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Preface

This class is a class on experimentation. The goals of the course are to help you

understand the following:

1. Error and how to deal with and report error in experiments

2. How to communicate experimental results

3. Numerical Modeling and how error can be calculated in a numerical model

4. Experimental Design

With just 13 weeks of labs, one lab a week, it is a challenge to achieve all of these goals.

It will greatly help if you will read the reading assignment and the lab introduction

before coming to class each week.

Even though this is a somewhat daunting set of goals, this class is also a lot of fun. The

class ends with you designing and performing your own experiments.

In a way, this class allows us to ask the question “how do we know things in the

sciences?” This is an important question for our era.

I hope you do have fun in this class, but I hope you also think about how we think about

science.
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1 Measurement and Uncer-
tainty I

Hopefully you have read the first three chapters of Taylor’s book. This is a quick review.

The philosophy of experimental measurement

In experimental physics, we assume that at a single instant of time that there is a

“correct” value for some physical quantity we wish to know. For example, how

fast a car is going at a particular time. The correct value might be something like

64.99999mi/h (because we don’t speed here at BYU-I).

The problem is that we can never measure this “correct” value. That is because no

instrument is perfectly accurate. We have to make do with the goal of getting as close

as we can to the “correct” value. Your speedometer, for example, probably would report

this speed as 65mi/h. But that is not exactly correct.

Several factors affect how well we can measure quantities.

• Proper instruments

• Instrument calibration

• Measurement repeatability

• Quantization error

Actually there are more factors, but we will deal with the first three in PH150. PH 250

will deal with computer control and so will likely introduce quantization error. If you

are a physics major, you will take PH336 and deal with additional error factors.

values

In experimental physics we use the word value to mean a number and its units. For

example, we might measure a metal rod and say that the length of the rod is

L = 97.6 cm

The number is 97.6 and the units are centimeters ( cm) . Together they are a value.

Numbers without units are not useful in experimental physics. You should always

report both a number and its units.

Errors

I give you this rod length, all you really know is that the rod is not longer than about
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97.7 cm or shorter than 97.5 cm (assuming you trust my ability to measure rods!).

Could you be sure that the rod was not really 97.61 cm or maybe 97.62 cm?

After making a measurement we have some uncertainty left over because of the

limitation of our instrument. In this case our instrument is a meter stick, and you know

that meter sticks have a smallest tick mark spacing, usually 1mm. I could probably

judge to within half a millimeter. But it would be kind of crazy to say that you could be

correct to within a 0.000001m using a meter stick. You will learn in PH123 that meter

sticks expand and contract with changes in temperature. So the meter stick, itself is not

correct to within a hundredth of a millimeter!

One way to express this uncertainty in a measured value is by using significant figures.

You have probably done this in high school.

We assume the last figure (in this case the 6) holds the uncertainty. Think of making

this measurement. You would not be to uncertain about the 90 cm represented by the

first digit. It is a big mark on the meter stick, and you could probably tell that the rod

was almost a meter long without actually measuring. You are probably not to uncertain

about the 7 cm represented by the second digit. You can easily read this from the meter

stick. You will have to count millimeter marks to get the 0.6 cm represented by the last

digit. But it is unlikely that the rod will end exactly at on the sixth millimeter mark.

So this is where our uncertainty comes in. This is why we call the last digit the least

significant digit, because it is the most uncertain.

If I give you a measurement like 97.6 cm you would assume that I could be off by

0.1 cm or by one millimeter. That is what stating 97.6 cm means. It would be better to

state this explicitly

L = 97.6± 0.1 cm

But you may object! You can do better than ±0.1 cm with a meter stick. And so can I.

This is one reason using significant figures is not such a great idea. It would be better to

state our measurement and tell the person with whom we are communicating what we

think the uncertainty really is. Say

L = 97.65± 0.03 cm

This means that I measured 97 cm, then counted up six millimeter marks, and noticed
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that the rod end landed at just about half a mark more beyond the sixth mark. I am

telling you that I think because of thermal expansion (and my poor eyesight) that I can

only be sure of this measurement to within about a third of a millimeter.

We will always use this notation to report values and their errors in this class.

If you report a value without an uncertainty, something is wrong (and the grader will

surely notice!). This is because in your actual jobs as scientists not being clear about

how well you know a value can be disastrous, even causing loss of life or property. So

to keep you safe in future jobs, we will use best practices here.

Precision

So far when we have considered how correct our value is what we have really been

talking about is the precision of our measurement. If I measure the metal rod 50 times,

I will get about the same measurement, but not quite, each time. I might do a poor job

of lining up the meter stick and the rod, or the temperature might change and the meter

stick might shrink or expand. Whatever the problem, each measurement will be a little

different. This small �uctuation about the “correct” value is called the precision of the

measurement. It tells us how likely it is to get the same value each time we perform the

experiment.

Think of throwing darts. The dots in the next figure represent the location of five darts

from two dart players.

The blue dots show less spread in their locations than the red dots do. We would say

that the blue dart player was more precise. Another way to say this is there is less

uncertainty in where the blue player’s darts will go. In our notation for reporting a value

the plus-or-minus-part is this uncertainty.

We call the actual measurement the nominal value. That would be where the dart

thrower was aiming. If you know statistics, you can see that this is a little bit like an

average and standard deviation.

Here is another example. Suppose we drive to Idaho falls. The distance is about 29
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miles. If we use our odometer we might find it is marked in 10ths of a mile. So if I

report a drive of 29miles, I might have gone 29.1miles, or 28.9 miles. Let’s place these

on a number line.

Notice that my uncertainty is 0.1mile.

