gravity would be pulling on you even if you

were not in contact with the Earth.

7 Physics majors and minors, we are going to change this view dramatically in Modern Physics (PH279)
and for everyone else we will start the process of changing our view of gravity at the end of this course. For
now, we will use the approximation that gravity is a force. But just know there is more to come on this.
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The Earth’s gravitational force is a non­contact force.

Forces are vectors

Suppose we hitch a team of oxen to a wagon. The wagon is our mover, and the oxen are

the environmental objects pushing on the wagon tongue to change the wagon’s motion.

But does it matter which way the oxen pull?

Of course it does! Forces must have direction, and we know what to call a quantity that

has a magnitude and a direction. Forces are vectors.

The magnitude of the force is how hard it pushes or pulls, and the direction is which

way it pushes or pulls. In our wagon example, we want the force to pull to the west

270 ◦ on a compass. If they pull at 90 ◦, they get to Boston instead of Salt Lake City.

That would make a difference!

Let’s review vectors for forces.
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A force vector is drawn with it’s tail on the spot where the force is applied.

We still use the particle model. So we draw the whole piano box as just a dot. Then we

draw the force vector with the length proportional to how hard the rope is pulling on the

box, and make the arrow point the way the box is begin pulled. Here is a vector repre­

sentation of the box being pushed

and here is the force due to the Earth’s gravity

In each case the object is drawn as a particle, just a dot, and the vector shows how

strong our push or pull is, and in what direction the push or pull is pointing.

Suppose we have more than one push or pull
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You know from experience that two pushes or a push and a pull working together

are more likely to change the motion of an object. We can use our wonderful vector

notation and mathematics to describe such a situation.

Vectors add by placing the tail of the second vector on the tip of the first vector, then

drawing a vector from the tail of the first to the tip of the second. This is the sum or net

vector.
−→
F net =

−→
F push +

−→
F pull

If the piano box was very heavy, it might take a whole group of people to push it.8 To

keep our equations small, we could use summation notation. We give each person a

number, so we can tell which person caused which force. Then the net force is just
−→
F net =

−→
F 1 +

−→
F 2 +

−→
F 3 +

−→
F 4 +

−→
F 5 +

−→
F 6

which we can write as
−→
F net =

6


n=1

−→
F n

This looks like a smaller equation, but it really has just the same meaning as the

equation before it. And note that the summation is a vector summation, That means for

two­dimensional problems we really want to take components of the force vectors and

separate our problem into x and y­parts

Fnetx =
6


n=1

Fxn

8 Elder Uchtdorf said to lift where you stand!
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Fnety =
6


n=1

Fyn

Let’s try a problem.

Suppose we have two people pulling on a rope, but they pull opposite directions. They

each pull with a force of 5N. What is the net force?

We will follow a new process for force problems. We first draw a vector diagram for

the forces.

We can see that all the forces are in the x­direction and that they point opposite

directions as expected.

We can write out the sum of the forces.

Fnetx =
6


n=1

Fxn

= F1x + F2x

= F1 cos θ1 + F2 cos θ2

Fnety =
6


n=1

Fyn

= F1y + F2y

= F1 sin θ1 + F2 sin θ2

and we can see that θ1 = 180 ◦ and θ2 = 0 ◦. We know all the pieces so we can put in

values

Fnetx = (5N) cos (180 ◦) + (5N) cos (0 ◦)

= −5N + 5N

= 0
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Fnetx = (5N) sin (180 ◦) + (5N) sin (0 ◦)

= 0 + 0

= 0

so
−→
F net = 0

Notice how much direction mattered in this case! Also notice that we have introduced a

unit for force, the Newton, abbreviated N.

Let’s try another problem. Suppose we have three forces applied to an object, all spaced

120 ◦ from each other. Force 1 has a magnitude of 10N and is at 0 ◦. Force 2 has a

magnitude of 20N and is at 120 ◦. Force 3 has a magnitude of 30N and is at 240 ◦.

What is the net force?

We will need a vector diagram for the forces

And we could use graphical vector addition to see what
−→
F net will look like
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And we recognize that from the problem statement we know

F1 = 10N

F2 = 20N

F3 = 30N

θ1 = 0 ◦

θ2 = 120 ◦

θ3 = 240 ◦

But let’s use our vector component set of equations to solve this:

vx = v cos θ

vy = v sin θ

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

We first separate the two­dimensional problem into two one­dimensional problems

using our force component summation equations

Fnetx =
6


n=1

Fxn

Fnety =
6


n=1

Fyn

then

Fnetx = F1 cos θ1 + F2 cos θ2 + F3 cos θ3

Fnety = F1 cos θ1 + F2 cos θ2 + F3 cos θ3

Then we recombine into a vector using

Fnet =
	

F 2
netx

+ F 2
nety

θ = tan−1
�

Fnety
Fnetx

�

The components are

Fnetx = (10N) cos (0 ◦) + (20N) cos (120 ◦) + (30N) cos (240 ◦)

= −15.0N
and

Fnety = (10N) sin (0 ◦) + (20N) sin (120 ◦) + (30N) sin (240 ◦)

= −8. 660 3N



220 Chapter 13 Changing Motion: Newton’s First Law

Then the magnitude of
−→
F net is

Fnetx =

	
(−15.0N)2 + (−8. 660 3N)2

= 17. 321N

and the direction is

θ = tan−1
�−8. 660 3N

−15.0N

�

= 0.523 6 rad

= 30.0 ◦

Looking at our diagram we realize that this angle can’t be right. We should be in the

third quadrant because both Fnetx and Fnety are negative. Our inverse tangent gave

the angle with respect to the −x­axis. We usually want to report an angle with respect

to the +x­axis. We need to add 180 ◦ to our result to get the angle with respect to the

positive x­axis.

θ = 180 ◦ + 30 ◦

= 210 ◦

This seems reasonable

Force Diagrams, Mass, and Acceleration

You can guess that with a new topic, we will need to learn new techniques for restating

our problems as drawings. We will need vector drawings of forces. A large part of the

task of drawing the situation will be to identify what is the moving object, and what is

the environment. You may not believe that this could be difficult. But it often is.

Let’s start with a simple case. Let’s take a snowboarder going down a slope.

The snowboarder would be the moving object. If you draw a picture of the snowboarder

situation as part of your drawing, it might be good to circle the snowboarder to indicate

that it is the mover.
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We should identify where forces may be acting on our mover object (the snowboarder).

We can guess that gravity is pulling down on the snowboarder. Gravity is a non­contact

force. And it pulls on just about everything that is near the Earth’s surface. The Earth

must be an environmental object acting on the snowboarder. The gravitational force

will pull the snowboarder in the direction of the Earth’s center.

It is unlikely that other non­contact forces will be acting on the snowboarder (the

snowboarder is unlikely to have a magnetic suit or an overall electric charge). So let’s

move on to consider contact forces. The snowboarder is in contact with the slope.

It is likely, then, that the slope is an environmental object acting on the snowboarder.

To be sure, we need to identify the mechanism for a slope force acting on the

snowboarder. We can recognize that the hill atoms will be compressed by the weight of

the snowboarder. The hill atoms will resist being compressed. They will push back on

the snowboard, creating what we call a normal force.

It is also true that there is a friction force due to the rough snow. You probably know

that you need to wax your snowboard to reduce this friction. But some friction will

still act on the snowboard. The friction force sometimes acts in a direction opposite the

direction the mover is going. That will be so in this case. Thus, the friction force would

act up the slope.

We put all this information about the forces acting on our mover object (the

snowboarder) into a diagram. Using the particle model, we draw a dot that represents

the snowboarder.
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Arrows represent the force vectors. Their tails are on the dot, indicating that the forces

act at the location of the mover. Notice that the length of the arrows are different. The

force vector lengths give the relative magnitude of the forces. Also notice that we have

drawn the vectors in the direction the forces act.

This particle model diagram with force vectors is called a free body diagram. In the old

days, the word “body” was used instead of the word “object.” So maybe we should call

it a “mover object diagram.” But the historic name of “free body diagram” has stuck.

So we will use it.

The diagram is for one object only! It just contains forces acting on the mover object.

If we have two objects that can move, we need two free body diagrams, one for each

mover. Our goal is always to be able to study the motion of an individual object. If I

have more than one individual object, I split the problem into parts, one part for each

mover object.

Notice that we have again used a set of subscripts. For each force we have identified the

two objects involved in the force. The first subscript is for the mover object. In this case

it is the snow(B)oarder. The second is the environmental object. In the case of gravity,

it is the Earth that is pulling on the snowboarder, so we have used and “E” for “(E)arth”

as the subscript for the gravity force. We also used “H” for the squashed (H)ill atoms

and “S” for the rough (S)lope.

We can further clarify our diagram by labeling different force types with different

letters. After all, we know they are forces so the F is not telling us anything we don’t

already know! We could use a “N” to label a squashed atom “normal force,” for

example. A small “f” is traditional for friction forces. And for gravitational forces, we
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could use a “W” for “weight force.” Sometimes the letters Fg are use for a force due to

gravity, but the subscript “g” gets in the way of our mover­environment subscripts. So

for now we will prefer “W .” Here is how it might look.

Let’s try another example. Consider again a guy pushing a box. What forces act on the

box?

Let’s draw a free body diagram.
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Notice that each force is identified by it’s letter symbol. The guy’s atoms press against

the box, so the guy’s push is due to the guy’s compressed atoms. It is a normal force!

We recognize the normal force due to the squashed floor atoms holding up the box, the

friction force, and the gravitational weight force.

The subscripts all start with “B” for “box.” The box is our mover. The rest of the

subscripts tell us what environmental objects act on the box. We can see that the Earth

is pulling on the box as expected. We know the guy is pushing on the box. We know the

floor is pushing up on the box. We could use the “F” for floor in both the normal force

and the friction force. But I have chosen to indicate that the forces are fundamentally

different by saying the floor rough surface is the source for the friction force, using

an “S” for this aspect of the floor, and leaving the floor’s compression strength to be

indicated by the “F .”

Now let’s draw the diagram for the guy! We have two moving objects. We chose the

box for our last diagram, but we could draw a diagram for the guy as well.
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Note that for the guy’s diagram each subscript set begins with a “G” for “guy.” The

guy pushes on the box, but the squashed atoms of the box push back. We see that in

the normal force NGB. The guy has a weight, WGE, and is held up by a normal force

due to the floor, NGF . If the floor were perfectly smooth, the guy would not be able to

move himself or the box. So there must be a friction force. The guy pushes his feet

against the floor, and the rough floor pushes back. This friction force is why the guy

moves forward. We label it fGS .

Newton’s First Law

Let’s start with a BYU­I Rexburg area public service announcement. Suppose you are

driving in your car and you come to a stop sign. You should stop, of course. Let’s start

our experiment in summer. There is no problem, you press on the break pedal and the

car stops

This is because the tires stop spinning. That is what your breaks do, stop the tires. And
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since there is a frictional force due to the road on the tires of the car, then stopping the

tires from spinning leads to the car stopping.

During the fall trimester, however, there is some snow and it get’s cold. The friction

between your tires and the road is reduced (the rough tire treads are full of ice). So it

takes longer to stop. During winter trimester, the city resurfaces the ice to smooth it

out, making the ice less rough. This makes the force due to friction smaller. Now, with

little to no friction force acting on your car, it is nearly impossible to stop!

This situation is an example of a profound understanding of how our universe works.

What we found for an object (the car) is that unless there is a force acting on the car

(in our case, friction) the motion of the object doesn’t change. You might hear this

expressed like this:

An object that is in motion stays in motion unless a force is acting on it.

In our car case. when the ice removes the force due to friction, there is no force acting

on the car to make the car stop. So the car does not stop. I prefer to express this by

saying that it takes a force to change motion, something that we already know.

Newton wrote down this profound viewpoint with some flair, so he gets credit for this

thought. We call it Newton’s first law. But this law only tells us that without forces,

motion does not change. We need the idea called Newton’s second law to explain the

origin of all the motion we experience.

Reference Frames and Forces

Let’s consider aliens on platforms again:
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Notice that if we have a slightly larger space alien on his/her/its platform reference

frame, he/she/it is free to believe that his/her/its reference frame has no motion. As we

now know, that is because there is no net force acting on the ball, or the space alien’s

stomach, or anything else in the reference frame. We could write this as
−→
F net = 0

But if we take a similar situation, say, a man in a train, but we make the train accelerate,

we can see that the man will recognize that something is changing. The man’s skeletal

structure will move with the train, but his stomach, floating free of the skeletal structure,

is not pushed by the train. It tries to stay at the same velocity (Newton’s first law!).

Likewise, the ball will try to stay in place. But since the man is viewing the ball and his

stomach from the reference frame moving with the train car, he will “see” the ball move

toward the back of the car and feel his stomach move backward relative to his skeleton.

Both tell us that there is an acceleration, and therefore both tell us that there must be a

net force.
−→
F net �= 0

Our idea of a reference frame needs a modification. We will call the alien’s reference

frame an inertial reference frame. This means that the reference frame, itself, is not

accelerating. The train car we will call an accelerated reference frame. And we will

leave accelerated reference frames for another physics class.9 In this class we will only

deal with inertial reference frames.

Now on to Newton’s second law!

9 Specifically, a physics class that deals with Einstein’s Theory of General Relativity.
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We said last lecture that forces change motion. Changing motion is acceleration. So

forces must cause acceleration. This should make intuitive sense. If I push on an object,

it begins to move. my push accelerated the object. From experience you might guess

that the harder we push, the larger the acceleration. Let’s take an example to see that

this is true.

Force and Acceleration

Suppose you are a soldier in the French Revolution. You have been assigned to use a

cannon. You load the powder and cannon ball in the cannon, but this is the result:

Remember that when we studied the flight of a cannon ball, we divided the problem

into three parts with three different accelerations.



230 Chapter 14 Newton’s Second Law

We started with the second part of the motion, the projectile motion part. We are now

experts in projectile motion, so let’s use what we know about projectile motion to aid in

our study the first part of the cannon problem, the part where the cannon ball is in the

cannon and the exploding gunpowder is exerting a force on the ball.

Think about our projectile motion study. We know that the acceleration of the cannon­

ball after it leaves the cannon is free­fall acceleration, −g�j. We know that how far the

cannon ball goes depends on the initial speed of the cannon ball once it leaves the can­

non. That initial speed depends on how much acceleration the ball has while it is inside

the cannon. The power provides a force that causes this acceleration when the powder

ignites. What would you think if you received the above result? Not enough powder!

There was not enough force to accelerate the ball enough make a good initial velocity

for the free­fall part of the cannon problem. How would we fix this? Add more pow­

der! That is, we will make a bigger force. A bigger force makes a bigger acceleration,

providing a larger initial velocity for the free fall part. By trial and error you would

eventually find the right force to make the cannon effective.
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Let’s summarize what we have said so far. It looks like the acceleration is proportional

to the force that creates it.

a ∝ F

The harder we push the more acceleration we get. But there must be more to this. Sup­

pose we take our guy pushing the box again.

but we substitute something larger for the box, say an elephant.
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You might guess that the elephant won’t accelerate as much as the piano box (unless

you get it angry). The amount of material in the object seems to matter in how effective

a force is in causing acceleration. We could say this mathematically by writing

a ∝
1

m
that is, we get less acceleration when we have a more massive object. We can combine

these two effects into one equation

a =
F

m
which tells us that our object will accelerate more if we push hard, or if we somehow

reduce the mass of the object.

Sometimes you will see this written as

F = ma

which says that the harder we push the more acceleration we get, but that if the mass

is larger the push has to be larger to get the same acceleration. Of course, forces and

accelerations are vector quantities, but mass is scalar. So let’s use vector notion for our

equation.
−→
F = m−→a

Now we can see that the force and acceleration must be in the same direction as well.

Units for force

We can see from our discussion above that the units of force must be the units of
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acceleration times the units of mass

kg
m

s2
(14.1)

We have given a name for this combination of units. It is called the Newton.10 It is

abbreviated N.

1N = kg
m

s2
(14.2)

The equation we just found
−→
F = m−→a

has a name. It is called Newton’s Second Law. But what is a scientific law? Recall that

it is most often an equation that shows how our mental model of the universe works.

The force laws are old enough that only one of them fits this definition. The second law

can be stated as an equation, and it is the one we just found!

Newton’s Second Law and Equilibrium

Our first of Newton’s laws talks about an absence of forces, but we know there are

forces. Newton’s second law tells us how motion changes when forces act. Newton’s

second law states:

The acceleration of an object is directly proportional to the net force

acting on an object and is inversely proportional to the mass of the object.

Mathematically this is written as

−→a =

−→
Fnet

m
(14.3)

where we know the variable
−→
F stands for force. Notice that both −→a and

−→
F are vectors.

Remember that because forces are vectors, they add like vectors. Then

−→
Fnet =

N


i=1

−→
F i

The symbol Σ means to sum or add up all the forces, so Σ
−→
F is a way to write the net

force. To find the net force, we add up all the forces as vectors. Also remember that

forces are vectors, so we must use vector addition. Another way you may see this

written as
N


i=1

−→
F i =

−→
Fnet = m−→a (14.4)

This Newton’s second law applies to only one object at a time. The object who’s mass

is m is the object that is being pushed by
−→
Fnet and which has acceleration −→a . This

10 After Sir Isaac Newton, who was an early researcher that studied forces.
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means that we will have to write out a separate Newton’s second law equation for every

moving object in our problems!

Suppose you are going to the temple and you observe the beautiful chandelier in one of

the sealing rooms.

The chandelier is not accelerating. This is a special case of equation (14.3)

0 =

−→
Fnet

m
And it is an important special case. It says the net force is zero. It does not say that

there are no forces acting on the object. But it says the forces balanced, like two equally

matched tug­o­war teams. So the object is not accelerating. We will call this situation

equilibrium.

−→
Fnet = 0 equilibrium

The net force is the vector sum of all the forces. Let’s find those forces and then sum

them up to see if it makes sense that they would be zero. We start, of course, with a

diagram

I used L for“light” to identify the object. I used C for “chain” to identify the
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environmental object for the upward force. I used E for “Earth” to identify the

environmental object for the downward force (due to gravity). We should also note

that the upward force is a tension force, and the downward force is a non­contact

gravitational force. We could even modify our drawing to show this.

where the symbol “T” is used for tension forces and we know that “W” is used for

weight forces (forces due to gravity).

We see that all our forces acting on the chandelier are in the y­direction, so for Newton’s

second law in the x­direction we have

Fnetx = 0

simply because none of the forces have x­components.

But

Fnety = TLC −WLE

We should check, We only write out equations for one mover object at a time. So only

forces with the first subscript, L, should be in our equation. Any force with a different

first subscript would be a force acting on some other object, and could not be acting

on our chandelier. Since we only have two objects (the chain and the light), it’s not

surprising that we got this right. But it might be more difficult if we had more objects

(coming up soon). Notice that we might need a Newton’s second law equation set for

each free­body diagram we draw. That is, we could have a separate Newtons’ second

law equation set for every mover object in our problem.

We know about gravitational, weight, forces. Let’s get a mathematical expression for

such a force. Consider the case where the chandelier is not on a chain.11 In that case

there would only be one force on the chandelier (ignoring air drag). Then we would

have just one force in our force diagram.

11 Not in the temple, maybe in a opera house in France, for example.
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Then

Fnety = −WLE

and we know from Newton’s second law that

Fnety = may

and since this would be a free fall situation we know

ay = −g

thus

Fnety = −mg

Fnety = −WLE

So WLE = mg where m is the mass of the object, and g is the free­fall acceleration.

Let’s go back to our chandelier hanging on a chain.

We could write our Newton’s second law equation as

may = 0 = TLC −WLE

but now from our free fall case we know that WLE = mg so we could write our net

force in the y­direction as

0 = TLC −mg

or just

TLC = mg

which tells us that the chain tension must support the weight of the chandelier. This

seems reasonable!

Let’s try another force problem. Suppose you have been asked to help a neighbor move.
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The neighbor is a physics major and has conveniently marked each box with it’s wight.

You see a box marked 400N. What is the normal force that the floor must provide to

support this box?

We would be surprised if the box accelerated on it’s own, so we can identify this as an

equilibrium problem. Since the box is not even moving (in our reference frame) we will

give it another name, static (which means, “not moving”). Together, we call a problem

where the net force is zero and the object is not moving static equilibrium. So this is

a static equilibrium problem. The chandelier problem was also a static equilibrium

problem. We know that

WBE = 400N

and we know that for static equilibrium we have no acceleration so −→a = 0 and
−→
Fnet = m−→a = 0

so we can see that

Fnetx = 0

Fnety = 0

The net force is the sum of all the forces. So for the x­direction we could write

Fnetx = ΣiFxi

but for this example, this reduces to

0 = 0

because there are no x­components of the forces. In the y­direction

Fnety = ΣiFyi

= NBFy +WBEy

so that

Fnety = NBFy +WBEy
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and

Fnety = may = 0

We have two expressions for Fnety . Let’s set them equal to each other.

0 = NBFy +WBEy

Now let’s find the y­components so we can put them into this equation we got from

Newton’s second law.

WBEy = WBE sin (270 ◦) = −WBE

NBFy = NBF sin(90
◦) = NBF

so or Newton’s second law equation becomes just

0 = NBF −WBE

and therefore

NBF = WBE

= 400N

which says that the floor’s normal force must be equal to the weight of the box. This

seems to make sense.

But now you pick up the box. You know your own weight to be 667. 2N. What is the

normal force that the floor must supply to support you and the box?

The picture shows our new situation. It seems reasonable that we have to have more

forces than in the last case. After all now we have the box and you as objects. So at

a minimum we must have your weight added into the situation. Since we are a little

self­centered, let’s consider you to be the mover (after all, you don’t care about the

box crashing through the floor nearly as much as you care about you crashing through

the floor!). You would very much like to be in static equilibrium, not accelerating

downward. We recognize that there will be a force due to the floor pushing you up. We

also recognize that there is the Earth pulling you down. And we do need to account
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for the box pushing down on you. The Earth’s pull is a weight, so we can write

FY E = WY E and the floor’s push is a normal force, FY F = NY F . But what kind of

force is the box’s push?

It might be tempting to call this force the weight of the box. But we must not do this!

The weight of the box is WBE and this force is the force on the box due to the Earth’s

gravity. This is not a force on you! It is a force on the box. So it can’t go on your force

diagram. So what is the box really doing to you?

Let’s look at the molecules that form the box. They have those spring­like molecular

bonds. And as the Earth pulls the box down toward it, the molecules come into contact

with your shoulder. The molecular bonds get squashed by your shoulder, and they push

back. This is the force on you due to the box. And we recognize this type of force. This

is a normal force! So FYB = NY B. We can complete our diagram.
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We know

WBE = 400N

WY E = 667. 2N

and our basic equations are still
−→
Fnet = m−→a
−→
Fnet =




i

−→
F i

and for equilibrium
−→
Fnet = 0

or

Fnetx = 0

Fnety = 0

We still have no x­part to this problem so let’s just use our y­equation for
−→
Fnet = m−→a

Fnety = 0

then from the summation form of
−→
Fnet

Fnety = NY F −NYB −WY E

and combining the two
−→
Fnet equations gives

0 = NY F −NYB −WY E

and we can solve for NY F

NY F = NY B +WY E

but we don’t know NY B! What can we do?

Let’s consider our last problem. We found that the floor had to support the weight of

the box for the box to not accelerate downward. So the normal force on the box had to
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be equal to the weight of the box.

This will be true for our case as well. Note! we are considering a second drawing for a

second mover object – where NBY is the normal force on the box due to the squashed

atoms in your shoulder and WBE is the force on the box due to the Earth’s pull.

We should ask ourselves, which atoms get more squashed, your shoulder atoms or the

box atoms? The answer is neither!. Think if we put the box on a large stack of Jello R�.

The Jello atoms would not push back as hard on the box atoms as the box pushes

on them, and the box would sink through the Jello. This does not happen with your

shoulder! So we can reasonably assume that The box NBY = NYB . And we know

from our analysis of the last problem that

NBY = WBE

so

NYB = WBE

You might feel a little cheated. Didn’t I say that the force pushing down on you from

the box was not the weight of the box? And that is right. But the force, a different

force than the gravitational pull of the Earth on the box, a force that comes from little

spring­like molecular bonds, has the same magnitude as of the weight of the box.

Note, they are not the same force at all. They have different causes, one gravity and

one compressed atomic bonds. But in this case they do have the same magnitude. So

mathematically now we can write

NY F = WBE +WY E

NY F = 400N+ 667. 2N

= 1067N

and we can see that the floor now supports both your wight and the box weight. This

makes sense.

But we have learned something important along the way. We have to be very careful to

correctly identify the source of each force. We may have to draw a free­body diagram
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for a second or third object to solve for the forces we want. If we incorrectly identify

the source of the forces, we will eventually miss a force, and then the problem will be

impossible until we correct our mistake.

So far, we have only had forces in the y­direction, but you know we can handle two

dimensional problems. Our same strategy that we used for kinematics motion problems

works here. We will divide the two dimensional problem into two one­dimensional

problems. We do this by finding components of the force vectors. Conveniently, the

equation for net force can be resolved into components.

Fnetx = max (14.5)

Fnety = may (14.6)

Fnetz = maz (14.7)

so we can turn two­dimensional force problems into two one­dimensional problems

just like we did for projectile motion! Once again we turn a two or three­dimensional

problem into two or three one­dimensional problems. We will take this on in the next

lecture.

We also found that for normal forces the way the force is made wasn’t so obvious. We

will begin next time by looking at the origin of common forces so we can understand

how these forces will act.



15 Origins of Forces, Systems,

and Newton’s Third Law

Let’s start this lecture with a more in­depth look at where forces come from and how

to draw force diagrams. One of our goals today is to determine what we can and can’t

include in our particle when using particle model. Once we have this figured out, we

can tackle the last of the set Newton’s force laws.

Origins of Forces

To practice solving problems with forces, we will need some environmental object

acting on mover objects. So we need to know how environmental objects can act.

We can’t explain every type of force in this section, but we will explain a few forces,

enough to start doing problems.

Spring Force

You may have had a toy dart gun as a child. The dart gun works because when you push

in the dart, it compresses a spring. The compressed spring pushes on the dart–and that

is a force!
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This is also the way our spring cannons work. Springs are combinations of tension like

forces and normal like forces (both described below. So we won’t go into the details of

the spring forces yet.

Pushing (Normal Forces)

We have already discussed direct contact and pushing and pulling. In PH220 we are

going find that this direct contact is not so simple as we might think. It will involve

forces due to the electric charges in the atoms that make up our objects. And those

forces are non­contact forces! But that is getting way too far ahead of the physics story.

We need just enough here to allow us to study forces.

Suppose we place a book on a table. The book has mass. You probably already know

that the book will be pulled downward by the Earth’s gravity, so the book has a weight.

Weight is what we call the force due to gravity that pulls things toward the Earth. But

the book can’t fall to the Earth because the table atoms are in the way.
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This is a little like sleeping on a mattress. The mattress is made of springs. The springs

are compressed because the Earth’s gravitational pull forces your body into the springs.

where more of your mass is concentrated, the springs are compressed more.

Compressed springs push back with a spring force.

The molecular bonds in the table are a lot like little spring forces. The weight of the

book compresses these bonds, and the spring­like bonds make the atoms push back. We

call this a normal force. The old word “normal” used to mean “perpendicular.” And this

is where this force got it’s name. The springs always push back perpendicular to the

surface that is being squashed. I would have preferred to call this an “squashed atom

force” but we are stuck with the name “normal force.” The detailed physics of this kind

of force will come in PH220 or PH223.

Tension

We have also discussed pulling on ropes. But how does a rope manage to get pulled

without the fibers of the rope falling apart. To understand how it works, we need to

think of the atoms that build up the rope fibers. The atoms are held together by bonding

forces that are really due to the electric forces of the subatomic particles. These atomic

bonds can stretch a little like the springs we were just discussing. The spring­like forces

that hold the molecules are the reason the rope can pull on a box. The fibers stretch, like

springs, pulling on the thing they are attached to. This force created by the stretched

atomic bonds is called tension.
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If the rope is a bungee rope, the fibers are very elastic so they stretch a lot.

But even if the rope is normal clothesline, the fibers can stretch. As the rope is stretched,

the bonds resist the stretch, pulling back. This is tension force. Let’s consider two guys

pulling on a rope in a tug­o­war.

Notice that we will stretch atomic bonds for all the parts of the rope that are being

used in the tug­o­war. Nearly the entire set of bonds in the whole rope are involved

with creating the tension. If one region of the rope were to be stretched more than it’s

neighbors,



Tension 247

the stretchy spring­like bonds would quickly even out the stretches until the tension was

mostly uniform throughout the rope.

Now Let’s change our situation. Suppose that the guys are not actually pulling. They

are just holding the rope.

Will there be a tension? Let’s draw a free­body diagrams for each object involved. Then

we can solve for the tension.



248 Chapter 15 Origins of Forces, Systems, and Newton’s Third Law

We have three objects, two guys and the rope. Notice that the rope pulls on the guys

just as hard as the guys pull on the rope, well, almost. Let’s write out Newton’s second

law for the rope

FnetRx = −TRl cos θ + TRr cos θ

and

FnetRy = +TRl sin θ + TRr sin θ −WRE

Since we are in static equilibrium,

Fnetx = Fnety = 0

so we can write

TRl cos θ = TRr cos θ

WRE = TRl sin θ + TRr sin θ

Let’s look at the first of the set. This tells us that the right hand and left hand tensions

are the same

TRl = TRr = T

which we had already surmised. But look at the y­equation

WRE = 2T sin θ

so the tension for the guys just holding the rope is

T =
WRE

2 sin θ
=

mRg

2 sin θ
If we have a slightly heavy rope like they use in a tug­o­war, we might find the length

of rope having a mass of 2 kg and suppose we find the rope hands with a 5 ◦ angle, then

T =
WRE

2 sin θ
=

(2kg)
�
9.8 ms2

�

2 sin (5 ◦)

= 9. 8N

We can see that the weight of the rope really does matter if the rope is massive enough.

We get a little bit of tension because the rope has mass. So far we have been ignoring

the effect of the rope’s mass. We call doing this the massless string approximation and

in this approximation the rope’s weight does not affect its tension. We can see that if

the rope is heaver the approximation will fail.

The heavy anchor chain on a large ship would really not be well approximated by a

massless string!
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USS John F. Kennedy Anchor Chain

But so long as the weight of the rope or string is much less than the masses of the

other objects in the system, then the massless string approximation can be used. In real

situations, we will have to check to see if the massless string approximation is valid

before solving the problem.

Friction Force

If you have been in Rexburg long, you have experienced surfaces with little friction.

Friction is a push, and again it is due to the bonds in molecules that are being stretched.

Consider the bottom of our piano box. Microscopically it is rough.

And the floor under the box is also microscopically rough. As the people push and pull
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the box the rough spots on the floor and the box catch against each other. As the box is

pushed the rough spots collide and bend. This bending stretches the spring­like bonds

between the atoms in the box and floor materials.

The bent and stretched molecules in the floor material push back against the box

molecules. you can experience this type of force first hand by pushing on the teeth of a

comb. The roughness “teeth” push back, like the teeth of a comb will push back as you

push on them.

This backward push is what we call friction.

Details of Friction

But let’s take a different surface, but one with that still has large roughness (but not a

rough as a comb).
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Only a few of the rough peaks hit each other. There would be friction. But we could

make more friction if we made the roughness teeth mesh together more, making the

surface area of the interaction larger and the amount of material who’s bonds are

stretched larger

But how can we make the rough “teeth” mesh more? One way is to push down on the

object. Here are our guys moving a box. But one guy is pushing down on the box by

sitting on it (with a normal force!).
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The downward normal force due to the guy on the box will cause the box to accelerate

downward until the force of the teeth pushing back up is matched with the force pushing

down. Of course the force of the teeth pushing up must also match the force due to the

box or the box would accelerate up or down. That is very unlikely to happen! Let’s use

Newton’s second law to investigate this situation.

This is very like a problem we did last time. Notice that from the figure we can say that

for the guy sitting on the box NGB = WGE where the subscript G is for “guy” and the

subscript B is for “box” and E is for “Earth.”

FGnety = 0 = NGB −WBE

so

NGB = WGE

this means that the guy pushes down on the box with a force equal to his weight. We

know this is true because we can see that the guy is not crushing his way through the
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box, and the box is not cutting it’s way through the guy. Not braking the buy or the box

is a constraint on our system.

NGB = NBG

Then from the box free­body diagram

FBnety = 0 = NBF −NBG −WBE

or

NBF = NBG +WBE

but we know that NBG = NGB = WGE so

NBF = WGE +WBE

This is not surprising. We know the floor must support the weight of both the guy and

the box. But we can use what we have found to our advantage. The two things that

are pushing the roughness teeth together are the wight of the box and the weight of the

guy. Those two force magnitudes together are equal to the normal force pushing back

up. The roughness teeth are sandwiched in between with forces above and below. They

will be forced together. So since how much friction we should have depends on the two

weights, and the normal force is mathematically equal to the two weights, we can say

that if the normal force gets larger for an object, the friction gets larger too! We can say

that

fBF ∝ NBF

But let’s be clear about what we mean. The weight of the box and the guy are doing the

job of creating normal forces that are pushing the box down into the floor. The normal

force is numerically equal to the sum of these weights. So it is fine to say that the force

of friction on the box is numerically proportional to the normal force on the box. The

downward force is due to the weight of the box and guy sort of like the guy pulling on a

rope is the origin of the tension force in the rope. But it is the normal force that actually

pushes the roughness teeth together to increase friction!

But we are still not done with our model for friction.
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You may have been out on a hot day and noticed that your shoes would stick to the

black top. Sticky materials actually form molecular bonds between themselves and

other objects. Once these cohesive bonds are formed, they must be broken to make our

object move. It’s a little like adding a tension force into our frictional force.

Some materials are more sticky than others, and some are more likely to form bonds

than others. And some objects are designed to be rougher than others. Think of

Velcro R�, for example.

it is designed to be so rough that the little Velcro R� hooks grab and hold on, creating

tension forces as you move the Velcro R� parts.

Let’s envision our guys pushing the box again. If the box is at all sticky (and most

things are, at least at the molecular level). The sticky bonds will stretch before they

break. So by pushing on the box, we expect the backward push from the sticky teeth.
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We could plot the situation as shown below.

The harder we push, the more stretched the sticky bonds are, so the more friction we

have. This model works until we break the sticky bonds. Then our friction force will

become smaller in a hurry. More on this in the next lecture!

So far we know that our friction force is proportional to the normal force

fBF ∝ NBF

Drag Force

In this class we really don’t yet understand enough to see exactly how drag forces like

air resistance work. We will set the groundwork for understanding the origins of drag

force in PH123. But we can have some intuitive feel for an air resistance with some

conceptual reasoning. Suppose we tied baseballs to strings and hung them all over our

class room. Every time a student entered into the room the student would collide with

the baseballs. Not only would this hurt, but it would slow the progress of the student.

The baseballs would exert a force on the student with every collision. The collective

resistance to the motion of the student due to all the baseballs is what we would call a

drag force.
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To have a drag type force we need our object to be colliding with something like air

or water molecules. In this class we will usually have collisions with air molecules to

form a drag force.

Gravitational Force

We have discussed that the Earth’s gravity tends to make things accelerate downward.

This implies that the Earth’s gravity is a force! So far all of our forces have been

contact forces where atoms are involved in making the force. But this gravitational

force is fundamentally different. It is a non­contact force. It takes general relativity to

truly understand gravity (even then there is some uncertainty!) so for now we will just

state that the Earth and other objects with mass pull on other objects with mass. This is

gravity.

We call the pull or force due to gravity weight.

Sometimes we refer to how much matter we have in our body as our weight. This is

because the pull of gravity is proportional to our weight. But they are not the same

thing. Weight is a force. How much matter we have is a mass.

Other force origins

There are other forces like thrust and air resistance that we won’t use for a while. As

we need these forces, we’ll discuss their origins. But for now, we have plenty of forces

to get started studying how motion is changed.
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Strategy for Drawing Force (free­body) Diagrams

Let’s think about how to make sure we draw our free­body or force diagrams correctly.

What we have learned is that we must draw a separate diagram for each object that we

will study. One object per diagram. And we have learned that we draw forces that act

on that object, and only forces that act on that object. We have leaned to use subscripts

to show what types of forces we have, and what object is causing the force. Our types

of forces (so far) are given in the next table.

Force Type Symbol Causes (How this force is made) Contact or Non­contact
Weight W Gravitational Attraction Non­contact
Normal N Squashed or compressed atoms Contact
friction f Molecular bonds or bending of roughness teeth Contact
Tension T Stretched molecular bonds Contact
Drag D Collisions with gas or liquid molecules Contact

When we wish to make a force diagram we need to draw arrows for all the forces acting

on the object. We go through our list to identify what type of force we have. It helps

to look at where the object comes into contact with the surrounding environment. Only

gravity (so far) is a non­contact force. So all forces that we know must come about by

other objects making contact with our object. This also helps us identify the second

subscript, the one that indicates what other object is causing the force. Let’s try a

complicated example, a bicycle going up a hill.

There are really five objects involved with this situation, but we only want the free­body

diagram for the bicycle. We can start with the weight force. We know the bicycle has

mass, so it has weight. And this is a great place to start because it takes care of our only

non­contact force. The rest of the forces will have to be caused by contact with other

objects. So we next look for where the bicycle is in contact with other objects.
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We can see that the bike tires are in contact with the hill. If we look at our table of

possible forces we realize that this contact could cause two types of forces, a normal

force (from compressing or squashing the hill’s atoms, so they push back) and a

friction force (because the tires push on the hill’s surface roughness teeth, so the hill’s

roughness teeth push back). We can also see that the bike is in contact with the rider.

The rider is being pulled down by the Earth’s gravity, so his or her atoms are being

pulled into the bike seat, the handle bars, and even the peddles. The rider’s atoms don’t

like being squashed, so they push back. This creates a normal force. The bike is also

in contact with the air, and as the bike moves it collides with the air molecules. This

would make a drag force. We can place these forces on our diagram, but we have to be

careful to think about what is causing the forces to get the directions right. Let’s start

with the weight force. It should be directed from the center of the bike to the center of

the Earth. Usually this means straight down in our diagrams.

Notice that the first subscript is “B” for “bike.” The second subscript is “E” for “Earth.”

The normal force from the hill’s atoms resisting being squashed will be perpendicular
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to the hill.

Now let’s place the friction force due to the hill surface. To do this we need to realize

that the tires push against the roughness teeth of the road and they push downhill!

That means the hill surface roughness teeth push uphill! We can add our friction force

to the free­body diagram.Notice that the subscript is “S” for hill (S)urface roughness

teeth. It is not just the hill, but the surface of the hill that matters for friction. After all,

if the hill was perfectly smooth and not at all sticky, there would be no friction. But

there would still be a normal force. It is the surface that matters for friction forces.

Let’s take on the interaction between the bike and the rider next. The rider’s atoms are

resisting being squashed as the Earth pulls the rider into the bike. So there is another

normal force due to the rider’s atoms.
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Figure 15.4.

The next force might not be obvious. But think, if we held the bike in place and the

rider just sat on the bike. Wouldn’t the rider slide off if the seat were frictionless? After

all, the bike is on a hill, so the seat is tipped. There must be some friction between the

rider and the bike. If we think that the rider would tend to slide down hill, the seat must

be pushing the rider back up hill to keep the rider in place. But we want the force on

the bike due to the rider. The rider must be pushing down hill on the bike seat.
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We identified a drag force. From our study of drag forces, we know that the drag force

must be opposite the direction the object is going. The bike is going uphill, so the drag

force must be down hill.

From our experience so far we can see that we need to get the forces right in our

free­body diagram in order to find the motion of an object. So taking time to practice

getting all the forces and labeling them so the mover object and the environmental

object are obvious, and that the type of force is obvious help us to make sure we got the

forces in the right directions. The diagrams may seem trivial, but really if you can’t

get the diagram right, you won’t get the problem right. So it is worth taking time to

carefully draw free­body diagrams. So let’s review what we did

1. Identify the object who’s diagram we will draw.

2. Identify any non­contact forces (for PH121 this is usually just a weight force).
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3. Identify all environmental objects that make contact with our object

4. Identify what contact forces are caused by the environmental objects by using our
table of forces and their causes.

5. Using the force causes from the table, determine the force direction and draw it on
the diagram.

6. Label the force with the correct type symbol. Do this for each force.

7. Add the subscripts to indicate what object is being studied (in our case the bike) and
what environmental object is making the force (e.g. the Earth for the weight force
or the hill for one of the normal forces).

8. Don’t put it on the diagram, but it probably a good idea to think of which direction
the net force will be. If our cyclist is accelerating up the hill, then the net force will
be uphill.

It is important to not put the net force as though it were acting on the dot representing
the bike. Remember we will use our force diagram to form

−→
F net which is the sum

of all the forces, so we can’t include
−→
F net as part of that sum! If you want to mark−→

F net you can have it float near the free­body diagram, but don’t make it part of the
diagram.

Newton’s Third Law

Newton’ also realized that forces don’t act alone in nature. They act in pairs. Let’s start

with the example of hammering a nail

Nail Demo
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Notice how the hammer bounces! This means the motion of the hammer head has

changed directions. We can see that there must be an acceleration of the hammer head.

We now know that this acceleration is evidence of a force. We provided a force on the

nail by hitting it. We now see that the nail provided a force back on the hammer!

We can now state Newton’s third law:

If object 1 and object 2 interact, the force
−→
F 12 exerted on object object 1

by object 2 is equal to the force
−→
F 21 on object 2 by object 1.

You ,may also hear this expressed as “for every action, there is an equal and opposite

reaction,” but this almost sounds like one force happens before the other. And that is

not true. The forces happen at the same time.

So in the case of our nail, we could write the force of the hammer striking the nail as
−→
NNH and the force of the nail on the hammer as

−→
NHN and state that

NNH = NHN

and that the direction of the two forces are opposite, that is
−→
NNH = −−→NHN

Let’s take on a hard problem. Take a text book. It weights a lot. Now place it on your

desk. Explain, now, why the book does not push the table to the floor. Certainly there is

a force due to gravity on the book. If we drop the book we can see this.

So if the book stays in one place when we put it on the table, there must be a force that

opposes its motion so the net force is zero. We already know that we should call this

force
−→
N for “normal force” (meaning it is perpendicular to the surface). Let’s look for

force pairs.
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The gravitational force is between the book and the Earth. So there is a force pair as

shown below

The Earth is pulling on the book with a gravitational force. The book also has mass so

it is pulling on the Earth with a gravitational force! Notice that in this force pair, the

forces are the same type, both gravitational (weight) forces. Notice the forces in the

force pair have the same subscripts, but in a different order. This is important! These

two forces account for the gravitation, but not the normal force. There is another pair

The table pushes up on the book with force
−→
NBT , and the book pushes down on the

table with force
−→
NTB . Notice again that in the force pair the forces are the same type

(normal forces in this case). Notice again that the subscripts are the same, but in a

different order.
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Also notice that forces
−→
NBT and

−→
NTB both have the magnitude WBE . And also notice

that the forces acting on the book are
−→
WBE and

−→
NBT . The other forces,

−→
NTB and

−→
WEB are are exerted by the book on other objects (the table and the Earth).

We can see that for the book
−→
NBT must equal

−→
WBE. The book is not even moving. So

it clearly is not accelerating From Newton’s second law we have

ΣFBy = maBy = 0 = NBT +WBE

we know

WBE = −mg

and have deduced that they are oppositely directed in the y direction so

0 = NBT −mg

or

NBT = mg

Now you may say that this seems incomplete (it did to me when I first learned this). We

are left with the table having a net force of
−→
NTB acting on it. This should accelerate

the table downward! But of course the table is sitting on the floor (which we will take

to be part of the earth) so we really have another reaction pair that keeps the table in

place. Here is the more complete table diagram.

We can see that

ΣFTy = maTy = 0 = NTF −NTB −WTE

So that

NTF = NTB +WTE

= WBE +WTE

The normal force due to the floor must support the weight of the table and the book.

This is no surprise. We could also draw a diagram for the Earth.
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Notice that the table atoms must also resist the pull of the book and the table on the

Earth!

But we were looking for force pairs. Notice that there are four force pairs WBE and

WEB, WTE and WET , NTF and NFT , and NBT and NTB . Notice that no two forces

in a force pair are on the same diagram! This is important. Force pairs can never act on

the same object. Also notice that each force in a force pair has the same subscripts but

in reverse order.

also notice that each of the forces in a force pair are opposite in direction. These are the

characteristics of a force pair:

1. Same type of force

2. On two different objects (same subscripts, but reversed)

3. Equal magnitudes

4. Opposite Direction
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At this point we can start to recognize that Newton’s third law can be viewed as a

constraint in our problems. In our examples and homework we often found normal

forces like N12 and N21. We can see that all along these were just Newton’s third law

pairs.

In our next lecture, let’s return to the idea of equilibrium and practice what we know

about Newton’s laws.





16 Friction, Systems, and

Pulleys

We started studying friction in our last lecture. Today we will finish our study of

friction.

In what we did last lecture we treated each object separately. We will still do that in this

lecture, but sometimes it is useful to say our object is really a compound object that has

several parts. We call such a compound object a system. We will study systems today,

And we will study a device that can change the direction of tension forces, the pulley.

Friction

From what we said last lecture, we know that friction is created by little stretchy molec­

ular bonds.
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And we know that our friction force is proportional to the normal force

fBF ∝ NBF

but we would like to make this an equation with an equal sign. To do this, we can

include a constant, µs that contains all the details of the surface of the substances (in

our case, the box and floor substances) that are interacting. Are they very rough? Are

they very sticky? etc.

fBF = µsNBF

The constant µs would be different for every material, and also different for every

roughness of the specific material.

Static friction

This constant µs, is called the coefficient of static friction. And really must be different

for nearly every item.

This equation for static friction is a little misleading still. Of course, if we push down

harder on our box, the friction force can be larger. But look at our last graph (repeated

below).

What if we don’t push on the box. Suppose the box is just sitting on the floor. Then the

little roughness teeth don’t bend, and the molecular bonds don’t stretch. In that case

there is no frictional force even though we have a normal force! If we begin to push on

the box, the teeth begin to stretch and push backward. But they won’t push back as hard

as they can.
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If we push even harder on the box, the teeth push back harder, until we reach the

point where the bonds start to break. That is the point where the equal sign works,

fBF = µsNBF . But if we push less on the box then

fBF < µsNBF

So the way we should write this equation is to say that

fBF ≤ µsNBF (16.1)

meaning that the frictional force could be up to µsNBF if we push hard on the object

(in our case, the box), but could be less that µsNBF if we push less hard on the box or

even zero if we don’t push at all.

Kinetic friction

Suppose we do push very hard on the box so hard that the bonds brake. Think about

pushing a box. You push the box, and at first it does not move. The harder you push,

the harder the floor roughness teeth push back. But then something seems to “give.”

That is the bonds breaking. Now the box scoots along the floor. So long as we keep the

box moving, it can’t form more bonds with the floor and it can’t sink down, meshing

the roughness teeth with the roughness of the floor. The breaking point, when the box

begins to move is when fBF = µsNBF . Beyond this point, the friction force has much

less bonding and less teeth meshing, so the friction force is greatly reduced.

We can write a similar equation for the case when the box is finally moving

fBF = µkNBF

It is still true that there is more friction if we push down harder on the box (making

NBF larger). But now we won’t have much stickiness and will have less meshing of
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the roughness teeth. So our coefficient will be much less. To indicate that we have a

different coefficient once the box is moving, let’s give the new coefficient a new name.

We call this the coefficient of kinetic friction.

Here are some example coefficients of friction.

Material µs µk
Rubber on concrete 1.00 0.80
Steel on steel 0.74 0.57
Wood on wood 0.25 to 0.50 0.20
Waxed wood on snow 0 to 0.14 0.04 to 0.1
Ice on ice 0.10 0.03

but recall that I could have wood that is more rough than other wood. That would

change our table value for “Wood on wood” or “Waxed wood on snow.” So these

coefficients of friction are useful to get the general idea of how much frictional force

we might get for a substance, but should be used with some caution.

Rolling friction

It is becoming popular to define another coefficient of friction, one for a rolling wheel

or tire. But this is really just a special case of static friction. Think of a tire. You want

your car tire to roll along without slipping. That means that the part of the tire that is on

the ground is somewhere in the static friction area of our graph.

The rolling friction depends on how hard we work at spinning the tire (how big Fpush

is). Since the push force can change with how we rev our engine, so can the rotational

friction force.
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Some books define a coefficient of rolling friction, but we won’t. We will realize that

rolling friction is just a case of static friction and use

fBF ≤ µsNBF

for rolling objects.

We found last lecture when we analyzed a bike going up a hill that friction is always in

the direction opposite the way our object pushes on the ruffness teeth of the surface. In

the case of a wheel, the bottom of the wheel pushes backwards, opposite the direction

the vehicle is going. That means the road ruffness teeth push forward. It is this forward

push that makes the powered wheeled vehicle go forward (like a car or a bike, but not

like a trailer).

An example of friction

Suppose our moving guys have pushed the box to a ramp. They want to slide the

box down the ramp. The ramp has an angle of 20 ◦ and somehow you know that the

coefficient of kinetic friction µk = 0.12 for the box sliding on the ramp material. What

is the acceleration of the box as it slides down the ramp?

It will be easier if we use a rotated coordinate system for this problem. Let’s make the

x­axis be along the ramp. Then the y­axis would be perpendicular to the ramp.
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and we can draw a free­body diagram in this coordinate system

This is a friction problem, and since we want acceleration, it is also likely a Newton’s

second law problem.

We know

θ = 20 ◦

φ = 270 ◦ + θ

µk = 0.12

and we know Newton’s second law

Fnetx = max =



i

Fxi

Fnety = may =



i

Fyi

and we can use our new kinetic friction equation.

fBRk = µkNBR

The box is not likely to fly off the ramp or to burrow into the ramp, so we can also

identify

ay = 0
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then

Fnety = 0 = NBR sin (90
◦) + fBR sin (180

◦) +WBE sin (φ)

and the x­part would be

Fnetx = max = NBR cos (90
◦) + fBR cos (180

◦) +WBE cos (φ)

We have said that we should always use any value that is zero right away because it

takes out whole terms. And we added to this using ±1 values from sine and cosine

functions.

Fnety = 0 = NBR +WBE sin (270 ◦ + θ)

max = 0− fBR +WBE cos (φ)

using our new friction equation, fBRk = µkNBR, we can write this as

NBR = −WBE sin (270 ◦ + θ)

max = −µkNBR +WBE cos (φ)

and substituting NBR from the first equation into the second

max = −µk (−WBE sin (270 ◦ + θ)) +WBE cos (φ)

finally, we know that WBE = mg

max = µk (mg sin (270 ◦ + θ)) +mg cos (φ)

the masses cancel, and we can take out a g

ax = g (µk (sin (270
◦ + θ)) + cos (φ))

ax =
�
9.8

m

s2

�
(0.12 (sin (270 ◦ + 20 ◦)) + cos (270 ◦ + 20 ◦))

= 2. 246 7
m

s2

We would not expect to have the full acceleration due to gravity because we have a

slope and we have friction reducing the acceleration. So this seems reasonable.

Models vs. Laws

You might be saying to yourself at this point that friction seems a little less certain an

idea than, say, Newton’s law of gravity. And you would be right. We need to make a

distinction between a way of thinking about how a complicated system works, and a

physical law, meaning an equation that describes a physical relationship.
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Our model for friction would be

fBFs ≤ µsNBF

fBFk = µkNBF

but there is a lot of leeway in our coefficients of friction. And you might further ask,

does the amount of area on the object that is in contact with the floor matter? If I have

two sets of Velcro R�, but one set is much larger than the other, wouldn’t it take more

force to slide the two sides of the big set across each other than it would to slide the two

sides of the smaller pieces across each other? For Velcro R�, it does matter! But it turns

out that for most surfaces (not like Velcro R�) the area is not very important. But it could

be for a designer surface that is intended to be extra rough. Our mental model works

for most common surfaces. But it would not be to surprising to find that a measured

coefficient of friction for, say, wood on wood, that might not match our table value if

the wood had saw marks, or was varnished, etc. We might say that our equations for

friction are a good mental model of how things work, but they are not a fundamental

theory, describing the basic nature of the universe. The fundamental theory would be

involved in the creation of the atomic bonds, etc. our friction model is like a summary

of the effects of all the fundamental theories as they act on a particular object.

But all this doesn’t seem much like a universal law. And that is right. We don’t use the

word “law” in physics to mean something that is always true. Instead, the word “law”

means an equation that describes what our mental model says should happen. This

might be like Newton’s second law that seems to always be true, or like our friction

equation that is sometimes true. They both could be considered laws in physics.

Propulsion

So far, we have worked rather hard to avoid the details of how we actually get

something moving. We know we need a force. But we have avoided details by making

surfaces frictionless. We know, for example, that if the floor of the apartment were

frictionless, our moving guys would not be able to push on the box. Their feet would

slide out from under them.
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But with friction, the guy can push. However notice that the guy’s foot pushes the

opposite way he/she wants the box to go. The foot pushes backwards. That makes the

little roughness teeth push forwards! This is not too much of a surprise. If we add the

free body diagram for the guy that is pushing the box (labeled Guy2) it might look like

this.

The roughness teeth are what keeps the person moving forward, so they must push

forward.

This is a little like our car wheel. As the tire turns, it pushes against the road.
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Again the roughness teeth in the road will push back on the tire. This is what pushes

the car forward. Notice in propulsion problems so far there has always been a Newton’s

third law pair!

Let’s take on a harder case. A balloon that has been released without being tied. The

balloon moves around the room. What makes the balloon go? If you blow up the

balloon, the extra air pressure in the balloon is distributed around the inside of the

balloon. But if you open the stem and let if fly around, then where the stem is, there is

no balloon wall to push back on the air. The air simply escapes.

Think of summing up all the forces acting on the surface of the balloon. The forces act

to balance each other, except where the hole is. Thus, the force on the other side of the

balloon is unbalanced. And the balloon flies around. The stretched balloon material
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pushes on the air, and the air pushes back.

Rockets work this way, except that instead of inflating, they use a controlled explosion

using the rocket fuel. The burning rocket fuel heats gas, making the gas expand.

The burning of the fuel effectively pushes the gas outward, out of the rocket. The gas

resists this push, pushing back on the rocket. This push from the gas propels the rocket

forward. To see how gas can push on something, think of the air pressure in your tires.

The air pressure is literally pushing your car upward, keeping the rims off the ground.

Air pressure is a subject for PH123. But hopefully you can see that air can provide a

resistive force to propel something forward. For now, notice that Newton’s third law

pairs are the source of propulsion.

Systems

Suppose you are helping with a neighbor’s move. There are two big boxes to move, and

you decide you will push both boxes at once. One box has a weight of 50.0N and the

other has a weight of 40.0N. Further suppose that the floor is frictionless. Of course

this is not a great assumption. If it were really true, you would not be able to walk on

the floor. But let’s suppose that you somehow can push on the boxes and that somehow

the floor is frictionless.
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What will be the acceleration of the smaller of the two boxes if you push with a force

of 30.0N?

This is a Newton’s second law problem, but a dynamic one. Newton’s second law

problems require us to draw free­body diagrams, so let’s draw a diagram for each box.

We know

W1E = 50.N

W2E = 40.N

N1G = 30.N

g = 9.8
m

s2



Systems 281

And we will need our Newton’s second law equations

−→a =

−→
Fnet

m
−→
Fnet = m−→a

W = mg

We need Newton’s second law for both boxes. From our figure for box 1 we have

m1a1x = N1G −N12

m1a1y = N1F −W1E

and we hope that a1y = 0 because we don’t expect the box to fly up or burrow into the

ground.

0 = N1F −W1E

N1F = W1E

Now let’s do box 2

m2a2x = N21

m2a2y = N2F −W2E

and again a2y = 0

0 = N2F −W2E

N2F = W2E

Let’s summarize what Newton’s second law has taught us about this problem:

N1F = W1E

N2F = W2E

m1a1x = N1G −N12

m2a2x = N21

We have six things we don’t know, and only two equations. It looks hopeless. But

really we know more things. The boxes must accelerate together. If that were not true,

one box would launch ahead of the other, or one would collapse as the other accelerated

through it. Neither of these things are happening. So we can say

a1x = a2x = a

. This is what we call a “constraint.” A constraint is a piece of information that comes

from the physics of our situation. It is something we know from observing the physical

setup of the problem. From Newton’s third law we can pick up another constraint. N12

and N21 are Newton’s third law pairs! They must be equal in magnitude.

N12 = N21 = N

This makes some sense. Unless one box is crushing the other, the forces between the
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two boxes must be equal This is another constraint. And each constraint added another

equation!

We also know

W1E = m1g

W2E = m2g

This brings our equation count to six. We should be able to solve a set of six equations

and six unknowns!

Using our constraints we could write our third equation from our Newton’s second law

set as

m1a = N1G −N

and the forth would be

m2a = N

let’s solve this last equation for a

a =
N

m2
and substitute this into the previous

m1
N

m2
= N1G −N

or

m1N = m2N1G −m2N

and some rearranging

m1N +m2N = m2N1G

N (m1 +m2) = m2N1G

gives

N =
m2N1G

(m1 +m2)
We can substitute this into our equation for a

a =
1

m2

m2N1G

(m1 +m2)
but don’t yet know m1 or m2 But we have two equations relating m1 and m2 to the box

weights

W1E = m1g

W2E = m2g

so we can find our masses

m1 =
W1E

g

m2 =
W2E

g
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and substitute them into our equation for a

a =
1

W2E

g

W2E

g
N1G�

W1E

g
+ W2E

g

�

Notice that some of the g terms cancel. Then we have just

a =
g

W2E

W2EN1G

(W1E +W2E)
and we know all the pieces, so we can plug in numbers.

a =
9.8 ms2

40N

(40N) (30N)

(50N + 40N)

= 3. 266 7
m

s2

This is a reasonable result and we can take a minute to rejoice that we found the answer.

But you might think that this was more work than we need to do. If it is really true that

the accelerations are the same for both blocks, it should be that we can treat the two

boxes together as though they were one object. We do this all the time. A car is one

object, but it is made of many parts that all move together. We have used our particle

model to find the motion of whole cars at once, so is should be true that we can treat

both boxes together as one particle

The we can write out Newton’s second law in the x and y­directions for the system

consisting of box 1 and box 1

Fnetx = mSax

= NSG

Fnety = mSay

= NWF −WWE
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and

mS = m1 +m2

then from the x­equation we have

mSax = NSG

and our acceleration is

ax =
NSG

m1 +m2
We don’t know the masses, but we have an expression for them from above, so

ax =
N1G�

W1E

g
+ W2E

g

�

ax =
gN1G

(W1E +W2E)

ax =

�
9.8 ms2

�
(30N)

(50N + 40N)

= 3. 266 7
m

s2

We got the same result, and it was so much easier!

We can give a name to a group of objects that are somehow bound together so that they

move together.

Hubble Telescope System

We call a group of objects that move together a system. Notice that in our first analysis

of the two box system we found that there were forces between the two boxes. This is

part of what makes a system a system. Something must keep the parts of the systems

together. Bolts, welds, screws, and glue keep the Hubble Telescope together. But these

welds, screws, bolts, and glue all really rely on molecular forces that can stretch, but

hold together. For our boxes the forces that keep the boxes together are the normal

forces N12 and N21.
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Notice that they figure prominently in our first solution, but don’t show up at all in the

second solution! These forces are not from outside the two­box system. Rather, they

are internal forces. If we treat the whole system as a particle, we will never see these

forces. The next figure is an “exploded view” of a motorcycle engine.

Motorcycle Engine System

As the motorcycle operates, there will be lots of internal forces among all these parts.

But for most practical purposes, we will treat the whole motorcycle, engine parts and

all, as one object. We call this one object the “motorcycle system.”

This is both a comfort, and a potential danger. Those internal forces really exist. And

as we search for all the forces acting on an object, we will have to be sure that we don’t

include internal forces in our net force calculations. Internal forces won’t accelerate

an object. On the other hand, if you have ever had the misfortune of breaking a motor

mount, you will recognize that making sure the internal forces are not too large is

critical for a mechanical design!

Notice that internal forces come in matched sets, like normal forces N12 and N21, for

our two box example. In our subscript scheme, the internal forces have matched, but

reversed subscripts. This is a dead giveaway that these forces are internal forces (and

that they are Newton’s third law pairs).

Almost any group of interacting objects could be considered a system. Suppose we take

the Earth and you (or an astronaut) as a system.
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Here are the free body diagrams for both the astronaut (or you) and the Earth.

The internal forces will be WEA and WAE. Notice that they are the same type of force,

both gravitational forces. Note the subscripts are the same, but reversed. You might also

notice that their directions are opposite. Also notice that it took two free­body diagrams

to draw both forces. That is because each of the forces is on a different object.

We call forces that match like this force pairs. All interactions between objects come

as force pairs. But the parts of force pairs can never act on a single object. there must

always be two objects for there to be a force pair.

Our normal forces between the boxes are a force pair, N12 and N21. Notice that N12

and N21 are on different diagrams! Also notice that they are opposite in direction, but

the same type of force (a normal force). It can be tricky to identify force pairs.

Pulleys

We have used ropes in our force situations already. But our ingenious ancestors
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invented devices that change the direction of a rope’s tension. We need to be able to

include such details in our force calculations. So let’s take a closer look at the ropes,

themselves, and lets take a look at this device that changes the direction of a tension,

the pulley.

Look at figure. The first thing you will notice is that indeed the pulley changes the

direction of the tension! This can be quite useful. But there is a cost.

Early pulley­like devices were just wooden blocks that the rope would slide over. They

would have a lot of friction. That friction would reduce the tension in the rope. So, in

our example above, Block A would not be pulled with as much force due to the tension

created by block B because some of the force from block B was used just to make the

rope move over the pulley. The engineering work on pulleys done over the years has

been to reduce friction by making part of the pulley turn. By turning like a wheel. the

rope and pulley don’t slide against each other. The friction is greatly reduced because

we changed the pulley from having kinetic friction to having static friction

fs ≤ µsN

and so long as the wheel moves with the rope the roughness teeth don’t bend and we get

fs ≪ µsN
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Elevator pulley and cable.

An ideal pulley would have absolutely no friction. This is an engineering feat yet to be

accomplished. But many pulleys have very little friction. If the friction in the pulley

axel and the static friction between the rope and the pulley wheel do not change the

tension in the rope noticeably, we can ignore the friction. We call this the frictionless

pulley approximation.

We will generally use both the massless string and the frictionless pulley approximation

together in problems. Let’s try one now.

A box with a weight of 100.0N sits on a table. The table exerts a normal force on

the box to keep it from smashing its way through the table material. But what would

happen if you tied a rope to the box, and passed the rope through a pulley (that is

perfectly frictionless), then attached a weight to the other end? What would the normal

force be in this situation if the weight weighed 40N?
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What type of problem is this? Well, we can see we have a rope and we have forces, so

this is likely a Newton’s second law problem. We will need a free body diagram for our

objects.

Notice that we did not draw a diagram for the rope. If we take the massless string

approximation, then the rope has no mass, so we can’t exert a force on the rope! But

the rope can exert a force on the box and weight (yes this is not realistic, but in many

cases it is close enough).

VAR:

WBE = 100.0N

WWE = 40N
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BE
−→
Fnet = m−→a =




i

−→
F i

W = mg

We recognize that −→a = 0 so our basic equation is
−→
Fnet = 0

or

Fnetx = 0

Fnety = 0

With our frictionless pulley approximation the pulley can’t change the tension in the

rope. Since we are assuming that the mass of the rope is negligible, and the pulley is

frictionless. Then we can say

TBR = TWR

This is a constraint of the system. Now let’s set up Newton’s second for both objects.

There are no x­direction forces, so we only need Fnety = 0

For the box

0 = TBR +NBT −WBE

and for the weight

0 = TWR −WWE

from the last equation

TWR = WWE

then

TBR = WWE

and

0 = WWE +NBT −WBE

or

NBT = WBE −WWE

and we can put in numbers

NBT = 100.0N− 40N

= 60.0N

Indeed, our rope, pulley, and weight makes the table’s NBT less than it would have

been. This is the idea of a counter weight that you see in theater lighting and scenery
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management that makes it easier to lift heavy equipment.

Of course this would have been harder (requiring some of our new math, an integral)

if we did not use the massless string approximation and the frictionless pulley

approximation.

In our study of motion, we started with objects moving in straight lines, and then moved

to objects moving in circles and even curved paths. In our study of forces we have

studied objects moving in straight lines, you might expect that we will extend what we

have learned to objects moving in circles and curved paths–and you would be right! We

will start this next lecture.





17 Drag Force and Centripetal

Forces

In this lecture, we will continue to look at forces and their origins. and we will practice

using forces a bit. We are not going to learn much that is new in this lecture, but we are

going to put pieces of physics that we already know together in a new way. We start

with drag force, then go back to circular motion, and radial and tangential coordinates

together to solve problems where objects experience forces as they travel in circular

paths.

Drag Force

In this class we really don’t yet understand enough to see exactly how drag forces like

air resistance work. We will set the groundwork for understanding the origins of drag

force in more detail in PH123. But we can have some intuitive feel for an air resistance

with some conceptual reasoning. Consider again if we tied baseballs to strings and

hung them all over our class room. Every time a student entered into the room the stu­

dent would collide with the baseballs. Not only would this hurt, but it would slow the

progress of the student. The baseballs would exert a force on the student with every col­

lision. The collective resistance to the motion of the student due to all the baseballs is

what we would call a drag force.
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As the student tries to traverse the baseball laden room, we can see that the wider the

student the more baseballs the student will strike.

It doesn’t matter much how long the person is, just how wide. A horse wouldn’t not hit

more baseballs due to it’s long body, for example. We will call the area filled in from an

outline of the student the cross sectional area.
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Our drag force must be proportional to this cross­sectional area.

It must also be true that the number of collisions would be proportional to the density

of baseballs in the room. The more tightly packed the balls, the more balls we will hit.
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It’s also true that the faster we try to run through the room, the more the baseballs will

resist our motion. For one thing, the collisions would hurt more! That means the force

due to the collision would be higher. This reasoning works for any shape that passes

through the baseballs. We could try to push a large beach ball through the room, for

example. The beach ball would be slowed down based on how big it’s cross sectional

area is, and how fast it is going.

We can give an equation for how strong the drag force will be (borrowed from PH123).

D =
1

2
CρAv2

This is the magnitude of the drag force, and the direction is opposite the motion of the

object. The value A is the cross­sectional area. The quantity ρ is the air density (think

of this like a baseball density in our example). Of course v is the speed, and C is a a

coefficient changes with the shape of the object. It’s called the drag coefficient and it is

smaller for pointed things like rockets and larger for blunt things like people

Suppose we have a person that wishes to parachute out of a plane. The person­parachute

system will experience a drag force.
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where the subscript P is for “person” and A is for “air” and E is for “Earth.”

But notice something strange about drag forces. They increase as the speed increases.

This makes sense, think of running vs. walking through or room with the baseballs. But

for our falling person, it means that the drag force increases the faster the person falls.

At some point the parachutist’s drag force will be equal to his/her weight force. The

parachutist will be in dynamic equilibrium!

Fnet = DPA −WPE = 0

The person has stopped accelerating! which is the whole point of using a parachute.

We can find out how fast the person will be going when he or she stops accelerating by

using our borrowed formula for drag

DPA −WPE = 0

becomes
1

2
CρAv2 −mg = 0

or
1

2
CρAv2 = mg

so that we can write

v2 =
2mg

CρA
and finally

v =

�
2mg

CρA

We call this speed terminal velocity. Suppose we know that for a falling person on a

parachute C = 1.1, m = 89 kg, (person plus parachute) the air density is ρ = 1.3 kg
m3

and suppose that for our person/parachute system our cross­sectional areal is about

A = πr2 with the radius about 5.5m so A = π (5.5m)2 = 95. 033m2. Then

v =

���� 2 (89 kg)
�
9.8 ms2

�

(1.1)
�
1.3 kg

m3

�
(95. 033m2)

= 3. 582 8
m

s
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Centripetal Forces

So far we have mostly used an Euclidean coordinate system (xyz) for forces.

This coordinate systems has three axes, x, y, and z, and a point in space is given by

how far away the point is from the xy , yz, and zx planes. A point is given by giving

the three distances. We call the distance from the zy plane x. It is how far we have gone

in the x­direction to get to our point. In Rexburg, it would be like saying how many

blocks East we went. Likewise we call the distance from the xz plane y. It is how far

we have gone in the y­direction. In Rexburg, it is like how many blocks North we went.

And z is how far we are from the xy­plane. In Rexburg, it would be like how many

floors up you went in a building.

We also defined three directions in this coordinate system.
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These are our ı̂, ̂, and k̂ unit vectors.

But really we have also used another coordinate system when we considered circular

motion. Here it is

The figure shows the same point we considered in our Euclidean coordinate system. We

still need three measurements in this coordinate system to describe where our point is

in space. We will keep one of the measurements the same. We will call z the distance
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of our point from the xy plane. It is how far we went in the z­direction (how far up off

the surface in Rexburg). But the other two measurements are different.

One of the new measurements is how far from the z­axis of the coordinate system we

go to get to our point. But we won’t follow in a block pattern like you would in a

Western city like Rexburg. This is a direct “as the crow flies” measurement. We call

this measurement r, because it is along a radius of the dotted circle shown. Notice

that if I just tell you to go r meters, you could go in any direction. If the whole class

received the same instruction, then you would all be lined up somewhere on the circle

surrounding the starting point that has a radius, r.

The final measurement is an angle, measured from the x­axis. This will tell you which

way to go from the origin. We call this angle measurement θ (or sometimes φ, or any

Greek letter).

So if you were a large green super hero, you could start out at the city center, choose

your direction by choosing θ, then smash through the buildings a distance r, and then

climb up through what was left of the building a distance z to get to our point P. A

point can be described by giving the measurements r, θ, and z.12

Of course you recognize this coordinate system as being made from polar coordi­

nates, with a z­component added in. The proper name for this coordinate system is the

cylindrical coordinate system. There are, of course, three unit vectors that describe di­

rections in this coordinate system.

12 But since there are no large green super heros, please do take the sidewalks through town and use the
stairs to climb to floors in buildings.
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Imagine you are in an airplane circling the airport. This coordinate system would be

very natural. It tells you how far you are from the airport, what direction you are from

the airport, and how high above the airport you are.

We called the r̂ direction the radial direction because it is along the radius. The θ̂

direction is the tangential direction (also called azimuthal direction in older books).

And we will keep calling the z­direction the k̂­direction. Because of this, sometimes

this coordinate system is called the rtz­coordinate system. Think of flying in the plane.

You would have a turning (centripetal) acceleration keeping you going in a circle. That

would be a radial acceleration because it points in the (negative) r̂­direction.

The plane would also have a tangential velocity in the θ̂ direction.

Circular motion is familiar to us, and all this is really nothing new, with the small

exception that we have added in the z­axis so we can have circular motion of flying

things. We have a set of equations for uniform circular motion
∆θ = θf − θi
∆t = tf − ti
ωave =

∆θ
∆t

ω = dθ
dt

ω = vt
r

ar = ac =
v2t
r
= ω2r
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and if the motion is uniform circular motion we know

at = 0

az = 0

vr = 0

vz = 0

Let’s try a problem.

Suppose you decide to live in a particular apartment complex that gives obnoxious

helicopter rides for signing up for an apartment (clear evidence that the rent is too

high!).13 The helicopter is flying 152. 4m above the ground (because any lower would

be illegal) and is going around campus in a big circle (radius of 3218. 7m) with a

constant speed of 7.0m/ s. What is the acceleration of the helicopter?

This is a uniform circular motion problem, but with our new twist that the motion is off

the surface of the Earth.

We can see that the tangential and z­components of the acceleration are zero, and that

the radial and z­components of the velocity are zero.

at = 0

az = 0

vr = 0

vz = 0

13 Yes, one semester this really happened.
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all from our picture and knowing the helicopter is creating constant circular motion. We

also know that

z = 152. 4m

r = 3218. 7m

vt = 7.0m/ s

where we can see that the helicopter speed must be in the tangential direction (which

direction around the circle we don’t know, but if you were in the helicopter, it would be

obvious).

The radial acceleration is related to the tangential speed of the helicopter. We can tell

that this must be true by recognizing that ar is pointing toward the center of the circular

flight path. And remember, there is a word that means “points toward the center.”

Physicists use this word as a description of anything, force, acceleration, etc. that points

toward the center of a circle. Then ar can be given the title “centripetal” and that means

we can say

ar = ac =
v2t
r

and we know all these parts

ar =
vt
2

r

so we can find

ar =
(7.0m/ s)2

3218. 7m

= 1. 522 4× 10−2
m

s2

This is not a very large acceleration, the pilot probably does not want you to feel motion

sickness (and therefore question the value of that high rent payment).

Circular motion and forces

We have reviewed circular motion and centripetal acceleration. Now let’s add in forces.

We are force experts using Newton’s second law.

−→a =

−→
F netx

m
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But in the past we have written Newton’s second law as

ax =
Fnetx

m

ay =
Fnety

m

az =
Fnetz

m
but now we need to write these as

ar =
Fnetr

m

aθ =
Fnetθ

m

az =
Fnetz

m
and for constant circular motion we can even write the first of our new Newton’s second

law set as

ar =
Fnetr

m
=

v2t
r

Notice that we are turning a three­dimensional problem into three one­dimensional

problems. This is just what we always do with mulit­dimensional problems. But this

time we have split the problem into r, θ, and z parts instead of x, y, and z parts.

Let’s try another problem, one with forces involved this time:

A car travels at a constant speed of 13. 411 ms on a level road and experiences a circular

turn of radius 50.0m. What minimum coefficient of static friction, µs, between the tires

and roadway will allow the car to make the circular turn without sliding? You might

want to know something like this if you were designing the tire tread for race cars! A

rougher tread will increase µs. But you don’t want to make the tread too rough, or you

have more friction than you need for the straight parts of the track. Here is a picture to

illustrate what we want to find,
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and since this is a force problem, here is the free body diagram for the car

From the problem statement we know that

at = 0

az = 0

vr = 0

vz = 0

z = 0

vt = 13. 411
m

s
= 50.0m

and we can see that the friction force must be in the (negative) radial direction. That

means that −→a r must also be in the −r̂ direction. This makes sense because as the car

tires turn, the car wants to go straight (think of Newton’s first law, and also think what

would happen if the road were covered with smooth, frictionless ice), but the angled tire

roughness teeth jam into the road roughness teeth and bend the road roughness teeth.
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Of course, the road roughness teeth push back on the tire roughness teeth. So the tire is

shoved toward the center of the circle. The tire is connected to the car through a series

of internal forces, so a push on the tire becomes a push on the car. The car experiences

a friction force toward the center of the circle. Note that this is static friction. We really

never want the tires to slide sideways. There would also be some “rolling friction” as

the tires roll forward, but it is not what is keeping the car on the road making a turn.

The “rolling” part of the friction makes the car speed up forward, not turn to stay in the

circle. Usually you don’t speed up on a turn, so while the car is turning we mostly have

just fCRTurning . We can identify this static friction as a centripetal force. A centripetal

force is the force that causes the centripetal acceleration.

Now that we have a free­body diagram, we can set up Newton’s second law in our
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cylindrical coordinate system. Notice that the z­direciton is “up.” So

ΣFz = 0 = NCR −WCE

ΣFr = −mar = −fCSTurning

ΣFθ = maθ = 0

Note that the net force in the r­direction is inward, so we need the minus sign in −mar.

We can drop the “Turning” subscript, because we understand it is the turning part of the

friction that is in the −r̂ direction. We will do so in what follows.

From the first (z) equation we find that

NCR = WCE

which is not a surprise. We know that

fCS = µsNCR

so we can write

fCS = µsWCE

and

−mar = −fCS = −µsWCE

so we have for a

−ar = −
µsWCE

m
But now consider that the force, mar, is the force that is changing our car’s direction.

It is in the radial direction. This is our centripetal force, so we can identify ar = ac

−ac = −
µsWCE

m
and we know that

ac =
v2t
r

so

−v2t
r
= −µsWCE

m
Consider that our acceleration is radial, but it is in the −r̂ direction toward the origin.
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so in our cylindrical coordinate system our radial acceleration is negative.

Now we are down to some algebra

−v2t
r

= −µsmg

m
We can cancel the minus signs

v2t
r
= µsg

so

µs =
v2t
rg

If we plug in numbers,

µs =

�
13. 411 ms

�2

50m · 9.8 ms2
= 0.367 05

Consider for a moment what this means. Will the car slip? We can look up the value of

µs for rubber on pavement, and note that it is close to 1, so on a clear road (no ice or

water) the car will not slip.

Note that we now have a centripetal force as well as a centripetal acceleration. Once

again, this is not a new kind of force, but just the same old force with a new title.

More angular acceleration

Suppose that we are traveling in a circle, but the speed is not constant, then we have

two acceleration components, one component towards the center, and one tangential

(along a tangent line)

at (17.1)

This is a little weird, because often in the past we have taken x and y components, but

centripetal and tangential components work just as well. And we have used at and ac

in circular problems before. To get back to a total acceleration vector we use,

a =
	

a2t + a2c (17.2)

and

θ = tan−1
�

at
ar

�
(17.3)

Banked roadways

Suppose we try our turning car problem again, but we play a trick to let cars travel
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around the curve faster. We bank the curve. This is done in real race tracks. Here is a

NASCAR R� example.

Notice that the roadway is not flat. The roadway has a slope where there is a turn. So

let’s do our car problem again, but with a sloped roadway of, say, 20.0 ◦ slope angle.

Will we need as much friction to keep the car on the road?

Once again we draw a free­body diagram.

and write out Newton’s second law. We have forces in the z and r directions. So we

will need Newton’s second law in at least these two directions.

Let’s do the z­axis first. From the figure we have the angle θ, but for NCR that angle

isn’t with respect to the −r axis. So we need to be careful with taking components. We
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could find the angle φ that is with respect to the −r axis. Then our normal equations

for components

vx = v cos θ

vy = v sin θ

will work. And notice that φ = 90 ◦ − θ. Now let’s look at fCS. We have two choices.

We could use the angle measured from the −r axis. That would be η = 360 ◦ − θ. Or

we could just use −θ. I will use the first choice, but either work. Here is Newton’s

second law for the z­direction.

ΣFz = maz = NCR sin (90
◦ − θ) + fCS sin (360

◦ − θ)−WCE

Now for the r­axis. The net force is in the −r̂ direction and all the components will be

in the −r̂ as well.

ΣFr = −mar = −NCR cos (90 ◦ − θ)− fCS cos (360
◦ − θ)

Of course, all the negative signs cancel. But starting out with them keeps us honest in

our thinking about which direction the forces go.

Using some of our beloved trig identities

sin (90 ◦ − θ) = cos θ

cos (90 ◦ − θ) = sin θ

sin (360 ◦ − θ) = − sin θ

cos (360 ◦ − θ) = cos θ

we can write our Newton’s second law as

ΣFz = maz = NCR cos (θ)− fCS sin (θ)−WCE

ΣFr = −mar = −NCR sin (θ)− fCS cos (θ)

and we can do the same thing we did in our last example, mostly...

It might be tempting to rotate our coordinate system, but we need to be careful. We

know something about ar = ac = v2/r. If we rotate our coordinates, we won’t be

in our cylindrical coordinates, and we will have to be careful when we calculate the

centripetal acceleration. Let’s not rotate coordinates this time.

We know that the car won’t launch off the surface, and is not likely speeding up through

the turn, so we can say that

az = 0
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at = 0

vr = 0

vz = 0

z = 0

vt = 13. 411
m

s
r = 50.0m

θ = 20. ◦

Then our z­part of Newton’s second law becomes

NCR cos (θ)− fCS sin (θ)−WCE = 0

and we know

fCR ≤ µsNCR

and again we want to take the case were we find the minimum µs so we will set.

fCR = µsNCR

Note that is was a choice. We picked the equal sign because we want the minimum µs

so the car just stays on the road. That is the case where fCR is just equal to µsNCR. So

our Newton’s second law pair now look like this:

NCR cos (θ)− µsNCR sin (θ)−mg = 0

−mar = −NCR sin (θ)− µsNCR cos (θ)

Using the first of these,

NCR (cos (θ)− µs sin (θ)) = mg

or

NCR =
mg

(cos (θ)− µs sin (θ))
then we can take our r­equation

−mar = −NCR (sin (θ)− µs cos (θ))

and substitute in for NCR

−mar = −
mg

(cos (θ)− µs sin (θ))
(sin (θ) + µs cos (θ))

and we know ar is our centripetal acceleration so

ar = ac =
v2

r
then

−m
v2

r
= −mg

(sin (θ) + µs cos (θ))

(cos (θ)− µs sin (θ))
We know v, r, m, g, and θ, so messy as this is, we should be able to solve for µs
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−m
v2

r
(cos (θ)− µs sin (θ)) = −mg (sin (θ) + µs cos (θ))

−m
v2

r
cos (θ) + µsm

v2

r
sin (θ) = −mg sin (θ)− µsmg cos (θ)

−m
v2

r
cos (θ) +mg sin (θ) = −µsmg cos (θ)− µsm

v2

r
sin (θ)

−m
v2

r
cos (θ) +mg sin (θ) = µs

�
−mg cos (θ)−m

v2

r
sin (θ)

�

−mv2

r
cos (θ) +mg sin (θ)

−mg cos (θ)−mv2

r
sin (θ)

= µs

µs =
−mv2

r
cos (θ) +mg sin (θ)

−
�
mv2

r
sin (θ) +mg cos (θ)

�

So our answer is

µs =
−v2

r
cos (θ) + g sin (θ)

−
�
v2

r
sin (θ) + g cos (θ)

�

We should check this. We should get the last answer if θ = 0

µs =
−v2

r
(1) + g (0)

−
�
v2

r
(0) + g (1)

�

−v2

r

− (g)
= µs

v2

(gr)
= µs

µs =
v2

(gr)

µs =

�
13. 411 ms

�2
�
9.8 ms2

�
(50.0m)

= 0.367 05

which is the same answer we got for the un­banked road. This gives some confidence

that we got our tilted problem right.

Let’s put in our numbers for our tilted ramp.

µs =
−v2

r
cos (θ) + g sin (θ)

−
�
v2

r
sin (θ) + g cos (θ)

�
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so

µs =
−(13. 411

m

s )
2

50.0m cos (20 ◦) +
�
9.8 ms2

�
sin (20 ◦)�

−(13. 411
m

s )
2

50.0m sin (20 ◦)−
�
9.8 ms2

�
cos (20 ◦)

�

= 2. 717 6× 10−3

This is much less than the un­tilted road.

Let’s see if we can tell why. For the un­tilted road, the normal force just had to support

the car’s weight

NCR = WCE = mg

so the frictional force was

fCR = (0.367 05)WCE

but now look at our normal force with the banked road

NCR =
WCE

(cos (θ)− µs sin (θ))

=
WCE

(cos (20 ◦)− (2. 717 6× 10−3) sin (20 ◦))

= 1. 065 2WCE

The normal force has increased with the banking. That is because the car is pushing

harder on the road due to the banked turn. The road is helping the car turn with the

radial part of the normal force. Then the frictional force can be much less.

fCR = µs
WCE

(cos (θ)− µs sin (θ))
Since the minimum µs is now tiny, this is the case. Let’s put in numbers.

fCR =
��
2. 717 6× 10−3

�� WCE

(cos (20 ◦)− ((2. 717 6× 10−3)) sin (20 ◦))

= 2. 894 9× 10−3WCE

This is a reduction in the required friction of
fCR
fCR

=
2. 894 9× 10−3WCE

(0.367 05)WCE

= 7. 886 9× 10−3

or we now need only 0.788 69% of the friction force that we needed without the

banking. This allows NASCAR R� cars to travel much faster without slipping. In

Rexburg, if the curves were banked might even be able to turn with snow and ice!

Although we really did not do anything radically new in this lecture, we did use physics

pieces we knew in new ways. So let’s review.

1. We called our rotational coordinate system a cylindrical coordinate system (or rtz
coordinate system).
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2. We used this coordinate system to solve constant motion problems, first with
kinematics, and then using forces and Newton’s second law.

These combinations will allow us to solve more rotational problems, even with aircraft

that fly off the surface. Of course, we could also let the car or airplane speed up or

slow down. And that is coming. But armed with what we have done in this lecture, we

are ready to take on orbital motion, loop­de­loop roller coasters, and a bunch of great

problems that require both rotation and forces. And that is our next lecture.

Newton’s Second Law and Kinematics

Of course, its not always true that forces sum to zero for all objects. But that’s not bad.

If we have an acceleration we just use our equations for constant acceleration problems.

We might have to use our Newton’s second law techniques to find the acceleration,

however. Lets try this type of problem.

Suppose your car is off the road in the snow. Since the car is just sitting there, it has a

velocity vi = 0. But you would like it towed out of the snow, back on the road. So you

wish to change the car’s motion. You are a distance ∆x = 10.0m from the road. The

deep snow causes a constant friction force of fCS = 1000.0N. Your car has a mass of

1615. 4 kg (weight of WCE = 15831N). The tow truck wench pulls with a force of

2000.0N. How long does it take to get the car back on the road?

We can see that this is an acceleration problem, we don’t want the forces to balance.

We may even suspect that this is a constant acceleration problem. But we don’t know

that constant acceleration. If we did we could us kinematics to solve the problem. But

now that we have Newton’s second law, we have a way to find the acceleration! Let’s

try it out.

Our free­body diagram for the car might look like this.
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Notice that this is the free­body diagram for the car. I didn’t draw the diagram for the

truck (or the snow).

We know

fCS = 1000N

TCR = 2000N

m = 1614.4 kg

WCE = 15831N

∆x = 10.0m

and we know that

Fnetx = max

Fnety = may

and if the acceleration is constant, we can use our kinematic set.
∆x = vix∆t + 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

∆y = viy∆t+ 0
vfy = viy + 0
v2fy = v2iy + 0

We can realize that we know many more things based on a choice of coordinate system.

vix = 0

viy = 0

xi = 0

yi = 0

yf = 0

We should realize that we actually know ay = 0 (or at least we hope it does!) but we

don’t know ax.

∆x= vix +
1
2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

∆y= viy∆t + 1
2ay∆t2

vfy= viy + ay∆t

v2fy= v2iy + 2ay∆y
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and using all the zeros, we have

∆x= 0 + 1
2ax∆t2

vfx = 0 + ax∆t
v2fx = 0 + 2ax∆x

∆y = viy∆t+ 0
vfy = viy + 0
v2fy = v2iy + 0

It looks like our best bet is to use the first x­equation.

∆x =
1

2
ax∆t2

2∆x

ax
= ∆t2

�
2∆x

ax
= ∆t

But we don’t know ax. We need a strategy to find it. We know that the net force has our

acceleration in it. Let’s try Newton’s second law.

Let’s start with the forces to see this. Remember that the net force is the sum of the

forces, so

Fnetx = (TCR − fCS)

Fnety = (NCE −WCE)

and Newton’s law tells us that

Fnetx = max

Fnety = may

so putting these two together tells us

may = (NCE −WCE)

max = (TCR − fCS)

We can guess from our experience that NCE = WCE so ay = 0. The car is not lifting

off the surface or burrowing into the ground! but TCR and fCS are not the same.

ax =
(TCR − fCS)

m

ax =
1

1614.4 kg
(2000N− 1000N)

= 0.619 43
m

s2

This is a constant acceleration. So our guess that we could use kinematics is justified!

Let’s finish it up. We know

∆t =

�
2∆x

ax

∆t =

�
2 (10m)

0.619 43 ms2

= 5. 682 2 s
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The problem was not too hard! It was a little longer because we had to use two different

problem types to solve this single problem, but it really was not too bad.

Fictitious Forces

As we travel in circular paths, at a minimum we have a centripetal acceleration. This

is a problem for us because we agreed to only use inertial reference frames for our

calculations, and really we have done this so far. We do our measurements from a

reference frame that is not accelerating, and study the acceleration of an object from

this viewpoint. Suppose we consider, for an example, a gymnast on a flatbed truck in

the Rexburg Parade.

We know that as long as the truck travels with a constant speed, the truck bed is an iner­

tial reference frame and all our physics works just fine. The gymnast is safe. The forces

acting on the gymnast are all in the y­direction. She or he would be able to do his or her

routine just as though they were in their “stationary” gym.

There could be static friction if the gymnast’s feet are on the truck, but since there is no

acceleration, the gymnast’s feet won’t push on the roughness teeth of the truck, so the



318 Chapter 17 Drag Force and Centripetal Forces

truck roughness teeth won’t push back. There would be no friction if the truck has a

constant speed! We don’t need a force to make the gymnast move with constant speed.

Of course if there was a strong wind, then we would have some drag force. But let’s

assume this is negligible.

Now if the truck driver slammed on the breaks, the truck would quickly change it’s

motion. The gymnast would try to keep going at a constant speed (Newton’s first law).

But notice that we took all our measurements of acceleration and velocity from the

point of view of a person watching this happen from the street. The street is an inertial

reference frame. Let’s say that the gymnast has just jumped into the air as the truck puts

on it’s breaks. From the street viewpoint, the forces acting on the gymnast are still all in

the y­direction.

and the gymnast just keeps going. She has no acceleration in the x­direction. So there

is no force on her in the x­direction

Fnetx = max = m (0) = 0

But we can see that this is really not going to be good on the gymnast.
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The truck has slowed, the gymnast has not, so the gymnast is going to run into the cab

of the truck.

Let’s consider what the gymnast would see (say, we attache a video camera on the

gymnast and watch the video from her point of view). The gymnast sees herself jump,

and then she sees herself thrown forward into the truck. She would see an x­direction

force acting on her (in the −ı̂ direction).

But what would cause this force? Forces need two objects, the object that is being acted

on (mover) and the environmental object creating the force. There is no environmental

object creating a horizontal force on the gymnast. And really we realize that the

problem is that the gymnast is using the accelerating truck as her reference system. It is

an accelerated reference frame, and we won’t allow that in PH121! But now we can see

what an accelerated reference frame would do to our physics. It makes it look like there

are forces there that are not real. We call these fictitious forces. They appear to be there

only because we are using an accelerating point of view.

Let’s look at another fictitious force case. Perhaps you played on a rotating platform as

a kid. We call them merry­go­rounds. If you have a ball on a merry­go­round, and you

throw the ball, to you it looks like the ball curves as it flies away from you. But for

someone who is standing on the playground, not on the merry­go­round, the ball ap­

pears to go in a straight line. Which is correct? This is important, because if the ball

curves, then the direction has changed. That would be acceleration. It takes a force to
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cause acceleration. So for you there appears to be a force, and for your partner on the

playground there does not appear to be a force. Serious stuff!

The apparent force on the ball is another fictitious force. The ball only appears to

change direction because you are on a rotating platform. Really you have moved away

from the ball, not the ball curved away from you. So the apparent force causing the

ball to turn is not real. This particular fictitious force even has a name, it is called

a centrifugal force. This is different than centripetal force which is a title for the

force that makes things turn. To keep from confusing these two forces, remember that

centri(f)ugal has an “f” for “fictitious” in it.

This centrifugal force comes up a lot because we all really live on a rotating platform,

the Earth. It is common to see things appear to curve on a global scale that really don’t

curve. Let’s take an example to see how important it might be to take into account the

rotation of the Earth (and therefore acknowledge that we are on a rotating platform).

Suppose we are on the equator and have a mass on a rope with a tension measuring de­

vice to tell what the tension will be.

A free body diagram for the mass (a fish) might look like this
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that the net force

Fnety = mfa

and the y­net force is equal to the sum of all the y­forces

Fnety = TfT −WfE

so in our flat­non­rotating Earth approximation we would say that the mass is not

accelerating so

Fnety = mfa = 0

0 = TfT −WfE

so

TfT = WfE

But if we realize that the Earth is really turning,

we can see that the mass must have a radial acceleration,
−→a r = a (−r̂)

and this radial acceleration could be called a centripetal acceleration

ar = ac =
v2

r
= ω2rE

where rE is the radius of the Earth. So

Fnetr = −mfa = −mf

�
ω2rE

�
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and then

−mf

�
ω2rE

�
= TfT −WfE

and we can see that the tension in the rope is

TfT = −mf

�
ω2rE

�
+WfE

This is smaller than it would be if the Earth were flat and not rotating. And what is

mf

�
ω2rE

�
? It is a correction to our physics because we violated the no­accelerating

(rotating) reference frame rule! But it looks like a force. This is the fictitious force

called the centrifugal force. It’s not real, it is a correction to our physics because we did

not use a proper reference frame. But the meter in the rope really will read a little bit

less because the Earth is rotating.

This gives us a way to test our flat earth assumption. If mf

�
ω2rE

�
is not negligible,

then we need to do more work on our problem! Of course we did this at the equator.

The value changes with latitude. But we get the idea. The Earth can be used as an

inertial reference frame only if the correction factor is negligible. In later physics

courses, we will take up this problem again!

We will return to rotation later in our lectures. In our next lecture we will take on a

new way of looking at motion. One that is really more fundamental than the forces

and accelerations we have been studying. But we had to work a while so we could

understand it. We will study energy next.
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In our last lecture, we said we would study energy. We have an intuitive feel for what

energy is. It is what makes something go. But what is it? You might be surprised to

know that we don’t have a very good answer to that question. Energy is involved in

making motion happen. And we know how energy behaves. So we can define energy

by describing how it acts. This is a little bit like describing an airline pilot by describing

what an airline pilot does (wears a uniform, flies planes14). And that is a perfectly

good way to define something. It will take several classes to complete this definition of

energy (many, many classes for the physicists among us). But we will start with how

energy causes motion to happen. We will start with a form of energy that is directly

related to forces moving objects.

Work

For the moving object let’s take a rock, and for the environmental object let’s take a

deacon. The deacon is on a hike and sees the rock. You know what will happen, the

rock will be moved to the edge of a cliff and pushed off the edge.15 We will get motion

from the push due to the deacon, and motion due to the pull of gravity. The rock will

travel.

14 some pilots give talks in Conference
15 This is real. I have learned, in Idaho hike on the high ground!
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In the next figure there is a force diagram showing just the horizontal forces of such a

boy pushing on a (frictionless) rock. Only the horizontal force is shown, and for some

strange reason this boy is pushing a rock on a frictionless surface (which makes our

math easier as we learn about a new physical quantity like energy).