If the distance is called d, then we write the uncertainty in the distance by placing the

Greek letter δ in front of our name to get δd. This is read “delta d” or the “uncertainty

in d.”
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We name the actual measurement, dN where theN is for “nominal value” so then

d = dN ± δd
= 29± 0.1mi

This method of reporting a result is good most of the time, and we will always use it.

But there is another way to report uncertainties that is helpful and we will often also

add this new method to our reporting strategy. To illustrate the need for this second

method, let’s consider two measurements.

The first is the distance from Rexburg to Rochester NY. That distance is about 2082.90

miles or 3352100m. Further suppose that I tell you I have made this measurement to

±1m. Is this measurement good?

Now suppose I measure one of our lab tables. I get that the table is 2m long and I tell

you that my measurement is good to ±1m. Is this measurement good?

You can probably see that the first measurement is very good, while the second

measurement could probably have been done better by guessing the length of the table.

It is a terrible measurement with too much uncertainty.

But what makes the difference? The uncertainty is the same in both cases! Of course

the difference is that in one case the uncertainty is a tiny fraction of the whole value,

while in the table case the uncertainty is a large fraction of the measured value. If the

uncertainty is large compared to the measured value, it is not a good measurement.

But we need a way to communicate this. The error is ±1m in both cases, let’s call

this the absolute uncertainty. Though the absolute uncertainty can’t always tell us the

quality of a measurement, we can use it to calculate

δL

L
= relative uncertainty

This gives the error as a percentage of the total measurement. For our Rexburg to
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Rochester measurement
δL

L
=

1m

352100m
= 2. 840 1× 10−6

and for the table
δL

L
=

1m

2m
= 0.5

Since a good measurement has an error that is a small percentage of the total

measurement, we can easily identify which measurement is better by calculating the

percentage of the total value represented by the uncertainty and observing how small it

is. We call this the “relative uncertainty.”

The relative uncertainty will be small for that good measurement and large for a bad

one. In this case we can easily see that the Rochester measurement is much better by

looking at the relative uncertainty and noting that it is much smaller than the table

relative uncertainty.

Accuracy

having a high precision measurement is good, but not enough. Here is a picture of

our darts again, but this time I have included a target. Suppose you were trying to get

a bull’s-eye. We can see that our blue dart person is very precise, but he missed the

bull’s-eye–and the target! We need more than precision.

Notice that if we look at the average location of the red dart dots, the read dot thrower

does seem to be aiming right at the target. We would say that he is accurate. Accuracy

is whether or not you are aiming at the target. If we drive 29± 0.1mi as we discussed

earlier, but we end up in Ashton instead of Idaho Falls, we would say that no matter

how precise our driving distance is, we did not achieve our goal of getting to Idaho

Falls. We mean that we are not accurate.

This might occur in the lab by having a scale that is not zeroed, or a ruler that is too
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short or has extra material on the end. The measured amount given by an instrument

when it should be measuring zero is called the “zero offset.” If we know about the

problem, we can just adjust the final number by this amount (or re-zero the instrument).

But often we don’t know about such problems and they can be hard to detect.

This type of error is called a systematic error because it affects the system each time it

is used. The device will always be off by this amount until we fix it. We can improve

our uncertainty estimate by taking many measurements and using the average as our

value. But if we aim at the wrong place, no matter how many darts we throw, the

accuracy error won’t get better.

Of course what we want is both accuracy and precision in our measurements. The green

dart dots have both.

Combining uncertainty

Suppose I want you to calculate the area of the cover of your text book. That is easy

you say! it is the width times the height. And you are right

A = w × h
Suppose we measure the book and find it has a height of h = 28.4 cm± 0.2 cm and a

width of 22.2 cm± 0.02 cm. So the area is

A = 28.4 cm× 22.2 cm

= 630. 48 cm2

but wait, what do we do with the uncertainties? If the initial measurements of the

lengths are uncertain, then the area made from them must be more uncertain. We need

a way to combine our uncertainties for the area.

Knowing what our uncertainty means now, the distance to the poorest measurements

from a group, we can guess that if we were off by a positive +0.2 cm on both

measurements, then we would have the biggest area we could possibly get from our

measurements. In some way it would be the most off we could get. Let’s call this

Amax.We would find it to be

Amax = (28.4 cm+ 0.02 cm)× (22.2 cm + 0.02 cm)

= 28.6 cm× 22.4 cm

= 640. 64 cm2

Likewise, if we were off by −0.2 cm on both measurements, then we would have the

smallest area we could possibly get from our measurements. In another way it would
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be the most off we could get. Let’s call this Amin. It would be

Amin = (28.4 cm− 0.02 cm)× (22.2 cm− 0.02 cm)

= 28.2 cm× 22.0 cm

= 620. 4 cm2

To find the uncertainty, consider our trip to Idaho Falls. We found that the uncertainty

was half the distance between our maximum estimate of our distance and the minimum

estimate of our distance. We can use the same procedure for our area. We have the

maximum and the minimum areas. The uncertainty is half the difference between these

two extremes.

δA =
Amax −Amin

2
using our numbers

δA =
640. 64 cm2 − 620. 4 cm2

2

= 10. 12 cm2

so our area should be reported as

A = 630 cm2 ± 10 cm2

There are some tricks to this. We have to make sure we have the biggest value we

can get when we get the maximum and the smallest value when we get the minimum.