Work­energy equation

Suppose we push our rock in the s­direction. Which direction is that? Before we used s

to be arc length. But now the s­direction could be the x­direction, or the y­direction,

or the r­direction or the θ­direction, or the z­direction or the direction along the axis

of any coordinate system. We call s a generalized coordinate. So Fs would be the

component of the force in the s­direction, whichever direction that actually is. We know

that the force is

Fs = mas = m
dvs
dt

and we can use the chain rule of calculus to get an energy equation.16 This is how it

works:

m
dvs
dt

= m
dvs
ds

ds

dt
= m

dvs
ds

vs

so we can write

Fs = mvs
dvs
ds

and, let’s multiply both sides by ds

Fsds = mvs
dvs
ds

ds

It’s not obvious that this did anything useful for us, but it did! Notice that the ds terms

cancel so we have

Fsds = mvsdvs

16 If your calculus class hasn’t gotten to the chain rule yet, just ignore this step and trust that the result is
OK.



Work-energy equation 325

and we can now integrate both sides� sf

si

Fsds =

� vf

vi

mvsdvs

Let’s start with the right hand side. We get� sf

si

Fsds =
1

2
mv2f −

1

2
mv2i

But what does it mean?

The left hand side is the result of the push on the rock. It is a form of energy. We will

give it a name, one that the deacon’s would like. It is called work.

w =

� sf

si

Fsds

It might surprise you to learn that in physics “work” is a type of energy. But it’s not too

strange if we think about it. It takes energy to do work, so it makes some sense to think

of the energy from the deacon’s lunch being converted into the energy of the deacon’s

work in moving the rock.

The right hand side must also be a form of energy. Since it has the speed of the rock in

it, it must be the energy tied up in the movement of the rock. This matches our intuition.

Think of the Sunbeam class when Sunday is the day after Halloween. The kids are full

of energy, and they run around and bounce off the walls. Because this amount of energy

is related to moving, we will use our greek word for motion to describe this energy. We

call it kinetic energy and we give it the symbol K.

K =
1

2
mv2

In fact, there is a beginning energy and an ending energy in the right hand side of our

equation. So the right hand side is a change in kinetic energy

1

2
mv2f −

1

2
mv2i = ∆K

Notice that this kinetic kind of energy can’t be negative! At least as far as we know,

mass can’t be negative, and the speed in the equation is squared. So kinetic energy

can only have positive values. Another thing to notice is that kinetic energy has no

direction, it is a scalar. This is a wonderful thing! If we can solve problems using the

idea of energy, we don’t have to use vectors and their components.
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Work­energy theorem

Suppose just for a second that the force Fs is constant, Then our work equation would

look like this

w = Fs

� sf

si

ds

and we know how to take this integral

w = Fs (s|sfsi
= Fs (sf − si)

= Fs∆s

and we can see that once again physics is concerned with how much we accomplish.

Work can be thought of as how effective a force has been. If the force moves the object

a displacement ∆s, then it has done work. If the force doesn’t move the object, it might

feel like work, but for physics it isn’t.

Now let’s go back to our integral form and take just the integrand and look at it

carefully. We can see that it is a force times a small distance.

Fsds

This makes sense. The small distance is how far the boy pushed the rock in a time dt. If

the time is larger, ∆t, and the force was constant, then we could write this as

w = Fs∆s

The work from t1 to t2 would be the force Fs multiplied by how far the boy pushed the

rock ∆s = s2 − s1. We can see with our calculus experience that

dw = Fsds
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is a small amount of work, where we can assume that the distance ds is so small that

the boy does not change how hard he pushes during the time dt. Then, the total work in

moving the rock is the sum of lots of little ds pushes.

or

w =



dwi =



Fsi∆xi

and of course we will let our ∆si be infinitesimal ds’s, so the sum is really an integral.

w =

� sf

si

Fsds

but the integral means, divide up the distance traveled into small segments of size ds.

For each segment, the component of the force in the direction we are going can be

assumed to be constant. Multiply the distance ds by the force, Fs at that ds point. This

is the change in kinetic energy as the rock moves the distance ds. To get all of the

change in kinetic energy, we add up the contribution for each ds segment of the path,

w =

� sf

si

Fsds

and this is the change in kinetic energy while the boy is pushing.

w = ∆K

This equation is very important. But the idea is very simple. If you push on something

hard enough that it moves, you have changed it’s kinetic energy. The equation is so

important that it has a name. It is called the work energy theorem.

Negative work

We said that kinetic energy can’t be negative, but how about work? Suppose we have

two people exerting a force on a box. One is a professional American football player,

The other is a six­year­old.
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They push in opposite directions. How much work is being done?

To answer this, let’s consider a free­body diagram.

where the subscript B is for the box and the subscript 6 is for the six­year­old and M is

for the football playing (M)an. We can see that there will be a net force.

Fnets = Fnetx = NBM −NB6 − fBF

where here we have explicitly chosen s to be in the x­direction. So the total work done

on the box would be

w =

� sf

si

Fnetsds

=

� xf

xi

Fnetxdx

=

� xf

xi

(NBM −NB6 − fBF ) dx

=

� xf

xi

(NBM ) dx +

� xf

xi

(−NB6) dx +

� xf

xi

(−fBF ) dx

But which way will the box go? I suspect that the football player will push the box and

the six­year­old to the right. So ∆x will be positive. We can identify the first term in

total work equation as the the work done on the box by the man

wBM =

� xf

xi

NBMdx

= NBM∆x

The next term is the work done by the child

wB6 =

� xf

xi

−NB6dx

= −NBM∆x

The child’s work is negative! What can that mean? Well, for starters, the child’s force

can’t be the force that is making the box move. In fact, the child’s force is another

obstacle that the man’s force must overcome to make the box move. This means that the

man must do enough work (push hard enough) to make the box go, and to overcome
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the backward push of the child. The work that actually makes the box move would be

wnet = wBM +wB6

= NBM∆s−NBM∆x

= (NBM −NBM )∆x

But wait! we did not include friction. Does the frictional force do work? Well, yes, like

our child is doing work. The frictional force is not moving the box forward, but it is

making it harder for the man to move the box. The last term in our integral is the work

due to friction. And now we know to expect that the work due to friction will also be

negative.

wbf =

� xf

xi

−fBfdx

= −fBf∆x

So we really should include an amount of work wBf in our net work equation

wnet = wBM +wB6 +wBf

= NBM∆x−NBM∆x− fBf∆x

= (NBM −NBM − fBf )∆x

= Fnetx∆x

or we could write this using our generalized coordinate, s

wnet = Fnets∆s

So it is the net force that makes our box move! That is not a surprise. The net force is

what makes the box’s acceleration, so the net force should be what gives the box some

kinetic energy.

Work and forces perpendicular to the direction of travel

Let’s consider another case. Suppose our man and child are still pushing on the box,

but the child is tired of being pushed backwards. So now the six­year­old pushes on the

side of the box (see next figure, it’s a top down view).
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Top down view of man and boy pushing on a box. Notice that z is up and x and y are horizontal.

Now the child pushes at a right angle to the man. But suppose the box still goes to the

right, the same direction as it did before. What can we say about the work done by the

man and the child? Let’s take a coordinate system where up is the z­direction and to

the right is the x­direction. Then the y­direction would be to the man’s left or in our

top­down figure it would be toward the top of the page. Then ∆s is in the x­direction

∆s = ∆x

and ∆y = 0 because the box is not going in the y­direction. So the man’s work is

wBM =

� xf

xi

NBMdx

= NBM∆x

just as before but the work done by the child would be

wB6 =

� yf

yi

NB6dy

= NB6∆y

= 0

The child is pushing, but the child has not overcome the static friction force between

the box and the floor in the y­direction. So the box has no y­displacement. The man has

overcome the floor friction, so in the x­direction there is an amount of kinetic friction.

wbfs =

� yf

yi

−fBfsdy

= 0

wbf =

� xf

xi

−fBfdx

= −fBfk∆x

Notice that the man doesn’t have to push as hard now, because he is no longer having to



Work-energy equation 331

overcome the child’s push.

wnet = wBM +wBfk +wB6 +wBfs

= NBM∆x− fBf∆x + 0 + 0

= (NBM − fBf )∆x

= Fnetx∆x

The man only has to overcome friction to keep the box moving (and avoid tripping over

the child).

Work and forces at an angle

But suppose our child get’s smarter. Now the six­year­old pushes mostly in the same

direction as the man. The child pushes with a force that is 30 ◦ from the x­axis.

Then we can use Newton’s second law to find the net force

Fnetx = NBM + NB6 cos θ − fBFk

Fnety = NB6 sin θ − fBFs

and Fnety = 0 still because the box is still going in the x­direction. because the box is

not accelerating in the y­direciton. Notice that from the y­equation

NB6 sin θ = fBFs

so the static friction force in the y­direction is canceled with the y­component of the

child’s push. The y­components will do no work. But we can see that now part of the
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child’s push is helping the man. The net work would be in the x­direction

wnet = wBM +wBfk +wB6 +wBfs

= NBM∆x− fBf∆x +NB6 cos θ∆x + 0

= Fnetx∆x

as expected.

And we have learned something important. If a force pushes at an angle to the direction

the object is traveling, then only part of the force can be causing the motion. In our

original work equation

w =

� sf

si

Fsds

we had only the s­component of the force. But now we recognize that

Fs = F cos θFs

where θFs is the angle between the
−→
F and

−→
∆s directions. This is a new concept, the

angle between two vectors. Up till now we have always used the angle measured from

the x­axis (or we have used our trigonometry experience to do equivalent math). But

now we can’t do this. We have to find the angle between the direction of the force is

pushing and the direction the object is actually going so we can take a component of the

force in the direction that the box is going.

Let’s put the cosine in the basic work equation

w =

� sf

si

F cos θFsds

What we are really doing is finding the component of the force in the direction that the

box is going and multiplying by ds!

Once again, new math

We have a quantity

F cos θFsds

that represents something fundamentally new. We are taking a component of a vector in

a direction that is not one of our axes directions. It would be great if we had a standard

math notation to indicate we are doing this. And there is one!

If we have a generic vector
−→
A and we want the component in the direction of another

vector
−→
B as shown in the next figure,
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Then the AB component would be.

AB = A cos θAB

Since
−→
B is in the x­direction, this is no surprise. But suppose the vectors are as shown

in the next figure:

Really the situation has not changed. The lengths are the same, the angle θAB is the

same. So the result is still

AB = A cos θAB

We could see that this must be true by converting to a rotated coordinate system.

These two situations look the same once you see the coordinates that support them.

Now let’s consider
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A cos θB

This is

A cos (θ)B = ABB

or the component of
−→
A in the

−→
B direction multiplied by B. This strange quantity has a

name and a symbol. The symbol is
−→
A · −→B = A cos (θ)B

and it is called the dot product of
−→
A and

−→
B. It turns out that (a phrase that here means

that I am going to let your math professor prove all this) we can find the value of
−→
A · −→B

if we know the components of the vectors
−→
A and

−→
B

−→
A · −→B = AxBx +AyBy

We can see that this might be true if we write
−→
A and

−→
B in terms of their components

−→
A = Axı̂ +Ay ̂
−→
B = Bxı̂ +By ̂

then
−→
A · −→B = (Axı̂ +Ay ̂) · (Bxı̂ +By ̂)

= Axı̂ ·Bxı̂ +Axı̂ ·By ̂+Ay ̂ ·Bxı̂ +Ay ̂ ·By ̂

now consider

ı̂ · ı̂ = (1)(1) cos (0 ◦)

= 1

since ı̂ and ı̂ are in the same direction, and

ı̂ · ̂ = (1)(1) cos (90 ◦)

= 0

So, using the zeros first
−→
A · −→B = Axı̂ ·Bxı̂ + 0+Ay ̂ ·Bxı̂ + 0

= AxBx +AyBx

All of this leads to

F cos θFsds =
−→
F · d−→s

so we can write our work equation as

w =

� sf

si

−→
F · d−→s

This just means that we take the component of the force in the s­direction and multiply

by ds and integrate the result. But it is a handy, compact notation.
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Example, Work from a Constant Force

Let’s try a problem.

Suppose we let our guy push his box without the “help” of a child. He pushes with a

constant force of 20N and the box moves 3m. How much work did the guy do?

The push and the displacement are in the same direction so

wBG =

� sf

si

−→
F · d−→s

=

� sf

si

NBMds cos θ

= NBM cos θ

� sf

si

ds

= NBM∆s cos θ

wBG = (20N) (3m) cos (0 ◦)

= 60.0 J

Let’s try another. Suppose another guy pulls a box with the same 20N but now at an

angle of 20 ◦. This guy also pulls the box 3m. What is the work
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wBG =

� sf

si

−→
F · d−→s

=

� sf

si

NBMds cos θ

= NBM cos θ

� sf

si

ds

= NBM∆s cos θ

wBG = (20N) (3m) cos (20 ◦)

= 56. 382 J

But now that we have work, why do we want it? Recall the work energy theorem.

w = ∆K

= Kf −Ki

=
1

2
mv2f +

1

2
mv2i

So if our guy pulling the box in the last problem started with the box and rest, so vi = 0,

how fast would the box be going after 3m? Normally we would approach this kind of

problem with kinematics. We would find the acceleration from the force, so this kind

of problem would be both a kinematics and a Newton’s second law type problem. But

now we can just use the work to find how fast the box is going.

w =
1

2
mv2f +

1

2
mv2i

and using our zero for vi

w =
1

2
mv2f + 0

2w = mv2f
2w

m
= v2f

vf =

�
2w

m
Since we know the weight of the box, WBE, and not m we can find m = WBE/g and

put it in for m

vf =

�
2wg

WBE
or

vf =

�
2 (56. 382 J) (9.8m/ s2)

20N

= 7. 433 3
m

s
That is pretty fast! He should probably be more careful with the box!
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For a third problem, let’s look at the work done by gravity in making something fall.

We can say that the force done by gravity is

W = mg

downward. So if we drop a ball the work done would be

wBE =

� −→
F · −→ds

=

�
(mg) ds cos θFx

but our θFX will be zero because the ball is going in the negative direction so dy

downward and the force due to gravity is downward. So

wBE =

�
(mg) dy (1)

Note that I have used dy in place of ds because I want to say explicitly that the ball is

moving in the downward direction.

wBE =

� yf

yi

mgdy

the mass and the acceleration due to gravity don’t change, so we have

wBE = mg

� yf

yi

y0dy

= mg

�
y1

1

�����
yf

yi

= mg (yf − yi)

= mg∆y

So the pull of Earth’s gravity does work in making balls fall.

Suppose we want the ball to go back up to it’s starting point. We will have to push at

least as hard as the Earth’s gravity is pushing down just to keep it moving upward. So

we must at least have

Npush = −W

Then the ball won’t accelerate, but it will keep moving up at a constant speed. In that

case we will do work

wBy =

� yf

yi

−→
F · −→dy

� yf

yi

Npushdy cos θNx

=

� yf

yi

(mg) dy (1)

= mg∆y

which is just as much work as the gravitational force did in making the ball fall. Of
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course we could have pushed harder up than gravity pushed down. In that case the ball

would accelerate upward. But mg∆y is the minimum work needed to put the ball back

up where it started.

It is probably worth noting that while we are pushing the ball upward, gravity is trying

to push the ball downward. The work done by gravity in this case is

wBE =

� −→
F · −→ds

=

�
(mg) ds cos θFx

=

�
(mg) dy (−1)

because the gravitational force is opposite the direction we are pushing. Then

wBE = −mg∆y

as we push upward at a constant speed. The gravitational force is not causing the

motion, so we expect to see negative work. This is a special situation. We could have

pushed harder, and not kept the object moving at a constant rate upward. But this is a

minimum work required to lift the object.

We have done some good work problems with constant forces. Of course, if the force

is not constant, the problems might be a little more difficult. We will take on this more

difficult situation in the next lecture.



19 Work Done By Changing

Forces

In our last lecture, we had normal, tension, and gravitational forces do work. These

forces didn’t change as the object moved. But some forces are not at all constant. In

this lecture we will study a very important example of a force that changes as an object

moves. We will study an object connected to a spring.

Hook’s “Law”

Think of a spring. If it is stretched, it will pull back against the stretching. If it is com­

pressed, it pushes back against the compression. The more you pull, the harder it pulls

back. Or the more you compress it the more it resists being compressed. This force de­

pends on how stretched or compressed the spring has become. The spring likes to be at

an equilibrium length and opposes any displacement from that length.

Sir Robert Hooke first came up with a mathematical expression for how the force of a

spring works

Fs = −k (y − yequilibrium) (19.1)

where k is a constant that depends on the material and manufacturing method used in
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making the spring. It really tells us how stiff the spring is. Notice that the direction

of the force is in the opposite the direction of the displacement. When this is true we

call the force a restoring force because it tends to restore the object to it’s equilibrium

position. The quantity yequilibrium is where the end of the spring would be if it were not

stretched. Of course, if we hang a mass on the end of the spring, the mass will pull the

spring down past it’s equilibrium position to a new position, y. Sometimes you will see

our spring force equation written as

Fs = −k∆y

but we have to be careful to recognize that ∆y = y − yequilibrium is a very special

displacement. It is a displacement from a chosen starting point, the equilibrium point.

We could place a small subscript on the “y” to replace the long word, “equilibrium.”

Fs = −k (y − yo) (19.2)

Anyone who has owned a slinky and has had younger siblings knows that you can

overstretch a spring. Once overstretched, the spring will not regain its original shape.

So with this “law” we have to be careful to use our formula in a region of x (or y) that

does not damage the spring. This demonstrates that a scientific law is not something

that is true all the time, but rather is a mathematical equation that describes the way we

think the physical universe works in some way.

Let’s take a spring and stretch it horizontally.

We can plot the effect of stretching the spring. The restoring force of the spring

increases as we stretch the spring.
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The more we stretch, the more restoring force we have.

It’s also true that we can compress a spring.

If ∆s is negative, then the restoring force will be positive.

Fs = −k∆s
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Let’s try a problem:

Suppose we suspend a spring of length 0.50m and spring constant of 0.30 from a

support. And further suppose that we suspend a 0.50 kg mass from this spring. How

much does the spring stretch?

We’ll call this a spring force problem, and the basic equations are Hooke’s law plus

Newton’s second law

Fs = S = −k (y − yo)

We know

Ls = 0.05m

k = 28
N

m
m = 0.50 kg

g = 9.8
m

s3

We will need a free body diagram
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We will call the spring force Fs = S for our free body diagrams. The subscript s is also

for spring. When the mass stretches the spring it will come to rest.

Fnety = Sms −WmE = 0

so

Sms = WmE

so

k∆s = mg

Notice that we did not put in the negative sign. We already took care of direction

when we wrote Newton’s second law. So we just put in magnitudes after we write out

Newton’s second law.

Then

∆s =
mg

k
or

∆s =
(0.50 kg)

�
9.8 ms2

�
�
28 Nm

�

= 0.175 m

Work for a spring force

Recall our basic equation for work is

w =

� −→
F · −→ds

where we have used our new dot product notation.

But what if
−→
F =

−→
F (s) that is, what if the force changes as we travel in the s­direction?

Let’s take an example, and then generalize what we find.

Suppose we have a spring, say, the one in our spring cannon. As the spring pushes on
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the ball, is the force constant? We know the answer is no, because for spring forces

S (s) = −k (s− so)

so as we let the spring become less compressed (we change s), the magnitude of the

force changes. So in such a case, how do we find the work done by the force? We just

place this force in our work equation

w =

� −→
S (s) · −→ds

or, if our spring cannon operates in the x­direction.

then the work done on the ball is

wb =

� −→
S (x) · −→dx

or

wb =

�
|−k (x− xo)| cos θSxdx

where θSx is the angle between the
−→
S and the

−→
dx directions. From the figure we can

see that θSx = 0 so

wb =

�
|−k (x− xo)| (1) dx

It would be convenient to set our x = 0 point right where the spring is at equilibrium.

So

xo = 0

We will do this, but we have to be careful and make sure |−k (x− xo)| stays a positive

number. After all, it is a magnitude. The problem is that if we choose the end of the

cannon as our x = 0 point, then xi and all the other x values from xi up to x = 0 are

negative. k can’t be negative, and |−k (x− xo)| must be positive. We can achieve this

by using the absolute value signs, but they are clunky. We could just write

|−k (x− xo)| = −k (x− xo) for x ≤ 0
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Then we can state that

xo = 0

because we chose this as our zero point. Note that if x > 0 we have to make

|−k (x− xo)| = +k (x− xo) for x > 0

to keep |−k (x− xo)| positive. This is tricky, make sure you understand why this

works!

Using |−k (x− xo)| = −k (x− xo) for x ≤ 0 the work would be

wb =

�
−k (x− 0) dx

=

�
−k (x) dx

= −k

�
xdx

and we need limits for our integrals, making sure x ≤ 0 in our limits. We start with the

ball at x = xi and end with the ball and the end of the spring at x = xo = 0 with the

spring uncompressed. So

wb = −k

� 0

xi

xdx

Our limits fit our condition on our equation. We can do this integral with our basic

integral formula that we learned earlier

wb =

�
−k

�
x2

2

�����
0

xi

wb = −k

�
0

2

�
−
�
−k

�
x2i
2

��

wb = −
�
−k

�
x2i
2

��

wb =
1

2
kx2i

This was not too hard! We can do the same for any force that changes with position.

Work­energy missing piece, dissipation

@@@ This feels awkward. Maybe push this discussion back until after potential

energy @@@

We started by saying our Deacons were pushing rocks on frictionless surfaces. But in a

real situation, we know friction exists. Let’s consider what happens to the energy of our
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motion if we do have friction.

Conservative and non­conservative forces

Let’s imagine a test situation with a ball rolling down a hill/valley system. We could

have a ball roll down a hill/valley system that looks like this,

or one that looks like this,

The gravitational pull due to the Earth will do work on the ball, and that work energy

will become kinetic energy. The ball will pick up speed. As the ball reaches the valley

floor, the work done by gravity will be negative, so the ball will slow down as it climbs

the next hill. The places where the ball stops, and turns around are called turning

points. The turning points would be just the same height for both balls. The actual path

from the beginning yi and the ending yf doesn’t matter at all.

This is because energy is being conserved. The Earth’s gravitational force is the force

causing the ball to move, that is, causing the gravitational work to be there. It is the

environment that makes the y­position matter. So we will give this gravitational force

a new title. We will add the name conservative to gravitation. Note this is not a new

force, just a new name applied to an old force.

But the words “conservative force” apply to a class of forces that all act this way. Only

the beginning and ending positions matter when calculating work for these forces. For

conservative forces, energy is conserved. Electrical and magnetic forces are both this

type of force. And it turns out that so are spring forces for ideal springs!
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If we have only conservative forces, then the amount of energy we have for a systems

won’t change. This simple idea is amazingly powerful! In the case of our ball sliding

down the hill, we start with an amount of work that it took to get the ball up the hill.

From a previous problem, we can guess that this will be

wgi = mgyi

As the ball slides down the hill, the amount of work energy used to get the ball up the

hill will be converted into kinetic energy. But as the ball slides up the hill, the kinetic

energy will be converted back into work energy. We can predict that no energy will be

lost from our ball­hill system. so

Ei = Ef

Ki +wgi = Kf +wgf

If we stop our experiment at the bottom of the hill we will see that wgf = 0, that is, it

took no work to get the ball from the bottom of the hill to the bottom of the hill–the

ball’s displacement ∆y = 0, so no work. If we start the ball from rest then Ki = 0. So

0 +wgi = Kf + 0

and we find that the kinetic energy at the bottom of the hill, Kf , is equal to the work it

took to get the ball up the hill. We converted all our work energy into kinetic energy.

Suppose we let the ball keep going. How high will it go up the other side of valley?

Assuming we have only conservative forces, then

Ei = Ef

Ki +wgi = Kf +wgf

but now the final situation is up the hill. Just as the ball reaches it’s highest point,

vf = 0 (the ball will momentarily stop) and so Kf = 0. Then

0 +wgi = 0 +wgf

and we see that the work to get the ball up on the other side is equal to the initial work

in placing the ball up the hill.

mgyi = mgyf

so the ball goes up just as high on the far hill as it was originally on the starting hill.

Notice we did these problems very easily just knowing that we had conservative forces.

When we can say that the total amount of energy does not change in a before and after

picture, we say that energy is conserved. This is such a powerful idea, let’s write it
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anther way

Ei = Ef

Ki +wgi = Kf +wgf

wgi −wgf = Kf −Ki

−∆wg = ∆K

which says as we change the amount of work in a system, we change the kinetic energy

of that system. Since work comes from a force, this says that if we push something

enough to make it move, we will gain kinetic energy. We convert work into kinetic

energy, and notice that the amount of energy lost from our change in work becomes

the same energy gained in kinetic energy. This just a restatement of the ideal of

conservation of energy. We also recognize it as a form of the Work­Energy Theorem!

But there is another class of forces that are non­conservative forces. And the archetype

of this class is friction.

Consider our two hills again. The ball’s path on the two­hump hill is shorter than the

ball’s path on the three­hump hill. Let’s see if this matters for friction forces. The work

done by a friction force would be

wf =

� −→
f · −→ds

Notice that as the ball slides down the hill, f and ds are in opposite directions. So the

angle θ in

wf =

�
fds cos θ

will be 180 ◦. The cosine of 180 ◦ is −1 so

wf = −
�

fds

= −f∆s

and our friction force will give us negative work. This means it would take more work

to make the ball go the same speed as it would have with no friction.

Let’s look at this in our energy equation. For energy to be conserved, we have to add in

the energy being taken out by friction. Notice in the next equation there is a work wff

which is the final amount of work taken out of the system by friction.

Ei = Ef

Ki +wgi = Kf +wgf +wff
1

2
mbv

2
i +mgyi =

1

2
mv2f +mgyf +wff

1

2
mbv

2
i +mgyi =

1

2
mv2f +mgyf +wff
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The ball starts from rest so vi = 0 and if we take final position of the ball at the bottom

of the hill then yf = 0. Then

0 +mgyi =
1

2
mv2f + 0 +wff

so
1

2
mv2f = mgyi −wff

so

vf = 2
mgyi −wff

m
we can see that the ball won’t go as fast if there is a friction term. Some of the original

gravitational work energy is no longer available to make into the kinetic energy of the

ball. And since |wf | = |f∆s|

vf = 2
mgyi − f∆s

m
the larger the ∆s, the more original work energy becomes unavailable for making the

kinetic energy of the ball. So the hill with the longer path will lose more energy.

Suppose the ball rolls all the way down the hill and up the other side. Since we had a

lower speed at the bottom of the hill, the ball won’t go up the other side as far. Let’s

show this in our math, where now the final case is up on the other side of the valley. At

the turning point vf = 0 we have

Ei = Ef

1

2
mbv

2
i +mgyi =

1

2
mv2f +mgyf +wff

0 +mgyi = 0+mgyf +wff

and let’s solve for yf , the final height of the ball

mgyf = mgyi −wff

yf =
mgyi −wff

mg

= yi −
wff

mg
and as expected, the ball does not get as far up the other side. The friction force has

taken energy away from both the kinetic energy and the potential energy. But where did

it the energy go?

To understand this, let’s go back to our model for friction
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Consider our Elder’s quorum moving team again. Recall that as the guys push the box,

the roughness teeth are bent, and the molecular bonds are stretched. Those stretched,

spring­like bonds will build up what we might call “bond potential energy.” We will

deal with this type of potential energy in detail in PH220, but for now we will just

model the bonds like springs. The important point for now is that some of the energy

has been removed from the gravitational potential energy and turned into bond potential

energy. So this energy is no longer available to transform into kinetic energy of the ball.

When the bonds break, the atoms are free to move. The spring like bond forces convert

the bond potential energy into kinetic energy of the atoms. As more roughness teeth

come by the atoms are struck again and again.
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They oscillate and strike other atoms. The whole solid is made of atoms and bonding

forces. So as atoms are struck, the spring­like bonds are compressed and push back.

After a short time, the whole collection of atoms in the solid are moving, compressing

and uncompressing their bond forces. All this is kinetic and work energy of the atoms

in the solid floor martial (and of the box material). If you put your hand on the floor

or the box some of the energy would be transferred to your hand atoms by collisions

between the floor atoms and your hand atoms. So soon the atoms in your hand would

have some kinetic energy transferred to them and would be stretching and compressing

their bonds. What you would feel is that the floor got hot. We will call the energy

lost to the motion of an object due to friction thermal energy because it triggers our

body temperature sensors. We will study this in more detail in PH123, but for now

the important point is that we have spread some of the energy all over the floor, the

box, your hand, and eventually all over the room. This energy is no longer available to

be transformed into kinetic energy of the box. We will say that energy that has been

lost from our box system (so that it can’t participate in creating motion of the box or

gravitational potential energy of the box) has been dissipated. The word “dissipated”

means “lost from the system.”

Let’s be a little more specific. We call the combination of gravitational work energy,

spring work energy, and kinetic energy mechanical energy.

Emech = K +wg +ws

these energies are all conservative. We call the work energy due to friction

non­conservative energy and forces like friction that dissipate energy are called

non­conservative forces.
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Let’s write non­conservative work as

wnc

Then from our ball sliding down the hill we can see that

Ei = Ef

1

2
mbv

2
i +mgyi =

1

2
mv2f +mgyf +wff

Ki +wgi = Kf +wgf +wnc

The left hand side is the initial mechanical energy (we don’t have a spring, so wsi = 0).

The right hand side is the final mechanical energy. So or we could write this as

Emechi = Emechf +wnc

So the final mechanical energy must be less than the initial mechanical energy, and the

difference is wnc. We could write this as

∆Emech = wnc
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Power

We now have a better understanding of energy and how we can use the concept of

energy to solve problems. But there is more to our energy picture. The rate at which we

use energy, say, the rate at which we perform work, is important. Suppose you are in the

thriving metropolis next to the offices of the Daily Universe, and you see a super person

Both you and Super Person go to the top of the Daily Universe building. Super Person

does this in a single bound. You take the stairs. What is the difference in the work done

by you and Super Person assuming we can neglect the work done by frictional forces?

This is an energy problem so we set up our energy equation

Ki +wgi +wsi +wei +Ethi = Kf +wgf +wsf +wef +Ethf

where I have written the thermal energy due to non­concervative work as Eth. In this

problem we don’t have springs, or electric forces, so we can cancel all the spring and

electric force terms

Ki +wgi = Kf +wgf

At the beginning you are standing on the ground stationary, and so is Super Guy. At

the end you are standing stationary at the top of the Daily Universe building, and so is

Super Person. So Ki = 0 and Kf = 0. The only change in energy is that both you

and Super Person have done work against the gravitational field in order to get to the
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top of the building w = mg (yf − yi) . We can see that energy is not conserved for you

or Super Person, there must be an input of energy at the start that we missed. And that

energy we missed is the chemical potential energy of the food you and Super Person ate

for breakfast that can be turned into the work you and Super Person do to reach the

top. But notice that since you and Super Person have the same mass (just distributed

differently) the two of you have done the same amount of work. But something must be

different. Otherwise, we would all be Super Person!

And you can see immediately what the difference is. Supper Person got to the top of the

building in moments. It took you 15 minutes of hard running to get up the stairs. The

time it takes to do work must be important!

Let’s define a new quantity that is the amount of work we do divided by the time it took

to do the work.
w

∆t
and we need a name and a symbol. In respect of Super Person, let’s say that this new

quantity is called power. Super Person is more powerful because he can do the work of

going from street level to the top of a building in a very short ∆t. You can do the same

work, via the stairs, but it will take a much longer ∆t.
w

∆tsmall
>

w

∆tbig

The symbol for power is a capital P. Notice that power is a rate at which work happens.

If we take the ∆t to be very small, so we can call it dt, then if we do a small amount of

work dw in a time dt

P =
dw

dt
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and this definition works for any type of energy

P =
dEany

dt

Notice that the units for power would be J/ s. This combination of units has a name,

the watt.

W =
J

s

Let’s go back to our definition of power, to find an alternate equation for power.

P =
dw

∆t
And we know that

w =

� −→
F · −→ds

so the integrand,
−→
F · −→ds must be a little bit of work

dw =
−→
F · −→ds

Let’s divide both sides of this equation by dt

dw

dt
=

−→
F · −→ds

dt
the left hand side is power

P =

−→
F · −→ds

dt
The right hand side could be rewriting as

P =
Fds cos θFs

dt
or even as

P = F cos θFs
ds

dt
and we recognize ds/dt as the speed of the object we are pushing or pulling with our

force F. So

P = F cos θFsv

and now we know that F and v are vectors, and that θFs is the same direction as θFv

because we are going in the s direction, so v and s are in the same direction. Then

P =
−→
F · −→v

So if we know the force and the velocity, we can also find the power.

Let’s try a problem.

Suppose that the Daily Universe Building roof is 45m above the street below. And

suppose that both you and Super Person have a mass of 90 kg. Super Person gets to the

roof in 1.2 s. You get to the roof in 10.1min. What is Super Person’s power, and what

is your power?



356 Chapter 20 Power and Stored Energy

We know

m = 90kg

∆y = 45m

∆ty = 10.1min = 606.0 s

∆tSP = 1.2 s

g = 9.8
m

s2

Our basic equation for this would be

P =
w

∆t
so

(wf −wi) = (mgyf −mgyi)

= mgyf

so

P =
mg∆y

∆t
This is true for both you and Super Person. Numerically, then

PSG =
(90kg)

�
9.8 ms2

�
(45m)

1.2 s
= 33075W

Py =
(90kg)

�
9.8 ms2

�
(45m)

606.0 s
= 65. 495W

and we see that Super Person is much more powerful than you are, just as expected.

Potential Energy

So now let’s review. Our deacons quorum is once again hiking with rocks. To get the

rocks up to the cliff, our boys do work. That work creates some kinetic energy as the

rocks move Once they are on the top of the hill, the gravitational force will do work

on the rocks further creating kinetic energy. But as the boys reach the top of the hill,

they usually momentarily stop before pushing the rock onto the unsuspecting hikers be­

low17. Where did the energy go? There was lots of work done, but we no longer have

kinetic energy.

17 Please don’t really roll rocks down hills, this is dangerous. This is why I don’t hike in valleys or at the
bottom of cliffs!
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So far we have learned about motion (kinematics) and forces (Newton’s laws). We

changed our view point to consider energy and we learned about work and kinetic

energy. But we can’t yet do a kinematics problem with our energy view point. In

our deacons example, the deacons pushed rocks up a hill. We know we could use

kinematics to find how the rocks will move, as they fall, but work and kinetic energy

aren’t enough.]

To find the missing piece of our energy picture, let’s start with the kinematic equations.
xf = xi + vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax (xf − xi)

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t + 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay (yf − yi)

yf = yi +
vfy+viy

2 ∆t

and let’s take an example problem. Let’s take a falling object (a spy, a super hero, a

pharmacist, or whatever).

For all of these objects our motion diagram would look like this
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When we were trying to find an easier way to do force problems in the last few lectures,

we did the force problem and then generalized the result. Since each falling object

seems to have the same motion diagram, it looks like we could do this again. Let’s try

to generalize our kinematic equations for falling objects. Let’s use the third equation in

the y­kinematics set

v2fy = v2iy + 2ay (yf − yi)

In doing energy problems so far we have often ended up separating our equations into a

“before” picture and an “after” picture. Think of the work energy theorem.

w = ∆K

= Kf −Ki

The kinetic part is obviously a“before” and “after” picture, but really so is the work.

We integrate from an initial to a final location. So let’s take all the initial values to the

left side of the equation and all the final values to the right side. Then

v2fy = v2iy + 2ayyf − 2ayyi

becomes

v2fy − 2ayyf = v2iy − 2ayyi

or

v2iy − 2ayyi = v2fy − 2ayyf

This looks very useful. If we know the initial speed and position, we know the

combination v2iy − 2ayyi won’t change so we can predict what the combination

v2fy − 2ayyf will be.

I would like to make some cosmetic changes to this equation. We won’t change the fact

that our quantity
�
v2y − 2ayy

�
is not changing. I will divide both sides of the equation

by 1/2
1

2
v2iy − ayyi =

1

2
v2fy − ayyf
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and multiply through by the mass of the object.
1

2
mv2iy −mayyi =

1

2
mv2fy −mayyf

These mathematical changes did not affect the equality at all. Finally, we know for our

falling things that ay = −g, so
1

2
mv2iy +mgyi =

1

2
mv2fy +mgyf

Then, the combined quantity 1
2mv2 + mgy is not changing as the object moves. If a

quantity doesn’t change, in physics we say it is conserved. It is the same in our “before

picture” and in our “after picture.” But what is this quantity?

We recognize one part of this of our conserved quantity!

K =
1

2
mv2

is kinetic energy. And we know all the terms in a sum must be the same kind of thing.

So this combination must be energy! So I could use this to, say, measure the final y,

and calculate the final speed without using our kinematic equations. This is wonderful

enough all on it’s own, but let’s pause for a minute and ask, what is the mgy part?

We recognize that this is the work we did in putting the object up high to begin with!

This is the minimum work it took to place the object up high, like our deacons placing

a rock on a hill. For another example, consider a jar on your pantry shelf.

The jar has mass, m, and is up a height y. There is no motion. But you did work at

some time earlier to get the jar up on the high shelf. If you knock the jar off the shelf,
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the jar will move. We could say that by doing the work of putting the jar high on the

shelf we have created the potential to have motion. We have effectively stored our work

for use later! We call this kind of stored energy potential energy. We give it the symbol

U. Since it takes the Earth’s gravity to create the environment where this potential

energy is possible, we will say that this is gravitational potential energy. Think about

this for a minute. If there were no gravitational pull, you, the things in your pantry, and

the pantry itself would float around.

It is that our jar is up high with the Earth’s gravity pulling on it that makes the jar

have potential to move downward. Think that the acceleration due to gravity was in

our kinematic equation that we started with. The gravitational pull is required to make

gravitational potential energy. And to say we have gravitational potential energy we

write a subscript, g, on our symbol for potential energy, Ug.

Ug = mgy

So our energy combination can be written as
1

2
mv2 +mgy = K + Ug

and our energy equation can be written as
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

Ki + Ui = Kf + Uf
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This is the missing piece of our energy picture from our deacons.

We can see that as the deacons moved the rock up the hill, some of the work they did

became kinetic energy but some of the work was converted into potential energy. That

is why the rock can easily move once it is pushed over the edge. The work of the boys

moving the rock up the hill against the force of gravity effectively stores part of their

work as potential energy. That potential energy is converted into kinetic energy as the

rock falls.

Notice that we have to be very careful when we talk about work and potential energy.

The work done by the gravitational force when the pushing the rock up the hill is

wg =

�
mg∆y cos θ

but the rock is going up and the gravitational force is down so θ = 180 ◦. The work

done by the gravitational force is negative. That makes sense because the Earth’s

gravitation is not making the motion, the deacon is. So we expect the losing force to

make negative work.

wg = −mgh

where

h = ∆y = yf − yi = ytop − ybottom

The gravitational potential energy change that we store when pushing the rock up the

hill is given by

∆Ug = mg∆y = mgh

so we see that

∆Ug = −wg

The change in potential energy is the negative of the work done by the Earth’s

gravitational force. Notice that the deacon’s work in pushing the rock up the hill is

wd =

�
mg∆y cos θ

but this time the angle θ is 0 degrees because the rock is going in the direction of the
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push. So

wd = +mg∆y = +mgh

But in comparing gravitational potential energy to work, we choose to compare the

gravitational potential energy to the gravitational work, not the boy’s work, so we will

use the minus sign.

∆Ug = −wg

and this will be a general expression, so long as we always consider the same force

(gravitational in this case) for both sides of the equation

∆U = −w

Let’s try some problems using the idea of potential energy.

Suppose a deacon throws a 0.5 kg rock off a bridge. The boy throws the rock with an

initial velocity of −→v = 10.0m/ ŝı. The bridge is 20.m high. What is the final speed

of the rock just before it hits the ground below the bridge assuming air resistance is

negligible?

This certainly could be a kinematics problem, but let’s do this with our conservation of
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energy equation. We know that
−→v i = 10

m

s
ı̂

yi = 20m

yf = 0m

m = 0.5 kg

ay = −g

g = −9.8 m
s2

and our equation is

Ki + Ui = Kf − Uf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

To solve this, first let’s notice that the mass of the rock in every term in our equation.

So we can divide both sides by the mass of the rock and eliminate the mass.
1

2
v2i + gyi =

1

2
v2f + gyf

and let’s underline what we know
1

2
v2i + gyi =

1

2
v2f + gyf

The only thing we don’t know is vfy which is what we want to find. We just need to do

some algebra,
1

2
v2i + gyi − gyf =

1

2
v2f

1

2
v2f =

1

2
v2i + gyi − gyf

1

2
v2f =

1

2
v2i + g

�
yi − yf

�

v2f = v2i + 2g
�
yi − yf

�

v2fy = v2iy + 2g
�

yi − yf
�

vf =

�
v2i + 2g

�
yi − yf

�

or

vf =

��
10

m

s

�2
+ 2

�
9.8

m

s2

�
(20m− 0m)

= 22. 181
m

s

= 22.
m

s

We could compare this to doing the problem using kinematics.
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We would need a full two­dimensional set of kinematic equations
xf = xi + vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax (xf − xi)

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t + 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay (yf − yi)

yf = yi +
vfy+viy

2 ∆t

and we would need to add into our knowns

vxi = 10
m

s
vyi = 0

yi = 20m

xi = 0m

yf = 0m

m = 0.5 kg

ay = g = 9.8
m

s2

ax = 0

then marking what we know

xf = xi + vix∆t+ 1
2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax

�
xf − xi

�

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t + 1
2ay∆t2

vfy = viy + ay∆t

v2fy = v2iy + 2ay

�
yf − yi

�

yf = yi +
vfy+viy

2 ∆t

and using our zeros

xf = 0 + vix∆t+ 0
vfx = vix + 0
v2fx = v2ix + 0

xf = 0 +
vfx+vix

2 ∆t

0 = yi = 0 + 1
2ay∆t2

vfy = 0 + ay∆t

v2fy = 0 + 2ay
�
0− yi

�

yf = 0+
vfy+0
2 ∆t

we could identify that the x­component of our rock velocity does not change,

vfx = vix

and from the third of the y­set we can find the final y­component of the velocity

v2fy = 0 + 2ay
�
−yi

�

vfy =
	
2ay (−yi)
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and then we need to combine the components to get the magnitude of the final velocity

vf =

	
(vx)

2 + (vy)
2

=

�
�
vix
�2

+
�	

2ay (−yi)
�2

=
	�

vix
�2

+ 2ay (−yi)

=

��
10

m

s

�2
+ 2

�
−9.8 m

s2

�
(−20m)

= 22. 181
m

s

= 22.
m

s
with a direction of

θ = tan−1



−
	
2ay (−yi)

vix




= tan−1



−
	
2
�
−9.8 ms2

�
(−20m)

10 ms




= 1. 103 1 rad

= −63. 203 ◦

We got the same speed! But the energy method seemed easier. Did you notice that the

easier energy method came with a cost? We did get the speed of the rock, and if that is

all we wanted, there is no problem. But the energy method did not give us a direction,

and it can’t give direction. We have an easier way to get the speed, but at the cost of not

knowing the direction.

Also notice, that like with conservation of momentum and Newton’s laws, the kinematic

equations are really buried down deep in the energy equation. They are still there, and

for some problems (ones where we don’t need to know direction) the energy approach

works very well and may be much easier.

Let’s do another problem. Suppose our boy scout throws another 0.5 kg rock, but this

time he throws the rock at a 30 ◦ angle. The initial speed is still 10m/ s. If we do this

with kinematics, we would have to start over and do the whole problem again. But let’s

try with energy.

Our initial kinetic energy is still

Ki =
1

2
mv2i
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and our initial potential energy is still

Ui = mgyi

and the final kinetic energy is still

Kf =
1

2
mv2f

and the final potential energy is still

Uf = mgyf

nothing has changed! When we did the first problem we did all problems where the

initial and final conditions are the same. We still don’t know the direction, and the

direction of vf for the two problems is very different. But the final speed is the same.

This is another great time savings if we only need to know the speed.

Zero point for Ug

You probably noticed that Ug depends on y

Ug = mgy

But we know about y. It is part of a coordinate system. And we know we can set the

origin of the coordinate system anywhere we want. So does that mean that we can make

Ug anything we want? To a point, this is true. Let’s try a problem. Let’s shoot a ball out

of our spring cannon. Let’s try our problem shooting a ball straight up, but let’s do it

twice, once with the y = 0 point at the muzzle of the cannon, and once with the y = 0

point at the top of the ball’s flight.

For the first case, we have the situation as shown in the next figure.
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We can see that

yi = 0

vf = 0

if we let vf be right at the top of the ball’s flight, and let’s say that the top of the ball’s

flight is

yf = 1. 34m

above the muzzle of the cannon.

We believe from what we have done in this lecture, that the quantity K + Ug won’t

change, so

Ki + Ugi = Kf + Ugf

and we can write this out using our equations for kinetic energy and gravitational

potential energy

Ki + Ugi = Kf + Ugf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

The masses cancel
1

2
v2i + gyi =

1

2
v2f + gyf

Now let’s use our zeros, so
1

2
v2i + 0 = 0 + gyf

then

v2i = 2gyf

and finally

vi =
�
2gyf

or

vi =

�
2
�
9.8

m

s2

�
(1. 34m)

= 5. 12
m

s

Now let’s do the problem again but with y = 0 at the top of the ball’s flight. The

situation is as shown in the next figure.
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Now we have

yf = 0

vf = 0

and we realize that it must be true that

yi = −1. 34m
Note the minus sign!

We still believe that the quantity K + Ug won’t change, so

Ki + Ugi = Kf + Ugf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

The masses cancel
1

2
v2i + gyi =

1

2
v2f + gyf

Now let’s use our zeros, but they are different in the second case
1

2
v2i + yi = 0 + 0

then

v2i = −2gyi

and finally

vi =
�
−2gyf

and the initial velocity is then

vi =

�
−2
�
9.8

m

s2

�
(−1. 335m)

= 5. 115 3
m

s
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we got the same result.

This is amazing, we can pick our y = 0 point anywhere that is convenient, and the math

still works. But WARNING, once you have picked a y = 0 point for a problem, you

have to keep the same y = 0 point for the whole problem. You can’t switch your origin

of your coordinate system half way through the problem!





21 Using Conservation of

Energy

Last lecture we did energy problems with kinetic and potential energy from gravity.

A potential energy needs a force to exist. And we had gravity last time. Let’s add in

spring forces and spring potential energy in this lecture. And then we will also look at

how to represent energy graphically.

Spring potential energy

Since a spring can exert a force, we can store up energy in the spring by stretching or

compressing it. This energy will be a potential energy. Let’s do what we did a few

lectures ago to find the gravitational potential energy. We started with the net force.

Let’s take a horizontal spring resting on a (frictionless) surface. The free body diagram

would be

We can write out Newton’s second law

Fnety = may = 0

= Nms −WmE

which tells us that in this case

Nms = WmE
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And

Fnetx = max

= Sms

so

max = Sms

We know

Sms = −k∆x

so

max = −k∆x

Again we can write

ax =
dvx
dt

so

m
dvx
dt

= −k∆x

Let’s write dvx/dt in terms of dvx/dx. We use the chain rule
dvx
dt

=
dvx
dx

dx

dt

=
dvx
dx

vx

so

m
dvx
dx

vx = −k (x− x0)

where xo is the equilibrium position of the spring. Then

mvxdvx = −k (x− x0) dx

and we integrate both sides� vf

vi

mvxdvx =

� xf

xi

−k (x− x0) dx

The right hand side is � vf

vi

mvxdvx =
1

2
mv2f −

1

2
mv2i
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The left hand side is� xf

xi

−k (x− x0) dx =

� xf

xi

−kxdx +

� xf

xi

−k (−x0) dx

=

�
−k

�
−1

2
x2
�����

xf

xi

+ (−kx0x|xfxi

= +
1

2
kx2f −

�
+
1

2
kx2i

�
+ (−kx0xf − (−kx0xi))

= +
1

2
kx2f −

1

2
kx2i − kx0xf + kx0xi

= +
1

2
kx2f − kx0xf −

�
1

2
kx2i − kx0xi

�

At this point let’s play a trick we learned in high school. I want to add zero to this� xf

xi

−k (x− x0) dx = +
1

2
kx2f − kx0xf −

�
1

2
kx2i − kx0xi

�
+ 0

this does not affect the value of the right hand side at all. But let’s write zero as

0 =
1

2
kx20 −

1

2
kx20

then� xf

xi

−k (x− x0) dx =
1

2
kx2f − kx0xf −

�
1

2
kx2i − kx0xi

�
+
1

2
kx20 −

1

2
kx20

which we can rearrange as� xf

xi

−k (x− x0) dx =

�
1

2
kx2f − kx0xf −

1

2
kx20

�
−
�
1

2
kx2i − kx0xi −

1

2
kx20

�

and we can factor the quadratic terms� xf

xi

−k (x− x0) dx =

�
1

2
k (xf − xo) (xf − xo)

�
−
�
1

2
k (xi − xo) (xi − xo)

�

=
1

2
k (xf − xo)

2 − 1

2
k (xi − xo)

2

Then substituting in our results for the right and left hand sides our energy equation is
1

2
mv2f −

1

2
mv2i =

1

2
k (xf − xo)

2 − 1

2
k (xi − xo)

2

The right hand side we recognize as
1

2
mv2f −

1

2
mv2i = Kf −Ki

so the left hand side must be our spring energy change as we move the spring from an

initial position xi to a final position xf
1

2
k (xf − xo)

2 − 1

2
k (xi − xo)

2 = Usf − Usi

Then grouping initial and final terms gives
1

2
mv2i −

1

2
k (xi − xo)

2
=

1

2
mv2f −

1

2
k (xf − xo)

2

which is

Ki + Usi = Kf + Usf
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We have identified that the potential energy of a spring is given by

Us =
1

2
k (x− xo)

2

which isn’t too much of a surprise. The potential energy of the spring should be the

work it took to compress or stretch the (ideal) spring.

Let’s try a problem with this.

Our spring cannon gives a muzzle velocity of about 5.1m/ s. We found this last time.

Let’s calculate the spring constant for our spring. The spring is compressed 0.05m

when the cannon is loaded. The initial speed of the ball is 0m/ s. The final position of

the spring is at it’s equilibrium point. Our ball has a mass of 67.1 g.

We know

vi = 0

vf = 5.1
m

s
yo = 0

yi = −0.05m
yf = yo

m = 67.1 g = 0.067 1 kg

g = 9.8
m

s2

Our basic equations are

Ki + Ugi + Usi = Kf + Ugf + Usf

K =
1

2
mv2

Us =
1

2
k (y − yo)

2
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We can write out our conservation of energy equation as
1

2
mv2i +mgyi +

1

2
k (yi − yo)

2 =
1

2
mv2f +mgyf +

1

2
k (xf − xo)

2

and use our zeros

0 +mgyi +
1

2
k (yi − 0)2 =

1

2
mv2f + 0 +

1

2
k (yo − yo)

2

mgyi +
1

2
k (yi)

2 =
1

2
mv2f − 0

so

mv2f = 2mgyi + k (yi)
2

mv2f − 2mgyi

(yi)
2 = +k

so

k =
m
�
v2f − 2gyi

�

(yi)
2

k =
(0.067 1 kg)

��
5.1 ms

�2 − 2
�
9.8 ms2

�
(−0.05m)

�

(−0.05m)2

= 724. 41
N

m

Adding in springs and spring forces and spring potential energy allows us to design

wonderful things from dart guns to car shocks to vibration isolation systems we use on

big laser systems (and on temples!).

Conservation of Energy and Energy Graphs

We spent a lot of time learning to interpret motion diagrams and position, velocity and

acceleration vs. time graphs. Using these graphs and diagrams we could understand

how something moved. We also drew diagrams for forces. And for energy, we need to

learn to raw before and after pictures to find the initial and final speeds and positions.

But energy is such a useful way to look at motion that there are some standard ways

to show energy for a system and we will need to be able to use these ways to depict

energy.

Let’s start with a situation, a ball on a hill next to a valley.
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We know a lot about this situation. The ball will have an initial energy

Ei = Ki + Ui

=
1

2
mv2i +mgyi

= mgyi

since the ball starts from rest when we let go.

So the initial energy is all potential energy and that potential energy depends on the

initial height of the ball. We know that if there is nothing to take energy away from the

system, then energy is conserved

Ef = Ei

So at some time later we will have a final energy

Ef =
1

2
mv2f +mgyf

and this final energy must be equal to the initial energy

mgyi =
1

2
mv2f +mgyf

Let’s think about how high up the ball will be as the ball travels down the hill and

through the valley to the other side. The potential energy, Ug depends on the height of

the ball. We can plot the ball height for each x­position along the ball path.
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Since the gravitational potential depends on the y­position. a graph of the gravitational

potential vs. x should look like the position (y vs. x) graph along the ball’s path.

Of course, we could draw the graph without the hill
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This type of graph is very commonly used to describe the energy of a system. Notice

that if we plot Ug (x) and we also plot the total energy, E (x) then from the graph we

can always find the kinetic energy too because

E (x) = K (x) + Ug (x)

so

K (x) = E (x)− Ug (x)

so one graph shows the entire energy situation for the system!

Since the kinetic and potential energies must add up to the total energy

E (x) = K (x) + Ug (x) . We could plot the energy at a point in another way

We could use a bar chart to tell us how much of the energy is potential energy at a given

x­position and how much is kinetic energy at that x­position. Notice in the figure,

when Ug (x) = E (x) then K (x) is zero. And the bar chart shows that. After we let go

of the ball, the amount of potential energy decreases and the amount of kinetic energy

increases.
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Right at the bottom, the ball will be moving quickly

We can see from the bar graph that all of the potential energy has been changed to

kinetic energy. Remember that

K (x) =
1

2
mv (x)2

so

v (x) =

�
2K (x)

m
and the speed will be fastest right at the bottom.

If the ball is allowed to keep going it will roll up the other side of the valley. We could

predict that it will stop at the same height on the other side of the valley.

Ug (xf ) = E (xf )−K (xf )

so when v (xf ) = 0 then K (xf ) = 0 so

Ug (xf ) = E (xf )

and we started with

E (xi) = Ui = mgyi
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so

Ug (xf ) = mgyi

and indeed, the ball will stop (briefly) when it reaches the same height on the other side.

If we let the ball keep going, it will roll back down into the valley and go back and forth

over and over again.

Spring potential and energy graphs

Let’s try using our new graphs for spring potential energy. Consider what would happen

if we compress the spring and let go.

This is a little bit like letting the ball go on the hill by the valley
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At first, we have all spring potential energy. But quickly this spring potential energy

starts to change into kinetic energy.

The mass picks up speed, so it gains kinetic energy and loses potential energy. At the

midpoint the mass has all kinetic energy and no potential energy. But it has momentum

so it is hard to stop! So it will keep going and it will start stretching the spring, building

up potential energy and slowing down so there will be less kinetic energy.
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Notice how similar this set of graphs is to the gravitational potential energy set. Since

the graphs look so much the same, we can use gravitational potential energy to help us

gain intuition into other types of potential energy and how the objects that experience

the potential energy will act.

In the case of the spring, we can see that the mass will go back and forth, a little like

the ball went back and forth between the two hills.

Equilibrium points

Suppose we have a more complicated hill and valley system.

We recognize that our gravitational potential energy graph would have the same shape

as the hill/valley system.
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Let’s relate our potential energy graphs to Newton’s laws. At the point where the ball

starts there is a net force. So the ball will accelerate.

But suppose we start the ball at the bottom of the valley.

The condition
−→
F net = 0 is what we have called equilibrium. Notice that our force
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diagram would be the same if we started the ball on the hill and let it go down to the

valley. The forces would be the same at the bottom of the valley, but now with the ball

moving. Still the bottom of the valley is an equilibrium. The equation
−→
F net = 0 tells

us that we are not accelerating, but it does not tell us if we are moving. Right at the

bottom of the hill the ball is not speeding up or slowing down for a split second. So,

indeed,
−→
F net = 0 or that split second even though the ball is moving very fast.

As the ball goes up the little hill, it will slow down, and a free body diagram can shown

us why. There is a net force, so there is an acceleration in the opposite direction the ball

is going.

Let’s join the ball again as it hits the top of the hill.
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Once again the net force is zero. Of course the ball is moving. We can tell that the

middle hill is lower than the side hills, so

Ki + Ui = Klh + Ulh

where the subscripts “lh” are for “little hill.” Then

Klh = Ki + Ui − Ulh

= 0 +mgyi −mgyf
1

2
mv2lh = mg (yi − yf )

so since the hills have different heights the speed of the ball won’t be zero. We can see

that this is another equilibrium point. But what would happen if we started the ball

lower on the hill?

We already know the ball will only go up as high as it started. So if we start it lower

than the top of the middle hill, the ball will roll back and forth between the left hill and

the middle hill. If we allowed friction in our problem, eventually the ball would stop

right at the bottom of the valley. If we gave the ball a small kick, again it would return

to the bottom of the valley. This equilibrium position is an important one, we call it a

stable equilibrium because an object with this particular potential energy won’t move

away from that point or will return to that point if disturbed.
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Let’s consider our other equilibrium. If we place the ball on the top of the middle hill,

it is in equilibrium, but any disturbance either direction will result in a net force away

from the top­of­the­hill equilibrium position.

The ball would have to have someone go get it and put it back on the top of the hill. It

won’t return there of it’s own accord. We call an equilibrium point where the object

would leave the point permanently if disturbed an unstable equilibrium.

Let’s use what we have learned to take on a real problem. Our atmosphere is mostly

made of diatomic nitrogen or N2. We have used spring forces as a model for molecular

bonds. So let’s picture the two nitrogen atoms as tied together by a spring.

As the spring is compressed, the spring pushes back. As the spring is stretched it pulls

back. So we expect a potential energy that looks like our spring potential energy.
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But there is a little more to our molecule. We know that if we pull the two atoms hard

enough, we can pull the molecule apart. So as the distance between the atoms gets

larger, the potential energy must show that we can get the atoms apart. If we push the

atoms closer together the strong electrical repulsive force between the two nuclei will

make it harder and harder to put get the atoms closer together. So the potential energy

must show that it is hard to force the atoms together. Here is what the potential energy

graph looks like for one possible diatomic nitrogen molecule.

Notice that the potential energy graph is not symmetric. The left hand side shows that

the potential energy gets very large as we push the atoms together. We could mentally

think of this as leaving one atom in place and pushing the other atom toward the first.
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The moving atom is like our ball and the potential energy from the electrical force

is like the hill. It makes a potential energy. So moving our mover atom toward the

environmental atom is like moving the ball up a very steep hill. On the right hand side,

we can see that we have a much less steep hill. This is part of the graph that tells us that

we could break the molecular bond by pulling our mover atom farther away. It is going

“up hill,” but much less slowly. Now observe that in between the two sides there is a

part of the graph that looks a lot like the spring potential energy. Here is our N2 graph

again but with a spring potential energy graph superimposed over the equilibrium point

of our N2 graph.

Notice that it fits pretty well. Then we could predict that if we pull on one of the

atoms just a little, the bond would pull it back. It is like our ball near the stable

equilibrium point. The atom would oscillate back and forth but never get very far from

the equilibrium position. If we allow a friction­like force to remove the extra energy,

then the atom would settle right back to the equilibrium position.

Turning points

Let’s go back to our hill. If we start the ball from rest as shown, where will the ball stop

on the far hill?
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We now know that this will be at point F, when the energy is all potential energy again.

But at point F, the force due to gravity and the normal force don’t point the same

direction, so we will have a net force. The ball will roll back down the hill. Since the

ball stopped, and then went the other direction, we can say that the ball turned around

at this point. So we call point F a turning point. When the ball reaches it’s original

position, it will also turn around, so the initial position and point F are both turning

points for this situation. Bus suppose we start the ball with less initial energy.

Now points B and D will be turning points.





22 Force and Potential Energy­

work Relationships

Let’s start this lecture with a review. Let’s take our equation for spring potential energy

Us =
1

2
k (s− so)

2

and consider a before and after case. Let’s review our spring cannon case where we

compress the spring and then let it go back to it’s equilibrium position.

The initial potential energy of the spring in our case is

Usi =
1

2
k (xi − xo)

2

and

Usf =
1

2
k (xf − xo)

2

but xf = xo for this case, so

Usf =
1

2
k (xo − xo)

2
= 0
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and the change in spring potential energy is

∆Us = Usf − Usi

= 0− 1

2
k (xi − xo)

2

= −1
2

k (xi − xo)
2

The spring has lost energy, so ∆Us is negative. This is just the spring potential energy

lost by the spring as it transfers its stored energy into kinetic energy of the ball. Now

let’s find the work done on the ball

wball =

� −→
S (x) · −→dx

=

�
|−k (x− xo)| cos (θsx) dx

Let’s use the fact that xf = xo = 0 to make the math easier

wball =

�
|−k (x)| cos (θsx) dx

and let’s think that |−k (x)| must be positive. But our x values from xi to xf will be

negative with our choice of origin. So

|−k (x)| = −kx

is a positive value for our range of x’s. Then

wball =

� xf=0

xi

−k (x) cos (θsx) dx

and note that the ball is going to the right, and the spring is pushing to the right so

θsx = 0

wball =

� xf=0

xi

−k (x) dx

= −k

� xf=0

xi

xdx

= −k
x2

2

����
xf=0

xi

= −1
2

kx2f −
�
−1
2

kx2i

�

= 0 +
1

2
kx2i

But this is a positive amount of work! The spring lost energy and the ball received

energy by work. Losing energy gets a minus sign, gaining energy gets a plus sign. And

we can see that
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∆Uspring = −wball

It turns out that this is an important result. Let’s write it as

∆U = −w

without subscripts so it is more general. But, you might fairly object, that leaving off

the subscripts obscures what is changing energy and what has work done on it! I prefer

the subscripts!

Another way to look at it is that to do the problem of causing ∆U to be stored in the

spring we have to do work to compress it. How much work would we have to do?

Really it is the normal force that will compress the spring. We don’t know what the

normal force magnitude is. But we know it must be at least as much at each moment as

the spring force or the ball won’t keep compressing the spring. We can use the spring

force in our work equation because N and S must at least be equal. Again we would

have

ws =

� −→
S (x) · −→dx

where both S and dx are both negative, making the angle between them θSx = 0 again.

ws =

� xf

xo

−k (x− xo) (1) dx

ws =

�
−k

�
x2

2

�����
xf

xo

+ (kxoxdx|xfxo

ws = −k



x2f
2

�
−
�
−k

�
x20
2

��
+ kxoxf − kxox0

ws = −
1

2
kx2f +

1

2
kx2o + kxoxf − kx2o
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ws = −
1

2
kx2f −

1

2
kx2o + kxoxi

ws = −1
2

k
�
x2f − 2xoxf + x2o

�

= −1
2

k (xf − xo)
2

But the change in potential energy as we compress the spring is

Uf − Ui =
1

2
k (xf − xo)

2 − 1

2
k (xo − xo)

2

=
1

2
k (xf − xo)

2

The spring gains potential energy. And so we are right back at

ws = − (Uf − Ui)

That is, the work we do to compress the spring is minus the energy stored in the spring.

This is not surprising. While we do work to compress the spring, the spring pushes

back. The spring’s push is not causing the motion, so it’s work would be negative.

Maybe it would be better to write this as

wdone on the spring = − (Uf − Ui)stored in the spring

The big thing is to notice that the force that compressed the spring wasn’t really the

spring force. It is just equal to it. So in a sense we got the sign wrong on w because

we used the wrong force. The spring force is the force that makes the stored energy

possible, thought. So we might write this as

−wforce that makes the potential energy possible = (Uf − Ui)stored

It takes another object (you) exerting a force (you pushing) to make this energy storage

happen.

Let’s compare this to our previous example of launching the ball. The launch is using

the stored potential energy to do this.

∆Uspring = −wball

Now the energy stored by an external force is able to be retrieved by doing work on

another object. Both in the storage of potential energy and in the use of potential energy

there were two objects involved. In this example, we have a spring in both cases, but in

the storage case you pushed and in the retrieval case a ball was pushed.

To summarize: We gain an amount of spring potential energy ∆Us by doing work on

the spring we need an amount of work

∆Us = −w

but that work must be caused by another force, not the spring force. To use the potential

energy stored in a spring, we let the spring act with a force on some other object. In
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both cases, the work done is the inverse of the change in potential energy.

∆U = −w

We can use this idea for gravitational potential energy as well, and any other type of

mechanical potential energy.

We know how to find potential energy now if we know the force causing that potential

energy to exist. We know that w = −∆U, so we can write

∆U = −w

= −
� −→

F (s) · −→ds

So if I know the force on a mover object, and I know how far I move the mover object I

can find the change in potential energy. Let’s see how this works in another example.

Let’s take the case of a ball being lifted up on a shelf, and them falling off the shelf. We

will store work as potential energy by lifting up the ball.

Again we don’t know N, the normal force we are using to lift up the ball. But we know

it must be at least equal to W to keep the ball moving up. If we make it bigger, we

would expend more energy, but the extra energy would not be stored, only the energy
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for the case where N = W. So we can find the work done by letting N = W.

w =

� sf

si

−→
F (s) · −→ds

=

� ytop

ybottom

W cos (θWy) dy

=

� ytop

ybottom

mg (−1) dy

= −mgy|ytopybottom

= −mgytop − (−mgybottom)

= −mgytop +mgybottom

= −
�
Ugtop − Ugbottom

�

= −∆Ug

so again

w = −∆U

but again the w came from using the force that makes it possible to have gravitational

potential energy, not the force (N ) that actually causes the potential energy to be stored.

Let’s look at what we get when the ball falls off the shelf.

We know the potential energy for a falling ball is due to the gravitational force, and that

the gravitational potential is mgy.

∆Ug = Ugf − Ugi

= Ugbottom − Ugtop

= mgybottom −mgytop

but because yf = ybottom is now smaller than yi = ytop we can see that ∆U must be

negative.

Let’s find the work done by the gravitational force in making the ball fall and compare.
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WbE = mg

and points downward and the ball falls in the −y direction, so

ds = dy

and (θWy) = 0 and we know that w must be positive. Then

w =

� −→
F (s) · −→ds

w =

� −→
W · −→ds

=

� ybottom

ytop

W cos (θWy) |dy|

Remember that using a dot product
−→
W · −→ds = W cos θWwds the W and the ds are

magnitudes. We need both the W and the dy to be positive numbers. We need to be

careful because as the ball goes downward any ∆y = yf − yi will be negative. Then

even a small dy will be negative. So we need to make it dy positive in the dot product

because magnitudes are not negative. The absolute value signs do this for us, but they

make the integral awkward. Since we know that dy is negative for this specific case, we

could make it positive by supplying our own minus sign

w =

� ybottom

ytop

W cos (θWy) (−dy)

for this specific case. Now we are guaranteed to have w positive as we know it must be

for this case. And now we can perform the integral

w =

� ybottom

ytop

−mg (1) dy

The mass and the acceleration are not changing, so we can take them out of the integral

w = −mg

� ybottom

ytop

dy

= − (mgy|ybottomytop

= − (mgybottom −mgytop)

= − (Uf − Ui)

= −∆U

And we can see that we did, indeed, find the potential energy change for our mass but

our work is the opposite sign of the change in potential energy.

w = −∆U
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Force from potential energy

Let’s look at a graph of the falling ball situation. We learned earlier that an integral is a

way to find the “area” under a curve. So let’s graph force vs. y for a gravitational force

on an object with mass m falling.

The “area” would be

“A” = −mg ×∆y

which is just what we expect for our potential energy difference.

∆U = −mg∆y

It would also be good to find the force if we know the potential energy change. Let’s go

back to our relationship between force and the change in potential energy.

∆U = −
� −→

F (s) · −→ds

The integrand is a small amount of potential energy change. The integral adds up many

small changes to get the entire potential energy change. So we could say that
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dU = −−→F (s) · −→ds

where dU is a small change in potential energy.

dU = −Fds cos θFs

dU = −F cos θFsds

We can again write

F cos (θFs) = Fs

so that

dU = −Fsds

Then

Fs = −
dU

ds
where all along we have used our generic component direction s. We could have used

x, or y

Fx = −
dU

dx

Fy = −
dU

dy

We can try this again for our falling ball. If we know Ug = mgy then

Fy = − d

dy
(mgy)

= −mg

which is just right!

We should study this graphically to understand it better. If we plot Ug as a function of

y, we get a graph that looks like this

This is not too surprising. Consider the equation for a straight line

y = mx + b

and we see that with the y­axis now the Ug­axis and with the x­axis now the y­axis.
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then

y = mx + b

Ug = mg (y) + 0

then we can see that if the slope of the curve is mg, we have a straight line that goes

through the origin.

Now that we are more familiar with calculus, we easily recognize that dU/dt is the

slope of the U vs. y graph.

Fy = −dU

dy
= −mg

and for gravitational potential energy that slope is constant. Let’s plot it just to see.

This was pretty easy for a constant force like the force due to gravity. But it would be

more complicated for a spring force. Let’s try it! We know that

Us =
1

2
k (x− xo)

2

let’s choose our origin so that xo = 0 to make the math easy, then

Us =
1

2
k (x)2

The graph looks like this
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Then the force would be

Fx = −dUs
dx

= − d

dx

�
1

2
k (x)2

�

= −1

2
(2kx)

= −kx

The plot looks like this.

And we are have found the spring force! We will use these techniques again in PH123

and PH220.
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Work­Energy Theorem Revisited

We already know the work energy theorem

w = ∆K

but we want to include our idea of potential energy into this basic equation, and we

have a missing piece to fill in.

Work­energy and potential energy

Now that we have the concept of thermal energy, we can begin to give some detail to

our work­energy equation.

w = ∆K

First let’s split our work term into two terms, a term for conservative work and a term

for non­conservative work.

wc +wnc = ∆K

The non­conservative work takes energy out of the mechanical system and turns it into

thermal energy. We observe this by noting that friction makes temperature go up. So

wnc will cause a change in thermal energy. Let’s give thermal energy a symbol Eth, so

the change in thermal energy is

∆Eth = −wnc

The minus sign may seem mysterious, but remember that to get the same ∆K the

conservative work would have to be larger to overcome the non­conservative work due

to friction, so really the minus sign is real. Friction type forces never cause motion on

their own. They are loss of energy. So their work is negative.

Another way to look at this is that the energy due to friction work is lost to the

mechanical system. If we have friction, we lose some energy so, like in our

ball­hill/valley example, ∆K will be smaller. Since it is a loss, wnc must be negative.

Then

wc −∆Eth = ∆K

Let’s also think about what forces are conservative. We have the gravitational force,

and spring forces. And for these forces, we have learned that

∆Ug = −wg

∆Us = −ws

that is, the energy stored as potential energy is minus the work done to store the energy.
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We could split our wc into specific types of work

wc = wg +ws

then the work energy theorem would be

wg +ws −∆Eth = ∆K

or, using potential energy

−∆Ug −∆Us −∆Eth = ∆K

Usually we prefer to not have negative signs, so let’s take all the negative terms to the

other side of the equation

0 = ∆K +∆Ug +∆Us +∆Eth

This is a very exciting equation (really it is!). It tells us that if we find the change in all

these energy terms, these changes sum to zero. That is what we call conservation of

energy! Another way to write this is

0 = Kf −Ki + Ugf − Ugi + Usf − Usi +Ethf −Ethi

or

Ki + Ugi + Usi +Ethi = Kf + Ugf + Usf +Ethf

which now looks more like conservation of energy! But this time we have included

friction and similar dissipative terms. Note that we have included a term for all the

possible types of energy we have studied. In PH220 we will find that there are more

conservative forces (e.g. ones for electrical forces) which will also create potential

energies. And we can just add these into our conservation of energy equation.

Ki + Ugi + Usi + Uei +Ethi = Kf + Ugf + Usf + Uef +Ethf

This will become a general procedure, if you have a new kind of energy in your

problem, just add it into our conservation of energy equation until all forms of energy

for the problem are accounted for.

But is energy always conserved? Is this equation always true?

Let’s go back to our people pushing a box.
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Some of the thermal energy generated by friction increases the temperature of the box,

but some of the energy increases the temperature of the floor. So if we include the floor

in our system, energy is conserved, but if we only consider the box, the energy is not

conserved. Energy is leaving the box.

In fact, if we just consider the box, the push and pull from the guy and rope are adding

energy to the box system through work. So we have energy coming in and some energy

coming out and we would have to account for both of these before we could say that

energy is conserved for the box or not. Generally if we allow external forces to act on

our system we would have to guess that energy will not be conserved for the system.

After all, we are adding or subtracting energy from our system (the box). But if we

consider a system that includes more of the environment (say, the box, the guys, the

rope, and the floor), it would be more likely that for the larger system energy would be

conserved. If a system has no external forces acting on it, we call it an isolated system.

For isolated systems our conservation of energy equation always works.

But as long as we account for every external energy input and every external energy

dissipation in our energy equation, we can use it.

Ki + Ugi + Usi + Uei + Upush +Ethi = Kf + Ugf + Usf + Uef +Ethf

You might think this distinction of external forces and systems is somewhat artificial,

after all we are choosing our system and not nature, so, you might ask, if we take the

ultimate system, the universe, is energy conserved?
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Well, there is some question about universal conservation of energy. If the universe

is expanding, there needs to be an input of energy to cause the expansion. We don’t

know where such energy would come from (what is outside the universe?). This is the

problem called “dark energy” that you hear about in the press. But for normal systems,

we can say that with a sufficiently exclusive system energy is conserved.

In doing energy problems, then, we have to be sure to identify all the types of energy

that our system has. We can use bar energy graphs and energy vs. position graphs to

aid in this process. Then we write our energy equation to include each type. Then we

use algebra to solve for the item we are looking for to finish the problem.

Let’s try an example problem. A box is sliding down a hill.

The box starts from rest. The hill is 20.m high. The box has a mass of 20. kg. The box

is going 10.m/ s at the bottom of the valley. How much energy was lost due to friction?

This is a conservation of energy problem but with friction.

We know

yi = 20m

yf = 2m

vi = 0

vf = 10.0
m

s
m = 20. kg

Our basic equation is

Ki + Ugi + Usi +Ethi = Kf + Ugf + Usf +Ethf

but we don’t have any springs, so we can cancel all the spring potential terms (and any

other terms for forces we don’t have).

Ki + Ugi +Ethi = Kf + Ugf +Ethf
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with

K =
1

2
mv2

Ug = mgy

and we know so

Ki + Ugi = Kf + Ugf +Ethf −Ethi

1

2
mv2i +mgyi =

1

2
mv2f +mgyf +∆Eth

Let’s use our zero

0 +mgyi =
1

2
mv2f +mgyf +∆Eth

then

mgyi −mgyf −
1

2
mv2f = ∆Eth

mg (yi − yf )−
1

2
mv2f = ∆Eth

∆Eth = m

�
g (yi − yf )−

1

2
v2f

�

∆Eth = (20. kg)

��
9.8

m

s2

�
(20m− 2m)− 1

2

�
10.0

m

s

�2�

= 2528.0 J
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It was convenient in studying energy to look at a before and after case. For energy,

we found that only the final and initial conditions mattered. We didn’t need to know

what happened in between the final and initial states. That made it convenient to solve

problems. The details of what happened in between these two states could be ignored.

It would be nice if all of our problems were like this! Think of the complications of a

car crash. The forces between the two cars would change in time during the crash. That

sounds complicated. Maybe there is a way we could ignore these difficult details and

still figure out the motion of the cars.

Momentum and force

Let’s consider a situation. You are moving a water barrel on a hand truck. You exert a

force, and the massive barrel of water accelerates.

But as you push the barrel seems to be easier to accelerate. As you look behind you,

you realize why. The barrel is leaking. We know
−→
F net = m−→a

but now we realize that m could change for an object. We have not dealt with changing

mass yet.
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To see how to account for the possibility that mass could change, let’s review our basic

motion equations. Remember that
−→a =

d−→v
dt

that is, our acceleration is a change in velocity in a change in time. We have dealt with

forces leading to a change in velocity. Let’s put the change of velocity with respect to

time in our Newton’s second law equation.
−→
F net = m

d−→v
dt

This version of Newton’s second law still does not allow the mass to change. But

suppose we take the mass inside the derivative.
−→
F net =

d (m−→v )
dt

Now the two things that affect the result of a force are both inside the derivative. If you

have taken Math 112x, you will remember that we could write this as a total derivative
−→
F net = m

d−→v
dt

+−→v dm

dt
and we can clearly see both effects. The first term says if we keep the mass the same, a

stronger force gives a larger acceleration. The second says that if we change the mass,

say by leaking water out of our barrel, that it takes less force to have the same velocity.

And of course we could change both mass and velocity at once, and both would effect

the result of our force.

Newton wanted to combine change in mass and change in velocity. After all, they

are the two things that together relate a force to the motion of an object. Let’s follow

Newton’s lead and define a new quantity
−→p = m−→v

It has all the things that make motion difficult to change. Consider an elephant. The

elephant might not really move too fast, but because it is big, it is hard to stop. The

mass makes it hard to change the motion of the elephant. But also consider a speeding

bullet. The bullet’s mass is small, but it’s velocity is large. The large velocity makes it

hard to change the motion of the bullet. In both cases it takes a large force to change

the motion.

This combined quantity has a name. It is momentum.

We could write Newton’s second law as
−→
F net =

d−→p
dt

and indeed, this is how Newton wrote Newton’s second law! We should add this form
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of Newton’s second law to our Newton’s second law set of equations.

Let’s consider what happens when a soccer (futbol) player kicks a ball. The ball comes

toward the player. The player exerts a force, a kick, and the motion of the ball changes.

We will deal with the awkward details of the kick in a minute. But let’s consider the

change in motion. Before the kick we have one momentum, −→p i and after the kick we

have another momentum, −→p f We could define a change in momentum

∆−→p = −→p f −−→p i

Then
−→
F ave =

∆−→p
∆t

This is only the average force, because all we know is a “before” and “after” case.

Recall that the average acceleration is given by

aave =
∆v

∆t
Our average force is like this. Let’s rewrite ∆−→p

∆−→p = −→p f −−→p i

then with our average force this must be equal to

∆−→p = −→p f −−→p i =
−→
F ave∆t

The term
−→
F ave∆t combines the magnitude and direction of the force with the duration

of the force. This combination could be useful. How long a force acts matters, so

a strong force acting over a short time could have the same effect as a weaker force

acting over a longer time. We have a name for the combination
−→
F ave∆t. It is called the

average impulse. And it is given the symbol

J̄ =
−→
F ave∆t
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So we can write a new equation for momentum and the average impulse
−→p f −−→p i = J̄

This is our first version of what is called the impulse­momentum theorem. The name is

not really that important. But the theorem says that if a force acts on an object for a

duration ∆t, the momentum of the object will change.

Let’s try a quick problem.

Our soccer player has a ball kicked to him with an initial velocity of vix = −10.0m/ s.

The soccer player kicks the ball back the opposite direction with a final speed of

vfx = 20.0m/ s. If the force of the kick lasts for ∆t = 0.005 s, what is the average

force during the kick? The soccer ball has a mass of 0.45 kg.

To solve this we can use our basic equation for impuse­momentum

−→p f −−→p i = J̄

or
−→p f −−→p i =

−→
F ave∆t

Of course we will turn this two­dimensional problem into two one­dimensional

problems by taking components of the momentum vectors. We end up with two

one­dimensional problem parts, one for the x­direction and one for the y­direction

pfx − pix = Favex∆t

pfy − piy = Favey∆t

But in our problem we only have x­values. So

pfx − pix = Favex∆t

0 = 0

we know −→p = m−→v , so for our remaining x­equation we have

mvfx −mvix = Favex∆t

and finally we can find the average force

Favex =
mvfx −mvix

∆t

Favex =
m (vfx − vix)

∆t

Favex =
(0.45 kg) (20.0m/ s− (−10.0m/ s))

0.005 s
= 2700.0N

Notice that the average force is very large! Usually interaction forces are so large that
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for the very small time that the interaction force operates, we can ignore other forces.

The other forces operate, but they are small enough to ignore during our ∆t. Before

and after the interaction these other forces (like gravity, and friction) dominate. So we

can’t ignore them outside of the interaction time. But during ∆t we usually can ignore

other forces. This is an approximation, of course. And the approximation has a name.

We call this leaving out of other forces during the interaction time ∆t the impulse

approximation.

Of course we did all this only with an average change. We could consider that the force

changes in time
−→
F =

−→
F (t)

Then our Newton’s second law would be
−→
F net (t) =

d−→p
dt

which we could write as

d−→p =
−→
F net (t) dt

This says that for each moment, dt, of the small amount of impulse
−→
F net (t) dt creates

a small change in the momentum, d−→p .

Let’s look at a typical interaction, like our soccer ball kick.

We can see that the force does not stay constant. Our little bit of momentum change

d−→p represents a little bit of impulse If we plot F vs. t, we can see that
−→
F net (t) dt is

the “area” of a little box. F (t) is the height, and dt is the width. So an impulse is an

area on a F vs. t graph.
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To find all the impulse for an interaction, we would need to add up all the little bits of

impulse.

Averages are funny things, it is perfectly legal to redefine the time of our average force

to be the travel time ∆t. What does this mean?

In the first graph we have the full definition of impulse�
d−→p =

� −→
F net (t) dt

The left hand side gives us �
d−→p = −→p f −−→p i

so
−→p f −−→p i =

� −→
F net (t) dt

which says the impulse is the integral of the curve F vs. t graph, or, since an integral

finds and “area,” the impulse is the “area” under the curve of a F vs. t graph.

Let’s go back and compare this to our average impulse equation.
−→p f −−→p i =

−→
F ave∆t

With what we know now, we can say that the average impulse is a rectangular region on

a F vs. t graph that has the same area as
� −→

F net (t) dt
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We could, of course, find the impulse from the integral. And in engineering this is

sometimes important! But remember we started out trying to ignore the details of a

complicated interaction by looking at just the “before” and “after” cases. And now

we realize that the cost of this is to only know the average force. If you are designing

soccer balls, this is not enough. But if you are just using soccer balls, this is just fine

and makes the math much easier.

Total momentum of a system

So far we have just discussed the momentum of one object, like a soccer ball. But

suppose we have a system, like a car, with lots of internal parts. The total momentum

of the whole system is the vector sum of the momentum of each part.
−→
P = −→p part 1 +

−→p part 2 +
−→p part 3 + · · ·+−→p part N

=
N


i=1

−→p part i

This is a little cumbersome to write, so let’s abbreviate
−→p part 1 = −→p 1

−→p part 2 = −→p 2

...
−→p part N = −→p N

so our total momentum would be
−→
P = −→p 1 +

−→p 2 +
−→p 3 + · · ·+−→p N

=
N


i=1

−→p i
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Notice that these are vector sums! so we have to take components

Px =
N


i=1

pxi

Py =
N


i=1

pyi

Pz =
N


i=1

pzi

where as usual, we turn our three­dimensional problem into three one­dimensional

problems by taking components of the vectors.

It turns out that there is a terrific time savings in using momentum. But to see the time

savings in solving problems, we need to show that the internal forces causing internal

momentum, say, of the car engine parts, do not matter in calculating the motion of the

car system as a whole. Let’s do that now.

Let’s take the total momentum of our car,

−→
P =

N


i=1

−→p i

and let’s take the time derivative of this momentum, that would give the net force acting

on our car, since
−→
F net = d−→p /dt.

d
−→
P

dt
=

N


i=1

d−→p i

dt
=

N


i=1

−→
F neti

Now let’s look at an individual engine part, let’s give it the subscript k because it is

the kth part in our sum from 1 to N . We labeled each part with a number, and k is

somewhere in the middle.

1, 2, 3, · · ·k, · · ·N
It would have forces acting on it. Some would be internal forces, and some external

forces. Since we add up the forces to get the net force, we could separate the addition

into two groups, the internal and external groups, add up all the internal forces

separately, and add up all the external forces separately, and then add the two results

together to get the net force on our part.
−→
F internalk =




j �=k

−→
F kj

where we are using the usual subscripts on our forces. Each of these forces is an

internal force acting on k, so k is the first subscript. The other forces are labeled j, and

j goes from 1 to N, but has to skip k because our engine part k can’t exert a force on

itself.
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For the external forces, let’s say we have a bunch of objects, e1, e2, e3, · · · eN all

exerting a force on part k. Then we could write all the external forces summed up as

−→
F externalk =

eN


M=e1

−→
F kM

and the net force acting on part k would be

−→
F netk =




j �=k

−→
F kj +

eN


M=e1

−→
F kM

But this is just for part k. Let’s find the net force acting on the whole system, like our

car system.

We would just add up all the forces from all the parts

−→
F =




k





j �=k

−→
F kj +

eN


M=e1

−→
F kM




=



k




j �=k

−→
F kj +




k

eN


M=e1

−→
F kM

The last term is just the sum of all the external forces. We could call it
−→
F externalnet

The first term is the sum of all the internal forces. But we know something about

internal forces. They come in pairs,
−→
F ij and

−→
F ji and we know that for each pair

−→
F ij = −

−→
F ji

so if we add them all up, the sum must be zero!
−→
F = 0+

−→
F externalnet

This means that when we look at the total momentum for a system,

d
−→
P

dt
=
−→
F externalnet

and we can ignore all the internal forces when we find the motion of the system. You

might say that this is obvious! You have been doing this for years. You never even think

about the motion of your pistons as you travel in your car. But now we can express this

thought mathematically.

Conservation of momentum

Let’s take on a special case. Suppose for a system there are no external forces, or that

the external forces sum to zero so there is no system net force.
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d
−→
P

dt
= 0

Then
−→
P f −

−→
P i = 0

or
−→
P f =

−→
P i

For such a system, the total momentum won’t change. This gives us a powerful way to

calculate what motion our objects will experience!

If two objects smash into each other, then the atoms of object one will experience a

force from the impact of object 2, and we might expect a reciprocal force as well on the

atoms of object two from the impact of object 1. Let’s write the impulse momentum

theorem for both objects:

−→
F 21∆t = m1

−→v 1f −m1
−→v 1i−→

F 12∆t = m2
−→v 2f −m2

−→v 2i
Since

−→
F 21 = −

−→
F 12

then
−→
F 21∆t = −−→F 12∆t

and

m1
−→v 1f −m1

−→v 1i = −
�
m2
−→v 2f −m2

−→v 2i
�

or

m1
−→v 1f +m2

−→v 2f = m1
−→v 1i +m2

−→v 2i
Notice how like an energy equation this is. The initial momentum is equal to the final

momentum. The total momentum did not change for the system. Just like energy, when

the total momentum does not change we will say that momentum is conserved.
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We could add in more objects, and we would find that the complicated collision would

still show momentum begin conserved so long as there is no external force acting.

When no external forces act on a system, the total momentum of the system is
conserved

Note that we must be careful to define our isolated system. A rocket ship launching

does not seem to have it’s momentum conserved, but we must take into account the

reaction of the Earth to have the complete system. The Earth does move a little, but not

very much because it’s mass is so much bigger. Momentum conservation is easier to

see if the two objects are closer to the same size and mass.

Two identical pool balls travel toward each other and collide. The cue ball has an initial

velocity vCi = v, and the 9 ball is stationary. We notice that after the collision, the 9

ball moves off and the cure ball has stopped. So vCf = 0. what is the velocity of the 9

ball after the collision?

Start with the idea of conservation of momentum

Pi = Pf

The collision will be short, and we expect that during the collision, all other horizontal

forces can be ignored. So we will use the impulse approximation.

The initial total momentum of the two ball system would be

Pi = pci + p9i
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and the final total momentum would be

Pf = pcf + p9f

so we can write

pci + p9i = pcf + p9f

then, filling in for the momenta

mcvci +m9v9i = mcvcf +m9v9f

We recognize that for pool balls both balls have the same mass, so mass cancels out.

Let’s use our zeros

vci + 0 = 0 + v9f

vci = v9f

We see that the two balls have switched velocities.

Notice that the clue that a problem is a conservation of momentum problem is that we

are given a “before” and an “after” look at the motion of an object. The procedure for a

conservation of momentum problem has about three steps

1. First we write out that the total momentum does not change Pi = Pf .

2. Then fill in the momentum for each part of the system.

3. The resulting equation may allow us to solve for the thing we are looking for.

In our last example the pool balls didn’t dent, or deform. They just bounced off of each

other. But if we crash two cars into each other they do deform or dent. Let’s call our

pool­ball case with no deformation an elastic collision. The case where two objects

collide and deform we will call and inelastic collision.

It’s probably appropriate to note how very difficult this simple problem would be if we

just used forces. We would have had to study the interaction, the collision, itself. And

the forces would change throughout the entire interaction. We would have to perform

the impulse integral. But using conservation of momentum, we avoided all of that

difficulty. But there was a cost. In what we have done we don’t know anything about

the actual interaction. All we know is the velocity of the balls before the interaction and

the velocity of the balls after the interaction. But if you are a pool shark, that’s all you

need to know!
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In our next lecture, we will explore conservation of momentum and see just how useful

it can be.
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We just got to the point last time where we could do a simple problem using

conservation of momentum. We will need to practice this type of problem in order to

get good at it. So let’s take on a few interesting problems in this lecture.

Inelastic collisions

Suppose our two pool balls hit, but instead of bouncing off each other, suppose that

the balls stuck together. It’s a strange name, but we call a collision where the objects

stick together an inelastic collision. Really this sort of collision happens more than you

might think. Let’s take a specific example.

James Bland (000) is pursuing a nefarious spy. The spy (75 kg) is leaving in a small

boat (90 kg). To stop the spy, Bland (70 kg) jumps into the boat. He does not bounce

off (that would not be very Bland­like), he stays in the boat. This is a very inelastic

collision! Let’s call it a totally inelastic collision. If the initial speed of the boat is

−15m/ s. What is the speed of the boat plus Bland after the collision?
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Remember that using conservation of momentum does not allow us to study the forces

involved in the collision. We can only look at what we had before the collision and

what we had after the collision. So we should draw a before and after picture. We, as

usual, we just draw dots for our objects.

Let’s list what we know

mbg = 75kg

mb = 90kg

mJ = 70kg

vBi = −15 m
s

where the subscripts bg is for the “bad guy” and b is for the boat. Since Bland and boat

both begin with “B,” we will use J for “James.” In this case, all the forces except the

collision forces are smaller during the collision forces during the collision, so we can

invoke the impulse approximation. we can expect momentum to be conserved.

Our basic equation is

Pi = Pf

The actual impact will be short. We expect that the boat will go slower in the water

after Bland hits. If the collision lasts for a short time ∆t, then we will take our before

picture an infinitesimal time before ∆t starts, and we will take our after look at the

momentum an infantilism time after ∆t ends. Clearly if we wait a long time after the
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collision, the water drag and engine push, etc., will have to be accounted for. But we

will look just barely before and just barely after the collision. Then

Pi = Pf

The initial total momentum of the system would be

Pi = pBi + pJi

where B is for “boat plus bad guy” and J is for “James.” Then the final total momentum

would be

Pf = pBf + pJf

and we can write our total momentum equation as

Pi = Pf

pBi + pJi = pBf + pJf

We know
−→p = m−→v

and let’s consider drawing our coordinate system so the boat is moving in the

x­direction only. The initial x­direction speed of James is vJix = 0. He is just falling

into the boat. The initial speed of the boat is vBix = −15m/ s. But once Bland is in the

boat, the boat and Bland stay together. So the final speed will be vsfx where s is for the

boat­Bland­bad guy (s)ystem. And the mass of the system will be the combined masses

of the boat, bad­guy, and Bland. Then we can write our momentum equation as

(mb +mbg) vBix +mJvJix = (mb +mbg +mJ) vsfx

we should use our zeros

(mb +mbg) vBix + 0 = (mb +mbg +mJ) vsfx

then

vsfx =
(mb +mbg) vBix
(mb +mbg +mJ)

or

vsfx =
(90 kg + 75kg)

�
−15 ms

�

(90 kg + 75 kg + 70kg)

= −10. 532 m
s

By jumping into the boat, the boat and bad guy have slowed. I suppose this gives James

more time to fight the bad guy.

Of course, we could have had a much less exciting problem. Any time we have a

collision where the two colliding objects stick together, we have a totally inelastic

collision. So throwing a bale of hay on a moving truck would be a totally inelastic



424 Chapter 24 Momentum and Collisions

collision. A Little brother jumping onto his big brother and holding on would also be a

totally inelastic collision. Or an obnoxious kid throwing a lump of clay at another kid

where the clay sticks would be another totally inelastic collision.

Explosions

But let’s continue with our James Bland scenario. Suppose while we watch Mr. Bland

there is a fight, and Mr. Bland’s tie is knocked off. The scuffle continues, and Mr. Bond

allows the bad guy to knock him out of the boat. The bad guy smiles, but we see that in

the front of the boat there is a small blinking red light.

The tie is a bomb! just in time, the bad guy sees the blinking light and jumps out of the

boat letting the engine die (it’s early in the movie, you can’t get rid if the bad guy yet!).

The boat’s velocity fades to vbi = 0m/ s due to drag forces caused by the air and water.

Then the explosion happens. The boat is split in two.

What can we say about the velocities of the parts of the boat just after the explosion?

Let’s call the two parts of the boat part 1 and part 2. Suppose the mass of part 1 is

m1 = 20kg and the mass of part 2 is m2 = 70kg (part two has the motor). Long after
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the explosion, the boat parts will come to rest on the water (or under the water). But we

want the final velocities of the boat parts just after the explosion.

This would also be a difficult problem to solve with forces. Notice that the boat is

resting before the explosion, so there is no net external force. And all the explosion

forces are internal forces.

We can treat this as a conservation of momentum problem. The explosion is short

lasting, and so we can use the impulse approximation. We can draw a before and after

picture.

or better, more like this.