Suppose I measure two distances x = 1.5m± 0.3m and y = 3.0m± 0.2m and I want

to calculate

z =
y

x
then

z =
3.0m

1.5m
= 2.0

what would the uncertainty in z be? Last time we chose adding the plus uncertainty to

both values to get the maximum and we subtracted off both uncertainty values to get

the minimum, but this time lets try every combination of plus and minus uncertainties

3.0m+ 0.2m

1.5m+ 0.3m
= 1. 777 8

3.0m+ 0.2m

1.5m− 0.3m
= 2. 666 7

3.0m− 0.2m

1.5m+ 0.3m
= 1. 555 6

3.0m− 0.2m

1.5m− 0.3m
= 2. 333 3

Note that using both + signs did not give the largest value. That is because for division

a smaller denominator makes the fraction bigger. For the maximum we want a + in the
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numerator and a − in the denominator. For the minimum we want a − in the numerator

and a + in the denominator. It is a little tricky, but if we think, we can find the very

biggest possible value and the very smallest possible value every time. To finish this

off, lets find the uncertainty in z

δz =
zmax − zmin

2

=
2. 666 7− 1. 555 6

2
= 0.555 55

I will call this method of estimating the uncertainty the “High/Low method.”

You may wonder if there is a more formal way to do all this. The answer is yes. I will

call the more formal the algebraic method. We will tackle this next.

Algebraic method

We will develop an algebraic uncertainty combination equation for multiplication,

division, addition, and subtraction. We will also tackle variables raised to a power. This

will cover many simple situations, and we can use these formulae today. Eventually

we will want to know how to estimate uncertainty for any function, That is explained

in the reading from the book and we will tackle it in a future lab. But for now our goal

is to have a provisional method for addition, subtraction, multiplication, and division.

Taking a value to a power is really multiplication, so we will tackle it as well. Here is

what we intend to find:

Function Uncertainty Formula

Addition z = x+ y δz = δx+ δy
Subtraction z = x− y δz = δx+ δy

Multiplication z = xy δz
|zN |

=
�
δx
xN

+ δy
yN

�

Division z = x
y

δz
|zN |

=
�
δx
xN

+ δy
yN

�

Multiply by constant z = ax δz = aδx

Powers z = xn δz
|zN |

= n δx
|xN |

We can see that if you have z = x+ y then you just add the uncertainties δz = δx+ δy.

Of course z, x, and y stand for any variable. But how do we know this is true? Here are

the details of how the algebraic method works

Multiplication

To multiply two measurements, say

mmeasured = mN ± δm
vmeasured = vN ± δv
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We could write these as

mmeasured =mN

�
1± δm

|mN |

�

vmeasured = vN

�
1± δv

|vN |

�

This gives us the measurement in terms of the fractional uncertainties. If we wish to

compute

p =mv

we use

pN =mNvN

but what is the uncertainty in p?

The largest value of p is given by

plarge = mNvN

�
1 +

δm

|mN |

��
1 +

δv

|vN|

�

which can be written as

plarge = mNvN

�
1 +

δm

|mN|
+
δv

|vN|
+
δv

|vN|
δm

|mN|

�

We reason that fractional uncertainties should be small, so products of fractional

uncertainties should be very small. We will ignore the very small term

δm

|vN|
δm

|mN|
so we have

plarge = mNvN

�
1 +

δm

|mN|
+
δv

|vN|

�

The smallest value of p is likewise

psmall = mNvN

�
1− δm

|mN|
− δv

|vN|

�

In each case we havemNvN and then either plus or minus the term δm
|mN|

+ δv
|vN|

so we

have, for our calculated value of p

pcalculated = mNvN

�
1±

�
δm

|mN|
+
δv

|vN|

��

which we must be able to write as a nominal value and an uncertainty in p

pcalculated = pN

�
1± δp

|pN|

�

Comparing the previous two equations we can see that we must have

δp

|pN|
=

�
δm

mN

+
δv

vN

�

Then when we multiple measured quantities, we add fractional uncertainties. This is

our algebraic rule for multiplication.

Don’t forget, that we need to report δp, so to find δp we take

δp =
δp

|pN|
pN
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Division

Let’s start again with two measured values x and y with the form

x = xN

�
1± δx

|xN|

�

y = yN

�
1± δy

|yN|

�

We can find the quotient

q = qN ± δq
as we did for multiplication

q =
xN
�
1± δx

|xN|

�

yN

�
1± δy

|yN|

�

Again find the maximum quotient

qlarge =
xN
�
1 + δx

|xN|

�

yN
�
1− δy

|yN|

�

and we will play a mathematical trick, we will multiple both top and bottom by�
1 + δy

|yN|

�
, since

�
1 + δy

|yN|

�

�
1 + δy

|yN|

� = 1

this will not change our value for qlarge

qlarge =
xN

�
1 + δx

|xN|

�

yN
�
1− δy

|yN|

�

�
1 + δy

|yN|

�

�
1 + δy

|yN|

�

The denominator is

yN

�
1− δy

|yN|

��
1 +

δy

|yN|

�

We can perform the multiplication to get

yN

�
1− δy

|yN|
+
δy

|yN|
− δy

|yN|
δy

|yN|

�

= yN

�
1− δy

|yN|
δy

|yN|

�

and we can perform the multiplication in the numerator

xN

�
1 +

δx

|xN|
+
δy

|yN|
+
δx

|xN|
δy

|yN|

�

so

qlarge =
xN
�
1 + δx

|xN|
+ δy

|yN|
+ δx

|xN|
δy
|yN|

�

yN

�
1− δy

|yN|
δy
|yN|

�

The term
δy

|yN|
δy

|yN|
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is very small compared to 1 (if δy/ |yN| is a small number, as we assume, then

δy2/ |yN|2 will be very tiny) so we will drop it from our calculations (we are calculating

uncertainty, the fifth decimal place in the uncertainty is very uncertain!). We can do this

as well with the term
δx

|xN|
δy

|yN|
like we did with the multiplication case. Then

qlarge =
xN
�
1 + δx

|xN|
+ δy

|yN|

�

yN (1)

=
xN
yN

�
1 +

δx

|xN|
+
δy

|yN|

�

We could go through this again for qsmall and we would find

qsmall =
xN
�
1−

�
δx
|xN|

+ δy
|yN|

��

yN (1)

=
xN
yN

�
1−

�
δx

|xN|
+
δy

|yN|

��

We can then write

qcalculated =
xN
yN

�
1±

�
δx

|xN|
+
δy

|yN|

��

= qN

�
1± δq|q|

�

where

qN =
xN
yN

and
δq

|q| =
δx

|xN|
+
δy

|yN|
just like the formula for multiplication! The rule is when we divide measured quantities,

we add fractional uncertainties

Addition

Let’s take two measurements

xmeasured = xN ± δx
ymeasured = yN ± δy

and add them to get the largest value of the sum, z

zlarge = xmeasured + ymeasured

= xN + yN + δx+ δy

We can also find the smallest value for z

zsmall = xmeasured + ymeasured

= xN + yN − (δx+ δy)
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so if we write this as zN ± δz we have

zN ± δz = xN + yN ± (δx+ δy)

and we can identify

zN = xN + yN

δz = (δx+ δy)

The rule is that when we add measurements we add their uncertainties.

Subtraction

Let’s take two measurements

xmeasured = xN ± δx
ymeasured = yN ± δy

and add them to get the largest value of the sum, z

zlarge = xmeasured − ymeasured
= (xN + δx)− (yN − δy)

We can also find the smallest value for z

zsmall = xmeasured − ymeasured
= (xN − δx)− (yN + δy)

so if we write this as zN ± δz we have

zN ± δz = xN − yN ± (δx+ δy)

and we can identify

zN = xN − yN
δz = (δx+ δy)

The rule is that when we subtract measurements, we add their uncertainties just as we

found for addition.

Measured quantity times an exact number

Suppose we want the circumference of a circle. We measure the radius to be

rmeasured = rN ± δr
and we calculate

Ccalculated = 2πrmeasured

how do we determine the uncertainty?

There is not uncertainty in the 2 nor in the π. So we multiply

Ccalc = 2π (rN ± δr)
= 2πrN ± 2πδr
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which gives

CN ± δC = 2πrN ± 2πδr

and we identify

CN = 2πrN

and

δC = 2π |δr|
In general, if we have

q = Bx

where B is a constant, then we should expect

δq = |B| δx

Powers For a power, we really are just multiplying

y = x2 = x× x
so, taking the fractional uncertainty rule for multiplication,

δy

|y| =
δx

|x| +
δx

|x|

= 2
δx

|x|
In general, if

y = xn

then
δy

|y| = n
δx

|x|

Judging success of an experiment

Now we know how to describe the uncertainty in a measurement and we can even

judge if a measurement is a good one using relative uncertainties. We can find final

uncertainties after a calculation. But how do we know, based on our measurements, if

our experiment is a success?

If we have a known value, we can compare our experimental results to that known value

and judge our accuracy. We do this with a percent error

PE =

�
measured value - accepted value

accepted value
× 100

�
%

We can compare this to our relative uncertainty

RE =

�
δ(value)

nominal value
× 100

�
%

Let’s take our drive to IF as an example. Suppose we have a reliable study that shows

the distance to IF is 29.05mi.
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And we go to IF and find that our odometer measures 29± 0.1mi.

The percent error is

PE =

�
29.05mi− 29mi

29mi
× 100

�
%

= 0.172 41%

This is roughly a 2% error.

Our relative uncertainty is

RE =

�
0.1mi

29mi
× 100

�
%

= 0.344 83%

Let’s see what this means

We can see that we are off from the known value by 0.17%, but remember we are

uncertain in our measurement. Our uncertainty tells us we can be anywhere within

0.34% of the value we measured. Since our percent error–how much we are off–is less

than the fractional uncertainty—percent off we can be based on our equipment and

our technique–we can say that this is an accurate value for the distance to Idaho Falls.

More succinctly, if our percent error is smaller than our fractional uncertainty, we are

accurate.

But suppose our percent error is larger than the relative uncertainty? Then we are not

accurate. It is always good when this happens to try to figure out what the problem
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could be. There may be a systematic error, or it may be that you failed to recognize

some source of error.

Here is a rule of thumb for judging the accuracy of an experiment.

1. If the relative uncertainly is larger than the percent error

• The experiment is accurate to within the uncertainty of the experimental

technique

• To improve this measurement, you need better equipment or better technique

2. The relative uncertainty is smaller than the percent error

• The experiment is not accurate to within the uncertainty of the experimental

technique

• To improve this experiment, look for systematic errors

• Consider if you have underestimated the uncertainty

We report this along with our results.

In our first lab, we will get some practice calculating uncertainties and judging

accuracies.
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Lab Notebooks

Hopefully you noticed that a lab notebook is required for this class. The lab notebook

is designed to be a record of what you did. If you had to repeat today’s experiment five

years from now, could you do it based on what you write today?

At most professional labs and major engineering companies your lab notebook is

considered the property of the company or organization. It is the proof that you did the

experiment that you say you did, and that you got the results you say you got. It has to

be readable and understandable to someone who did not participate in the lab with you.

This is a pretty tall order. To help you plan your entries, here are the criteria I will use

to grade your lab book:

• Describing the goal for the work

• Usually this takes the form of a physical law we will test.

• Give predictive equations and uncertainties for the predictions based on the physical

law.

• This usually involves forming a mathematical model. You should record any

assumptions that went into the model (e.g. no air resistance, point sources,

massless ropes, etc.).

• In lab today we will find the volume of the room. Your mathematical model

will likely be V = ℓ × w × h. The mathematical model is not necessarily

something complicated, but the reader needs to know how you are doing your

calculations.