We know

mB = 90 kg

m1 = 20 kg

m2 = 70 kg

vBi = 0
m

s
and our basic equations are

−→
P i =

−→
P f
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and momentum is
−→p = m−→v

To solve this problem, let’s first realize that all of our motion is in the x­direction. Then

Pix = Pfx

and before the explosion the momentum is

Pix = pBi

= mBvBi

= 0

and the final momentum is

Pfx = m1v1f +m2v2f

so

0 = m1v1f +m2v2f

m1v1f = −m2v2f
v1f
v2f

= −m2

m1

Since m2 is larger than m1, we can see that v1f is larger than v2f . In fact,

v1f = −
m2

m1
v2f

v1f = −70

20
v2f

= −3. 5v2f

We now know that part 1 of the boat leaves the explosion 3.5 times as fast at part 2.

Although we don’t know the actual speeds, our experience with boats tells us that at

1/3.5 the speed of part 1, boat part 2 is not likely to take out the bad guy. James has

more work to do.

Momentum in two dimensions

Suppose that the bad guy did not see the tie­bomb. The explosion would throw the bad

guy off the boat as well as splitting the boat into pieces. (The bad guy will be fine–it’s

still early in the movie). But he will fly through the air due to the explosion. James

is watching all this with his wrist­watch velocity meter. He sees that the initial veloc­

ity of the boat is vsix = −15m/ s and that part one of the boat has a final speed of
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v1f = 150m/ s at an angle of 190 ◦. He also measures v2f = 6.9m/ s. at −16 ◦. But

he is unable to measure the final speed and direction of the bad guy in time. That final

velocity is critical to figuring out if the bad guy will get away unharmed. So we need to

know that speed and direction.

Here is our picture

and what we know

v1f = 150
m

s
θ1 = 190 ◦

v2f = 6.9
m

s
θ2 = −16 ◦

vbg = ?

θbg = ?

vsix = −15m/ s
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and from the previous problems we know

mbg = 75kg

m1 = 20kg

m2 = 70kg

and let’s define the total mass of the system to be

Ms = mbg +m1 +m2 = 75kg + 20kg + 70kg = 165 kg

Our basic equations are the same
−→
P i =

−→
P f

and momentum is
−→p = m−→v

But we realize that this is a two­dimensional problem, so we will need to turn it into

two one­dimensional problems by taking components.

p1x = m1v1f cos θ1

p2x = m2v2f cos θ2

pbgx = mbgvbgf cos θbg

and

p1y = m1v1f sin θ1

p2y = m2v2f sin θ2

pbgy = mbgvbgf sin θbg

then
−→
P i =

−→
P f

becomes

Pix = Pfx

Piy = Pfy

or

Pix = msvsi

Piy = 0

and

Pfx = p1x + p2x + pbgx

Pfy = p1y + p2y + pbgy

then

Pix = Pfx
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becomes

Msvsix = p1x + p2x + pbgx

and

Piy = Pfy

becomes

0 = p1y + p2y + pbgy

Now let’s substitute in our momenta components. For the x­direction we have

Msvsix = m1v1 cos θ1 +m2v2 cos θ2 + mbgvbgf cos θbg

and for the y­direction

0 = m1v1 sin θ1 +m2v2 sin θ2 +mbgvbgf sin θbg

We need to solve for the terms with θbg. So let’s do this with both the x and y­direction

equations.

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2) = +mbgvbg cos θbg

0− (m1v1 sin θ1 +m2v2 sin θ2) = +mbgvbg sin θbg

Now let’s use a trick to reduce the algebra We have two equations and two unknowns.

And on the right hand side, we have many of the same terms like mbg and vbg. Let’s

divide the y equation by the x­equation
mbgvbg sin θbg
mbgvbg cos θbg

=
− (m1v1 sin θ1 +m2v2 sin θ2)

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2)

the mbg and vbg factors cancel leaving just θbg as a variable with all the rest knowns.
sin θbg
cos θbg

=
− (m1v1 sin θ1 +m2v2 sin θ2)

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2)
using some trigonometry

tan θbg =
− (m1v1 sin θ1 +m2v2 sin θ2)

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2)
an inverse tangent get’s us the angle

θbg = tan−1
� − (m1v1 sin θ1 +m2v2 sin θ2)

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2)

�

θbg = tan−1



−
�
(20 kg)

�
150 ms

�
sin (190 ◦) + (70 kg)

�
6.9 ms

�
sin (−16 ◦)

�

(165 kg) (−15m/ s)−
�
(20 kg)

�
150 ms

�
cos (190 ◦) + (70 kg)

�
6.9 ms

�
cos (−16 ◦)

�
�

= 1. 547 7 rad

= 88. 677 ◦

The bad guy is flying upward at a steep angle.
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Now that we know the angle, we can find vbg. Let’s use the x­equation

Msvsix − (m1v1 cos θ1 +m2v2 cos θ2) = +mbgvbg cos θbg

then

vbg =
Msvsix − (m1v1 cos θ1 +m2v2 cos θ2)

mbg cos θbg

or

vbg =
(165 kg) (−15m/ s)−

�
(20 kg)

�
150 ms

�
cos (190 ◦) + (70 kg)

�
6.9 ms

�
cos (−16 ◦)

�

(75 kg) cos (88. 677 ◦)

= 8. 739 6
m

s

= 19. 550
mi

h
This is pretty fast. But is it enough to take out the bad guy?

We can calculate the speed of a diver that dives from a cliff and compare it to the bad

guy speed. Professional cliff divers dive from heights of 21 to 27 meters. Using energy

we can find the final speed from a cliff dive.

Ei = Ef

Ki + Ugi = Kf + Ugf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

and since vi = 0 for our cliff diver and we can choose our y = 0 point to be at yf at the

water surface, then

0 +mgyi =
1

2
mv2f + 0

vf =
�
2gyi

=

�
2
�
9.8

m

s2

�
(27m)

= 23. 004
m

s
Our bad guy speed is less than this. And bad guys in movies seem to be unbelievably

resilient. I bet he is OK and will be back to plague Bland later in the movie (don’t try

this yourself!).

Once again, consider how hard this problem would be if we just used Newton’s second

law and kinematics. Of course, in fact we did use Newton’s second law and Newton’s

third law to find conservation of momentum. So our Force laws are sitting there behind

all that we are doing. And we would need kinematics to find where the bad guy

would eventually fall even with what we have done. But we will leave this for another
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problem.





25 Energy and Momentum

We have studied conservation of energy and conservation of momentum separately. But

conservation of energy and conservation of momentum are even more powerful if we

use them together. Let’s take on some really tough problems in this lecture, and see

how our conservation laws work together to make them easier.

Energy Example: Ballistic Pendulum

You might wonder, can we combine our conservation of energy and conservation of

momentum to do even more complicated dynamic problems. And of course, we can!

In class I will show you a strange device. It is a combination of a spring cannon, and a

pendulum. The spring cannon shoots a ball into a cup at the bottom of the pendulum.

Then the pendulum swings upward. You probably can guess that we could safely

determine how fast the ball is shot (the muzzle velocity) using something like this.

Suppose for our problem we wish to find the muzzle velocity. We need to know the

masses to do this. For our setup, I found the following:

m = 67.1 g mass of the ball
M = 138.5 g Mass of the pendulum cup

(25.1)
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Our basic equations are
−→
P i =

−→
P f

Ei = Ef

where I have used the letter E for energy.

Let’s start with conservation of momentum. We will need a before and after case for the

collision alone. It is tempting to choose our before case as before the ball even moves.

But for conservation of momentum we want the before case to be just before the colli­

sion. And we want the after case to be just after the collision.

Notice that this is a totally inelastic collision, like Mr. Bland landing in the boat. Before

the collision, we have

Pi = pmi + pMi

= mvmi +MvMi

= mvmi + 0

and we realize that vMi = 0, the pendulum is not moving at first.

After the collision we have

Pf = pmi + pMi

= mvmf +MvMf

but because the ball and the pendulum are stuck together they have to move together so

vmf = vMf and

Pf = (m +M) vsf

Now there are other forces acting on the ball and the pendulum, but we will invoke the

impulse approximation for the short time of the collision. Then our conservation of
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momentum equation would be

Pix = Pfx

mvmi = (m+M) vsf

and with this we can relate the two velocities to each other

vsf =
m

(m +M)
vmi

But we don’t know vsf so we can’t yet find vmi.We need another equation.

Let’s try conservation of energy. Our apparatus allows us to find how high up the

pendulum goes. That is the distance y. That shows up in Ug. So conservation of energy

might work. Let’s start our conservation of energy part just after the collision.

The initial velocity for this conservation of energy part is the final velocity of our

conservation of momentum part. So our two parts tie together. There is hope that this

will provide us with vsf ! Let’s start the energy part with

Ei = Ef

Which we write as

Ki + Ui = Kf + Uf

where now our initial case is just after the collision, so the initial energy part is made

from the final values of the momentum part. So vsi for the momentum part is vi for the

energy part!

1

2
mv2i +mgyi =

1

2
mv2f +mgyf

and we can find yf from the apparatus measurement. Let’s choose yi to be our origin,

so yi = 0 and notice that at the top of the swing, vf = 0. And let’s use these zeros
1

2
mv2i + 0 = 0 +mgyf

so
1

2
mv2i = mgyf
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Notice that the masses cancel.
1

2
v2i = gyf

In this problem we want to find vi so let’s solve for it now

v2i = 2gyf

vi =
�
2gyf

Now remember that vsf for the momentum part is vi for the energy part, and we found

that

vsf =
m

(m +M)
vmi

So if we know the initial velocity and the masses, we can find the height. Of course, if

we were testing a new cannon, we could measure how high up the pendulum goes and

determine the muzzle velocity. Let’s try that for our case.
�
2gyf =

m

(m +M)
vmi

(m+M)

m

�
2gy = vmi

vmi =
(m +M)

m

�
2gy

In class we will try this, for now, let’s say we know the length of the pendulum, and we

measure the angle when the pendulum is at the top of it’s swing.
L = 0.30m length of pendulum
θ = 58.5 ◦ deflection angle in radians

then, using some trig we can find that

y = L (1− cos (θ))

= 0.143 25m

then our muzzle velocity is

vmi =
(67.1 g + 138.5 g)

67.1 g

�
2
�
9.8

m

s2

�
(0.143 25m)

= 5. 134 2
m

s

I checked another way (one that we have thought about in our problems before) by

shooting the ball straight upward. The ball will fly up, and for a brief moment at the top

of it’s flight, the speed will be zero.
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So vf = 0. We will define the starting point as xi = 0, yi = 0. We can measure the

maximum height

yf = 1. 335m

For fun, here is how it goes!

Ei = Ef

Ki + Ugi = Kf + Ugf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

The masses cancel
1

2
v2i + gyi =

1

2
v2f + gyf

and use our zeros
1

2
v2i + 0 = 0 + gyf

then

v2i = 2gyf

and finally

vi =
�
2gyf

so if I know how high the ball goes, I will be able to find the initial velocity

vi =

�
2
�
9.8

m

s2

�
(1. 335m)

= 5. 115 3
m

s
which is really close to what we got using energy and momentum with our fancy device.

Elastic Collisions: Momentum and Energy conservation

We have found that we can solve some very sophisticated problems using the idea

of conservation of momentum and conservation of energy. And we have even tried
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a problem where we used both together. Let’s try another combined conservation of

momentum and energy problem. Let’s go back to our two pool balls. Suppose we know

that the cue ball is moving at speed vo in the x­direction and the 9 ball is not moving.

But suppose we don’t know either of the final velocities. Could we find them?

Let’s assume we can neglect friction. Also notice that our momentum is all in the

x­direction.

Start with the idea of conservation of momentum
−→
P i =

−→
P f

and divide the problem into x­parts and y­parts.

Pix = Pfx

Piy = Pfy

but

Piy = Pfy = 0

because our collision and motion are all in the x­direction. We are left with

Pix = Pfx

The collision will be short, and we expect that during the collision, all other horizontal

forces can be ignored. So we will use the impulse approximation.

The initial total momentum of the two ball system would be

Pix = pcix + p9ix

and the final total momentum would be

Pfx = pcfx + p9fx

so we can write

pcix + p9ix = pcfx + p9fx
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then

mcvcix +m9v9ix = mcvcfx +m9v9fx

and we know pool balls all have just about the same mass so

vcix + v9ix = vcfx + v9fx

and we know vci and v9i

vo + 0 = vcfx + v9fx

but we have two things we don’t know vcfx and v9fx and we have only one equation.

But now conservation of energy can come to the rescue. If we can ignore external

forces during the collision, we can say that

Ei = Ef

but we need the energy of the entire system, both balls.

Eci +E9i = Ecf +E9f

or
1

2
mcv

2
ci +mgyci +

1

2
m9v

2
9i +mgy9i =

1

2
mcv

2
cf +mgycf +

1

2
m9v

2
9f +mgy9f

This is the total energy equation for the entire system of two balls. Notice that

yci = y9i = ycf = y9f so all of the potential energy terms cancel. Then, canceling the

masses, and using our zeros and knowns
1

2
v2o + 0 =

1

2
v2cf +

1

2
v29f

or, canceling the 1/2 factors.

v2o = v2cf + v29f
Since we only have x­parts to our velocities

vcfx = vcf

v9fx = v9f

so

v2o = v2cfx + v29fx
and this is another equation with our unknowns that comes from our collision. So we

should be able to solve for vcfx and v9fx. Let’s try solving both of our equations for

vcfx. From conservation of momentum (above) we know

vo = vcfx + v9fx

so

vcfx = vo − v9fx

and from conservation of energy

v2o = v2cfx + v29fx
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so

v2o − v29fx = v2cfx
so let’s square our first equation and set it equal to the second because it has v2cfx

v2cfx = (vo − v9fx)
2

so

(vo − v9fx)
2 = v2o − v29fx

then

v2o − 2vov9fx + v29fx = v2o − v29fx
and we see that v2o cancels

−2vov9fx + v29fx = −v29fx

and every term has a v9fx in it, so we can cancel one v9fx

−2vo + v9fx = −v9fx

let’s combine all the v9fx terms

−2vo = −2v9fx
so

v9fx = vo

then we can put this back into the equation from conservation of momentum to solve

for the cue ball final speed

vcfx = vo − v9fx

vcfx = vo − vo

= 0

And we can see that the last time we did this was not a special case. If we hit the 9 ball

dead on, the cue will always stoop and the 9 ball will go off with the cue balls initial

speed.

Reference frames and momentum

I’m sure that you are wondering, what if we consider relative motion and conservation

and momentum? So suppose we do this problem again but consider that the pool table

is on a cruse ship, and that the cruse ship is traveling in such a way that from the point

of view of someone stationary on the shore, the cue ball is not moving and the 9 ball

(and table) are moving with a speed of vo the other direction.

Conservation of momentum still gives

mcvcix +m9v9ix = mcvcfx +m9v9fx
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and conservation of energy still gives

1

2
mcv

2
ci +

1

2
m9v

2
9i =

1

2
mcv

2
cf +

1

2
m9v

2
9f

Let’s deal with momentum first

vcix + v9ix = vcfx + v9fx

and this time vcix = 0 and v9ix = −vo,

−vo = vcfx + v9fx

and from energy, canceling the 1/2 and mass factors, and again equating vcfx = vcf

and v9fx = v9f and further realizing that vcix = vci and v9ix = v9i because this is a

totally one­dimensional problem, we can write

v2cix + v29ix = v2cfx + v29fx

and again using vcix = 0 and v9ix = −vo,

0 + v2o = v2cfx + v29fx

and we solve again for v9fx

−vo = vcfx + v9fx

−vo − vcfx = v9fx

v2o − v2cfx = v29fx
let’s square the first of these

(−vo − vcfx)
2 = v29fx

so

(−vo − vcfx)
2 = v29fx

v2o + 2vovcfx + v2cfx = v2o − v2cfx

or, again canceling the vo terms

2vovcfx + v2cfx = −v2cfx

so

2vovcfx = −2v2cfx
or

2vo = −2vcfx
then

−vo = vcfx

and finally
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−vo − (−vo) = v9fx

= 0

And this is just what we would expect. In the moving reference frame, the balls have

just switch velocities because of the relative motion. Conservation of Momentum

should work in any inertial reference frame.

So far we have done quite a lot with our conservation of momentum and energy. But it

turns out that our energy picture is not quite complete. For example, how do you get a

ball to be on the side of a hill (so you can release it and study it’s motion, of course)? Is

there energy involved with the original placement of the ball? In our next lecture, we

will extend our energy model to answer questions like these.

Beyond particles: Center of Mass

Let’s return to our James Bland adventure and study Mr. Bland’s boat. Suppose we

push on the boat near the middle as shown. What happens to the boat?

This is not hard for us to predict now. The boat will accelerate to the right. But what if

we push on the boat near the front of the boat?
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Our experience tells us that the boat will move to the right, but something else will

happen. The boat will start to spin! Our particle model won’t predict the spin. A free

body diagram for the two situations might look like this

The left hand diagram is for the first case, and the right hand diagram is for the second

case. Notice that there is no difference! So our force diagrams using the particle model

are not enough to allow us to predict spinning motion. We need more physics!

Notice that we did get a particle­like behavior for the boat when we pushed on the

“middle” of the boat. But we need a mathematical way to describe what the “middle”

of an object is.

If you have experience with boats, you probably could guess that the place to push

without the boat spinning is not the exact middle of the boat. That is because the boat

motor is on the back of the boat, and it has more mass than other parts of the boat (and

also sticks into the water, so it has more drag). The motor is more dense. It looks like

we need to have a non­rotation location that we can push on that is a weighted average

of how much mass is on each side of that location weighted by how far that mass is

away from our non­rotation point. Let’s develop a way to do that average.

Suppose we were to mentally chop up the boat into equal area pieces.

We could number each piece from left to right and down to up so that each piece would

have an x number and a y number. The piece shown would be 7th in the x­direction

and the 4th in the y­direction. These numbers would tell us the geographic middle of
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the boat. That would be 9th piece in the x­direction and the 5th in the y­direction.

How did we arrive at these numbers? We counted up the number of little areas, and

divided by 2 to get the middle in each dimension. We want to do something like this to

find our “middle” that includes mass. But we realize that the motor is to the left, and so

we should weight those areas more. Here is what we can do. Let’s weigh each piece of

the boat by how much mass the piece has.

xcm =
m1x1 +m2x2 + . . .+mnxn

m1 +m2 + . . .+mn

=
Σmixi
Σmi

(25.2)

ycm =
m1y1 +m2y2 + . . .+mnyn

m1 +m2 + . . .+mn

=
Σmiyi
Σmi

(25.3)

This will give us the location of a “middle” but it will be a middle that is offset from the

geographic middle and is closer to where the majority of the mass is. We have weighted

the location of each little area with the mass that we have at that area location. So the

motor does get weighted more strongly than the front of the boat.

But if we just had the numerator, we would not have a location (units are wrong for one

thing), so we have to get rid of the mass units. We do that by dividing by the total mass

of the boat. The result is what we call the center of mass of the boat.

Let’s try this for a simple object. Suppose a guy holds up a barbell. Each weight has a

mass of 100 kg. Where is xcm for this barbell? assume the bar mass can be neglected.

Our formula is

xcm =
Σmixi
Σmi

=
m1x1 +m2x2 + . . . +mnxn

m1 +m2 + . . .+mn

We only have two masses, so

xcm =
m1x1 +m2x2

m1 +m2

and we have one mass at x = 0, the left end of the bar, and one at x = L, the right end

of the bar.

xcm =
m1 (0) +m2 (L)

m1 +m2
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and we know that m1 = m2 = m so

xcm =
m2 (L)

m2 +m2

=
m2 (L)

2m2

=
L

2
which is not too much of a surprise, for our simple system we got the “middle” to be in

the middle.

For our boat we could also chop it up into pieces that have equal mass That would mean

the spacing between the pieces won’t be as uniform as it was last time. Still this could

work, and our equations will be

xcm =
Σxi∆m

M

ycm =
Σyi∆m

M
where xi is the distance from the origin to the ith ∆m piece in the x­direction and yi is

the distance from the origin to the ith ∆m piece in the y­direction. In this case we are

using ∆m to mean a small piece of mass. The M is the total mass

M =



i

∆m

Of course, where there is a sum, there could be an integral, because integrals are just

sums over infinitesimally small pieces. Our sum would become an integral if we let

∆m become very small

xcm =
1

M

�
xdm

ycm =
1

M

�
ydm

To see how these work, let’s take on the barbell rod and assume it has enough mass so

that it’s mass is not negligible. It is just a solid cylinder of metal. Suppose the rod is

uniform, so the amount of mass does not change as a function of x. Then for any part

of the rod the ratio M/L would be the same. If the bar has a total mass M, and a total

length L, then
M

L
=

∆m

∆x
and a small part of the bar, say, ∆x long, would have a mass of

∆m =
M

L
∆x

We would call the term M/L the linear mass density of the rod. So if the total mass is
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15 kg, and the total length is 2.19m. Then the linear mass density of our rod would be

λ =
M

L
=

15kg

2.19m
= 6. 849 3

kg

m
where the funny squiggle in this equation that looks like an upside down “y” is a Greek

letter lambda. We can see that a very small length of bar would have a very small mass

dm =
M

L
dx = λdx

I only want to do the xcm part of our barbell rod problem, so

xcm =
1

M

�
xdm

and we have an equation for dm, we can substitute this into our xcm equation

xcm =
1

M

�
xλdx

and we can integrate from x = 0 to x = L

xcm =
1

M

� L

0

xλdx

We get

xcm =
1

M

��
1

2
x2
�����

L

0

=
1

2

L2

M
λ

=
1

2

L2

M

M

L

=
1

2
L

which is, once again, what we would expect. The center of the bar is, well, in the center

of the bar. But we will have to do this for objects where we don’t know the exact center

of mass, like with our boat where the more massive engine is one side. To do this, it

will be helpful to go back to rotational motion and consider that the center of mass is

that spot where we push, and don’t get rotation. It is also the spot around which an

object tends to rotate. We will use this idea in our next lecture.



26 Rotation

We mostly talked about linear motion (motion in straight lines). We did talk a little

bit about moving in circles and centripetal acceleration and we tried to keep cars on

circular turns on roads. But from clock hands to gears to DVD’s to frisbees so many

things rotate. We have to include rotation to understand the motion of all these things.

Let’s start by reviewing basic circular motion.

Review of Cylindrical coordinates

So far we have mostly used an Euclidean coordinate system (xyz).

This coordinate systems has three axes, x, y, and z, and a point in space is given by

how far away the point is from the xy , yz, and zx planes. A point is given by giving

the three distances. We call the distance from the zy plane x. It is how far we have gone

in the x­direction to get to our point.

We also defined three directions in this coordinate system. These are our ı̂, ̂, and k̂ unit

vectors.
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But we have also used another coordinate system when we considered circular motion.

Here it is

The figure shows the same point we considered in our Euclidean coordinate system. We

will keep one of the measurements the same. We will call z the distance of our point

from the xy plane. It is how far we went in the z­direction.

The next measurement is how far from the z­axis of the coordinate system we go to get
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to our point. We call this measurement r, because it is along a radius of the dotted circle

shown. Recall that if I just tell you to go r meters, you could go in any direction. If the

whole class received the same instruction, then you would all be lined up somewhere

on the circle surrounding the starting point that has a radius, r.

The final measurement is an angle, measured from the x­axis. This will tell you which

way to go from the origin. We call this angle measurement θ (or sometimes φ, or any

Greek letter). A point can be described by giving the measurements r, θ, and z.

Of course you recognize this coordinate system as being made from polar coordi­

nates, with a z­component added in. The proper name for this coordinate system is the

cylindrical coordinate system. There are, of course, three unit vectors that describe di­

rections in this coordinate system.

Last time we studied this we imagined we were in an airplane circling the airport. This

coordinate system would be very natural for an aircraft, and pilots do use this system! It

tells you how far you are from the airport, what direction you are from the airport, and

how high above the airport you are–all things pilots want to know.

We called the r̂ direction the radial direction because it is along the radius. The θ̂

direction is the tangential direction (also called azimuthal direction in older books).

And we will keep calling the z­direction the k̂­direction. Because of this, sometimes

this coordinate system is called the rtz­coordinate system. Think of flying in the plane.

You would have a turning (centripetal) acceleration keeping you going in a circle. That

would be a radial acceleration because it points in the (negative) r̂­direction.
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The plane would also have a tangential velocity in the θ̂ direction.

So far we have dealt with tangential motion in this cylindrical coordinate system. We

had kinematic equations for tangential motion like this

sf = si + vti∆t +
1

2
at∆t2

vtf = vti + at∆t

v2tf = v2ti + 2at (sf − si)

sf = si +
vtf + vti

2
∆

and we know about the radial component of the acceleration

ac =
v2t
r

As a review, let’s try a problem. A playground merry­go­round is really just a rotating

platform with bars for the children to hang on to. An adorable child is on one of these

merry­go­rounds. The merry­go­round is rotating at a constant rate, so the child has

vt = constant. The merry­go­round has a diameter of 2m and the child’s tangential

velocity is 2m/ s. What is the child’s acceleration?
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We can see that the tangential and z­components of the acceleration are zero, and that

the radial and z­components of the velocity are zero.

at = 0

az = 0

vr = 0

vz = 0

all from our picture and knowing the merry­go­round is in constant circular motion. We

also know that

z = 0

r = 1m

vt = 4.0m/ s

where we can see that the child’s speed must be in the tangential direction.

The radial acceleration is related to the tangential speed of the child. We can tell that

this must be true by recognizing that ar is pointing toward the center of the circular

flight path. Then ar can be given the title “centripetal” and that means we can say

ar =
v2t
r

and we know all these parts

ar =
vt
2

r

so we can find

ar =
(2.0m/ s)2

1m

= 4
m

s2

This is not a large acceleration but enough for a child to feel it!
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But you might have guessed that there is more to circular motion than this. Long ago

we defined some basic quantities for circular motion.
∆θ = θf − θi
∆t = tf − ti
ωave =

∆θ
∆t

ω = dθ
dt

ω = vt
r

ar = ac =
v2t
r
= ω2r

and if the motion is uniform circular motion we know

at = 0

az = 0

vr = 0

vz = 0

but what were the ω and α terms?

Angular Speed and Acceleration

Some time ago we said we could write the angular speed as

ω =
∆φ

∆t
like we wrote

v =
∆x

∆t

Recall that before we let v change, speeding up or slowing down. We can also let ω

change. This would be “spinning up” or “spinning down.” Think of your parents CD

player. When you turn it on, the CD is just sitting there. But once you push “play”

the disk begins to spin. This is what we mean by spinning up. Once you stop playing

your music, the disk stops spinning This is an example of spinning down. Notice that

the CD did not gain any normal acceleration. It did not come shooting out of the CD

player. Spinning up is different than speeding up. When you throw a frisbee, you give

the frisbee both a spin and you speed it up. But spinning and throwing are two different

ways of changing motion.

Note that this angular velocity is really a way to describe the motion of an entire

spinning object. Think of the CD again. Or think of a potter’s wheel. These objects

spin, and the entire object spins at once. If the CD didn’t all spin as one object, then

the CD would be ripped apart in the CD player. Our particle model doesn’t handle

such spinning objects well. Instead of particle model, we want a way to consider the
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rotational motion of the entire object, not just at a point, but the entire object. We use

angular speed to describe this whole­object rotational motion.

ωave =
∆φ

∆t
and of course we could have an instantaneous angular speed.

ω (t) = lim
∆t→0

∆ω

∆t
=

dφ

dt

For speeding up and slowing down of particles we defined an acceleration

a =
∆v

∆t
and we can do that for the rotational motion of whole objects as well. We will say

that changing the rotational motion of an object is spinning up or spinning down.This

change in angular speed is like an acceleration (a change in motion), so let’s call it

angular acceleration. Again this is the change in the rotational motion of the whole

object (like the whole CD) not just a point on the object. So we don’t confuse this new

spinning acceleration with normal acceleration, lets use a new symbol, α, for angular

acceleration. This symbol is pronounced “alpha” (as in alpha and omega) and is from

the Greek alphabet. Then

α =
∆ω

∆t

Of course this would be an average angular acceleration

αave =
∆ω

∆t
We could also define an instantaneous acceleration

α (t) = lim
∆t→0

∆ω

∆t
=

dω

dt
Let’s suppose we have a small bug on the CD that we want to spin up. The bug isn’t the

whole CD. It is just located on part of the CD a distance r from the center. We could

find out the speed of the bug. The bug is going in a circle, so its motion would be a

tangential speed. But it sure seams that the tangential speed of the bug must be related

to ω, the angular speed of the CD. After all, the bug is just riding on the CD. We need

some way to relate these two speeds, vt and ω. Let’s remember arc length.

s = rφ

The radius r isn’t changing as our bug rides. Just φ. Our tangential speed would bee

vt =
∆s

∆t
=

r∆φ

∆t
but ∆φ/∆t is just ω! so

vtω = rω
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We have related the angular speed of the whole spinning platform (the CD) to the

motion of just one spot on that platform (the bug). Our equation tells us that if the bug

crawls toward the center of the CD it will lower it’s speed. If you have played on a

playground merry­go­round you know this is true. If the bug is on the CD before you

press “play,” then the CD and bug will accelerate angularly once the button is pressed.

The entire CD will accelerate with an angular acceleration

α =
dω

dt
but we could also think of just the bug accelerating. It is still moving in a circle, so it’s

speed is still tangential. We require a tangential acceleration, at, to change a tangential

speed.

at =
∆vt
∆t

but surely that acceleration of the bug is tied in some way to the angular acceleration of

the entire CD. Let’s mathematically investigate this.

α =
dω

dt
but since ω = vt/r

α =
d

dt

�vt
r

�
=

1

r

dvt
dt

=
1

r
at

and since r is not changing for our bug while it rides the CD,

α =
1

r

dvt
dt

=
1

r
at

that is, if we know the acceleration and the radius of our rotating platform, then the

angular acceleration for just one spot on that platform is just

α =
1

r
at
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or

at = rα

If you have played on a merry­go­round you can also see that this is true. If you sit

closer to the center of the merry go round you don’t move as fast as you would at the

edge of the merry­go­round, but you rotate just the same. If someone spins up the

merry­go­round with you on it, the whole merry­go­round spins up together, but your

tangential acceleration is bigger on the edge of the merry­go­round than it is in the

center. If you can find a merry­go­round in one of the local parks, it is worth trying this!

Note that we now have a complete set of motion variables to describe motion in a circle
One Spot Whole Platform
∆s = sf − si ∆φ = φf − φi
∆t = tf − ti ∆t = tf − ti
vtave =

∆s
∆t ωave =

∆φ
∆t

vt =
ds
dt

ω = dφ
dt

ω = vt
r

at =
dvt
dt

α = dω
dt

α = at
r

Notice that the equations for the rotational of the whole platform are very like the

equations for the motion of just one spot on the platform!

Angular Kinematics

Back when we were working just linear problems we found a set of equations for

constant acceleration problem, for example, from a = ∆v/∆t we found

vf = vi + a∆t

This is one of our kinematic equations. We could do the same thing for our rotational

variables, for example from α = ∆ω/∆t we would have

ωf = ωi + α∆t

This looks like a kinematic equation for rotation...and it is! We could do the math to

find the rest of the set, but I am just going to state them here

φf = φi + ωi∆t+
1

2
α∆t2

ωf = ωi + α∆t

ω2f = ω2i + 2α
�
φf − φi

�

φf = φi +
(ωf + ωi)

2
∆t
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The most wonderful thing about this is that we know how to use the kinematic equations

already, and we can use the same techniques to solve rotational constant angular

acceleration problems as we did to solve linear constant acceleration problems. Let’s

do some examples.

Suppose we have a bicycle wheel and it rotates 5.40 revolutions. How many radians has

it rotated?

We know we have 5.40 revolutions, and our basic equation is

∆φ = φf − φi

but what is a revolution? The word “revolution” means “goes all the way around.” Then

every revolution is 2π rad

1rev = 360 ◦ = 2π rad

so

5.40rev
2π rad

1rev
= 33. 929 rad

Note that this is bigger than 2π rad = 6. 283 2 rad. And this brings up a major

difference between linear displacement and angular displacement. Tradition in physics

is that we can return to our zero point and keep going around to every larger numbers

for rotational motion. With linear displacement, if we return to our starting point, we

have a ∆x of zero. But that is not what we do for angular displacement! Let’s continue

with our bike wheel and do another example.

If our bike wheel made 5.4 revolutions in 0.5 s, what is the angular speed? We know

∆φ = 5.4rev = 33. 929 rad

∆t = 0.5 s

and our basic equation is

ω =
∆φ

∆t
we know all the parts, so we can put in numbers

ω =
33. 929 rad

0.5 s

= 67. 858
rad

s

Let’s do another example. Suppose we started our bike wheel at ti = 0 with ωi = 0

and suppose it spins up to speed ωf = 67. 858 rads in 5 seconds. what is the angular
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acceleration? We know

ti = 0

tf = 5 s

ωi = 0

ωf = 67. 858
rad

s

our basic equations are the rotational kinematic set

φf = φi + ωi∆t+
1

2
α∆t2

ωf = ωi + α∆t

ω2f = ω2i + 2α
�
φf − φi

�

φf = φi +
(ωf + ωi)

2
∆t

and our basic rotational motion set

∆ω = ωf − ωi

∆φ = φf − φi
We can use the second of our set of rotational kinematic equations

ωf = ωi + α∆t

we can solve this angular kinematic equation for α using our basic motion equations

α =
ωf − ωi
∆t

(26.1)

=
ωf − ωi
tf − ti

(26.2)

=
67. 858 rads − 0

5 s− 0 s
(26.3)

= 13. 572
rad

s2
(26.4)

We need to be careful. We now have three kinds of speed, linear, tangential, and

rotational, and three kinds of acceleration, linear, tangential, and rotational. How do

we keep them from being confused? Usually angular acceleration is specifically called

“angular acceleration.” To get you used to this practice, I will use the terms this way.

“Acceleration” without the word “angular” means the kind of acceleration we have

been using all along. Only assume angular acceleration if the problem specifically

says “angular” in the problem statement. And of course a tangential component of

acceleration will have the word “tangential” to tell us that it is a tangential acceleration.
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Center of mass revisited

With our new ideas of angular speed and acceleration let’s try to find the center of mass

for our boat using the motion of the boat.

Take a close look at the forces involved in rotation. Each mass segment, say, mi, must

have a centripetal acceleration, so it must have a centripetal force. This force is the

spring­like atomic bond forces that hold the object together. If we spin our boat, Mr.

Bland might come flying out, because he is not bound to the boat, but the parts of the

boat are bound together, and the forces can be modeled as springs. Since these spring

forces provide the centripetal acceleration, and the parts of the boat all travel in circles

Si = miac

= mi

v2t
ri

= miω
2ri

where ri is measured from the center of mass

ri =

	
(xi − xcm)

2 + (yi − ycm)
2

Then if we sum up all the internal force x­components we get


i

Six =



i

Si cos θi

=



i

miω
2ri cos θi

and, if the boat does not fly apart, we know that all these internal forces must be
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balanced. so 


i

miω
2ri cos θi = 0

and we can see from the figure

cos θi =
xi − xcm

ri
so 


i

miω
2ri

�
xi − xcm

ri

�
= 0

or 


i

miω
2 (xi − xcm) = 0

or finally 


i

(mixi −mixcm)ω2 = 0

Since ω is not equal to zero, then


i

(mixi −mixcm) = 0

Remember this is a sum, and we can add things up in any order, so we could write our

sum as 


i

mixi −



i

mixcm = 0

and we could use the distributive property of multiplication to take out xcm


i

mixi − xcm



i

mi = 0

so that 


i

mixi = xcm



i

mi

or �
i mixi�
i mi

= xcm

and this is just our equation for the xcm. We could do the same thing for ycm.
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We have studied rotational motion now. But think, does it take energy to spin up a

DVD? Or does some energy go into making the wheels of a car turn? We are going to

take on the idea of rotational kinetic energy in this lecture. But let’s review our basic

rotation equation set, and let’s reconsider our particle model first.

Rotational Motion Equation Set Review

Here is our rotational motion equation set so far:

∆φ = φf − φi
∆t = tf − ti
ωave =

∆φ
∆t

ω = dφ
dt

ω = v
r

α = dω
dt

α = a
r

ac =
v2

r

The first equation is our definition of angular displacement.

The angular speed is how fast the angle φ changes

ω =
dφ

dt
This is how fast something spins. The angular accelerations is how fast the angular



462 Chapter 27 Rotational Energy

speed changes

α =
dω

dt

We have described this angular acceleration as how fast something “spins up.” But

notice in our car example above just the car is moving. We can still say that the car’s

angle, φ, changed though. We could calculate the car’s angular speed as though it were

a bug on a big rotating platform, but where the big platform is imaginary. That way, we

can see that the car’s motion could also be described by ω and α.

Kinetic energy for rotating objects

Now that we understand center of mass and rotational motion, let’s consider the energy

of a rotating object, like Mr. Bland’s boat.

Each part of the object may have a different speed, and the total kinetic energy is the

sum of the energies for each piece of the object. So

Ktotal =
1

2
m1v

2
t1 +

1

2
m2v

2
t2 +

1

2
m3v

2
t3 + · · ·+

1

2
mNv2tN

and the speeds can be related to the angular speed

vti = riω

where ω does not have a subscript because it is the same for each part of a spinning

object. Then

Ktotal =
1

2
m1 (r1ω)

2 +
1

2
m2 (r2ω)

2 +
1

2
m3 (r3ω)

2 + · · ·+ 1

2
mN (rNω)2
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Since the ω’s are all the same, then

Ktotal =
1

2
ω2
�
m1r

2
1 +m2r

2
2 +m3r

2
3 + · · ·+mNr2N

�

We can write the part in parenthesis in summation notation.

Ktotal =
1

2
ω2



i

mir
2
i

Once again we have a weighted average of the mass and the distances, but this time

each mass piece is weighted by it’s displacement from the center of mass squared. This

weighted average tells us something important. It contains all the terms that make the

object piece hard to rotate. Think of swinging a bucket of water.

If we fill the bucket with more water, then it is harder to get it rotating. Also if the

distance from the center of rotation increases, it is harder to get the bucket rotating.

The term
�

i mir
2
i has both of these effects in it! Let’s give this new term that tells
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us how hard it is to get something rotating a name and a symbol. We will call it the

moment of inertia18 and give it the symbol I. Note that we are using the fancy character

“I” but most books just use “I.” The “I” is just fine, but in PH220 we will use “I” to

mean electric current. So I have chosen to make moment of inertial look different. You

are free to use just ‘I” if you wish. But whichever “I” you use, the moment of inertia is

a weighted sum of the mass and it’s position squared.

I =



i

mir
2
i

Then our kinetic energy for a rotating system can be written as simply

Ktotal =
1

2
ω2I

or

Ktotal =
1

2
Iω2

Of course, this is really just a sum of all the individual kinetic energies of all the parts

of the object. So this is not new or different than the kinetic energy we know and love.

But for rotating objects it can be more convenient two write the energy involved in the

circular motion of the object parts in this way.

We can say that for a rotating system our mechanical energy might be

Emech =
1

2
Mv2cm +

1

2
Iω2 + Ug

where the first term is the kinetic energy of the entire object moving as one piece. We

can view the position of the object as being at it’s center of mass (think particle model)

so we can label this velocity vcm. The second term is our new rotational kinetic energy

due to the object rotating, and the final term is the gravitational potential energy (of

course, if we have springs, we need to include some spring energy too, etc.). We could

write this as

Emech = Kt +Kr + Ug

where Kt is our old kinetic energy, but to distinguish it from rotational kinetic energy

we will now call it translational kinetic energy. The term Kr is rotational kinetic

energy, and Ug is still gravitational potential energy.

But, you might say, it looks tedious to find
�

i mir2i for different objects, like our boat.

And you might be right. We will try this in the next section. But the moment of inertia

has been calculated for many common objects. So if you have a table of moments of

inertia, you can just choose one from the table that matches your object, and find the

rotational kinetic energy. In the table below, the dotted line shows the rotation axis for

18 I didn’t say it would be a good name. To me “moment of inertia” sounds like a beauty product. But it is
the name we need to use for this new term.
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each rotating object. The moment of inertia is different for the same object if the object

is rotated about a different part of the object. So we need to know the rotation axis so

we can make sure we have the right moment for our problem

Finding the moment of Inertia

We now have a table of moment’s of inertia for several useful mass distributions in our

table. We have rotating wheels (solid cylinders and hollow cylinders) and balls and

sticks. But we should see how we can find the moment of inertia for any shape. To do

this, let’s pick a shape we know from the table, and find the moment of inertia so we

can see how it is done in general for any shape. If we use a shape that we know, we

can check our answer when we are done. Let’s pick a solid cylinder (a wheel) rotating

about it’s center of mass.
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Our basic equation for moment of inertial for a single mass element is

I =



i

mir
2
i

but let’s rewrite this by rearranging the terms.

I =



i

r2imi

and let’s envision splitting up our wheel into little equal masses. Our equation calls

these little masses mi but I want to rename them ∆mi because they are little pieces

of the whole mass. Notice that this is not a change in mass or a difference between

masses. I am using the ∆ symbol to say that the mass is “little.” So we would call ∆m

a “little bit of mass.”

I =



i

r2i∆mi

I also want to assume that my wheel has a uniform density

η =
Mwhole wheel

Awhole wheel

This may be a new concept. We take the total mass of the whole wheel, M, and divide

the total mass by the area of the whole wheel. If this ratio is constant, I can break off

any part of the wheel and the ratio of mass to area for the piece will be the same as it is

for the whole wheel.
∆m

∆A
=

M

A

∆m =
M

A
∆A

What we are really saying is that our object is all made out of the same material. We

use concepts like this in buying food products all the time. For example, think of a

cheese wheel.
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The cheese is all the same material. So if we find the mass of the wheel and divide by

the area of the wheel, we get a number that represents a density of the cheese. Now if

we cut out a wedge of cheese, we could see what the area of the wedge is to find the

mass. If the whole mass divided by the area is

η =
mwhole

Awhole

and we know it’s all the same type of cheese, then we know

η =
mwedge

Awedge

so
mwedge

Awedge

=
mwhole

Awhole

which gives the mass of the wedge to be

mwedge = Awedge

mwhole

Awhole

This might be a great way to sell cheese!

But we can use the same approach to find out how much mass there is in our piece of

our rotating wheel. We could solve for ∆m

∆m =
M

A
∆A

We gave the symbol η (and “eta” or “n­looking­thing”) to the ratio of M to A so we

could write this as

∆m = η∆A

This means that a small amount of mass ∆m can be written as the density of the wheel

material multiplied by how much of the wheel we have in our piece. We could even

find a way to express our small area ∆A in terms of the dimensions of the wheel. Let’s

use cylindrical coordinates.
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A small box­like area would have a small area of nearly

∆A = ℓ×w

where ℓ is the length of the box shape and w is the width of the box shape. But in

cylindrically coordinates we could make the length

ℓ = ∆r

be the displacement in the r̂ direction along the side of the black box shape. Notice that

the width then would really be a small arc length

w = r∆θ

so

∆A = ∆r × r∆θ

Then

I =



i

r2i∆mi

=



i

r2i η∆A

=



i

r2i η∆rri∆θ

but of course this is just an approximation. Our ∆A is not exactly box shaped. But if

we made the little area very small, then the approximation of being box shaped would

be better. A very small piece of area would be

dA = dr × rdθ

where our ∆′s have turned into smaller d′s to show that the quantities are much smaller.
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For these very small distances, the curviness of the lines is not very important, so a

square area is a good approximation for dA. We could find a mass for the very small dA

dm = ηdA

= ηdrrdθ

we have used dm because our small piece of mass is now a very small piece so we use

a d instead of a ∆. Then our moment of inertia could be written as an integral

I =

�
r2dm

We drop the subscripts because we understand when we integrate over every possible

part of the mass so every dm bit is included up to and including the limits of the

integration. Then using our expression for dm

I =

�
r2ηdA

or

I =

�
r2η (rdrdθ)

and finally

I = η

�
r3drdθ

But now we realize that we have something new! We have a dr and a dθ. That is two

integration variables. So what do we do? The answer is easy19, we just integrate twice.

Once over dr and once over dθ. Start with� 2π

0

r3dθ = (result)

then take the result and

η

� R

0

(result) dr

We write this more compactly like this

I = η

� R

0

�� 2π

0

r3dr

�
dθ

but it means first integrate over θ and then integrate the result over r. Let’s try this. Note

that nothing inside the parenthesis depends on θ so r3 and dr are constants as far as the

θ integral is concerned. We can take them out

I = η

� R

0

r3dr

� 2π

0

dθ

then

I = η

� R

0

r3dr (θ|2π0
or

I = η

� R

0

r3dr (2π − 0)

19 Take another math class!
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Now the 2π does not depend on r, so we can take it to the front

I = η2π

� R

0

r3drdθ

The remaining integral is an integral we can do!

I = 2πη

�
r4

4

����
R

0
or

I = 2πη

�
R4

4
− 0

�

and finally

I = 2πη
R4

4
Now remember that

η =
M

A
=

M

πR2

so for our wheel

I = 2π

�
M

πR2

�
R4

4
or

I =
1

2
MR2

which is what our table has. We can use this integration technique for any shape we

have so long as we know the material does not change density. In fact, if we let the

density η (r, θ) change with position, we can even use this technique for any object (but

sadly, we won’t in PH121).

Parallel axis theorem

Suppose we know the moment of inertial for some object, say, our wheel. But suppose

we want to rotate it around a different point than the center of mass.

It turns out that as long as the axis is parallel to the direction the axis would have been

if the object rotated about the center of mass we can easily calculate the moment of

inertial about the new pivot using the center of mass equation from our table. The way

to do this is



Finding the moment of Inertia 471

I = Icm + d2M

where M is the mass of the object and d is the distance from the center of mass axis to

the new axis of rotation.

To show that this really will work, let’s take a simple bar,

and consider rotating it about the pivot shown. We can use our new integral equation

for moment of inertia

I =

�
r2mdm

The rm is the distance from the pivot to a piece of mass dm. Then for the piece of mass

marked in the figure,

rm = d + r

Then the moment of inertial would be

I =

�
(d + r)2 dm

and we can expand out the squared term

I =

� �
d2 + 2dr + r2

�
dm

and divide up the integrals into parts

I =

�
d2dm +

�
2drdm+

�
r2dm

Note that d is a constant, so we can take it out of the integrals

I = d2
�

dm + 2d

�
rdm+

�
r2dm

The first term has the integral of dm�
dm = (m|M0

= M

so

I = d2M + 2d

�
rdm +

�
r2dm
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The last integral is just the moment of inertial about the center of mass

I = d2M + 2d

�
rdm+ Icm

And from our definition of center of mass we remember that

rcm =
1

M

�
rdm

so the middle integral is �
rdm = (Mrcm)

then

I = d2M + 2d (rcmM) + Icm

I = d2M + 2drcmM + Icm

now if we choose our zero point, r = 0, to be the center of mass,

rcm = 0

then

I = d2M + 0 + Icm

or

I = Icm + d2M

This may not seem exciting, but it is. It means that if we know the moment of inertial

about the center of mass, we can easily find out the moment of inertial about any other

axis! We can take the moment of inertia table and extend it’s use without the need to do

our integration. Let’s try it. The moment if inertial for a long, thin rod about it’s center

of mass is

I =
1

12
ML2

Suppose we want the moment of inertia for the rod spinning around one end. That

would be

Iend = Icm + d2M

and

d =
L

2
in this case so

Iend =
1

12
ML2 +

�
L

2

�2
M

Iend =
1

12
ML2 +

1

4
L2M

Iend =
1

12
ML2 +

3

12
L2M

=
4

12
ML2

=
1

3
ML2

just as our table tells us. Using this, we could find the moment of inertial for the rod
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rotating around a point, say, a quarter of the length from one end.