• Give your procedure

• Recording what you really did (not the lab instructions), tell what changes you

make in your procedure as you make them.

• Record as you do the work.

• Record the equipment used and settings, values, etc. for that equipment (see

next item).

• Did you learn how to use any new equipment? What did you learn that you want

to recall later (say, when taking the final, or when you are a professional and

need to use a similar piece of equipment five years from now).

• Record the data you used. . The data are all the measurements you took plus your

best estimate of the uncertainties in the measurements. Record any values you got

from tables or published sources (or from your professor) and state where you got

these values. You don’t always want to write down all the data you use. If you have

a large set of values, you can place them in a file, and then record the file name and

location in your lab notebook. Make sure this is a file location that does not change

(emailing the data to yourself is not a good plan).

• Give a record of the analysis you performed. You should have given some idea of

how you got your predictive equation. Now, what did you do to get the data through

the equation? Were there any extra calculations? Did you obtain a set of “truth data”
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(data from tables or published sources, or from an alternate experiment) for your

experiment? If so, did you do any calculations, have any uncertainty, etc. associated

with the truth values?

• Give a brief statement of your results and their associated uncertainties.

• Draw conclusions

• Do your results support the theory? Why or why not? What else did you learn

along the way that you want to record.

• This is where we may compare the percent error to our relative uncertainty.
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Assignment: Practice with Measurement and Uncertainty calculations.

Part 1 Percent Error: Mass of a Cylinder–the hard way

• Given the density of a metal cylinder, use this density to determine the mass the

cylinder.

• You cannot directly measure the mass of the cylinder, You will be provided a

mass of the cylinder by your instructor to compare with your calculated value.

• Report your method for obtaining the mass of the cylinder in your lab notebook

(not just your result, but tell yourself in your notebook how you got your result).

• Report the following results: 1) Density of the cylinder, 2) Predicted Mass of

the cylinder, 3) Actual Mass of the cylinder. Comment on the accuracy and

precision of your measurement.

• Resources: You may use any equipment or other resources found in the lab or

on the internet

Part 2 Combining Uncertainty: Volume of the room

• Determine the volume of this room, including uncertainties. Describe your method

fully in your lab notebook, including which measuring instruments you used and

why, and the uncertainty in each of your measurements.

• The relative uncertainty in the volume is

δV

V
=
δL

L
+
δH

H
+
δW

W
from Taylor’s equation 2.28 or from our algebraic method multiplication rule.

• Compare your answers with those from your neighboring research institutions at the

other tables. Are your answers the same to within the values of your uncertainty? If

not, explain why they aren’t.

Part 3: Tie to Experimentation

• We will learn in this class that you should understand the uncertainties in our

measuring devices before you start performing an experiment. From what you have

experienced so far today, why do you think this is so?

Part 4 Combining Uncertainty: Determine the Volume of a
Stack of Paper

• Determine the volume of 20 pieces of paper (you can use more, but if you do,

replace the number 20 with your actual number in the equation below).
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• Determine the uncertainty in your measurement.

• Use your measurement to find the volume of one sheet of paper by dividing. Also

determine the uncertainty in your calculation. This should be something like

δV1 =
δV20
20

explain what this means in your lab notebook.

• Now measure the volume of one piece of paper directly using instruments (I might

recommend a micrometer–ask if you have not used one before).

• How do your measurements compare?

• Which one is more accurate? Which is more precise? Why?

Part 5 Turn in your lab notebook.
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Statistical Representation of
Data

So far we have talked about repeating experiments, but we have been too pressed for

time to actually do that. We should take the time to see how to report data from multiple

results. Let’s also tie the idea of multiple results to our ideas of uncertainty.

To do this, I would like to go back to our dart board. Suppose I throw the darts, trying

for a bull’s eye, and I get the following pattern.

We now know that this is fairly accurate, but not very precise. We say that there is a

large uncertainty, but that we are aimed about the right direction. We could get a better

estimate of how accurate we are by repeating the experiment many times

and finding an average location for the darts.
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This average seems to be just a little right of center. Now we know that we should

point the darts a little to the left. Many experiments are like this. We can repeat the

experiment many times. The uncertainty might be larger than we want, but if we

average over many trials of the experiment, we can find an average value that represents

the actual value of the quantity we are trying to find.

Mean value as our best estimate value

The mathematical process we use to find the mean is simple and you are probably quite

familiar with it. We simply add up all the values, and divide the sum by the number of

values.

x̄ =
x1 + x2 + x3 + · · ·xN

N

=
1

N

N�

i=1

xi

The last equation uses sigma notation. It is read as “one over N times the sum of xi

for i = 1 to N. It is a short-hand notation for the line above. We will use this notation

because it makes writing our equations much easier. But that means it is very important

that we understand what it means. So let’s imagine that we have many values for the

x-position for our darts.

x1 = 1.00± 0.01 cm
x2 = 0.50± 0.01 cm
x3 = −0.75± 0.01 cm
x4 = −2.25± 0.01 cm
x5 = 3.00± 0.01 cm
x6 = −0.80± 0.01 cm
x7 = 2.10± 0.01 cm
x8 = 1.2± 0.01 cm

We have labeled each x with a number. That is what the xi means. The “i” is an index.

It stands for any number from 1 to N. Our sigma notation says we add up all these
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positions, and divide byN = 8 since there are eight positions

x̄ =
(1.00 + 0.50− 0.75− 2.25 + 3.00− 0.80 + 2.10 + 1.2) cm

8
= 0.5 cm

which is a little bit to the right of our zero point.