This way of finding a new moment of inertia from the moment about the center of mass

has a name, and the name shows a limitation. It is called the parallel axis theorem. And

this is the limitation, the two axes of rotation must be parallel for it to work.





28 Torque and Newton’s 2nd

Law for Rotation

It takes a force to change motion, so it must take a force to cause rotational motion.

It is time to get forces involved in producing rotational motion. We have a clue from

thinking about Mr. Bland’s boat that where we push might matter for rotational motion.

We saw that how far the mass element was from the center of rotation mattered for our

boat and bucket problems in the last lecture. We combined “how far” and “how much

mass” into one term called the moment of inertia and we even built a table of common

object shapes and their moments of inertia.

In this lecture we will combine the ideas of force and moment of inertia together to be

able to see how to include forces into rotational dynamics problems.

Rotational Force: Torque

In studying motion with rotation included, we need to revisit forces. A force acting on

an object will make the object accelerate.
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The boat in the figure would accelerate to the right. But what would happen if we

pushed on the boat in a different spot?

Experience tells us that the boat will now rotate as well as move to the right. To predict

the effect of a force, we will have to go beyond our particle model if we want to know

about rotation! We need to know where the push happens with respect to the center of

mass. If we push right at the center of mass, no rotation.

But if we push even a small distance away from the center of mass, the boat will rotate

at least a little bit.
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The farther the distance from the center of mass, the more the rotation. Of course, our

boat will rotate about it’s center of mass. We call the point of rotation a pivot. So for

the boat case the pivot is the center of mass of the boat that we have been drawing.

But from our boat experience, to describe the motion of the boat including the boat’s

rotation, we need a quantity that will account for not only how hard we push, but also

how far away from the pivot we push. That term is

τ = rF sin θrF

Notice that it does have the magnitude of the force in it. It also has the distance, r, from

the pivot. And it also has the sine of the angle between the−→r and
−→
F directions.

So our new quantity has all the parts we need to find the motion of the boat. We give
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this new quantity the symbol τ which is the Greek letter “tau,” or “t­looking­thing,” and

we call this combination of distance and force torque.

If we think about it, the dependence on the angle makes sense. If we push against the

side of the boat perpendicular to the axis of the boat, we would get more rotation than if

we push at some other angle.

Of course, I could get a group of friends (or villains, or whatever) to all help push on

the boat. The net torque is like a net force. We add up the contribution for each push on

the boat.

τnet = τ1 + τ2 + τ3 + · · ·+ τN

=



i

τ i

We do have to take into consideration which way the friends push. Let’s make an

agreement that if we plot the −→r and
−→
F and if we go counter clockwise from −→r to

−→
F

we will call the torque positive. If we go clockwise from−→r to
−→
F we will say the torque

is negative. It might be easier to see this with another system, say, a wrench and a nut.

Notice that in going from −→r to
−→
F we go counter clockwise. This is positive torque. If

you have experience with wrenches, you will recognize that if we push at a different

angle it would be less effective.

We would have less torque. The sine of the angle is important.
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Let’s have our boat friends all push the boat so it spins in a counter clockwise manner,

then all the torques will be positive.

τnet = r1F1 sin θrF1 + r2F2 sin θrF2 + r3F3 sin θrF3 + · · ·+ rNFN sin θrFN

=



i

riFi sin θrFi

where each person pushes with their own force at their own location and at their own

angle.

Let’s try a problem with torque. Let’s invite our weight lifter to lift his barbell with his

hands in the middle (don’t really do this!). What is the net torque on the barbell?

Notice that we can not just draw a free­body diagram using our particle model to

understand this situation. We have to draw a diagram with a box the shape of the bar.

We have to draw a diagram that shows where the forces act. This is called an extended

free body diagram. From our extended free body diagram it is clear that weight 1 is

likely to make the barbell rotate in a counter­clockwise direction and weight 2 is likely

to make the barbell rotate in a clockwise direction. We will say that the torque from

NB1 will be positive and the torque from NB2 will be negative.

Let’s choose the pivot point to be the middle of the bar, that is the center of mass, then

let’s choose a coordinate system with the origin at the center of the bar so that

rcm = 0

We then can write out

τnet =



i

τ i
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Figure 28.5.

using

τ = rF sin θrF

We get

τnet = r1NB1 sin θrW1
− r2NB2 sin θrW2

+ rcmNBM sin θrN

= r1NB1 sin θrW1
− r2NB2 sin θrW2

+ 0

= r1m1g sin θrW1
− r2m2g sin θrW2

The last term became 0 because we chose rcm = 0. Notice that the angles θrW1
and

θrW2
are both 90 ◦. These are angles between two vectors, in this case the weights and

the position vectors. Note that they are not the angles from the x­axis! We know the

sin (90) = 1 so

τnet = r1m1g − r2m2g

= r1W1E − r2W2E

Since the two weights are the same, this gives

τnet = 0
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Now we can see why the barbell balances. A normal force at the center of mass will be

opposed by the weight of the entire barbell (where s is for the barbell “system”), acting

on the center of mass. There is no net force. And we have shown that there is no net

torque. We will add to our definition of equilibrium that things in equilibrium will have

zero net torque.
−→
F net = 0

τnet = 0

Armed with the idea of torque, moment of inertia, and angular acceleration, we can do

rotational dynamics problems. And that is just what we will do next.

Dynamics of Rotation

Now that we understand torque, we can fully take on rotational problems. Suppose the

intrepid Mr. Bland is being attacked by divers from below. Each grabs onto his boat

from underneath. But they are not very well organized, so each pushes the boat in a dif­

ferent direction as shown in the next figure.
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It’s clear that the boat will go in a circle. Each diver will exert a torque on the boat. We

could find the net torque!

Remember that torque is a force applied at a distance from the pivot point. For our boat,

the pivot point will be the center of mass. Let’s take one of the torques

τ1 = r1F1 sin θrF1

Let’s look at this geometrically for a moment
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Notice that the angle

θrF = 90 ◦ + φ

then

sin θrF = sin (90 ◦ + φ)

= cosφ

Now notice that up at the top, φ is the angle between F1 and the tangent line that passes

through the tip of the circle at location r1. The tangential component of F1 would be

F1t = F1 cosφ

or

F1t = F1 sin θrF

so we can write our torque as

τ1 = r1F1t

and we know

F1t = m1a1t

This a1t is the part of the acceleration that can make part m1 of the boat speed up as it

goes around in a circle ( a1r makes part m1 stay in the circle), so we could write our

force using at = rα and using this we could change from a tangential motion view

point to an angular motion view point.

F1t = m1r1α
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and the torque would be

τ1 = r1m1r1α

= m1r
2
1α

It is also true that

τ2 = m2r
2
2α

τ3 = m3r
2
3α

so the net torque is

τnet =



i

mir
2
iα

and because α is the same for the whole boat,

τnet = α



i

mir
2
i

and we recognize that for an isolated piece of mass a distance ri from a pivot point

I =



i

mir
2
i

then our torque is just

τnet = Iα

And this last equation is great! It relates the angular acceleration to the net torque and

the moment of inertia..

α =
τnet
I

Think about this for a minute. Back when we studied Newton’s second law, we found

that

a =
Fnet
m

The force was how hard we push, and the mass was how hard it was to make the object

go.

Now we have

α =
τnet
I

which combines how hard we push an object with the direction of the push and the

distance from the center of mass of the object with how hard the object is to rotate. We

have fixed Newton’s second law so that it includes rotation!

Let’s try a problem. You are on a ring­designed space station that rotates to create the

feel of having gravity. The centripetal acceleration needs to be g to do this. The ring

has a large radius of 5000.0m.You, the chief engineer, start with the station not spin­

ning. You apply a gentle angular acceleration of 5. 12× 10−7 rad/ s2 to the structure

to spin up the rotation. Let’s suppose that we can ignore the rest of the station and just
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talk about the ring rotating about its center of mass. Suppose the ring has a mass of 4.

196× 106 kg. What torque is required to spin­up the station?

We know

α = 5. 12× 10−7 rad/ s2

R = 5000.0m

M = 4. 196× 106 kg

Our basic equations

α =
τnet
I

From our table

Iring = MR2

Then we could write

α =
τnet
I

as

τnet = Iα

then

τnet = MR2α

τnet =
�
4. 196× 106 kg

�
(5000.0m)2

�
5. 12× 10−7 rad/ s2

�

= 5. 370 9× 107Nm

= 5. 37× 107Nm

We should make two observations. The radians are a unit, but have no dimensions. So

we can drop them in the final units for our calculations. We are left with Nm. It might

be tempting to write this as an energy unit. Work is Nm as well. But torque is really

not the same thing as energy, so we will keep the torque units as just Nm. We won’t

use Jules as the unit of torque because torque is really not an energy.
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We just introduced torque, and had to quit in our last lecture. Let’s try to use torque and

rotation to solve some problems.

Rotational Dynamics

The standard problem used to demonstrate how to do rotational dynamics goes back to

our pioneer ancestors. Suppose we have a old fashioned water well where you draw the

water with a bucket. The bucket is on a rope and the rope goes around a cylindrical

piece of wood and winds on the cylinder. Let’s call this the winch.

Also suppose the winch cylinder has a mass of 1.5 kg and a radius of 2.0 cm. Let’s also

assume that the bucket starts from rest hanging just at the top of the well. Then you let

it go, falling on the rope into the well. It takes 0.85 s for the bucket to reach the water

below. How deep is the well? We know

mw = 1.5 kg

rw = 0.02m

mb = 2.0 kg

∆t = 0.85
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We could guess that the bucket will have a constant acceleration, so this is probably a

kinematics problem. We could start there.
∆x = vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

∆y = viy∆t+ 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay∆y

For the bucket, x­direction motion is not important, so let’s use the y­set of equations.

We could define the starting point of the bucket to be

yi = 0

and we know

vbi = 0

because the bucket starts from rest. Marking what we know and using our zeros gives

ybf − 0 = 0 + 1
2aby∆t2

vbfy = 0 + aby∆t
v2bfy = 0 + 2aby (ybf − 0)

and we are almost there.

ybf =
1

2
aby∆t2

We need aby. But we have learned how find acceleration, we use the tool we call New­

ton’s second law! We can try this now to find aby. But we are sophisticated enough to

realize that we have rotation, so we might need extended free body diagrams.

And here are our basic equations for Newton’s second law (including our rotational

newton’s second law)

a =
Fnet
m

α =
τnet
I

τ = rF sin θ

Let’s start by writing out Newton’s second law and Newton’s second law for rotation.
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Fnety = −mbaby

= TbR −WbE

There are no x­direction forces for the bucket. The bucket is not likely to rotate, so

αb = 0 and τb = 0 and we can write the torque equation for the bucket as

τ b = Ibαb

0 = 0

which is not terribly helpful.

Now for the winch. We immediately identify TwR = TbR since, of course, our pioneer

ancestors had a massless rope (we are using massless rope approximation, but it is not

too bad, usually the rope used in a well had far less mass than the bucket of water).

Now we add our torque equation

τ = Iα

we need the moment of inertia for a cylinder rotating about it’s center of mass

(assuming our ancestors built a good winch). We could get this by integrating, but I

think we will use the table for this one

Iw =
1

2
MR2

then

τw =
1

2
mwR2α

Now we need to realize we have a constraint. The rope can’t slip on the winch because

it is attached to the winch and wrapped around it. So the rope’s acceleration and the

bucket’s acceleration must be equal to the tangential acceleration of the winch cylinder.

aby = awt

And

awt = Rα

so

α =
awt
R

Then the torque on the winch would be

τ =
1

2
mwR2

�awt
R

�

It’s also true that

τ = rF sin θrF

which in our case is

τ = RTwR sin θRT
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we can see that in the angle between the tension force and the displacement from the

center of the winch would be θRT = 90 ◦ so

τ = RTwR

Setting these two expressions for the torque on the winch equal to each other gives

RTwR =
1

2
mwR2

�awt
R

�

Now we need to go back to Newton’s second law for the bucket

−mbaby = TbR −WbE

so using our massless string approximation we have

TbR = TwR = −mbaby +WbE

then by substitution,

R (−mbaby +WbE) =
1

2
mwR2

�awt
R

�

or, dividing through by R we have

−mbaby +WbE =
1

2
mwawt

Solving for WbE gives

−mbaby −
1

2
mwawt = −WbE

Now, using our constraint aby = awt�
mb +

1

2
mw

�
awt = WbE

so

awt =
WbE�

mb +
1
2mw

�

and we have the tangential acceleration of the winch, but this is also the acceleration of

the rope and bucket. And this acceleration is not changing. None of the terms in awt

will change as the bucket goes downward. So from this point our problem is a constant

acceleration problem. Since awt = aby we are ready to complete our kinematic

equation (remember our acceleration is downward!)

ybf =
1

2
aby∆t2

=
1

2



− WbE�

mb +
1
2mw

�
�
∆t2

or just

∆y =
1

2



− mbg�

mb +
1
2mw

�
�
∆t2
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and we know all these pieces! The depth will be

∆y =
1

2



− (2.0 kg)

�
9.8 ms2

�
�
2.0 kg + 1

2 (1.5 kg)
�
�
(0.85 s)2

= −2. 574 7m

Notice that we used torque, Newton’s second law and Newton’s second law for rotation,

and kinematics. The last part is what makes this dynamics. we used forces and torques

to find acceleration, and knowing acceleration we can find how the object moves.

Rotation and direction

So far we have used clockwise rotation to mean a negative ω and counter­clockwise to

mean a positive ω. But you might object to this! What for one person is clockwise is

counter­clockwise to another.

We need a way to be sure that we can tell if an object’s angular speed should be positive

or negative. And physicists have come up with a way to do this. It is a little bit crazy,

but it works.

Right hand rule #1:

Suppose we have a rotating object as shown.
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The object is rotating in a counter­clockwise fashion, so we would say that ω is positive.

Imagine grabbing the axis of rotation with your right hand. Your thumb would stick out

along the axis. Let’s imagine a vector going in the direction of your thumb.

We could use this vector to beat our clockwise/counter­clockwise problem. Let’s say

the angular speed has this direction. To be sure, nothing is going in this direction ex­

cept your thumb! But let’s assign to our angular velocity this “thumb” direction.

Now let’s consider our two guys and rotating wheel again.
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Both guys can use their right hand and get the same “thumb direction” for the vector

assigned to ω. Now there is no confusion. Of course we can’t really say that a particular

“thumb direction” is positive or negative. The direction assigned to ω is a direction in

three­dimensional space. So it is not simply positive or negative anymore.

It’s really important to understand that nothing goes in the “thumb direction”

for our angular velocity. Choosing this odd “thumb direction” is only a way to

keep track of which way an object is rotating that does not have the confusion of

clockwise/counter­clockwise type distinctions.

We will call this method of finding the direction assigned to angular velocity a right

hand rule.

Here is the right hand rule again:

We assign a direction to angular speed that is given by imagining that you grab the axis
of rotation with your right hand so that your fingers seem to curl the same way the
object is rotating. Then your thumb gives the direction of −→ω
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Remember that you curl the fingers of your right hand (sorry left handed people, you

have to use your right hand for this) in the direction of rotation. Then your thumb points

in the direction of the vector.

Right hand rule #2

We also used clockwise and counter­clockwise to tell the sign of torque.

We can make this easier and less likely to create confusion by assigning a vector to a

torque that would not be different if we look at the situation from behind.
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Consider the torque equation

τ = rF sin θrF

We found whether the torque was positive or negative by looking at our r­direction

and seeing which way we would turn as we go from r to the F ­direction. If it was

counter clockwise, we called it positive. We could do the same sort of thing for torque

by assigning a direction to the torque.

Let’s say that we assign a vector in the direction shown.

Like with our angular velocity, this new vector is perpendicular to the actual rotation.
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This vector will point the same way for each guy.

Once again, nothing goes the direction that our new vector points. But we can say that

the torque has this direction! Then, we are never confused about whether the rotation is

counter clockwise or clockwise.

Let’s use our right hand again for another easy way to find this direction that we have

assigned to torque. This is a little more complicated that our first right hand rule, so

here are some steps:

1. Put your fingers of your right hand in the direction of r̃

2. Curl them toward F̃
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3. The direction of your thumb is the torque direction

4. The angle θ is the angle between r̃ and F̃

This gives the direction of the torque. And the magnitude of the torque is

τ = rF sin θrF
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Another new math moment

It turns out that this procedure for finding a torque vector is useful in many places, so

mathematicians have given it a special symbolic way to be written. The torque vector is

written symbolically as
−→τ = −→r ×−→F

This might look like our old grade school multiply sign, but it is not! It is called a

vector cross product and it means just what we have said in our right hand rule #2

procedure. Take two vectors,
−→
A and

−→
B. Then the vector cross product of

−→
A and

−→
B is

written as
−→
A ×−→B

and it has a magnitude of ���−→A ×−→B
��� = AB sin θAB

and the direction is given by our right hand rule #2.

Notice that the direction our right hand rule gives is perpendicular to both
−→
A and

−→
B.

For a cross product, the order matters. Think of our torque,
−→r ×−→F

is not equal to
−→
F ×−→r

Use your right hand rule and you will see that these two point opposite directions!

Mathematically we express this as
−→
A ×−→B = −

�−→
B ×−→A

�

Note again that for torque, nothing goes in this torque direction. It is just a way

to agree the direction of the torque so we don’t have the problems associated with

clock­wise or counter­clock­wise directions.

Rotational work

We know how to calculate work. We found earlier that

w =

� −→
F · −→ds

But before we allowed
−→
F to change as our object moved, but

−→
ds was usually in a

straight line. What do we do if our
−→
ds is on a curved path, like in circular motion? By

now you know what to do, we use arc length,

s = rφ
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We could use our idea of a cross product and our right hand rules to write this is a new

way–a way that is a little harder to see, but can be useful for us in studying rotation.

Let’s think about coordinates for rotation again.

We have used r, θ, and z to define a point and �r, �θ, and �z to give directions. We call this

the rtz or cylindrical coordinate system. We will still use this, but with cross products

and right hand rules we can view this another way. We could define a vector
−→
φ that

gives us the direction of rotation using right hand rule number 1.

and we could add to this a vector in the �r direction out to our object and call it−→r
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And as our object moves in a circle, it will travel a distance s. We could make this a

vector as well.

Notice that −→s is perpendicular to both
−→
φ and −→r .

And notice that there is a nice angle, θrs between
−→
φ and −→r . These are all the

ingredients that we need to describe s = rφ as a cross product.
−→s =

−→
φ ×−→r

We could say this in English as the arc length vector is the angle vector cross the

position vector. This might not seem like a useful thing to do, but let’s use these new

vectors to calculate rotational work because now we have a direction for −→s and we can

use that to find
−→
ds for our work integral.

A small amount of arc length would be
−→
ds which means we need to take a derivative of

−→s . But we know−→s contains a cross product.
−→
ds = d

�−→
φ ×−→r

�

How do we do this? It turns out that the product rule still works with cross products!
−→
ds = d

−→
φ ×−→r +

−→
dr ×−→φ
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For circular motion, r isn’t changing. so
−→
dr will always be zero. So

−→
ds = d

−→
φ ×−→r

and we can put this into our work integral.

w =

� −→
F ·

�
d
−→
φ ×−→r

�

But now we have dot and cross products in our work integral. This looks messy. It turns

out that there are vector math identities much like there are trig identities. And one of

these is useful here.20 For the vectors −→a ,
−→
b , and −→c

−→a ·
�−→

b ×−→c
�
=
−→
b · (−→c ×−→a )

Our integrand is in this form.
−→
F ·

�
d
−→
φ ×−→r

�
= d

−→
φ ·

�−→r ×−→F
�

so our work integral becomes

w =

�
d
−→
φ ·

�−→r ×−→F
�

which hardly seems to help. But wait! −→r ×−→F = −→τ ! So our work integral becomes

w =

�
d
−→
φ · −→τ

and because dot products don’t care about order

w =

�
−→τ · d−→φ

which looks so much like

w =

� −→
F · −→ds

that we can be encouraged because we have dealt with this form of an equation before!

But what does our new equation mean?

w =

� −→
F · −→ds

told us that work is the sum of the effect of the force added up over how far the object

traveled.

w =

�
−→τ · d−→φ

tells us the rotational work is the sum of effect of the torque (rotational force) added

over how far the object turned. They are very alike. We could put a subscript R on this

to remind us that this is rotational work.

wR =

�
−→τ · d−→φ

We use the idea of a net force to get the net work

wnet =

� −→
F net ·

−→
ds

20 This means I will let your math class prove this to you some time in the future.
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where
−→
F net =




i

−→
F i

That is, the net force is the sum of all the forces. We could do the same with torque.
−→τ net =




i

−→τ i

just like we did with Mr. Bland’s boat. Then

wRnet =

�
−−→τnet · d

−→
φ

Now that we have rotational work and rotational kinetic energy we can express the

work­energy theorem for rotation

w = ∆K

wRnet = ∆Kr

= Krf = Kri

and we can write this as � φf

φi

−−→τnet · d
−→
φ =

1

2
Iω2f −

1

2
Iω2i

Rotational Power

With expressions for rotational work and kinetic energy it is easy to calculate rotational

power. We remember that power is the rate at which energy is used or generated.

P =
∆E

∆t
or for an instantaneous value

P =
dE

dt
For a constant net torque,

wRnet =

�
−−→τnet · d

−→
φ

and note that in the way we defined our −−→τnet and d
−→
φ directions −−→τnet and d

−→
φ will

either be in the same direction or in opposite directions. This make sense, the directions

in our old system would be either both clockwise or one clockwise and one counter

clockwise. So in our new vector system −−→τnet and d
−→
φ are either in the same direction or

in different directions. Then the angle between −−→τnet and d
−→
φ is either 0 ◦ or 190 ◦!

wRnet = ∓
�

τnetdφ

and for constant net torque
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wRnet = ∓τnet

�
dφ

= ∓τnetφ

Then our rotational power is just

P =
dE

dt
=

dw

dt
=

d

dt
(∓τnetφ)

or

P = ∓τnet
dφ

dt
= ∓τnetω

where the ∓ is resolved by determining if we are gaining power (+) or losing power

(−) in our problem.

We have come a long way in understanding rotation. We started by just describing

the motion of rotating systems with rotational position φ, rotational velocity ω, and

rotational acceleration, α. Then we defined torque as a rotational force, τ. Then we

made them all vectors to keep clockwise and counter clockwise rotation straight.

Then we found angular kinetic energy and angular work and angular power. This are

all the things we did for liner motion, except one. We still need to consider angular

momentum.
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We learned earlier that having mass makes an object hard to stop. And also moving

fast makes an object hard to stop. We called the combination of mass and velocity

momentum. But wheels have mass, and if they are spinning fast, it is hard to stop the

spin. Do spinning things have momentum? Let’s review wheels a bit, and then see if

we can find a momentum in spinning.

Rotating wheels

There is a special case of rotational motion. That special case is a moving wheel

rotating without slipping. This is the normal way a car tire moves, for example. We

now know that we could describe the motion of the wheel as a whole with the motion

of the center of mass of the wheel. Here is a motion diagram for the wheel.

The motion of the wheel as a whole is clearly represented by the motion of the center

of mass of the wheel. But this center of mass representation does not show the wheel’s

rotation. If we mark a place on the wheel and follow the motion of the marked place,

say, the point on the wheel that starts out next to the ground,
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we find that the wheel will travel a distance x = 2πR before the marked wheel part will

again be on the ground. This is our constraint of not slipping. Every time the wheel

turns, the wheel travels one circumference. The time it takes a wheel to complete one

revolution is called the period, T. So the speed of the wheel as a whole is

vcm =
∆x

∆t

=
2πR

T

Recall that for a spot on the wheel the tangential speed is given by

vt = rω

and if we choose a spot on the edge of the wheel then

vt = Rω

So the angular speed for our rotating wheel would be

ω =
2π rad

T
and we can see that our non­slipping constraint can be written as

vcm =
2π

T
R

= ωR

= vt

that is, the tangential part of the speed of a point on the edge of the wheel has the same

speed as the speed of the center of mass of the wheel. Notice that the velocities of the

center of mass and of a point on the edge of the wheel are not the same because their

directions are not the same.
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Of course, the net velocity of any point, say, our red point, is the vector sum of these

two velocities. This is because the wheel is both rotating and moving as a whole.

Unless the wheel splits apart, each point on the wheel must stay with the wheel. So if

we call the speed of the red point vi then
−→v i =

−→v cm +−→v t

We can plot this for various positions of our red dot.

We can see that there will be two special locations for our red dot that will be interest­

ing. One is when the red dot is right at the top of the wheel. Then the red dot net speed

will be twice the center of mass speed. But even more interesting is when the red dot is

at the bottom of the wheel so that it is right on the pavement. Then the red dot speed

will momentarily be zero!
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This may seem strange, but really this is just what we should expect if the wheel is

not slipping on the ground. The part of the wheel represented by our red dot must not

move in the x­direction relative to the ground when it is at the bottom of the wheel if

the wheel does not slip. Of course this lasts for just a split second for any given marked

wheel part. But for that split second, the marked point has a velocity relative to the

ground of zero!

We would expect that with both rotation and translation (movement of the CM) we

would have both rotational and translational kinetic energy

Ktotal = Krot +Kt

=
1

2
Iω2 +

1

2
mv2cm

and this is true.

An interesting way to see this is to consider that for the split second that the red dot part

of the wheel is on the ground, it could be imagined as our axis of rotation. After all, it

is stationary for that split second. Then we could use the parallel axis theorem

IP = Icm +MR2

to find the moment of inertia about the red dot! Let’s use this in our rotational kinetic
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energy equation

Krot =
1

2
Iω2

=
1

2

�
Icm +MR2

�
ω2

=
1

2
Icmω2 +

1

2
MR2ω2

but remember

ω =
vt
R

and vt = vcm so

ω =
vcm
R

and

Krot =
1

2
Icmω2 +

1

2
MR2

�vcm
R

�2

so

Krot =
1

2
Icmω2 +

1

2
Mv2cm

which is just what we thought. The kinetic energy of the wheel is a combination of

translational kinetic energy

Kt =
1

2
Mv2cm

and rotational kinetic energy about the center of mass

Kr =
1

2
Icmω2

It’s interesting to plot the position of our red dot part of the wheel. Notice that as the

wheel rotates the marked spot will make a curve. This curve is called a cycloid.

Angular momentum

We have learned that motion does not change unless a force acts on it. We called the
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combination of things that make an object’s motion hard to change momentum
−→p = m−→v

The more mass we have, the harder it is to stop the object. And the faster an object

goes, the harder it is to stop. Consider an old toy, the top.

You start a top spinning, and it keeps spinning. It is as though there was some

momentum tied up in spinning. And there is!

Let’s review momentum to see if we can extend our definition of momentum to rotating

systems. When we first studied momentum we started with Newtons’ second law.

−→
F net = m−→a

and the definition of acceleration
−→a =

d−→v
dt

We put these together to write Newton’s second law as
−→
F net = m

d−→v
dt

And in order to allow the mass to change, we took it inside the derivative.
−→
F net =

d (m−→v )
dt

and we called
−→p = m−→v
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so
−→
F net =

d (−→p )
dt

Let’s try the same thing with torque. We can now write our rotational view of Newton’s

second law as
−→τ net = I

−→α
and

α =
d−→ω
dt

so
−→τ net = I

d−→ω
dt

Again we could take the mass­like term into the derivative

−→τ net =
d (I−→ω )

dt
And we can see the momentum­like quantity. For linear momentum, m and −→v make

the object hard to stop. For rotational motion we can see that I and −→ω would make an

object hard to stop spinning. These together must be our rotational momentum!

But we call this rotational momentum angular momentum. We give angular momentum

the symbol L (for angu(L)ar) and notice that with −→ω as part of our angular momentum,

L must now be a vector. So
−→
L = I−→ω

The direction of the angular momentum must be the same as the direction of the angular

velocity. So the direction will be given by our right hand rule #1 (RHR1). It’s still true

that nothing goes in the
−→
L direction. We are still just avoiding the problems with

clock­wise and counter­clock­wise as directions.

But there is another way to write angular momentum, and it is instructive. Let’s recall

that vt = rω so we could write our angular momentum magnitude as

L = I
vt
r

and for a single particle

I = mr2

so

L = mr2
vt
r

= mrvt

for a single particle, or

L = rmvt

= rp
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This works for particles going in circles

Consider that going in a circle is a very special case of motion. Notice that the angel

between −→r and −→v t is 90 ◦. And the sine of 90 ◦ is 1. So it could be that

L = rp (1)

should be written as
−→
L = rp sin θrp

and if we look at cases other than perfect circular motion, we will see that this is the

case

The angle looks like it should matter. Notice that for a particle moving in some random

direction we would have a tangential and radial part to the velocity
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By writing −→v in components we can see that

vt = v sin θrp

vr = v cos θrp

And it is the tangential component of the speed that is related to rotating, so we expect .

L = rmvt

= rmv sin θrp

Angular momentum seems to be related to the tangential component of our particle’s

velocity. That makes some sense. The tangential component tells us about the rotation

of our particle and is related to the angular speed of the particle.

Now, notice that −→r is a vector, and −→v is a vector, and we have the sine of the angle

between −→r and −→v . This looks like a vector cross product!
−→
L = −→r ×m−→v

= −→r ×−→p

But we need to check, does the direction given by −→r ×−→p match the direction of I−→ω ?

We can use our right hand rule #1 for I−→ω
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and we will find −→ω points straight up in the k̂­direction. Now let’s use the process we

used for torque to find the direction of −→r × −→p . That is right hand rule #2. We start

with our fingers in the −→r just like we did with torque. Then we bend them into the −→p
direction. Then our thumb gives the direction of −→r ×−→p . And we see that this is also

straight up. It works!

Before we leave this idea of angular momentum, let’s relate it to torque. Since we know

that forces cause motion, so
−→
F net =

d−→p
dt

that is, forces causes a change in momentum. We should expect torque to cause a

change in angular momentum.

Then

−→τ net =
d
�−→

L
�

dt

=
d (I−→ω )

dt

=
d (−→r ×−→p )

dt
and we have another problem. How do we take the derivative of a cross product?

Fortunately this is easy. We just use the product rule (but we have to keep our vectors in

the same order, remember −→r ×−→p = − (−→p ×−→r ) .
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−→τ net = −→r × d−→p
dt

+
d−→r
dt

×−→p

= −→r × d−→p
dt

+−→v ×−→p
and |−→v ×−→p | = vp sin θvp but v and p are in the same direction, so this term is zero.

−→τ net = −→r × d−→p
dt

= −→r ×−→F
= rF sin θrF

This is, indeed, what torque is, so we have come full circle. Our definition of angular

momentum works!
−→
L = −→r ×−→p

This is all the things that make the spinning motion hard to change.

So far, though, we have just dealt with particles. What do we do for an extended object?

We have done this many times before, We just divide up the spinning object into parts,

and find the angular momentum for each part (Think of Mr. Bland’s boat). Then we

sum up the angular momentum for all the parts
−→
L =




i

−→
L i

Let’s try a problem. Often angular momentum us used to stabilize a satellite system.

Suppose you design a satellite that consists of two sensor systems attached to a long

(low mass) rod. The system rotates with an angular speed of ω = 3.15 rad/ s. If the rod

has a length of 30m and each sensor package has a mass of 400. kg. What is the angu­

lar momentum of the system?

This is an angular momentum problem (no surprise)
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We know

ω = 3.15
rad

s
D = 30m

m = 400kg.

and our new basic equations are
−→
L = −→r ×−→p
−→
L = I−→ω

−→τ net =
d
−→
L

dt

I =



i

mir
2
i

The bar mass can be neglected, and we know ω, so if we can find I we will have a

solution.

I =



i

mir
2
i

= m

�
D

2

�2
+m

�
D

2

�2

=
2mD2

4

=
1

2
mD2

so

L =

�
1

2
mD2

�
ω

L =

�
1

2
(400 kg) (30m)2

��
3.15

rad

s

�

= 5. 67× 105
m2

s
kg

So we can do problems with angular momentum. But you are probably asking, is

angular momentum conserved, and if so, can we do hard problems in an easy way

with conservation of angular momentum like we did with conservation of (linear)

momentum? That is the subject of our next lecture!



31 Conservation of Angular

Momentum

Angular momentum is conserved

When we studied momentum we found that, if there are no net outside forces,

Σ
−→
F ext = 0

momentum was conserved.

Pi = Pf

And when momentum was conserved we could use this fact to solve motion problems.

Remember the pool ball problem?

We started with the idea of conservation of momentum

Pi = Pf

and we considered that the collision would have a short duration, and that during the

collision, all other horizontal forces would be negligible, (impulse approximation).

Then the initial total momentum of the two ball system was

Pi = pci + p9i
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and the final total momentum was

Pf = pcf + p9f

so conservation of momentum gave us

pci + p9i = pcf + p9f

or

mcvci +m9v9i = mcvcf +m9v9f

Since both balls had the same mass, so mass canceled out. we found that

vci + 0 = 0 + v9f

or

vci = v9f

The two balls have switched velocities. Conservation of momentum gave us a very

easy answer to a rather difficult force problem. If there were external forces, but they

were much smaller than the collision forces, we invoked the impulse approximation and

neglected the external forces for the small ∆t of the collision. And for that small ∆t

momentum was conserved.

We should ask ourselves, should we expect angular momentum to be conserved? and if

so, will it allow us to solve complicated torque problems in an easy way?

The answer to both questions is yes! Let’s demonstrate with a problem.

Suppose we put you on a rotating platform. And further suppose we put some large

weights in your hands and then spin you up to an initial angular speed of ωi. Will

your angular speed be faster, slower, or the same if you draw in your hands (and the

weights)? To find out, let’s use conservation of angular momentum.
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We know that

Li = Iiωi

and if we assume that you draw in your hands quickly (impulse approximation again)

then

Lf = Ifωf

and if angular momentum is conserved, then

τnet∆t = Lf − Li = 0

since the (rotational) impulse will be zero because there is no net external torque. And

we can write conservation of momentum like this

Li = Lf

Then we can write

Iiωi = Ifωf

and solve for ωf

ωf =
Ii

If
ωi

So, if Ii/If is bigger than one, you will spin faster, if it is less than one, you will spin

slower, and if it is exactly one you will spin the same. The moment of Inertia does not

change for most of your body (your head and kidneys are not in new positions, for

example). But the moment of inertia of the masses in your hands does change. That

moment of Inertial would be

Imasses = 2mmassr
2

(where the 2 is because you have two arms and two masses) and you change the

distance from the pivot to the mass when you bring the masses into your body. So the

moment of inertia of your spinning person­mass system does change. Suppose your

arms are half a meter long, and that the masses are each 5 kg. Then looking just for the

arm­weight part of your system we have

Ii = 2 (5 kg) (0.5m)2

= 2. 5m2 kg

and the final moment of inertial is about

If = 2 (5 kg) (0.2m)2

= 0.4m2 kg

Then your final angular speed would be

ωf =
2. 5m2 kg

0.4m2 kg
ωi

= 6. 25ωi

which means you are spinning over six times as fast. Of course, in this problem there
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was no net external torque

Σ−→τ ext = 0

and this will be a requirement for conservation of angular momentum.

Notice that this problem would be very difficult to do if we used torques. You would

have to find the torque on the masses, and would have to know how the torque changed

in time as you brought the masses in toward your body. But using conservation of

angular momentum it was relatively easy!

Let’s try another problem.

The intrepid super­hero Cat­man is swinging through the city. As he passes a pole, he

reaches out and grabs the pole with his 0.70m arm while letting go of the rope with the

other arm. Cat­man spins around the pole. If Cat­man’s initial speed is 10m/ s and his

mass is 140 kg, how fast will he spin around as he clings to the pole?
−→
L = −→r ×−→p

= −→r ×m−→v

We can see that right at the point where Cat­man grabs the pole,

he is mostly a mass passing by the pole a distance r away (because the majority of his
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mass is in his middle, we will treat Cat­man as a particle except for the arm that is

holding him onto the pole).

Then

Li = rmvi sin θrv

= rmvi (1)

and we know all the values

Li = (0.70m) (140 kg) (10m/ s)

= 980.0
m2

s
kg

we know after he grabs the pole, his angular momentum will be the same, so

Li = Lf

and we can write Lf using

Lf = Iωf

If we treat Cat­man as a particle, then

I ≈ mr2

so

Lf = mr2ωf

and

ωf =
Lf

mr2
=

Li
mr2

=
980.0 m

2

s kg

(140 kg) (0.70m)2

= 14. 286
rad

s

= 2.3
rev

s

Cat­man will spin around the pole about twice a second. He will have to introduce some

friction by clamping his hand tightly to the pole to slow his rotation. This clamping

of his hand introduces another force, and makes it so he loses angular momentum. So

angular momentum will no longer be conserved.

Notice that, considering the pole as a pivot point, our super hero had angular momentum

as he was traveling past the pole. There was a rotational component to his linear

motion! That rotational component depends on where we pick our pivot point. Before

he grabs the pole, the choice of pivot point is arbitrary. This is another bit of relative

nature to our motion! So linear motion can be seen as having a rotational component,

and we used that angular momentum component to cause the rotation about the pole



522 Chapter 31 Conservation of Angular Momentum

once he grabbed the pole.

Again this would be a hard problem to solve using torques. But was not too bad using

conservation of angular momentum.

Top precession

We talked about top tops before. We know that tops want to keep spinning because they

have angular momentum and that angular momentum resists change to the rotational

motion.

Top Spinning

Before we considered the top spinning with it’s spin access vertical. But what happens

if the axis isn’t straight up and down?
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Top Spinning and Precessing

We can draw a simple top that is just a stick with a disk attached.

We can see that there would be a downward force due to gravity pulling on the center of

mass of the top. This wight force is at a distance r from the point of the top. The angle

θrW is not the same as the tilt angle θ. But if we look carefully we an see that it would

be

θrW = 180 ◦ − θ

And this is a force acting at a distance, so it would cause a torque!
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τ = rMg sin (θrw)

= rMg sin (180 ◦ − θ)

= rMg sin (θ)

where we have used one of our favorite trig identities sin (π − θ) = sin (θ).

We have another equation for torque

τ =
dL

dt
Combining these two forms for torque gives

dL

dt
= rMg sin (θ)

Then we can solve for a small change in angular momentum created by the gravitational

torque.

dL = rMg sin (θ) dt

This small change in angular momentum will change the overall rotation of the top.

The dL is in the same direction as the torque. And dL will give a small amount of

angular speed, dω with the same direction. Then we get a new rotation added to our

top spin that is in the direction of dL. Let’s call this ωP the precession angular speed.

The effect of ωP is that the The top of the top will rotate in a circle. We can draw this

change of momentum onto our figure for the top.

From the figure the top of the top moves in the dotted circle. The angle dφ that the top
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precesses through in time dt would be given by

tan dφ =
dL

L sin (θ)
and if dφ is a small angle, we can use the small angle approximation. Working in

radians,

tan dφ ≈ dφ

Which tells us so

dφ ≈ dL

L sin (θ)
We can substitute in for dL

dφ =
rMg sin (θ) dt

L sin (θ)
=

rMg

L
dt

And we can write the precession angular speed as

ωp =
dφ

dt
=

rMg

L
We can put this in terms of the top’s angular speed for it’s spin. The angular momentum

of the spin is

L = Iω

so

ωp =
rMg

Iω
We can see that as the top slows down because of friction on it’s tip (ω gets smaller),

the precession angular speed will increase. We can test this by observing a top spin to

find out this is true. There can be fun complications to this precession that make the top

of the top do loops as it precesses. But we can leave these for a higher level physics

course.

For us, it is time to make our ideas of torque and rotation more practical as we consider

building systems like buildings and structures.





32 Static and Dynamic Equilib­

rium

We studied equilibrium before. We defined static equilibrium as the condition of having

no net force.
−→
F net = 0

with our object in our reference frame not moving. We did an equilibrium problem with

a temple chandelier. It was a while ago. Let’s review.

Suppose you are going to the temple and you observe the beautiful chandelier in one

of the sealing rooms. We hope the chandelier is not accelerating. We want it to stay in

place. Before we said that not accelerating is a special case of equation (14.3)
−→
Fnet = m−→a
−→
Fnet = m (0) = 0

The net force is zero. Last time we noted that this does not say that there are no

forces acting on the object. But it says the forces balance. We called this situation

equilibrium.

−→
Fnet = 0 equilibrium

We found we could see this in the free body diagram.

Where I used L for“light” to identify the object. I used C for “chain” to identify
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the environmental object for the upward force. I used E for “Earth” to identify the

environmental object for the downward force (due to gravity). Writing out Newton’s

second law gives us

Fnety = TLC −WLE

0 = TLC −WLE

TLC = WLE

and we see that Newton’s second law does tell us that for equilibrium problems the

forces are balanced.

We could ask an important question here. Would any of our previous equilibrium

problems’ answers change if we found that they were in a moving inertial frame?

Say, we had a temple on wheels (the ancient Khans did this!) or we were really moving

our neighbor friend from one state room on a cruise ship to another as the ship moved

at a constant rate. Would equations for our forces and accelerations be different?

Clearly the answer is no. So long as we have constant motion, −→a = 0 and Newton’s

second law works just fine. You probably wouldn’t think about the cruse ship’s motion

at all as you moved the box.21 And that is because the constant velocity of the ship,

box, rooms, and people just does not matter to our physics problem. We could call this

type of problem where everything in the problem is moving at a constant rate a dynamic

equilibrium problem. But we don’t do anything different for dynamic equilibrium

problems. The acceleration is still zero. So we treat them just the same. We just have to

be a little careful to notice that−→a = 0 even though the whole system is moving.

But now after studying rotational motion we realize that something with no net force

could have a net torque. Think of the winch in our pioneer well problem. The winch

did not accelerate, but it did rotationally accelerate!

21 Unless the waves got rough, but then it wouldn’t be constant motion anymore!
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In this lecture we want to extend our definition of static equilibrium. Our winch is

really rotating, and it is rotationally accelerating. This is not entirely static, since it is

changing its motion rotationally. We can easily fix our definition for static equilibrium

by requiring the net torque to be zero as well as the net force.
−→
F net = 0

−→τ net = 0

Now an object in static equilibrium will be static–not moving (within our reference

frame). And an object in dynamic equilibrium will be not be accelerating linearly or

angularly.

Let’s try a problem: Let’s invite back our linebacker and six­year­old child. And let’s

have them try to play on a teeter­totter. This is an old­fashioned toy that is hard to find

in the United States now. Here are some kids in Afghanistan playing on one.
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The design is simple. You have a beam balanced on a pivot point. A person sits on each

side. Each person’s weight causes a the person to exert a normal force on the beam.

That normal force causes a torque on the beam. Either person can cause an additional

torque by kicking off of the ground, allowing both people to have a ride.

Our line backer (subscript L for “linebacker”) and child (subscript 6 for “six­year­old”)

try one of these things. We will also need a subscript B for “bar,” S for the pivot “sup­

port,” and E for “Earth.” The line backer and six­year­old get on opposite sides of the

device

but at first it won’t work. The linebacker is to heavy and the child ends up stuck in the

air. A good teeter­totter is adjustable so you can move the pivot point. The linebacker

does this and now the teeter­totter can balance.
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Suppose our linebacker has a mass of 111. 2 kg and the child has a mass of 27 kg. Also

suppose the beam is 4.0m long and the linebacker and child sit right on the ends of the

beam. Where should the pivot have to be so that the beam can balance if the beam has a

mass of 15 kg?

We will need free­body diagrams. The bar will have to have an extended free body

diagram because it can rotate. (If you try one of these, you will realize that the people

don’t want any independent rotation.)

We know

mL = 111. 2 kg

m6 = 27 kg

L = 4.0m

mB = 15 kg
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and our basic equations for static equilibrium are now

−→τ = 0

−→

F = 0

τ = rF sin θrF−→
F net = m−→a

We should use Newton’s Second Law for the linebacker and the six­year­old. There are

no x­direction forces, so for both the x­direction of Newton’s second law gives

Fnetx = 0 = 0

but there are y­direction forces.

FnetLy = mLaLy

= NLB −WLE

Fnet6y = m6a6y

= N6B −W6E

And, as they balance we know, aLy = 0 and a6y = 0 so

NAB = WAE

NCB = WCE

Now for the board

Fnetx = mBaB = 0

and

Fnety = mBaB

= NBS −NBL −WBE −NB6

And it is also true that the board is not accelerating since we are in static equilibrium, so

0 = NBS −NBL −WBE −NB6

But for the board we need to have not net torque as well. Let’s choose the pivot as the...,

well..., pivot, right where the support holds up the bar. If that is our pivot choice, then

we can define distances from that pivot point as shown.
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We can use our rotational Newton’s second law and our torque basic equation

τ = rF sin θrF

to find



τ = Iα

= rLNBL sin θ + (0)NBP sin (?)− rBWBE sinφ− r6NB6 sin δ = 0

For each of the angles I used a different letter, but each is the angle between the

displacement from the pivot and the force vectors. Notice that there must be a torque for

each force acting on the bar, and we have to look at the angles carefully and determine

the signs. Also notice that the normal force NBS that acts on the pivot is going to be

multiplied by zero because the distance from the pivot is zero for this force. So we

don’t need to worry about the angle for this force. For static equilibrium we now know

α = 0 so

0 = rLNBL − rBWBE − r6NB6

Notice that we have two equations relating the forces on the bar to each other now! One

from Newton’s second law

0 = NBS −NBL −WBE −NB6

and one from Newton’s second law for rotation.

0 = rLNBL − rBWBE − r6NB6
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We also have equations from Newton’s second law for the linebacker and six year old.

NLB = WLE = mLg

N6B = W6E = m6g

From Newton’s second law for the linebacker and the six­year­old. We can use these

last two equations to fill in the bar equations using force pairs.

0 = NBS −mLg −WBE −m6g

0 = rLmLg − rBWBE − r6m6g

and we can know WBE

WBE = mBg

so let’s put that in our equations as well

0 = NBS −mLg −mBg −m6g

0 = rLmLg − rBmBg − r6m6g

Notice that rB must be the distance from the pivot to the center of mass of the bar. And

that is what we want. There are some constraints that we know from the figure

L = rL + r6

That is, the distance from the pivot to the linebacker plus the distance from the pivot to

the six­year­old have to add up to the length of the bar. And
L

2
= rB + rL

That is, the distance from the linebacker to the pivot plus the distance from the pivot to

the center of mass of the board have to be half the board length. We can solve for r6

r6 = L− rL

and for rL
L

2
− rB = rL

and put this into our second bar equation, starting with r6

0 = rLmLg − rBmBg − (L− rL)m6g

The g′s cancel so

0 = rLmL − rBmB − (L− rL)m6

and and now substituting in for rL,

0 =

�
L

2
− rB

�
mL − rBmB −

�
L−

�
L

2
− rB

��
m6

We can solve this for rB (this will take some algebra!). Let’s distribute the mL in the
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first term on the left.

0 =
L

2
mL − rBmL − rBmB −

�
L−

�
L

2
− rB

��
m6

Now let’s combine the L’s in the last term on the right

0 =
L

2
mL − rBmL − rBmB −

�
2

2
L− L

2
+ rB

�
m6

0 =
L

2
mL − rBmL − rBmB −

�
+

L

2
+ rB

�
m6

and distribute the m6 in the last term on the right.

0 =
L

2
mL − rBmL − rBmB −

L

2
m6 − rBm6

Now let’s keep everything with an rB on the left, and move every term without and rB

to the right.

−rBmL − rBmB − rBm6 =
L

2
m6 −

L

2
mL

Take out an rB from every term on the right,

(−mL −mB −m6) rB =
L

2
m6 −

L

2
mL

and tidy up the right side

− (mL +mB +m6) rB =
L

2
(m6 −mL)

now dived both sides by (mL +mB +m6) . This gives us rB

rB =

�
L
2

�
(mL −m6)

(mL +mB +m6)
Putting in numbers gives

rB =

�
4m
2

�
(111. 2 kg− 27 kg)

(111. 2 kg + 15 kg + 27 kg)

= 1. 099 2m

So the linebacker had to move the bar about a meter off it’s midpoint to get the

teeter­totter to balance. We could find how far the linebacker is from the pivot.
L

2
= rB + rL

rL =
L

2
− rB

rL =
4m

2
− 1. 099 2m

= 0.900 8m

The linebacker is very close to the pivot as we would expect, about a meter from the

pivot point. We could also find how far the six­year­old would be from the pivot.

r6 = L− rL

r6 = 4m− 0.900 8m

= 3. 099 2m
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The six­year­old is much farther away from the pivot as expected. We should check our

numbers. Let’s plug them back in our newton’s second law equation for rotation.

0 = rLmLg − rBmBg − r6m6g

0 = (0.900 8m) (111. 2 kg)− (1. 099 2m) (15 kg)− (3. 099 2m) (27 kg)

= 0.003mkg

So to two digits we are good. And that is all our significant figures allow, so to within

the accuracy of our calculation, this worked!

This is a long problem! But it is a powerful problem. With this type of analysis we can

build bridges and buildings that don’t collapse! If you were following closely you will

have noticed that we never used the equation we got from Newton’s second law (the

non­rotational one). But I didn’t know that we would not need it until I finished the

problem. There is no way to know in advance! So write out all of Newton’s second

law and Newton’s second law for rotation even if you are not sure you need all these

equations. You won’t know for sure until the problem is done.

We will likely only have time in class for one problem but here is another example.

A light weighing 250N is suspended from a beam with a weight of 50N. The beam

is connected to the wall with a hinge, so it can rotate about it’s left end. The beam is

2.00m long. A guy wire is attached 1.75m from the hinge at an angle of 40.0 ◦ to help

support the beam and light. Find the tension in the guy wire.
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We know

WLE = 250N

WBE = 50N

r2 = 1.75m

r1 = 2.00m

rcm = r1/2 = 1.00m

θ = 40.0 ◦

and our basic equations are

−→τ = 0

−→

F = 0

τ = rF sin θrF−→
F net = m−→a

Again let’s start with Newton’s second law, this time we need the x and y­components.

FnetLy = mLaLx

= T1L −WLE

and

FnetLx = 0

and for the support beam

Fnetby = mBaby

0 = −NBH sinφ−WBE + TB2 sin θ − TB1

Fnetby = mBaby

0 = −NBH cosφ + TB2 cos θ



538 Chapter 32 Static and Dynamic Equilibrium

We had to guess the direction for NBH , the force from the hinge on the beam. We

might get this wrong, but if we guess the direction wrong we will get minus signs that

will tell us the force went the other way. So don’t worry too much.

Let’s also use Newton’s Second Law for rotation. We need the extended free body

diagram again for the beam, with displacements from the pivot marked.

Notice that the vectors have been redrawn to show the angles between each r, F set. I

really think this helps. We can find the signs using these as well

τnet = Iα

0 = (0)NBH − rBWBE + r2TB2 sin (180
◦ − θ)− r1TB1

so we have a three­equation­set like in our last problem, Two from Newton’s second

law and one from Newton’s second for rotation.

NBH cosφ = TB2 cos θ

NBH sinφ = WBE − TB2 sin θ + TB1

0 = −rBWBE + r2TB2 sin (180
◦ − θ)− r1TB1

From the light we know that

T1R = WLE

and we know WLE, so

NBH cosφ = WLE cos θ

NBH sinφ = WBE −WLE sin θ + TB1

0 = −rBWBE + r2TB2 sin (180
◦ − θ)− r1WLE
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Let’s solve the last for TB2

rBWBE + r1WLE = +r2TB2 sin (180
◦ − θ)

rBWBE + r1WLE

r2 sin (180 ◦ − θ)
= TB2

and we know all of these
(1.00m) (50N) + (2.00m) (250N)

(1.75m) sin (180 ◦ − 40.0 ◦)
= TB2

= 488. 94N

= 489N

If you were to build this system, you would need to buy wire that can withstand this

force (and more, incase of wind or snow).

The problems are long, but not really hard. And they are the start of designing working

systems for things people really build.





33 Stress Strain, and Elastic

Modulus

We have learned a lot about forces. But so far we have always worked hard to not let

the forces on our objects break or deform the objects. But we know that can happen.

How do we deal with an object changing shape as a force is exerted on it?

Fundamental Concepts

1. Elasticity

2. States of Matter

3. Density

4. Fluids

Deformation of Solids

To know how to deal with forces that modify objects we will need to know a little bit

more about solids. Specifically we need to know how solids bend, stretch, and break.

Stretching, bending, and breaking all require forces to be applied to our objects but like

with equilibrium problems it matters how we apply the forces. The area involved in

applying the force matters. If the force is spread out over the surface area of the object

it is different than if the force is applied all in one place. For solids the general form of

a spread out force is called a stress. Let’s start with some definitions.

1. Stress: Force per unit area causing deformation

2. Strain is a measure of the amount of deformation

If we don’t allow the stress to get too big, the strain is proportional to the stress. The

next figure is a stress vs. strain plot for bending pine beams.
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Stress­strain diagrams of two longleaf pine beams. E.L. = elastic limit. The areas of the triangles

0(EL)A and 0(EL)B represent the elastic resilience of the dry and green beams, respectively

(Public Domain Image from Samuel J. Record, The Mechanical Properties of Wood Including a

Discussion of the Factors Affecting the Mechanical Properties, and Methods of Timber Testing,

http://www.gutenberg.org/ebooks/12299)

Clearly at some point, the stress is to great, and a solid pine beam will break. All of

this is due to the same type of forces that create normal and tension forces. That is,

the bonding of the atoms that make up the solid. A strain is present because the stress

(applied spread out force) works against the bonding forces. If the bonds are weak,

there is more deformation. At the breaking point the bonds are ripped apart.

Liquids will not experience strains in the same way as solids because they can flow. The

force spread out over the surface of the ocean causes the water molecules to move into

currents and waves. Fluid bonds don’t support a particular shape, so we can’t usually

talk about a deformation of a fluid.22

Young’s Modulus and Tensile Stress

A modulus is a constant that describes how a solid can be deformed. Think of it like the

spring constant k that tells us how hard it is to stretch or compress a spring. Suppose

we pull on a rod with a force
−→
F .

22 There are some fluids, the non­Newtonian fluids, for which this is not true.
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The rod will be stressed. We call this tensile stress which comes from a pull (which is a

force!) . This pull will stretch the solid’s molecular bonds a bit like a tension force in a

rope.

We write the stress as
F

A
(33.1)

The pull is spread over the cross sectional area (marked A in the figure above).

By pulling on the beam, the beam will stretch. That stretching is a strain. We write the

strain as the percent change in shape. In this case, the percent change in length
∆L

Lo
(33.2)

If the stress is not too great, then we can write a linear equation that relates the stress to

the strain.
F

A
= Y

∆L

Lo
(33.3)

This linear equation only works in the elastic region of a stress vs. strain curve for

the particular object. For example, if we pull on a pine beam we get the stress vs.

strain curve in figure??. Our equation 33.3 only works for the red part marked “Elastic

Region” on the curve. But this is just the region that we want to use to build buildings

and airplanes and supercollider support structures, etc. We don’t want to build buildings

with the stress on the boards causing the boards to bend and break! So this equation is

useful.
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The constant of proportionality, Y, is called Young’s Modulus. If we write this as

F =
Y A

Lo
∆L (33.4)

F = k∆L (33.5)

it looks very much like Hook’s law! Our restoring force or our “pull” is the rod pulling

back with a force like F = −k (x− xo) . A steel beam won’t stretch much, but a plastic

beam might stretch more and a rubber beam would stretch a great deal–which is why

we don’t build buildings and other structures out of plastic or rubber beams.

Young’s modulus depends on the microscopic properties of the solid (which we will

not study in detail, but these are our stretchy/squishy forces between atoms that make

normal and tension forces). Because of this, we call this kind of stress a tensile stress.

We will look up Young’s modulus for each material in tables like the following:

Material23,24 Young’s Modulus
�
N/m2

�

Aluminum∗ 7× 1010

Titanium∗ 11.× 1010

Steel∗ 20.× 1010

Carbon Steel∗ 21.× 1010

Lead† 1.6× 1010

Brass† 10.× 1010

Concrete† 2.0× 1010

Nylon† 0.5× 1010

Bone† (arm or leg) 1.5× 1010

Pine Wood† (parallel to grain)
(perpendicular to grain)

1.0× 1010

0.1× 1010

Let’s take an example. Suppose we have a steel piano wire. One end of the piano wire

is fixed in place, and the other is connected to a peg that can be rotated so the piano

wire is tightened. This is what you do when you tune a piano, you turn the peg and

tighten the wire. Suppose we tighten the wire so that there will be 980N of tension on

the wire. The wire is 1.6m long and has a diameter of 2mm. How much will the wire

stretch as we tighten the peg? We will need to know that the Young’s modulus for steel

is 20× 1010N/m3.

23 *Ledbetter, H. M., Physical Properties Data Compilations Relevant to Energy Storage, US National
Bureaus of Standards, 1982. Different alloys have different properties, so for any real work see the original
tables in the original publication.
24 †Average values from numbers given in various text books. These numbers should be taken as example
values and more exact numbers found for any real work.
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Here is a summary of what we know

T = 980N

Lo = 1.6m

d = 2mm

Y = 200× 109N/m2

Let’s start with our stress/strain basic equation
F

A
= Y

∆L

Lo
and solve for ∆L

F

A

Lo
Y

= ∆L

the force is our tension, and the cross sectional area will be

A = π
d2

4

∆L =
T

π d2

4

Lo
Y

∆L =
4T

πd2
Lo
Y

then

∆L =
4 (980N)

π (2mm)2
(1.6m)

(200× 109N/m2)
=

= 2. 495 5× 10−3m

so the wire stretched about a quarter of a centimeter.

Ultimate Strength

At some point, though, if we put too much force on an object, it will break. Our normal

(atom squashing) or tension (bond stretching) forces can’t push back or stretch enough

and the atoms are torn from each other. This is described by the ultimate strength

parameters given in the next table. Here is a table for ultimate strength for some

materials.
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Material2526
Ultimate

Tensile strength�
N/m2

�
Ultimate

Sheer Strength�
N/m2

�
Ultimate

Compressive Strength�
N/m2

�

Steel† 500× 106 250× 106 500× 106

Cast Iron† 170× 106 170× 106 550× 106

Brass† 250× 106 200× 106 250× 106

Aluminum† 200× 106 200× 106 200× 106

Nylon† 500× 106

Bone† (arm or leg) 130× 106 170× 106

Titanium∗ 9.9× 108

Steel∗ 17.0× 108

@@@ Check these again @@@

Suppose we return to our piano wire. If we keep turning the peg, the wire will break

(which is quite dangerous!). How much tension will break the wire? We need the

ultimate tensile strength for steel, Tu = 500× 106N/m2. The ultimate stress that will

break the wire is given by
F

A
= Tu

Think about what including the area means. We would expect that a wire made of steel

would break before a large beam made of steel would break. The force is not enough to

describe the motion, we also need to know how spread out that force is over the cross

sectional area of the wire or beam. So to find the tension that will break the wire we

need

F = TuA

T = Tuπ
d2

4

T =
�
500× 106N/m2

�
π
(2mm)2

4
= 1570. 8N

≈ 1600N

25 †Average values from numbers given in various text books. These numbers should be taken as example
values and more exact numbers found for any real work.
26 *Ledbetter, H. M., Physical Properties Data Compilations Relevant to Energy Storage, US National
Bureaus of Standards, 1982. Different alloys have different properties, so for any real work see the original
tables in the original publication.
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Shear Modulus

We spread out our force over the cross sectional area of a beam and called this tensile

stress. But there are other ways to spread a force over an area. A shear stress is another

force acting on an area, but it is a force parallel to the surface of the object. This is like

pushing on the top of Jello
TM

. The Jello will deform.

Again the stress is
F

A
(33.6)

But the area is very different that the area we used in tensile stress. Now we will use

the area of the top of the Jello. The strain is the percentage change in the x position of

the top surface, relative to the height of the Jello
∆x

h
(33.7)

Or, in other words, ∆x is how far the top surface moves, and h is the height of the

object. The strain is the ratio of these two quantities.

The stress and strain are related by
F

A
= S

∆x

h
(33.8)

where S is the shear modulus. Of course, this equation is also only good if we are in

the linear region of the stress vs. strain curve. At some point you will just sheer off the

top of the Jello27. But so long as we are in the linear region, our equation works. Jello

won’t withstand much of a sheer stress, but steel and stone can. Again, to find S for a

particular material, we should look it up in a table.

27 For example, if you are scooping off the layer of Jello that has shredded carrots in it.
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Material28 Sheer Modulus
�
N/m2

�

Steel§ 80× 109

Cast Iron§ 40× 109

Brass§ 135× 109

Aluminum§ 25× 109

Bone§ (arm or leg) 80× 109

Jello∗ 0 to 8× 104

Bulk Modulus

You are probably aware that there are four states of matter

solid
liquid
gas
plasma

Believe it or not, plasma29 is quite common, because large parts of stars are made

of plasma. Plasma is a heated gas that is ionized. We will mostly ignore this state,

because unless you are dealing with neon signs, fluorescent lights, or the like, you don’t

encounter plasmas in every day experience.

Solids

We can view solids as having a set of forces that keep the molecules in place much as

though they were attached using springs. Solids can have definite organization. If so,

they are called crystals. You should observe the crystals around the Romney building if

you have not already.

28 §Average values from numbers given in various text books. These numbers should be taken as example
values and more exact numbers found for any real work. *Depends on how much water and what temperatre
the Jello and what agents you put in it for strength. See for example A. Bigi et al. Biomatrials 22 (2001)
763­768.
29 This is not the kind of plasma that you donate!
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If the solid lacks definite order in its organization, it is called amorphous.

Liquids

The molecules in a liquid are less tightly bound than those in a solid. That is why they

can flow. In the next figure, the atoms are bound by one spring­like force. But the atoms

are not tied together in a tight set of bonds like a solid.
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Gasses

The molecules in a gas are not bound to each other–not at all.

We have an intuitive feel for what a fluid is. But let’s make a more formal definition.

What is a fluid?

A Fluid is a collection of molecules that are randomly arranged and are at
most held together by weak cohesive forces and by forces exerted by the
walls of a container.

Thus, liquids and gasses are definitely fluids. Solids are generally considered not fluids.

But how about Jello
TM

? or a combination of corn starch and water (sometimes called

“ooblick”)? These are non­Newtonian fluids. That is, things that are sort of solid and

sort of not. But we will stick with things that are definitely fluids, and generally fluids

with negligible friction. This is a little like when we studied frictionless surfaces. How

many surfaces are truly frictionless? Very few! you might guess that there are few

fluids that have no friction, and you would be right. But the assumption of frictionless

fluids makes the math easier, and that is good when we are starting a now topic.

Bulk Modulus

Suppose we apply a force over the entire surface area of an object. What would happen?
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H. Tracy Hall and a tetrahedral X­ray diffraction press, 1960’s (Photo courtesy BYU Lee Library

University Archives)

The object would be compressed. As an example, the tetrahedral diamond press shown

in the figure above can compress carbon into diamonds.

Once again we have a stress which is a force spread over an area, but this time the area

is the entire surface of the object.

F

Asurface

(33.9)

We could define a change in the stress as ∆P. That would be given by a change in the

force, ∆F applied over the surface area.

∆P =
∆F

Asurface

(33.10)

where now A is the outer surface area of the solid. Many solids are easy to compress.

Think of Styrofoam or any foam rubber. For solids ∆F/A where the force is all around

the solid and the area is the entire surface area of the object is a stress. The strain is the

percentage change in volume (change amount over the original volume)
∆V–
V–

(33.11)

and the relationship is

∆P =
∆F

Asurface

= −B
∆V–
V–

(33.12)

B is the bulk modulus, which tells us how compressible our object is. Again, we look
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up the bulk modulus in tables.

Material30 Bulk Modulus
�
N/m2

�

Steel‡ 140× 109

Cast Iron‡ 90× 109

Brass‡ 80× 109

Aluminum‡ 70× 109

Water‡ 2× 109

Ethyl Alcohol‡ 1× 109

Mercury‡ 2.5× 109

Air‡ 1.01× 105

The minus sign may be surprising. But in our definition of bulk modulus, we are

thinking of compression. So usually ∆V– is negative. The minus sigh means that for

compression this formula gives positive values. Also notice that there is a ∆P or

∆F in our formula. Usually we start compressing a solid while it is experiencing air

pressure. So we don’t start from zero stress. We change the force from the force due to

air pressure to some larger compressive force.

Structures
Arch Demo

Many materials are stronger under compression than under tension. That is, it is harder

to squash them than to pull them apart.

Thomas Roger Smith John Slate, Architecture Classic and Early Christian, London,

William Clows and Sons, Limited, London, 1882)

30 ‡Average values from numbers given in various text books. These numbers should be taken as example
values and more exact numbers found for any real work.
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Arches are made based on this principle. By placing bocks in an arch, the normal force

due to the weight of the wall presses down on the arch. The stones of the arch are

compressed into each other. The force is extended into the walls next to the archway.

The block at the top holds the arch together and distributes the weight from above to the

other blocks in the arch.

It is called the key stone. This is what Joseph Smith was talking about when he said

the Book of Mormon is the “keystone of our religion.” It holds the rest together! In the

figure, the vertical and horizontal components of the forces due to the building load and

due to the surrounding arch stones are shown. These must balance if the arch is to be

stable.

If we look at the blocks next to the key stone we see that the blocks to the side and

below must support this block.

The key stone pushes with force components downward and to the right. The next

block must push up and to the left to balance the force due to the keystone and the

building load on this block.
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This distribution of force along the facing areas of the arch stones continues all the way

through the arch. In practice, it looks like this

But notice that we must provide a buttressing force from the rest of the structure on

the bottom most stone. If you don’t have wall to provide this force, you might be in

trouble. Suppose you want to build an arched ceiling for a cathedral.
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Arched Ceiling of the Cathedral of Milan

You would need to build a large solid mass outside the building to provide the

buttressing force. But this might look bulky and ugly. So you could provide the

buttressing force with a series of “flying buttresses” or structures that can provide the

buttressing force at points along the length of the building. The buttress is there to

provide an opposing force on the outside of the wall where there would be no next arch.

Flying Buttress (Dictionary of French Architecture from 11th to 16th Century (1856) by Eugène

Viollet­le­Duc (1814­1879), Image public domain)

Here is an example of a buttress from the Duomo in Milan, Italy.
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“Flying Buttress” Supporting the Arched Ceiling of the Cathedral of Milan

Pressure

So far our “objects” have all be solids. This is because it is hard to “deform” a liquid or

a gas. Maybe it would be better to say that it is hard for liquids or gasses to maintain a

specific shape, so they really are very easy to deform. But in considering a compression

type strain, it does seem possible to consider to have a force on all sides of an amount

of water or even an amount of gas (think of the helium being pressed by the walls of

a rubber balloon). But with liquids and gases we usually use a different term for the

stress. We call this stress, pressure. Vollyball Demo

Consider a situation where we ask six of our class members to come up and press on

the ball from all directions. Suppose further that we ask each person to exert a force on

the ball. And suppose we ask the person to use the area of their hand to exert the force.

The motion of the ball, and even it’s shape depended on both the force (magnitude and

direction) and the area involved in each push.

Noticing that each person is exerting a force but that the force is not acting on one point,

but is spread out over an area, we recognize that each person is exerting a pressure on

the ball

P ≡ F

A
(33.13)

Now consider a ball sitting in a room surrounded by air. The air is a fluid, so it’s

molecules are quite free to move around. Because there is some thermal energy in
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the room (even in Rexburg) the molecules will have some kinetic energy. So the air

molecules will hit the ball. This will cause a force on the surface of the ball. And that

force will be spread over the entire surface area of the ball. This is a force spread over

an area. This is a pressure. We call this air pressure. This air force due to the colliding

molecules is like having the hands pushing on the ball.

This force due to individual molecules is small and only lasts during the collision.

But in the room we have many molecules, and many the molecules impact the ball.

The molecules also impact the walls of the room. Suppose that every time a molecule

bounces back from one wall it ends up headed back to the opposite wall bounces back

again toward the first wall. If the molecules keep coming, there will be a force on the

wall quite a bit of the time. At least, on average there is a force, anyway. This is the

force that causes air pressure. The molecules impact the walls, and the ball, and us, and

everything in the room all over the surface area of each object. The result is air pressure

on every object in the room.

Now you can see why in our formulation for the bulk stress we usually describe a

change in force ∆F. Because in normal every­day circumstances, our compressible

objects are surrounded by air. So there is an initial air pressure force. For example, to

make diamonds, you start with the carbon at air pressure, then compress it more.

Likewise, the water pressure in a swimming pool is caused by moving water molecules.

You should convince yourself that the reason the water stays in the pool is partly

because the air molecules bounce against the water surface exerting a pressure on the

water!

Working with the definition of pressure

We can work with equation 33.13 to define the force due to pressure

F ≡ PA

and can define a force due to the pressure at an element of area dA

dF ≡ PdA

Where there is a differential, expect that some time in the future we will integrate!

But before we go on, let’s see what the units of pressure would be. We have a force

divided by an area.
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1
N

m2
= 1Pa

The symbol is the Pa, and the unit is called the pascal. This is the name of a famous

scientist.

Pressure Example:

Let’s do a pressure problem together,

Problem statement:

A 50.0 kg woman balances on one heel of a pair of high heeled shoes. If the heel is

circular and has a radius of 0.5000 cm, what pressure does she exert on the floor?

Drawing

Variables

Known
M Mass of woman M = 50kg
r Radius of woman’s heal r = 0.500 cm
g acceleration do to gravity g = 9.8 ms2

Unknown
F Force
x Coordinate Axis
z Coordinate Axis
A Area of woman’s heal

Basic Equations

F = ma

A = πr2

P =
F

A
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Symbolic Solution

A = πr2

F = ma = Mg

P =
F

A
=

Mg

πr2

Numerical Solution

P =
Mg

πr2

=
50 kg ∗ 9.8 ms2
π (0.500 cm)2

=
490.0 ms2 kg

0.785 40 cm2

(100 cm)2

m2

=
490.0 ms2 kg

0.785 40

100000

m2

= 6. 238 9× 106
kgm

s2m2

= 6. 238 9× 106 Pa

P = 6.24MPa

Units Check

kg ms2

cm2
=

kg ms2

cm2

(100 cm)2

m2
= 10000

kg ms2

m2
= 10000Pa

Units

Check

Reasonableness

This seems like a large number, but I have had a high heeled person step on my toe, so I

believe it! Bed of Nails

Hydraulic Press
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Let’s consider a hydraulic jack. We usually have a constant force acting on the jack

area. And to a good approximation the fluid in the jack is not compressible.

F = PA (33.14)

To begin with we usually have atmospheric pressure pushing on the jack piston,

Fatm = PatmAin (33.15)

but we wish to add a force Fin to this. So on the input side, we have, using Newton’s

second law

ΣF = Fatm + Fin = PatmAin +∆PinAin (33.16)

where

Fin = PinAin (33.17)

is due to our push on the jack input. We will ignore the atmospheric pressure for

now, since we only care about a change in pressure for this problem. By changing the

pressure on the input side we have changed the pressure by ∆Pin. On the output side

(the lifting side) we still have

F = PA (33.18)

but we expect our ∆Pin to be transmitted throughout the entire fluid. Then we can just

call it ∆P (no in ). So the output will have an amount of force added to it. On this side

Fout = ∆PoutAout = ∆PAout (33.19)

since ∆P in both equations is the same when the two sides are at the same elevation,

then
Fout
Aout

=
Fin
Ain

(33.20)
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So how does your car’s hydraulic jack work?

Fout = Fin
Aout

Ain

(33.21)

If Aout > Ain a much smaller Fin can produce a large Fout (you already knew that,

didn’t you!).

It is important to note that we have assumed our jack fluid is not compressible. So the

volume of fluid leaving the cylinder at the input side must be the same as the volume of

fluid entering the output side. Since Aout > Ain, it is clear that the output piston will

travel a much smaller distance than the input piston. This is why you have to pump

quite a lot on the input side of your jack to move a car a relatively small distance.
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Gravitation

Now that we know more about forces and motion, we should take another look at the

gravitational force, We need to know more than just

W = mg

Newton not only studied motion, he also studied gravitation (the legend is that this

started when an apple fell on his head). Gravitation is not a contact force. This was very

mysterious in Newton’s day.31 It was hard to see how an environmental force could

act without touching the moving object. But Newton was able to describe this force

mathematically even though he was not sure how it worked. In words, his universal law

of gravitation states:

Every particle in the universe attracts every other particle in the universe

with a force that is proportional to the masses of both particles and

inversely proportional to the square of the distance between the particles.

The mathematical expression is

Fg = G
mmmE

r2mE
(34.1)

where the subscript m is for “mover” (sometimes called a test mass) and the subscript

E is for “environmental object.” The distance rmE is the distance from the center of

mass of the mover object to the center of mass of the environmental object. Notice that

there are two objects involved in Newton’s equation, the moving object and the object

causing the force. That is just what we should expect from our subscript system!

31 After studying Einstein’s theory of General Relativity that explains the origin of the gravitational field,
you still might find this mysterious!
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Notice that this equation does not give the direction of the force, only the magnitude.

The direction is along the line connecting the centers of mass of the two objects.

The constant G is a factor included to keep us in units that seem useful to humans

(like Newtons and meters), and to make the expression exact (instead of just a

proportionality). It’s value is

G = 6.67× 10−11
Nm2

kg2
(34.2)

Example: “The Jupiter Effect”

A few years ago, there was a major health scare because the planets were about to align.

People were worried that the gravitational force would cause disasters and would affect

personal health. There were books written and news stories calling out warnings. They

rushed to their doctors to see what they could do. What would you tell them?

Let’s calculate the gravitational pull of Jupiter on an average human on earth. First we

need some data:
MJ = 1898× 1024 kg Mass of Jupiter
m = 91kg mass of a typical person (∼ 200 lb)
G = 6.67× 10−11 Nm

2

kg2
Universal Gravitational Constant

RJ = 779× 109m Distance from the Sun to Jupiter (on average)
RE = 149× 109m Distance from the Sun to the Earth (on average)
r = RJ −RE Distance between a person and Jupiter

(34.3)

Then

r = RJ −RE = 6. 3× 108 km (34.4)

and

Fg = G
MJm

r2
(34.5)

= 2. 902 6× 10−5N (34.6)

Is this dangerous? Let’s calculate the gravitational pull from your refrigerator. Again

we need some data
mf = 363kg Mass of refrigerator (∼ 800 lb)
m = 91kg mass of a typical person (∼ 200 lb)
G = 6.67× 10−11 Nm

2

kg2
Universal Gravitational Constant

r′ = 0.1m Distance between a person and your fridge if they reach for the milk
(34.7)

Then

Fg = G
mfm

(r′)2
(34.8)

= 2. 203 3× 10−4N (34.9)
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Even if we have several times this (because during the Jupiter Effect, several planets

aligned), the gravitational pull of your fridge is larger. So either we can ignore Jupiter,

or we should start putting warning labels on appliances 32

Weight

We mentioned that weight was a force, now we can be very specific about that force.

The magnitude of the gravitational force acting on an object of mass mm near the

Earth’s surface is called the weight of the object. Mathematically we write this as

W = mmg (34.10)

where g is the acceleration due to gravity. Now, since we know Newton’s formula for

gravity, we can say near the Earth’s surface that

W = G
MEmm

r2mE
(34.11)

where ME is the mass of the Earth and in this case rmE = RE is the Earth’s radius.

Given this, we can solve for g

mmg = G
MEmm

r2mE
(34.12)

g = G
ME

r2mE
(34.13)

Notice that g is not a constant! it depends on r2mE (look in the denominator of equation

34.13). So g has one value at sea level, and another value in a weather balloon at high

altitude. What does this tell us about weight (w = mg)? We see that weight is not

constant for our mass, m. It varies with position relative to the Earth’s center.

This may seem strange, but really you already knew this.

Think of an astronaut (ma = 45. 362 kg). Suppose she steps on a scale before she gets

on the Space X Dragon rocket. She will find a weight of, say, 445N (about 100 lbf, our

astronaut is apparently short and very fit!). She takes her scale with her on a her new

space ship and travels far away from any other object in the universe. And she tries to

step on the scale there. What will the scale read? Well, nothing. Actually the scale will

float around, because far away from all the mass in the universe the effects of gravity

seems to be eliminated. We say she is “weightless” in space. But our astronaut did not

go on an infinitely reducing diet! she has the same mass. Only her weight has changed.

Weight is a force due to the pull of gravity on the astronaut’s mass. It is not an inherent

32 Warning: this object contains mass and in some unexplained way may be hazardous to your health.
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property of the astronaut. Since

W = G
MEmastro

r2astroE
(34.14)

she would have no weight if ME were not there so

W = G
(0)mastro

r2astroE
= 0 (34.15)

This is the first of our inverse square laws that we will study (this just means that the

force differs as the inverse square of the distance between the two objects involved)

But we have learned something new! Our old friend g changes with altitude. We

remember that in Rexburg it is about 9.80004 ms2 and at sea level it is 9.81 ms2 . You can

see that g is getting smaller as we go up. Near the surface, this is not a big effect�
0.01 ms2

�
but if we go high enough, it will make a big difference.

Weight and orbits

Back to our astronaut. Suppose this time she is on the International Space Station.

On the station she appears weightless. But let’s see if that would be true. Suppose

somehow the Space Station could park in just one spot above the Earth and hover there.

Further suppose our astronaut is on a space walk next to the Shuttle. The force on her

because of the Earth’s gravitational pull would be

F = G
MEma

(RE + h)2

where ME = 5.98 × 1024 kg is the mass of the Earth and ma = 45. 362 kg is our

astronaut’s mass. RE = 6.38× 103 km is the radius of the Earth and h is the altitude of

the space shuttle flight (usually about 250 km). Then

F =

�
6.67× 10−11

Nm2

kg2

� �
5.98× 1024 kg

�
(45. 362 kg)

(6.38× 103 km+ 250km)2

= 411. 62N

This is less than the 445N that she was on the surface of the Earth, but not very much

less (a percent difference of around 7%). This is far from weightless! Is the space

program all a fraud? No, there is more to this. The Space Station does not hover. If it

tried, it would fall because the Earth’s gravity would pull it down. The reason it can

stay up is that it orbits the Earth.

Let’s pretend we could build a very tall tower, several hundred kilometers high. On this

tower we place a cannon. If we shoot a ball it will travel a distance and hit the earth,
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pulled downward by the Earth’s gravity.

If we increase the muzzle velocity of the cannon, our ball will travel farther. Because

the earth is round the ball will travel even farther than if the cannon were on a flat

surface, because the round surface of the Earth falls away from the ball’s path. If we

continue increasing the muzzle velocity, the ball will travel farther and farther around

the globe. Eventually, if we make the muzzle velocity high enough, the ball will

miss the Earth entirely! It will travel at just the right speed such that the centripetal

acceleration keeps in going in the same circle. It will never get nearer the Earth. This is

what we call an orbit.33

Our astronaut is in just such an orbit. She is falling because the Earth’s acceleration is

constantly pulling her downward, but her velocity is so large (thousands of meters per

second) that she continually misses the Earth, making a perfect circle around the planet.

But still why does she seem weightless? This is because the space station, her tools, her

fellow astronauts, and everything else around her are also in orbit. The acceleration is

the same for the station and the astronaut. Since they accelerate the same way, their

motions are exactly the same. There is no relative motion to press the station surfaces

against her and the crew like there would be if the station were parked on the Earth’s

surface. So there is no visible cue that there is really a force acting on the Astronaut.

33 This explanation of orbits is attributed to Newton, himself.
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So if a person in orbit has gravity, can we find a place with no gravity? If we went

infinitely far away from all other objects in the universe, then r ≈∞ so

F ≈ G
m1m2

(∞2)

≈ 0

which would be truly weightless. Some scientists object to this definition of weight.

They define weight as the reading on a scale. So the astronaut, by their definition, would

be weightless in space (preserving what NASA says in the historic videos). But this

definition can be misleading if we are not careful. There really is a force acting on our

astronaut as she orbits. The feeling of weightlessness is purely due to not having visual

cues telling her that she is really falling (but falling around the Earth). Currently NASA

calls the feeling of weightlessness in orbit “apparent weightlessness” to distinguish it

from a situation where there actually is no gravitational force.

Weight and gravity

But let’s review what we have learned about gravitation.

We called the gravitational force acting on the object the weight of the object.

W = mmg (34.16)

where g is the acceleration due to gravity. Using Newton’s law of gravitation, we wrote

the weight as

W = G
MEmm

r2mE
(34.17)
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where ME is the mass of the Earth. Given this, we solved for g

mmg = G
MEmm

r2mE

g = G
ME

r2mE
And we found that we should have written this as

g (r) = G
ME

r2mE
since g depends on r2mE . So g (r) has one value at sea level, and another value in a

weather balloon at high altitude. What does this tell us about weight (W = mg)? We

see that weight is not constant for our mass, m. It varies with position relative to the

Earth’s center.

But we should think about scales that measure weight, how do they work?

A bathroom scale usually has a spring that is compressed when we step on the scale. So

we could make a free­body diagram for a person standing on a scale.

Then

Fnety = may

= SGs −WGE

and

SGe = −k∆y

so

may = k∆y −WGE

and hopefully your bathroom scale is not accelerating in the y­direction as you stand on

it, so

k∆y = WGE
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or

∆y =
WGE

k
So if the manufacturer of the scale knows the stiffness of the spring they built into

the scale, they can make the scale reading directly proportional to how far down you

compress the spring. The scale can transform ∆y into weight. But will the scale always

work? Suppose we put our guy in a box, and then lower the box on a cable.

So long as the acceleration is still zero (the box is lowered with a constant speed)

everything still works and the scale reads the weight just fine. But what if we accelerate

the box downward?

Now our newtons’s second law gives

−may = k∆y −WGE

so that the spring ∆y will be

k∆y = WGE −may

∆y =
WGE −may

k
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and we can see that the scale will read less than the actual weight of the guy. This is

why you feel “lighter” as an elevator goes down.

In the extreme case, we could cut the cable and see that the scale has no displacement,

so it reads zero weight!

Some books define the reading of the scale as the person’s weight. That complicates

things in our Newton’s second law calculations. But now we know that our definition

of weight could complicate things in real life. Of course there is a fix for this, don’t

weight things in accelerating elevators! But if you do try to use a scale in a reference

frame that is accelerating, you have to use Newton’s second law to calculate the actual

weight. For example, if we know the box is accelerating on the cable downward with an

acceleration of −ay, then the scale would be wrong but we could calculate the weight

of the person by starting with

Wapparent = k∆y

this is what the scale reads, so

−may = k∆y −WGE

becomes

−may = Wapparent −WGE

and

WGE = may +Wapparent

that is, take the mass of the person and multiply by the acceleration of the box/person

system, Then add the result to the reading on the scale. That would give the true weight.

Where did G come from?

We understand where g comes from and how it changes with distance, but where did
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the G term come from in our Newton’s gravitational force equation.

Fg = G
mmmE

r2mE
where the two masses involved (say, you, the mover, and the Earth, the environmental

object) are mm and mE and the distance between the two masses is rmE (e.g. the

distance from the center of mass of the Earth to the center of mass of you). The constant

G is a constant that puts the force into nice units that are convenient for us to use, like

newtons (N) . It has a value of

G = 6.67428× 10−11
Nm2

kg2

You might ask, how do we know this? The answer is that Newton and others performed

experiments. Newton’s law of gravitation is empirical, meaning that it came from

experiment. A scientist known as Lord Cavendish used a clever device to verify this

law. He suspended two masses from a wire. Then he placed two other masses near the

suspended masses.

He knew the torsion constant of the wire (how much it resists being twisted). A twisted

wire acts much like a spring, with a restoring force that pushes back against the twist.

Then by observing how far the suspended masses moved, he could work out the

strength of the gravitational force. This is called a torsion balance.

Principle of Equivalence

We have actually done something very profound in our gravitational problems, and we

did it without thinking about it. We said that the mover mass from Newton’s second law

F = mma
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that makes an object hard to push through space is the same is the same mover mass

that creates the force of gravity.

Fg = G
mmmE

r2mE

As far as we know, there is no requirement that this be the case! But this idea has been

tested over and over again and it seems to be true. When Newton made this assumption,

though, it was not obvious. The idea that the inertial mass that makes objects hard to

move is also the same mass that makes gravitational forces is called the principle of

equivalence. If you are lucky enough to get to take PH279, you will revisit the question

of the principle of equivalence. But for PH121, all mass is the same, just mass.
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We already know about gravitational potential energy for what we can now call the flat

Earth approximation, but now we know that flat Earth approximation has some limits.

Before we end our study of motion, let’s look more carefully at gravitational potential

energy for orbiting objects.

Gravitational Potential Energy

We studied the potential energy of objects near the Earth’s surface. And we found that

Ug = mmgy

where mm is the mass of the moving object, g is the acceleration due to gravity, and

y is how high the object is compared to a y = 0 point. If you recall, we got to pick

that y = 0 point. It could be any height. Suppose we have a guy throwing a ball off a

building.

We could pick y = 0 to be at the top of the building, or at the ground level, or anywhere

else! Suppose we pick y = 0 at ground level. Then the initial potential energy of the

ball would be

Ug = mmgyi

= mmgh
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where h is the height of the building plus a little more because the guy has some height

too. But further suppose that there is a deep hole near the building.

We can see that at the bottom of the hole the ball will have a potential energy of

Ug = mmgyf

= mmg (−d)

= −mmgd

The potential energy is negative, but this is only because of our choice of y = 0 point.

This all works fairly well so long as we take fairly small objects near the much larger

Earth. But let’s consider objects farther away from the Earth’s surface, or larger objects

like the moon. For these objects, mmgy is not enough to describe the potential energy.

The reason is that if we are far away from the center of the Earth we will notice that the

Earth’s gravitational acceleration is not a uniform −g. We already know g is a function

of the distance between g (rEm) diminishes with distance, rEm between the centers of

mass of the two objects.

g (rEm) = G
ME

r2Em
So we could envision a constant value of g (rEm) existing for each elevation above the

Earth. Sort of like spherical shells of constant g (r) for each r.
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So, if an object is large, it will feel the change in the gravitational acceleration over its

(the object’s) large volume. The Moon, for example, would have a value of g (rEM )

where rEm is the Earth­Moon distance from center of mass of the Earth to center of

mass of the Moon.

But some of the Moon’s mass is closer to the Earth than rEM , and some of the Moon’s

mass is farther from the Earth than rEm and for something the size of the Moon, the

change can’t be neglected.
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Worse yet, the Moon is so large that the direction of g (rEm) will change across the

moon.

We need a better equation for gravitational potential energy that works for a round

Earth. We have the tools to improve our potential energy calculation for this situation

(solving at least some of the problems we have noted). We know that a change in

potential energy is just an amount of work

∆Ug = −wg = −
� −→
W · d−→r

The magnitude of the gravitational force is

W = G
MEmm

r2Em
where ME is the mass of the Earth, mm is the mass of the mover object, and rEm is

the distance between the two. Suppose we were just making the Earth, and we got the

Moon too close. We could move the Moon further away into it’s proper orbit. That

would take some work!
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Then the work done in moving the Moon away from the Earth would be

wg =

� −→
W · d−→r

The gravitational force is radial (along the radius, or in the −r̂ direction) , so

wg =

� −→
W · d−→r

=

�
Wdr cos θWr

=

�
Wdr cos (180 ◦)

=

�
−Wdr

= −
�

Wdr

and since

∆Ug = −wg

then

∆U =

�
Wdr

for the configuration we have shown, and we can perform the integration. Say we move

the object (the Moon) a distance ∆r away where

∆r = R2 −R1

and ∆r is large, comparable to the size of the Earth or larger. Then

∆U =

� R2

R1

Wdr

and we can put in our Newton’s form for the gravitational force

∆Ug =

� R2

R1

�
G

MEmm

r2

�
dr

= GMEmm

� R2

R1

dr

r2



580 Chapter 35 Gravitational Energy

where R is the distance from the center of the Earth to the center of our object.

∆Ug = GMEmm

� R2

R1

dr

r2

= GMEmm

�
−1

r

����
R2

R1

= GMEmm

�
− 1

R2
−
�
− 1

R1

��

= −GMEmm

�
1

R2
− 1

R1

�

= −G
MEmm

R2
+G

MEmm

R1

which has two terms, so it really looks like we have

∆Ug = Ug2 − Ug1

where

Ug2 = −G
MEmm

R2
and

Ug1 = −G
MEmm

R1

We recall that we need to set a zero point for the potential energy. Before, when we

used the approximation mmgy we could choose y = 0 anywhere we wanted. But now

we see an obvious (but strange) choice for the zero point of the potential energy. If we

let R2 → ∞ then the first term in our expression will be zero. Likewise, of we let

R1 →∞ the second term will be zero. It looks like as we get infinitely far away from

the Earth, the potential energy naturally goes to zero! Mathematically this makes sense.

But we will have to interpret what this choice of zero point means.

But first, let’s see how much work it would take to move the moon out of obit and

move it farther away. Say, from R1, the present orbit radius, to R2 = 2R1, or twice the

original orbit distance. Then

∆Ug = U2 − U1 = −G
MEmm

R2
+G

MEmm

R1

but

R2 = 2R1

for this case so

∆Ug = −G
MEmm

2R1
+G

MEmm

R1

= G
MEmm

R1

�
−1
2
+ 1

�

=

�
1

2

�
G

MEmm

R1
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The change is positive just like it was when we moved our ball up from the bottom

of the hole in the ball­building­hole example earlier. We gained potential energy as

we went farther from the Earth’s surface. That makes sense! That is analogous to

increasing y in mmgy. The potential energy also gets larger if the mass of our object

(like the moon or a satellite) gets larger. Again that makes sense because in our more

familiar approximation the potential energy increases with mass. So this new form for

our equation for potential energy seems to work.

But what does it mean that the potential energy is zero infinitely far away? Recall that a

change in potential energy is an amount of work

w = −∆U

Usually we will consider the potential energy to be the amount of work it takes to bring

the mover mass or “test mass,” mm from infinitely far away (our zero point!) to the

location where we want it. It is how much energy is stored by having the object in

that position. Like how much energy is stored by putting a mass high on a shelf. For

example we could bring the moon in from infinitely far away. Then

∆Ug = U2 − U1 = −G
MEmm

R2
+G

MEmm

∞

U2 = −G
MEmm

R2

This is how much potential energy the moon has as it orbits the Earth because it is high,

above the Earth. But notice, this is a negative number! What can it mean to have a

negative potential energy?

Think back to our person trowing a ball off the roof of a building. We had negative

potential energy when the ball went into the hole. The negative potential energy just

means we are at a distance away from our zero point for potential energy in the negative

energy direction.

We use this convention to indicate that the test mass, mm is bound to the Earth. It

would take an input of energy to get the moon free from the gravitational pull of the

Earth (think for our ball guy, it would take energy to lift the ball out of the hole). Here

is the Moon potential energy plotted as a function of distance.
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We can see that you have to go an infinite distance to overcome the Earth’s gravity

completely. That makes sense from our force equation. The force only goes to zero

infinitely far away. When we finally get infinitely far away, there will be no potential

energy due to the gravitational force because the gravitational force will be zero.

Of course, there are more than just two objects (Earth and Moon) in the universe, so

as we get farther away from the Earth, the gravitational pull of, say, a galaxy, might

dominate. So we might not notice the weak pull of the Earth as we encounter other

objects.

We should show that this form for the potential energy due to gravity becomes the

more familiar mmgy if our distances are small compared to the Earth’s radius. This is

our flat Earth approximation, so what we wish to do is to show that our more correct

version of gravitational potential energy reduces to mgh if the conditions of the flat

Earth approximation are valid.

Let our distance from the center of the Earth be R2 = RE + y where RE is the radius

of the Earth and y ≪ RE . This is the condition for the flat Earth approximation to be

true. Then

U = −G
MEmm

R2

= −G
MEmm

RE + y
We can rewrite this as

U = −G
MEmm

RE

�
1 + y

RE

�

= −G
MEmm

RE

�
1 +

y

RE

�−1

Since y is small y/RE is very small and we can approximate the therm in parenthesis
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using the binomial expansion (another new math piece, you might recognize this as a

special form of a Taylor series if you have taken higher math classes, but most of us we

will accept it to be true and let the math department teach this one in the distant future).

(1± x)n ≈ 1∓ nx if x ≪ 1

then we have �
1 +

y

RE

�−1
≈ 1− (−1) y

RE

if
y

RE

≪ 1

and our potential energy is

U = −G
MEmm

RE

�
1 +

y

RE

�

then

U = −G
MEmm

RE

+G
MEmmy

R2
E

= Uo +mm

�
G

ME

R2
E

�
y

If we realize that Uo is the potential energy of the object at the surface of the Earth, then

the change in potential energy as we lift the object from the surface to a height y is

∆U =

�
Uo +mm

�
G

ME

R2
E

�
y −

�
Uo + mm

�
G

ME

R2
E

�
(0)

��

= mm

�
G

ME

R2
E

�
y

All that is left is to realize that �
G

ME

R2
E

�

is just g

g =

�
G

ME

R2
E

�

so we have

∆U = mmgy

and there is no contradiction. But we should realize that this is an approximation. The

more accurate version of our potential energy is.34

U2 = −G
MEmm

R2

Circular Orbits

We would like to apply what we know about gravitational energy to calculating orbits

34 If you were paying close attention, you might have noticed that we did not solve all of the problems
with this new potential energy formula. We did solve the problem of a curved Earth. But there remains the
problem of part of the Moon being farther away and part being closer. We would need to integrate over the
Moon’s mass to solve that problem. That is a job for multi­variate calculus.
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of satellites. But first, we should review how an orbit works. Let’s take on the case of

a satellite orbiting the Earth in a perfectly circular orbit. Recall that we pretended we

could build a very tall tower, several hundred kilometers high. On this tower we placed

a cannon. If we shot a ball out of the cannon it would travel a distance and hit the earth,

pulled downward by the Earth’s gravity.

And if the muzzle velocity of the ball was small, the ball would fall to the Earth a short

distance from the cannon. We could use the flat Earth approximation for this case. The

ball does travel a little farther because the Earth is curved, but the extra distance is small

compared to the total distance traveled, so we can ignore the fact that the Earth is round

for this case.