Standard deviation as an estimate of our uncertainty

But what is our uncertainty? Each of our position measurements were good to

±0.01 cm. But this can’t be what governs our uncertainty. We can see our points

are spread out much more than ±0.01 cm. Something in the experiment (the bad dart

thrower) is increasing the uncertainty. We could use our algebraic method to find

the uncertainty, but that would be tedious and may not include the effects of the dart

thrower. It would be great to have a way to use the spread of the points, itself, to obtain

a numerical estimate of the uncertainty. The spread must include the effects of the dart

thrower.

From your study of statistics, you can guess what we will use to represent uncertainty,

but let’s reason it out here. We could take how far each point is from where we aimed

as an indication of how imprecise our throw was. That would be

∆xi = x̄− xi
for each throw. In this equation we are using the Greek ∆ to show a difference, and a

bar over the x to mean “the average value of the x-position.” Then ∆xi is how far off

the ith trow from the mean. Sometimes we are off to the right, and sometimes to the

left. If we add up all the ∆xi values and average them, they will average to nearly zero

most of the time. We can see that zero is not a good estimate of our uncertainty! So the

average deviation won’t work as a measure of uncertainty.

But we can play a trick. The quantity

∆x2i = (x̄− xi)2

is always positive. If we averaged ∆x2i ,

∆x2i =
1

N

N�

i=1

∆x2i =
1

N

N�

i=1

(x̄− xi)2

nothing would cancel out. And we have solved our calcelation problem. But we have

created another problem by doing this, ∆x2i is like the square of our how far we are off.

So let’s take a square root

�
∆x2i =

���	 1

N

N�

i=1

∆x2i =

���	 1

N

N�

i=1

(x̄− xi)2
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The quantity

�
∆x2i , represents about how far off we are on average, it does not tend to

zero, and has the same units as xi so it can be an estimate of our uncertainty. It is about

how far most of the points are off from the mean. But

�
∆x2i is a little hard to write, so

we usually give this quantity the symbol σ, which is a Greek letter s and is pronounced

“sigma.” We also give σ a name. We call it the standard deviation because it is about

how much the average point “deviates” from the mean position. So for our x-position

we can write

σx =

���	
N�

i=1

(xi − x̄)2
N

But what does this math symbology mean? To find σx, we must first find the average

positions to find x̄, then we take each x-position (xi) and we subtract the mean from it

(xi − x̄) .We square the result. We do this for each of our x-positions. Then we have

(x1 − x̄)2 , (x2 − x̄)2 , (x3 − x̄)2 , · · · (xN − x̄)2 .We add these up, and divide by N

to find the average

N
i=1

(xi−x̄)
2

N
. Then we take the square root.

In lab today, I will ask you to do this by hand once. That should be enough to convince

you that you never want to do it by hand again! Normally we will use a computer to

do this. I suggest you use one of our spreadsheet programs, or MatLab to do these

calculations, and not your calculator.

Histograms

Suppose I plot the results of many, many dart throws. The way I want to plot this is

something you have seen from grading for many years. I want the horizontal axis to

show the x-position of the dart throws. I want the y-axis to show the number of darts

that landed at a particular x-position. This type of graph is called a histogram. You

often see grades given like this

where we understand that the bars indicate how many students got an A (two in this

case) and how many got an A− (five in this case) etc.

If there are many students we can plot their scores and the shape of the histogram be-

gins to smooth out some
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The more students or measurements we get, the more smooth the curve looks

If we had infinitely many students, we would get a perfectly smooth curve. You can see

already that coloring in the bars in the graph is not useful any more. So usually we just

draw a point for the top of each bar. These points form a curve.

Unlike student scores, dart positions can be negative. So our dart distribution should

be centered on zero displacement. We will usually find that 68% of the darts will fall

within ±σ of the mean.
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We can see that our σ value is very like an uncertainty. But there is a difference. We

still have 32% of our experiments outside of ±σ, and if we give the uncertainty, δx,

then all of the measurements should be within ±δx. If you are building a space shuttle

and absolutely need to guarantee that your error on your calcuation is within some

limit, then you should use a true absolute uncertainty, ±δx. But for most experiments,

being that certain about our uncertainty is not required, and we can use ±σ as a good

approximation to the uncertainty. We will often do this in this class. If losing 32% is

not acceptable, but finding the true δx is not practical, it is often good enough to use 2σ

or 3σ as the estimate of our uncertainty. 95% of the data will fall with ±2σ, and 99.7%

of the data will fall within ±3σ. So these are more conservative estimates than using a

single standard deviation. But in this class we will stick with just σ.

Standard deviation of the mean

Now you may wonder, does the mean value get better as we take more measurements?

That is, do we become more sure about where we are pointing if we throw more darts

and include these many darts’ locations in our average? I think you will see from our

previous reasoning that this is the case. The more trials of an experiment that we take,

the closer our mean value is to the “truth” value we are measuring. Since this is the

case, shouldn’t the uncertainty go down as we perform more trials?

The answer is yes. We won’t derive this in our class. But the estimate of the uncertainty

should be given by

σx̄ =
σx√
N

where σx is our standard deviation in our x-position values and N is the number of

trials we took. The more trials that go into our average, the lower our uncertainty

estimate. The value σx̄ is called the standard deviation of the mean.

Notice that in some of our grade graphs, the most common score was not a C. Here is

an example:
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As students, this makes us all happier, but for our error analysis this causes a problem.

The error analysis we have talked about so far assumes that our errors are distributed in

a very uniform way. If I go back to this graph

we can see that there are as many darts that landed to the left as there are to the right.

This distribution of errors is called the normal distribution. Usually our errors in our

labs will be normally distributed. That makes all the math we talked about work. But

what if they are not, like our grade example? Well, that is a great topic for PH336.

So for now we will just assume a normal distribution. But we can check to see how

non-normal our data is. We can find the mode which is the value that occurs most

frequently. For our grade distribution above it would be a B.