But if we increase the muzzle velocity of the cannon, our ball will travel farther.

Because the Earth is round, the ball will travel farther than if the cannon were on a flat

surface, because the round surface of the Earth falls away from the ball’s path. With

the higher muzzle velocity, the ball goes farther and the extra distance because of the

roundness of the Earth is no longer negligible.

If we continue increasing the muzzle velocity, the ball will travel farther and farther

around the globe. Eventually, if we make the muzzle velocity high enough, the ball will

miss the Earth entirely. It will travel at just the right speed such that the centripetal ac­

celeration keeps it going in the same circle. It will never get nearer the Earth. This is

what we called an orbit.
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This is what a satellite is doing. Let’s draw a free­body­diagram for our satellite

Notice that there is only one force! the force due to the Earth’s gravitation. Also notice

that the force is radial, in the −r̂ direction. This is a centripetal force! We can write the

acceleration of our satellite using Newton’s second law in cylindrical (rtz) coordinates.

Fnetr = msar

Fnetθ = 0

Fnetz = 0

where the subscript s is for satellite. The acceleration is then

−→a r =
Fnetr
ms

(−r̂)

and we have identified this radial acceleration as our centripetal acceleration,

ac =
v2

r
and the source of the force is gravitation

WSE = G
msME

r2sE
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so we could write the acceleration as
−→a r =

Fnetr
ms

(−r̂)

=
GmsME

r2
sE

ms

(−r̂)

= G
ME

r2sE
(−r̂)

and we recognize this as just
−→a r = g (r) (−r̂)

where g (r) is the acceleration due to gravity, but we have included the (r) to remind

us that this is not the constant g = 9.8 ms2 that we have near the Earth’s surface. We

can calculate what this would be for a typical satellite. A weather satellite orbits about

850 km above the Earth’s surface. The Earth’s average radius is 6370 km. So

rsE = 6370 km+ 850 km

= 7220 km

And the mass of the Earth is about 5.98× 1024 kg. So g (r) for our satellite is

−→a r = g (r) = G
ME

r2sE
(−r̂)

=

�
6.67× 10−11

Nm2

kg2

�
5.98× 1024 kg
�
7220 km1000m

km

�2 (−r̂)

= 7. 651 6
m

s2
(−r̂)

which is a more than 20% less than it is at the Earth’s surface.

We said that muzzle velocity for our ball, or satellite velocity for our satellite is

important for making a orbit happen. If we go to slow, the satellite falls to the ground.

So what speed does our satellite need to go to be in orbit?

Let’s use the fact that our radial acceleration is centripetal, so

ar = ac =
v2t
r

then

vt =
√

arr

=
�

g (r) r

and numerically we have

v =

��
7. 651 6

m

s2

��
7220 km

1000m

km

�

= 7432. 7
m

s
which is pretty fast (16626mi/h).
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How long it takes a satellite to go around the Earth is called the satellite’s orbital

period. It is (unfortunately) given the symbol T. So we will have to be careful not to

confuse it with a tension force symbol. But let’s calculate what the orbital period would

be for our satellite.

From our basic motion set of equations, we know

v =
∆x

∆t
we have a arclength that is the total circumference of the orbit circle for our ∆x part, so

let’s write ∆x as ∆s for arclength.

v =
∆s

∆t
and the time it takes to go around, ∆t we have called T. So

v =
∆s

T
then

T =
∆s

v

=
2πrsE

v

=
2πrsE�

g (rsE) rsE

= 2π

�
rsE

g (rsE)

so for our satellite,

T = 2π

��
7220 km1000m

km

�

7. 651 6 ms2

= 6103. 4 s

= 101. 72min

= 1. 695 3 h

so our satellite would circle the Earth in a little more than an hour and a half!

Kinetic energy of an orbit

Kinetic energy is the energy of moving.

K =
1

2
mv2

so to understand the kinetic energy of an orbit, we will need the orbital speed.
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We just found this, but let’s do it again for practice as a problem example. The satellite

is the mover, and the Earth is the environmental object

WSE = Fg = G
MEmm

r2Em

= G
MEms

r2Es
and from Newton’s second law we know

Fnetr = msar

but we only have one force so

msar = G
MEms

r2Es
and we can see from the figure that WSE is toward the center of the orbit so it is

centripetal, so

ar = ac =
v2t
rEs

or

ms

v2t
rEs

= G
MEms

r2Es
and some things cancel

v2t = G
ME

rEs
so

vt =

�
G

ME

rEs
then the kinetic energy of the satellite would be

K =
1

2
ms (vt)

2

=
1

2
msG

ME

rEs

= G
MEms

2rEs
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But notice that

Ug = −G
MEms

rEs
So the kinetic energy of our satellite must be

K = −1
2

Ug

Now this is not always true for a satellite! So far we have only considered circular

orbits. For other obits this relationship between the gravitational potential energy and

the kinetic energy won’t hold true. So what we have found is a constraint on K and Ug

for circular orbits.

But if we restrict ourselves to circular orbits then the total mechanical energy for our

satellite must be

Emech = K + Ug

= G
MEms

2rEs
−G

MEms

rEs

= −G
MEms

2rEs

=
1

2
Ug

But remember that Ug is negative so the total energy of the Earth­satellite system is

negative. Once again we can identify this as a bound situation. Think of our potential

energy diagrams from the past.

If we start a ball rolling from rest as shown in the previous figure, the ball will start

with a potential energy that is negative. Since we started the ball from rest, the initial

potential energy is the total mechanical energy for the ball. So the total energy will be

negative, and we can see that this simply means that the ball will never leave the valley

without some addition of energy. The ball is bound between the two hills because it

does not have enough energy to escape.

Likewise, the satellite is bound to the Earth. It does not have enough energy to escape.



590 Chapter 35 Gravitational Energy

Let’s go back to our graph of the potential energy of an N2 molecule. We can now

understand this graph better. Notice that at the equilibrium position the shape of the

potential energy curve is like the shape of our hill/valley system.

And notice that the entire region around the equilibrium position has negative potential

energy! This means that the two nitrogen atoms are bound together. It would take work

to move them farther apart.



36 Kepler’s Laws

We studied circular orbits in our last lecture. But, you may object, are all orbits

circular? The answer is really a big no! Here is one popular choice for communication

satellites called a Molniya orbit. It is very much not circular.

Molniya Orbit (Image courtesy NASA)

Very few orbits are perfect circles. Kepler was the researcher who first set down the

principles of orbits, so the orbital rules are called Kepler’s laws. Kepler was working

on the orbits of the planets around the Sun, so Kepler’s laws are often given in terms

of the planetary orbits. But let’s consider them in terms of a mover (satellite) and an

environmental object (Earth, or similar large object)

1. All orbiting mover objects move in elliptical orbits with the environmental object at
one of the focal points.

2. A line drawn from the environmental object to any orbiting mover sweeps out equal
areas in equal time intervals.

3. The square of the orbital period of any orbiting mover is proportional to the cube of
the average distance from the mover object to the environmental object.

It turns out these “laws” are just a product of the form of the equation for the force of

gravity. To show that takes some time (see appendix A if you are curious). Let’s tackle

these in the order, 3, 1, and then 2.
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Third law

Kepler’s third law says that T 2 ∝ r3. Let’s treat this as a problem and show that it is

true for the case of a circular orbit.

First let’s assume that we have a mover object, a satellite, in a circular orbit about an

environmental object, the Earth. We know that there is only one force, the weight force

or the force due to gravity pulling on our satellite.

Fnetr = mar

= WsE

and we recognize that the force is a centripetal force. Then let’s use our equation for

centripetal acceleration

ac =
v2t
r

Then

msar = ms

v2t
rEs

and for a circular orbit we know that the tangential speed is

vt =

�
G

ME

rEs
Putting this back in Newton’s second law just gives us back our Newton’s gravity force

again.

msar = ms

GME

rEs

rEs

= ms

GME

r2Es
We can find the speed of our satellite another way. Let’s use the time it takes for the

satellite to go around the Earth. It is about

T =
2πrEs

vt
so

vt =
2πrEs

T
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We can use this again in our Newton’s second law

msar = ms

v2t
rEs

=
ms

�
2πrEs
T

�2

rEs

=
4π2msr2Es

rEsT 2

=
4π2msrEs

T 2

Let’s combine these two equations for msar
4π2msrEs

T 2
=

GmsME

r2Es
4π2r2Es

T 2
=

GME

rEs
1

T 2
=

GME

4π2r3Es

T 2 =
4π2

GME

r3Es (36.1)

And this is a statement of Kepler’s third law. We can see that Kepler’s third law works

for circular orbits.

First Law

Kepler claimed that all orbits are elliptical. But we have studied only circular orbits.

Have we been wrong? It turns out that a circle is a special case of an ellipse. Let’s look

at ellipses a bit to see why.

The mathematical equation for an ellipse in xyz coordinates is
x2

a2
+

y2

b2
= 1

where a and b are called the semi­major and semi­minor axis. Here is a graph to see

what this looks like for a = 5m and b = 2m.
x2

25
+

y2

4
= 1
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But suppose a = b = 5m, then what would we get?
x2

25
+

y2

25
= 1

­6 ­4 ­2 2 4 6

­6

­4

­2

2

4

6

x

y

This is a circle! So indeed, a circle is an ellipse with the semi­major and semi­minor

axis equal. You might object that all we have done is to show that we weren’t wrong to

use a circle. We certainly did not show that all orbits are ellipses. And it turns out that

with our new math parts of differentiation, integration, dot product and cross product,

we totally can show that if Newton’s law of gravitation is true, then the orbits must be

ellipses (well, really any conic section). This is given in appendix A (meaning that we

won’t actually learn how to do this in our class, but if you are interested, it’s there for

you to read!).
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Second Law

To see why Kepler’s second law works, let’s use our new angular momentum view.

The satellite is moving with a displacement −→r (which now is not constant!) and has a

momentum −→p , so it has an angular momentum
−→
L = −→r ×−→p

The angular momentum will have a magnitude of

L = rp sinφrp

= rmv sinφrp

Then let’s look at the area swept out as the satellite moves. In the next figure ∆A is

that area swept out between two positions of the satellite. Notice that the area is (very

nearly) a triangle.

The area of the triangle is

∆A =
1

2
(base) (height)

only the base for us is the distance r from the environmental object (Earth) to the mover

object (satellite). The height of the triangle is marked h. So

∆A =
1

2
r2h

but looking at the diagram,

cos (90 ◦ − φ) =
h

∆s
so

h = ∆s cos (90 ◦ − φ)

and we can use a trig identity to write this as

h = ∆s sin (φ)

so

∆A =
1

2
r∆s sinφ

but

∆s = v∆t
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where so long as ∆t is not too big we can assume v is nearly constant, so

∆A =
1

2
r2v∆t sinφ

The angle φ is the angle between the v direction and the r direction when the satellite is

in the first position. And p is in the v direction, so

φ = φrp

then

∆A =
1

2
∆t
�
rv sinφrp

�

Now let’s return to our angular momentum equation

L = r × p

= ms

�
rv sinφrp

�

If we just had a m in the ∆A equation, we could write ∆A in terms of L, so let’s

multiply ∆A by ms/ms

∆A =
ms

ms

1

2
∆t
�
rv sinφrp

�

=
1

2ms

∆t
�
msrv sinφrp

�

=
1

2ms

∆tL

then the area swept out per unit time would be
∆A

∆t
=

1

2ms

L

Now let’s consider, would we expect that L would be conserved? There is no

interplanetary atmosphere, so we would not expect a drag force. All we have is the

gravitational force and for this problem it is an internal force for the Earth­sattelite

system. If there is no net external force then there is no net external torques so L will

be concerned and this means that L can’t change. It is a constant. And the mass of the

satellite is not changing, so ∆A/∆t can’t change. Kepler’s second law does work! The

area swept out in a given time is constant.

But notice what Kepler’s second law tells us.
∆A

∆t
=

1

2ms

�
msrv sinφrp

�

As the satellite in our Molniya orbit gets farther away (r gets bigger) something else

must get smaller to balance the increase in r. It is the orbital speed v that decreases.

The satellite slows down as it gets farther away and speeds up as it gets closer to the

environmental object, the Earth.

Orbital motion is wonderfully simple and yet a bit mathematically complex. To describe
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Kepler’s laws more completely, it takes all we have learned; forces, conservation of

energy, momentum, and angular momentum, along with the basics of position, velocity,

and acceleration. Of course this is a multidimensional problem and vector notation is

required. If you brave and curious, read Appendix (A) which uses all these concepts to

show that if we have our gravitational force

W = G
mmmE

r2mE
that the orbits must be elliptical (or more accurately, conic sections). It is a beautiful

piece of physics problem solving. But it is a long problem and likely too much for

PH121. If you are going on in the adventure of learning physics, it is something that

you soon would be able to do! If not, it gives an idea of what physics students do after

PH121 (and PH123, and PH220, and PH279).





37 Einstein’s Relativity

Newton started our understanding of gravitation. But there was that problem that the

mover mass and the environmental mass pull on each other; Why? and how to they

even know the other mass is there? So far we have said that the environmental mass

creates a change in the region of space around the mover object. We call that change

a gravitational field. As the mover mass moves through the environmental mass’

gravitational field the force is generated. But how does this work?

Einstein solved this puzzle. His answer was the theory of General Relativity. General

relativity has two fundamental ideas

1. All the laws of nature have the same form for observers no matter whether their
frame of reference is accelerating or not.

2. The gravitational field is equivalent to an accelerated frame of reference without a
gravitational field.

The first one is a radical change from what we learned about relative motion. We said

we would only use reference frames that don’t accelerate. Occasionally this caused

us some problems, like when we thought of rotating platforms. A rotating platform

constantly changes direction. So it is constantly accelerating. That is not an inertial

reference frame.

This restriction that made our physics equations not work in rotating frames bothered

Einstein. So he assumed that somehow we could make our physics work despite

having an accelerating frame. In his theory all reference frames, inertial or not, will be

equivalent.

The second idea is more subtile. It says that if I put you in a box sitting on the Earth so

you feel gravity, you could not tell the difference between this and if I am pulling the

box, making it accelerate.

Let’s look at these postulates in more detail.
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Postulate 1

I said that Einstein didn’t like the limitation built into Galelean relativity (and special

relativity–for those who will take PH1279) that you could only use inertial reference

frames. Einstein wanted any reference frame to be equivalent. That is, he wanted the

laws of physics to be the same in any reference frame, even an accelerating reference

frame. But how do these new postulates help?

To make this work he had to give up the absoluteness of space and time. He found

that as objects move faster, lengths and durations change. But because we have

watched enough science fiction, these are not strange ideas to us. We are used to

the idea of space warping in imaginary devices like warp drives and into odd shapes

like “wormholes.” A major thing we need to give up is viewing space and time as a

container in which things happen. Space and time (combined into one, space­time) are

malleable, warpable, flexible and stretchable things. Space­time can act on an object,

and it is an active player in the universe. All this comes from the first postulate.

Postulate 2

The second postulate directly addresses the missing parts of the law of gravity. Let’s

start by remembering Newton’s second law. This is one of the laws of physics that we

want to be true in any reference frame. Here is a person standing on a spring scale.

The person will come to equilibrium so the net force Fnet = ma = 0 and we have two

vertical forces, a spring force from the scale, and a weight force. Now suppose we put

our person in a box that is sealed so the person can’t see the environment around the

box.



601

Here the box is suspended on a cable, and the person in the box would see the same

weight on the scale as before. Classically we would say that this is because the box and

its contents are in a gravitational field indicated by the gravitational acceleration −g.

Newton’s second law tells us that the scale would register a force

ma = 0 = SGS −WGE

SGS = WGE

= mg

and our person could write down this reading from the scale.

But suppose we move our box far away from everything else in the universe, and attach

rocket boosters to our box, and accelerate the box through space.
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The person in the box would see a reading on the scale

ma = SGS − 0

SGS = ma

and if the box accelerates with a = +g the person in the box would get exactly the

same reading on the scale as the person saw when the box was hanging.

SGS = mg

Einstein thought of these two experiments, and noted that the person in the box could

not tell the difference between being in a gravitational field and being accelerated. And

he asked the question, are the two situations different? Maybe a gravitational field is an

acceleration.

Let’s take another case, say we cut the cable for our Earth­bound box, and remove the

rockets from our space box.
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In the case of cutting the cable we would have a scale reading of

−ma = SGS −WGE

−mg = SGS −mg

0 = SGS

There would be no spring force. In the case of being in space with no rockets,

0 = SGS − 0

SGS = 0

and once again the person could not tell the difference. Einstein decided that if we

consider gravitation and acceleration equivalent, then all the laws of physics would

already work in any coordinate system!

But you might object. If we gave the person some scientific equipment they could

surely tell if they were accelerating or if they were in a gravitational field. So let’s try

that. A simple beginning physics lab experiment might include a ball.
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Would the ball bounce the same way in both cases? The answer is yes! Suppose we

give the person a pendulum.

We would find that the pendulum swing the same, but with one provision. The

gravitational field of the Earth is not uniform. So if we make our box big enough we

would see that the gravitational field lines are closer together at the bottom of the box

than they are at the top. But if we have a sufficiently small box (or an actual uniform

gravitational field) the person could not tell the difference.

We could upgrade our equipment to an electrodynamics experiment.
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If we have a light source at the top of the box and a detector at the bottom we could

detect the light and measure it’s frequency. And here you might think there should be

a difference. Shouldn’t there be a Doppler shift for the case of the accelerating box?35

The light will leave the detector and the detector will move toward the light. That is

exactly the situation that produces a Doppler shift. The idea of a Doppler shift is a

PH123 or PH223 topic. So let me just borrow equations from a future class.

f ′ = f

�
1 + ∆v

c

1− ∆v
c

In our box, ∆v would be small if the acceleration is equal to g, so ∆v/c will be very

small so �
1− ∆v

c
≈ 1

and so

f ′ = f

�
1 + ∆v

c

1− ∆v
c

≈ f

�
1 +

∆v

c

and we can approximate the numerator as not too different than 1 + ∆v
c

without too

much error if ∆v is small. so

f ′ ≈ f

�
1 +

∆v

c

�

f ′ ≈ f + f
∆v

c

35 You don’t have to know what a Doppler shift is for this class. But in a nutshell, when a big truck goes by
you the sound goes RRRRRuuuuum. It changes frequency from a high frequency to a low frequency. All
waves do this. And light is a wave, so its frequency should change with motion too.
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then
f ′ − f

f
≈ ∆v

c
and if we start our box with vi = 0 then vf = 0 + a∆t

∆f

f
≈ a∆t

c
and our light is traveling at

c =
H

∆t
so

H = c∆t

so then
∆f

f
≈ aH

c2

But how about the box hanging in the gravitational field? If Einstein is correct, then we

would predict that the person in the box sitting on the Earth should see a frequency shift

as well! The experiment was done in 1959 at Harvard, and there was such a frequency

shift!

This really solidifies our theory of gravitational fields! The gravitational field is

equivalent to an acceleration! The GPS satellites direct a beam of light at the earth

(radio waves) and as the beam travels downward the frequency shifts. The amount

is tiny, but relevant to the operation of the GPS system! If we don’t account for the

frequency shift, your GPS in your phone would not work.

We could see this shift more easily if we were on a more dense planet or star.

Note that near the Earth we can use

U = −mgh

but for a larger h we have to use

U = −G
mM

r
= m

�
−G

M

r

�

In our box formula we recognize aH = gh as the gravitational potential energy per

unit mass. We could fix our formula by replacing gH with
�
−GM

r

�
for a distance

comparable to the size of the star or planet. Then our frequency shift would be
∆f

f
≈ G

M

c2r

So our gravitational and accelerating cases are the same! And this new view point

predicts a frequency shift that exists, but our old gravitational field model misses!
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The equating of gravitation and accelerated reference frames is called the principle of

equivalence and really it was hiding in our Newtonian physics in a way. We have said

before that the mass that makes things hard to accelerate

Fnet = ma

is the same as the mass that causes gravitation. This is a statement that acceleration is

equivalent to gravitation!

But we had to give up something classical to make all this work. What we gave up was

a container space­time. Einstein’s space­time warps and bends. A two dimensional

analog of a warped three dimensional space is shown below.

A particle traveling along this space will change direction because of the warped part.

But what can warp space?

Einstein postulated that mass warps space. So the situation in the last figure could be

a photon passing by a super heavy object like a star. This warping of space was the

first experimental evidence for general relativity. The experiment took place during a

total eclipse of the sun. Stars that were behind the sun became visible earlier than they

should have because their light was bent in the warped space due to the mass of the Sun.

An artificial version of this experiment can be done by emitting a radio beam at another

planet as it orbits the Sun
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The light has to travel farther because it must traverse the warped region near the Sun,

so there is a measurable delay in the signal. The closer to the mass you get, the more

warped the space is. We would expect, then, to see an effect of this warping of space

in the motion of planets that are close to the Sun. And we do! The orbit of Mercury is

affected by the warping of space when it is nearest the Sun at its parhelion. In the next

figure the eccentricity of an orbit is exaggerated. An orbit without space warping would

be a perfect ellipse. But if the space is warped the planet must travel through more

space in the warped part, and this delays the planet a little causing the ellipse to deform.

The orbit precesses or wobbles into a new direction.

The change in direction is small, for Mercury it is only of 10−6 rad per orbit, but the

effect is cumulative, making the orbit more off every time the planet goes around the

Sun. Measuring this in Mercury’s orbit is hard, because there are other reasons for a

precession of Mercury’s orbit due to the gravitational effect of the other planets. But in

the orbit calculations there was always a missing piece, until Einstein.

But there is more than just the thought that mass curves space. Look at the following

figure. A particle moves in a flat space from A to B.
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If the flat space­time was in a classical gravitational field then the particle would “fall”

as it traveled toward B.

But we get the same result if we allow a curved space.

Here the particle isn’t attracted to the mass that causes the curve. The particle is just

following along the curved space. But it looks just like the Newtonian gravity case. The

implication is startling. There isn’t a force of gravity! The apparent force of gravity is

just movement of objects in a curved space time. The reason it looks like the objects

are attracted to a mass is because the mass caused the curvature of the space, but not

because the objects actually attract each other.

Gravitational waves

In Einstein’s general relativity a moving mass can make waves in the stretchy
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space­time. If we found such waves, this would be a great test for our gravitational

theory. The waves would travel at the speed of light. But for normal masses (like stars

and planets) the waves would be very small. However, large events like the collision of

two black holes or neutrons stars could make a measurable wave. The LIGO detector

first found gravitational waves in 2018.

Concept of LIGO: A schematic diagram of a laser interferometer with light storage arms.

The top two plots show data received at Livingston and Hanford, along with the predicted shapes

for the waveform. These predicted waveforms show what two merging black holes should look

like according to the equations of Albert Einstein’s general theory of relativity, along with the

instrument’s ever­present noise. Time is plotted on the X­axis and strain on the Y­axis. Strain

represents the fractional amount by which distances are distorted.
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So what is a gravitational field then?

A gravitational field is an acceleration field. It is caused by warping the space between

two objects. Suppose again our astronaut is in space in the general vicinity of the Earth

The Earth’s mass compresses the space between the Earth and the astronaut. Because

the space between the Earth and the astronaut is being compressed, the astronaut moves

closer to the Earth. It is as though the Earth is pulling the astronaut in. But really it is

compressing the space in between the two so the astronaut get’s closer.

Retrospective

This is where PH121 ends. We have learned a lot about how an object moves. and that

was our goal. But have we learned everything about the motion of an object?

Clearly the answer is no, or there would be no PH123 or PH220 etc. So what have we

left out?

Well, objects can move together, like air molecules in wind or water molecules in

waves on the ocean. We will study this in PH123 (or PH223). We also have electric and

magnetic forces on charged objects. We will take on these forces and the motions they

cause in PH220 (or PH223).

We have also left out motion of very fast objects, a topic we will study in PH279. And

we have not dealt with the tiny motions inside atoms. This is also a topic for PH279.

If you are staying with us for these classes, you will obtain a profound understanding

of motion. But if you can’t take these fascinating courses, you now know enough to

solve many problems that occur in everyday life and everyday devices. To design these

devices you will need more math and more course work based on that math. But we

have all the concepts of everyday motion of single objects or simple systems in our

heads now.

I hope these lectures have changed how you look at the world and all the moving

objects in that world!





Elliptical orbits

In most of our work in PH121 we used circular orbits. Kepler said orbits should be

elliptical. And that is true. We won’t go though this in class, but showing that Newton’s

law of gravitation implies an ellipse is a great way to show off our new mathematics of

dot and cross products. And it uses nearly everything we have learned in PH121! So if

you are comfortable with our new math, and curious to see how orbits work, read on.

Let’s start with Newton’s second law for our orbiting satellite again.

−→
W = −ms

−→a
= −msg (r) r̂

= −ms

�
G

ME

r2Es

�
r̂

We can write this as

−ms
−→a −ms

�
G

ME

r2Es

�
r̂ = 0

The subscripts may become burdensome, so we will drop them now, but remember that

r = rEs is the distance from the satellite to the Earth center of mass to center of mass.

−ms
−→a −ms

�
G

ME

r2

�
r̂ = 0

Conservation of Orbital Mechanical Energy

Now we are going to do something strange. For no apparent reason, lets compute the

dot product of both sides of this equation with −→v
−→v ·

�
ms
−→a +ms

�
G

ME

r2

�
r̂

�
= −→v · 0

then
−→v ·ms

−→a +−→v ·ms

�
G

ME

r2

�
r̂ = 0

or

ms
−→v · −→a +ms

�
G

ME

r2

�
−→v · r̂ = 0
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Now we need to learn a little bit more about dot products mixed with derivatives. We

have a position vector −→r = rr̂ The derivative of this position vector is
d−→r
dt

=
d

dt
(rr̂)

= r
dr̂

dt
+

dr

dt
r̂

so if we take
d−→r
dt

· r̂ =

�
r

dr̂

dt
+

dr

dt
r̂

�
· r̂

= r
dr̂

dt
· r̂ + dr

dt
r̂ · r̂

= 0 +
dr

dt
since dr̂/dt = 0.

So
d−→r
dt

· r̂ = dr

dt
and we recognize

−→v =
d−→r
dt

so we can write our orbit equation as

ms
−→v · −→a +ms

�
G

ME

r2Es

�
d−→r
dt

· r̂ = 0

or even

ms
−→v · −→a +ms

�
G

ME

r2

�
dr

dt
= 0

We can do something similar for the first term We can recognize

−→a =
d−→v
dt

and that −→v = vv̂ where v̂ is a unit vector in the same direction −→v . Then
d−→v
dt

=
d

dt
(vv̂)

= v
dv̂

dt
+

dv

dt
v̂
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and
−→v · −→a = −→v · d−→v

dt

= −→v ·
�

v
dv̂

dt
+

dv

dt
v̂

�

= −→v · vdv̂

dt
+−→v · dv

dt
v̂

= vv̂ · vdv̂

dt
+ vv̂ · dv

dt
v̂

= 0 + v
dv

dt
v̂ · v̂

= v
dv

dt
so our orbit equation becomes

msv
dv

dt
+ms

�
G

ME

r2Es

�
dr

dt
= 0

Now let’s play a clever mathematical trick. Let’s take the derivative of the kinetic

energy with respect to time.
d

dt

�
1

2
mv2

�
=

1

2
m

d

dt

�
v2
�

=
1

2
m

�
2v

dv

dt

�

= mv
dv

dt
Notice that this is in our orbit equation! So then

msv
dv

dt
+ms

�
G

ME

r2

�
dr

dt
= 0

becomes
d

dt

�
1

2
mv2

�
+ms

�
G

ME

r2

�
dr

dt
= 0

We can play this trick again for the second term
d

dt

�
G

ME

r

�
= GME

d

dt

�
1

r

�

= GME

�
− 1

r2
dr

dt

�

which once again we recognize this as part of our orbit equation so we can write
d

dt

�
1

2
mv2

�
−ms

d

dt

�
G

ME

r

�
= 0

or
d

dt

��
1

2
mv2

�
−ms

�
G

ME

r

��
= 0
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which tells us that �
1

2
mv2

�
−ms

�
G

ME

rEs

�
= constant

That is, the mechanical energy is conserved since we recognize this as just

K + Ug = constant

And this makes sense. There are no energy loss mechanisms in our orbit. We are

assuming our masses are particles (using particle model, no tidal forces inside the

objects, etc.) So we expect conservation of energy in forming our orbit.

Conservation of Orbital Angular Momentum

Now, let’s do just what we did before only let’s use a cross product with −→r .

−→r ×
�
−ms

−→a −ms

�
G

ME

r2

�
r̂

�
= −→r × 0

−−→r ×ms
−→a −−→r ×ms

�
G

ME

r2

�
r̂ = 0

ms
−→r ×−→a +msG

ME

r2
−→r × r̂ = 0

ms
−→r ×−→a +msG

ME

r2
rr̂ × r̂ = 0

The last term has r̂ × r̂. The angle between r̂ and r̂ must be zero (they are in the same

direction) so

r̂ × r̂ = (1) (1) sin (0) = 0

and we are left with

ms
−→r ×−→a = 0

which really does note seem to helpful, but it is. Consider that

−→a =
d2−→r
dt2

so
−→r ×−→a = −→r × d2−→r

dt2

= −→r × d2 (rr̂)

dt2

Now consider the quantity
d

dt

�
−→r × d−→r

dt

�
= −→r × d2−→r

dt2
+

d−→r
dt

× d−→r
dt

The second term must be zero because the angle between any vector and itself must be

zero and sin (0) = 0, but the first term is just what we have in our equation! so our
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equation becomes

ms
−→r ×−→a = ms

d

dt

�
−→r × d−→r

dt

�
= 0

which we can write as
d

dt

�
−→r ×ms

d−→r
dt

�
= 0

d

dt
(−→r ×ms

−→v ) = 0

=
d

dt

�−→
L
�
= 0

and, hurray! we have conservation of angular momentum for our general orbit!

Conic Section Equation

You may not be as thrilled as I was at this point, but what we have done is typical

for physicists. We use the power of mathematics and some ingenuity to predict what

motions will be. You might say, “but I would never think of taking cross and dot

products seemingly randomly to find a result.” This may be true now, but as you get

used to using the mathematical tools an operation like this may become more obvious.

In any case, recall that early physicists spent many years trying out ways to use their

mathematical tools. So eventually someone was bound to try our cross and dot product

tricks. But we have only shown conservation of energy and angular momentum. We

have not reached our goal. So let’s return to our basic motion equation that we started

with

−ms
−→a −ms

�
G

ME

r2

�
r̂ = 0

and add to it our equation for angular momentum
−→
L = −→r ×ms

−→v
and form the cross product of the two�

−ms
−→a −ms

�
G

ME

r2

�
r̂

�
×−→L = 0×−→L

ms
−→a ×−→L +ms

�
G

ME

r2

�
r̂ ×−→L = 0

Again this may not seem like an obvious thing to do! But we find that

ms
−→a ×−→L = −

�
G

ME

r2

�
r̂ ×−→L
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and it is time for another mathematical trick. Consider the quantity

d

dt

�−→v ×−→L
�

= −→v × d
−→
L

dt
+

d−→v
dt

×−→L

= −→v × d

dt
(−→r ×ms

−→v ) +−→a ×−→L

= −→v × (0) +−→a ×−→L
= −→a ×−→L

For our situation because we have already shown that angular momentum is conserved.

So we have

ms

d

dt

�−→v ×−→L
�
= −

�
G

ME

r2

�
r̂ ×−→L

Now let’s look at the right hand side. Writing out the angular momentum gives

r̂ ×−→L = r̂ × (−→r ×ms
−→v )

and I will use a vector product identity that I will let the math department teach you
−→
A ×

�−→
B ×−→C

�
=
−→
B
�−→

A · −→C
�
−−→C

�−→
A · −→B

�

so for us
−→r ×−→L = ms

−→r × (−→r ×−→v )
= ms (

−→r (−→r · −→v )−−→v (−→r · −→r ))
= ms

�−→r (−→r · −→v )−−→v r2
�

We already know that r̂ · −→v = rdr/dv so

r̂ ×−→L = ms

�
rr̂

�
r

dr

dv

�
−−→v r2

�

then finally

ms

d

dt

�−→v ×−→L
�

= −
�

G
MEms

r2

��
r2
�

dr

dv

�
r̂ −−→v r2

�

= − (GMEms)

��
dr

dv

�
r̂

r
−
−→v
r

�

Let’s employ one more mathematical trick
d

dt

�−→r
r

�
= −−→r 1

r2
dr

dt
+
1

r

d−→r
dt

= −−→r 1

r2
dr

dt
+
1

r
−→v

= −
�

r̂
1

r

dr

dt
− 1

r
−→v
�

and this is the part of our equation that I wrote in square brackets, so with a substitution
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our equation becomes

ms

d

dt

�−→v ×−→L
�
= (GMEms)

�
d

dt

�−→r
r

��

or, canceling the dt factors from both sides

msd
�−→v ×−→L

�
= (GMEms)

�
d

�−→r
r

��

and we can integrate both sides

ms

�
d
�−→v ×−→L

�
= − (GMEms)

� �
d

�−→r
r

��

to find

ms
−→v ×−→L = (GMEms)

�−→r
r

�
+
−→
B

where
−→
B is a vector constant of integration.

Once again for no apparent reason let’s take the dot product of this equation with −→r
−→r ·

�
ms
−→v ×−→L

�
= − (GMEms)

−→r ·
�−→r

r

�
+−→r · −→B

and use another vector product identity
−→
A · −→B ×−→C =

−→
A ×−→B · −→C

We can write this as to write our dot product equation as

(ms
−→r ×−→v ) · −→L = (GMEms) r + rB cos θrB

or
1

ms

(−→r ×ms
−→v ) · −→L = (GMEms) r + rB cos θrB

(−→r ×ms
−→v ) · −→L = (GMEms) r + rB cos θrB−→

L · −→L = (GMEms) r + rB cos θrB

L2 = (GMEms) r + rB cos θrB

and now we can solve for r

L2 = r ((GMEms) +B cos θrB)

then

r =
L2

((GMEms) +B cos θrB)
or, rearranging slightly,

r =
L2/ (GMEms)

(1 + (B/GMEms) cos θrB)

If we compare this to the parametric equation for a conic section (straight out of your

calculus text book),

r =
p

1 + e cos ν
we can see that our orbit must be a conic section with a semi­latus rectum,

p = L2/ (GMEms) and an eccentricity, e = B/GMEms and an angle ν = θrB. This
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means our orbit could be any conic section, circle, ellipse, parabola, or hyperbola.

For satellites we most often choose ellipses. But the other conic sections are possible.

So Kepler was partially right. An ellipse is a general form for an orbit, but it might even

be better to write Kepler’s law to say that orbits are conic sections.

If you are a normal PH121 student, your reaction to this problem might be “Agh, maybe

I should change my major to horticulture!” But don’t worry, This was really a junior

level problem, and for us physics majors we have many classes (both physics and math

classes) to take before we would be expected to do a problem like this. Still it is fun to

see that we can do a problem like this with the math we learned in lowly PH121 if we

are very persistent!
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Trigonometry and Polar Coordinates

Coordinate Systems

We need a context in which to describe motion graphically. Like a city map, there needs

to be a way to tell where we are going and where we have come from. In a western city,

we often find a city grid with addresses marked with a number of streets from a central

location. Here in Rexburg we have such a system. We have addresses like 300N and

200E. We need such a system for our use.

Often we will use a Cartesian coordinate system (much like the Rexburg system, which

is patterned after a Cartesian system).
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We could also make a coordinate system by using the distance from the origin and an

angle from the x­axis.
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x

y



r

x

y



r

I’m sure you will recognize this from your precalc class as the polar coordinate system.

We could extend these to three dimensions (and we will later). Einstein used a very

complicated curved three dimensional coordinate system to describe General Relativity.

So what seems like a simple idea can become very complicated. Fortunately, we can

usually use Cartesian coordinates for most of what we will do in this class.

We will need to think about coordinates a bit. Is there really a zero point in the

universe? If not, then are we always free to choose one?

For distances, we do not believe there is a ultimate zero point. When we get to other

quantities (like temperature) we will see that sometimes there is a physical zero point.

Question 1.4

Question 1.5

Question 1.6

Question 1.7

Question 1.8

Question 1.9

We have already noticed that our position vector is really just a use of polar coordinates.

And in remembering polar coordinates, you probably recall that there is trigonometry

involved.

Given the triangle below, we recall that
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sin (θ) =
side opposite θ

hypotenuse
=

y

r
(38.1)

cos (θ) =
side adjacent to θ

hypotenuse
=

x

r
(38.2)

tan (θ) =
side opposite θ

side adjacent to θ
=

y

x
(38.3)

Suppose I know r and θ but not y, I can find y using

y = r sin (θ) (38.4)

We can use cosine and tangent in a similar way.

Suppose we know r and y, but not θ. We can find this using

θ = arcsin
�y

r

�
(38.5)

which is often written as

θ = sin−1
�y

r

�
(38.6)

Also recall the Pythagorean theorem

r2 = x2 + y2 (38.7)

The combination of these ideas will be used over and over in our study of vectors. If

you are a little rusty with trig, it is a good idea to review a little. Most math departments

at universities have short refresher courses at the beginning of semesters (BYU­I does!)

or you can review using one of the online courses (e.g. Kahn Acadame).
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A nice way to remember the trig functions is to think of our triangle inscribed in a unit

circle. The cosine of the angle gives the projection of r onto the x axis. Likewise, the

sine functions the projection of r onto the y axis.
j

î


x

y r

j

î


x

y r

As an example of the use of trig functions, we can use them to convert from Cartesian

coordinates (x, y) to polar coordinates (r, θ). We start with

r =
�

x2 + y2 (38.8)

from the Pythagorean theorem,

Then we note that

tan (θ) =
x

y
(38.9)

to yield

θ = tan−1
�

x

y

�
(38.10)

You probably remember that we divide circles into angles as shown in the figure above.

We often divide the circle into 360 ◦, like 360 pieces of pizza. By adding up 360th’s if

a circle we can describe larger angles. This is one way to describe angles. If you took

trigonometry, you remember that there are other ways to divide the circle. One that will

be very important to us is the radian. It is just a bigger pizza piece as a base unit (think

of pizza pieces for large foot ball players, you want to start with larger basic units for

them!). Your calculator will do trigonometry in degrees or radians, but you have to

change the settings to tell the calculator which you want. We will deal with radians a

great deal later, but for now you should find out how to set your calculator in degrees

mode.



Table of constants and

fundamental values

Charge and mass of elementary particles

Proton Mass mp = 1.6726231× 10−27 kg
Neutron Mass mn = 1.6749286× 10−27 kg
Electron Mass me = 9.1093897× 10−31 kg
Electron Charge qe = −1.60217733× 10−19C
Proton Charge qp = 1.60217733× 10−19C

α­particle mass36 mα = 6.64465675(29)× 10−27 kg
α­particle charge qα = 2qe

Fundamental constants

Permittivity of free space ǫo = 8.854187817× 10−12 C2

Nm2

Permeability of free space µo = 4π × 10−7 TmA
Coulomb Constant K = 1

4πǫo
= 8.98755× 109Nm2C−2

Gravitational Constant G = 6.67259× 10−11m3 kg−1 s−2

Speed of light c = 2.99792458× 108ms−1

Avogadro’s Number 6.0221367× 1023mol−1

Fundamental unit of charge qf = 1.60217733× 10−19 C

Astronomical numbers

Mass of the Earth37 5.9726× 1024 kg
Mass of the Moon38 0.07342× 1024 kg
Earth­Moon distance (mean)39 384400 km
Mass of the Sun40 1, 988, 500× 1024 kg
Earth­Sun distance41 149.6× 106 kg

36 http://physics.nist.gov/cgi­bin/cuu/Value?mal
37 http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
38 http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
39 http://solarsystem.nasa.gov/planets/profile.cfm?Display=Facts&Object=Moon
40 http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
41 http://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
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Conductivity and resistivity of various metals

Material
Conductivity�
Ω−1m−1

� Resistivity
(Ωm)

Temp. Coeff.�
K−1

�

Aluminum 3.5× 107 2.8× 10−8 3.9× 10−3

Copper 6.0× 107 1.7× 10−8 3.9× 10−3

Gold 4.1× 107 2.4× 10−8 3.4× 10−3

Iron 1.0× 107 9.7× 10−8 5.0× 10−3

Silver 6.2× 107 1.6× 10−8 3.8× 10−3

Tungsten 1.8× 107 5.6× 10−8 4.5× 10−3

Nichrome 6.7× 105 1.5× 10−6 0.4× 10−3

Carbon 2.9× 104 3.5× 10−5 −0.5× 10−3



Problem Types and Equation

Sets

Throughout the lectures in this book, we refer to problem types and their accompanying

equation sets. A set of problem types is compiled here, with a suggested group of

equations for the equation set. This may not be an all­inclusive list of problem types,

and you may consider grouping the equations differently

Basic definition of displacement

∆y = yf − yi

∆x = xf − xi

Average velocity and acceleration

−→v ave =
∆−→x
∆t

−→a ave =
∆−→v
∆t

Instantaneous velocity and acceleration

−→v =
d−→x
dt

−→a =
d−→v
dt

xf = xi +

� tf

ti

vdt

vf = vi +

� tf

ti

adt

Constant Acceleration (Kinematic)
∆x = vix∆t+ 1

2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x
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Free Fall
∆y = viy∆t+ 1

2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay∆x
ay = −g

Components of vectors

vx = v cos θ

vy = v sin θ

v =
	

v2x + v2y

θ = tan−1
�

vy
vx

�

Projectile motion

∆x = vix∆t+ 1
2ax∆t2

vfx = vix + ax∆t
v2fx = v2ix + 2ax∆x

∆y = viy∆t+ 1
2ay∆t2

vfy = viy + ay∆t
v2fy = v2iy + 2ay∆y

ay = −g

ax = 0

Circular motion

Linear Circular
∆r = rf − ri ∆φ = φf − φi
∆t = tf − ti ∆t = tf − ti
vave =

∆r
∆t ωave =

∆φ
∆t

v = dr
dt

ω = dφ
dt

ω = vt
r

Relative Motion

−→v bA = −→v bB +
−→
VBA

−→v bB = −→v bA −
−→
VBA
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Uniform Circular Motion
∆φ = φf − φi
∆t = tf − ti
ωave =

∆φ
∆t

ω = dφ
dt

ω = vt
r

Non­uniform Circular Motion

ac =
v2t
r

∆φ = φf − φi
∆t = tf − ti
ωave =

∆φ
∆t

ω = dφ
dt

ω = vt
r

α = dω
dt

α = at
r

rotational kinematics set

ωf = ωi + α∆t

∆θ = ωi∆t+
1

2
α∆t2

ω2f = ω2i + 2α∆φ

ωave =
ωf + ωi

2

Arclength kinematics set

vf = vi + at∆t

sf = si + vi∆t+
1

2
at∆t2

v2f = v2i + 2at∆s

Forces Basic Set

−→a=
−→
Fnet

m−→
Fnet = m−→a
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−→
F net =

6


n=1

−→
F n

Fnetx =
6


n=1

Fxn

Fnety =
6


n=1

Fyn

−→a=
−→
Fnet

m

Equilibrium

−→
Fnet = 0 equilibrium

Newton’s gravitation

W = mg

W = Fg = G
mmmE

r2mE

G = 6.67× 10−11
Nm2

kg2

ME = 5.89× 1024 kg

RE = 6.37× 106m

F = G
MEma

(RE + h)2
orbit with altitude h

Friction

fs ≤ µsN

f
k

= µkN

f
r

= µrN

Material µs µk
Rubber on concrete 1.00 0.80
Steel on steel 0.74 0.57
Wood on wood 0.25− 0.50 0.20
Waxed wood on snow 0− 0.14 0.04− 0.1
Ice on ice 0.10 0.03
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Drag

D =
1

2
CρAv2

Momentum

−→p = m−→v
−→
F ave =

∆−→p
∆t

∆−→p = −→p f −−→p i

−→p f −−→p i = J̄
−→p f −−→p i =

−→
F ave∆t

−→
F net =

d−→p
dt

−→p f −−→p i =

� −→
F net (t) dt

−→
P =

N


i=1

−→p i

d
−→
P

dt
=
−→
F externalnet

−→
P f =

−→
P i

Energy

K =
1

2
mv2

Ug = mgy

Ei = Ef

Ki + Ui = Kf − Uf
1

2
mv2i +mgyi =

1

2
mv2f +mgyf

Springs

S = Fs = −k∆y

Us =
1

2
k (x− xo)

2

where xo = xe is the equilibrium position for the spring.

Work
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w = ∆K

w =

� sf

si

−→
F · d−→s

∆Us = −w

Force and potential energy

∆U = −w = −
� −→

F (s) · −→ds

∆U = −
� −→

F (s) · −→ds

Thermal energy

Ei = Ef

Ki + Ui +Ethi = Kf + Uf +Ethf

1

2
mbv

2
i +mgyi =

1

2
mv2f +mgyf +wf

Ki + Ugi + Usi + Uei +Ethi = Kf + Ugf + Usf + Uef +Ethf

Power

P =
dw

dt

P =
∆U

∆t

P =
dEany

dt
P =

−→
F · −→v

Dot Product
−→
A · −→B = AB cos θAB

Center of Mass

xcm =
Σmixi
Σmi

=
m1x1 +m2x2 + . . . +mnxn

m1 +m2 + . . .+mn

ycm =
Σmiyi
Σmi

=
m1y1 +m2y2 + . . . +mnyn

m1 +m2 + . . . +mn

xcm =
1

M

�
xdm

ycm =
1

M

�
ydm

λ =
M

L
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Moment of Inertia

I =



i

mir
2
i

I =

�
r2dm

I = Icm + d2M

Rotational Kinetic Energy

Krot =
1

2
ω2I

Emech =
1

2
Mv2cm +

1

2
Iω2 + Ug

Torque

τ = rF sin θrF
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Rotational Dynamics

α =
τnet

I

Rotating without slipping

−→v i =
−→v cm +−→v t

Ktotal = Krot +Kt

=
1

2
Iω2 +

1

2
mv2

Direction for Angular quantities

Cross Products
−→
A ×−→B

���−→A ×−→B
��� = AB sin θAB

Torque Again
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−→τ = −→r ×−→F
Equilibrium

−→
Fnet = 0 equilibrium
−→τ net = 0 equilibrium

Angular Momentum

−→
L = I−→ω

−→
L = −→r ×−→p
−→
L =




i

−→
L i

Stress and Strain

F

A
= Y

∆L

Lo
F

A
= Tu

∆P =
∆F

Asurface

= −B
∆V–
V–

P ≡ F

A

Fout = Fin
Aout

Ain

Newton’s gravitation

Fg = G
mmmE

r2mE

G = 6.67× 10−11
Nm2

kg2

g (r) = G
ME

r2mE

Ug (r) = −G
MEmm

rmE

Circular orbits

K = −1
2

Ug
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vt =

�
G

ME

rEs

Emech =
1

2
Ug

Kepler’s laws

T 2 =
4π2

GME

r3Es

x2

a2
+

y2

b2
= 1

∆A

∆t
=

1

2ms

L

∆A

∆t
=

1

2ms

�
msrv sinφrp

�

vt =

�
G

ME

rEs
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