We can also find the place where half of the trials landed on one side and half on the

other. This is called the median point. We will calculate both in our lab today. If we

have a normal distribution, the average, median, and the mode will all be the same. If

this is not the case, then we may worry a little about our error estimate–it may be too

small.

Graphical reporting of the mean (expected value) and standard deviation
(uncertainty)

We now have a new view of measurement based on statistics. The mean value is

the value that we will say is our measurement. We call this the expected value. The

standard deviation is the representation of our uncertainty. We can plot this in a way

that communicates both at once. If we take our eight data points that we started with

earlier, we know the mean , 0.5 cm, and we can find the standard deviation of the
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mean to be 0.6 cm. We plot this by making a dot or diamond or some larger point

indicator. Then we make a line through the point with little ends that show the size of

the uncertainty. The result looks like this.

We call the error indicators “error bars.” Excel, and most plotting programs will allow

you to add error bars to your graphs.

Of course, our example is only one dimensional. But we could have y-direction error

bars as well. These would be vertical

and there is no reason the y-error would be the same as the x-error. We may encounter

such situations in future labs.
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Assignment

Complete this lab in an organized fashion in your lab notebook. Part of the grade will

be based on neatness and organization! There are several histograms that need to

be made during this lab. Make sure everyone in your group gets a chance to build a

histogram.

Statistical Data I: How long does it take to walk?

We will repeat one measurement, how long it takes to walk to a destination, many

times. Each person in our class will take the measurement once.

1. We’ll start by determining a walking destination as a class. Our destination is:

.

2. Each person in the class should get a digital timer and time their walk to the

destination and back. Walk at your normal walking speed. We will stagger when

you leave, to avoid walking in groups. While you are not walking, you can begin

working on part II.

3. When you return, record your walking time on the board to the nearest second.

4. Record the times for all class members in a table, and by hand determine the mean

walking time, the median walking time, and (if appropriate) the modal walking

time. Determine the standard deviation of the walking time by hand (show all your

work).

5. Using a computer, make a histogram of the walking times (see instructions below)

Making the Histogram in MatLab

We mentioned that part of this class is to learn how to solve physics problems using a

computer. We have chosen the language called MatLab to do this. If you have not tried

MatLab yet, now is the time. Start MatLab. You should see something like this

MatLab is like a calculator programing language. You can type commands in the main
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command window and it will perform them

or you can save a list of commands into a file and have them run all at once. We will try

both methods of using MatLab today. First, let’s make a variable with our data. To do

this, use the mouse and click on the create new variable icon

You need to type a name for your variable. We can just call it “data” for now. The re-

sult should look like this:



Assignment 31

We can put values in this variable by double clicking the icon for our variable (the or-

ange box with the cross in it next to the name “data”). A spreadsheet opens.

You can copy and paste values into the spreadsheet cells. Let’s use the data table from

today’s lab as an example.
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Now we have a variable, we can do calculations with this variable. Say we want

to calculate the mean value of these numbers. We type in the command window

mean(data).

The answer appears on the next line in the command window. This is very like what

happens on your calculator. The command window is like your calculator display. So

once the variable “data” is made you can find the standard deviation, mode, and many

other things using the variable and the results appear on the command window.

Now let’s create a file of commands that we can give to MatLab to run all together.

Open a file using the file menu

the result should look like something like this:
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This is MatLab’s file editor window. We will type our commands here, and then tell

MatLab to run them. So in this window type the following commands

data = [34 38 33 38 38 36 35 47 36 32 40 40 45 36 43 38 48 40 40 38 43 40 39 36 46 34 37 33

32 34 ]

mean(data)

median(data)

mode(data)

std(data)

Once you are done, press the green “run” arrow.

MatLab will tell you that you need to save this file. You can choose any name, but don’t
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use spaces or strange special characters, and let MatLab choose the name of the file

extension and where it puts the file You can save the file to your Cloud drive or USB

drive later.

If you switch back to the command window, you will see the answers to all these

calculations.

MatLab did all the commands in the file at once!

But there is another way to make MatLab perform multiple commands. That is to write

a “function.” This is a little bit more formal than a script. Making a function is adding a

capability to MatLab–adding a new way to do something. Start by opening a new file,

just as before

Now type the following commands in the file:

function [n,xout,width,maximum,minimum]=nicehist(data, bins,labelx,labely,gtitle)

%nicehist Makes a histogram from data stored in variable "data"
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% data should be a column of numbers

% bins is the number of histogram bins

% labelx is the axis label for the horizontal axis

% labely is the axis label for the vertical axis

% gtitle is the graph title

% The commands in this function create the following variables

% n is the count of how many numbers from "data" fall in each bin

% xout is the array of bin boundaries

% width is the bind width

% maximum is the maximum value in "data"

% minimum is the minimum value in "data"

% The function also plots the histogram of the data

maximum=max(data);

minimum=min(data);

width=(maximum-minimum)/bins;

[n,xout]=hist(data,bins);

bar(xout,n,1);

set(gca,’XTick’,xout)

xlabel(labelx);

ylabel(labely)

title(gtitle);

end

The result will look something like this

You need to save this file. But MatLab is kind of dumb in that it needs to choose the

name of function files (so use the default it gives you–nicehist.m) and wants the file in a

particular place. Let it put the new file where it wants. You can save it to your Cloud
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drive or USB drive later. You can’t use the green arrow for this function file. Use this

code by typing in the command window

[n,xout,width,maximum,minimum]=nicehist(data, 16,’data’,’frequency’,’My First Histogram’)

You should see a picture that looks like

32.5 33.5 34.5 35.5 36.5 37.5 38. 5 39.540. 541.542.5 43.5 44.545.546.5 47.5
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My First Histogram

This corresponds to the bin size of 1. You should also notice that the new variables have

been created.

You can see what number is in each of the variables by typing the variable name in the

command window, or by double clicking on the variable’s icon.

Make sure you record how to do this in your lab notebook and see if you can record

what the individual lines of code do. Note that any line with a “%” sign is a comment.

MatLab skips it, but it can be very useful to leave yourself some notes on what your

commands do. You should always put some comments in a set of commands.

Copy your working file to your cloud or USB drive and note where you put it in your

lab notebook.

We call a group of commands a “code” sometimes. So tell where your histogram code

is in your lab notebook.
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Statistical Data II: Using a Computer to Determine Statistical
Values

After this week, you will be allowed to use your computer to calculate statistical values

for you. Now would be a good time to practice, using a convenient software package. If

you know R or SPSS that is fine. Otherwise, we have Excel on our lab computers. The

commands below are for Excel.

1. As individuals, do the following:

a. Enter the following set of numbers into a spreadsheet. Record them in a single

column.
34 38 33 38 38 36

35 47 36 32 40 40

45 36 43 38 48 40

40 38 43 40 39 36

46 34 37 33 32 34

b. Sort the data, using the sorting function of Excel.

c. Using the AVERAGE function, calculate the mean value of this set.

d. Using the MEDIAN function, determine the median value.

e. Using the MODE function, determine the mode. Comment on the result given

by Excel.

f. Using the STDEV function, determine the standard deviation.

2. As a group of two or three, repeat this process using MatLab.

a. To do this, input the data into a linear matrix

i data = [34 38 33 38 38 36 35 47 36 32 40 40 45 36

43 38 48 40 40 38 43 40 39 36 46 34 37 33 32 34 ]

ii Then use the commands mean(data), median(data),

mode(data) and std(data) and compare to the Excel results.

3. As a group, do the following:

a. Compare your individual means, medians, and modes. Resolve any

discrepancies.

b. Generate a histogram of the data, using a bin size of . Use your nicehist.m file

you built before.

c. Generate a histogram of the data, using a bin size of 5.

d. Comment on the advantages/disadvantages of each bin size.
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I hope that by now you have been taught what a derivative is in your Math 112 class.

But if not, we will learn what it is today. For our purposes, a derivative is a slope of a

line. You should recognize the equation of a straight line as

y = mx+ b

The slopem can be written as

m =
dy

dx
This is nothing magic. It is just a strange way to writem. With the slope written this

way, the equation of the line could be written as

y =
dy

dx
x+ b

But why dy/dx? Think of how we find a slope of a line. Back in junior high school we

called the slope the “rise over run.” That is, the change in y-value divided by the change

in the x-value.

m =
y2 − y2
x2 − x1

In physics, we write the change in a variable using the greek letter delta, ∆. So we

could write the slope as

m =
y2 − y2
x2 − x1

=
∆y

∆x
We need to get used to this delta notation, so let me write out ∆y

∆y = y2 − y1
and ∆x.

∆x = x2 − x1
So our straight line equation should be written

y =
∆y

∆x
x+ b

but if we take ∆x to be very, very small it is customary to write the ∆x as just dx (I

guess a “d” is smaller than a “∆”). If this is not familiar from Math 112, is should be by

now from PH121 (if is not familiar at all, call me over for help, but still don’t panic–we

are just writing slope in a strange way).

In PH121 you have or will shortly learn that the velocity is the slope of the plot of x vs.
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t, for example,

y =
1

2

m

s
t+ 1m

is an equation giving the y position of an object as a function of time. Note that it is a

straight line on a y vs. t plot.

0 2 4 6 8 10
0

2

4

6

8

t (sec)

y (m)

The slope of the line is
dy

dt
=

1m

2 s
We can verify that this works by looking at the plot and noting that for every two units

of time, we go up one position unit. The slope is 1/2 ms .

But not all curves are straight lines. What do we do with curves that, well, curve?

One idea is that we could split up the curve into little line segments, each with its own

slope. We can think of dy/dt as an instantaneous slope, a slope of one of the tiny line

segments that make up our curve. This is the sort of speed measurement that your

speedometer gives. The speed might be different a short time later. But right now the

speed is, say, 0.5m/ s.

Really, in defining an instantaneous slope we have assumed that the slope near our point
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on the curve is essentially a straight line if ∆t is small enough.

We can use this idea to interpret our error calculations. Suppose I throw a ball in the air

with a initial speed of 4m/ s straight up starting from yo = 0. From PH121 you have

learned (or will soon learn) that the equation for predicting how high the ball will go is

y = yo + vot+
1

2
at2

It says that starting at yo the ball will go higher depending on the initial velocity, vo,

and the acceleration, a. That make sense.

At a time, t, the ball should be at

y = 0 + 4
m

s
t− 1

2

�
9.8

m

s2

�
t2

where a = −9.8 ms2 is the acceleration due to gravity. So, knowing this, I could predict

how high the ball would go if I pick a particular time, say, 0.15 s. The result should be

y = 0 + 4
m

s
(0.15 s)− 1

2

�
9.8

m

s2

�
(0.15 s)2

= 0.489 75m

This is shown in the next figure with a black line. Solving the equation for y is equiva-

lent to drawing a line up to the curve, then from our spot on the curve over to the y-axis

to find the position.
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For our case we plot a line upward from 0.15 s to the curve, and then plot a horizontal

line from the intersection to the y-axis. We can see that we get 4.9m. Suppose I try to

verify this by taking a picture of the ball in �ight at 0.015 s, but my stop watch is only

good to ±0.005 seconds. I try to take the picture when the watch is at 0.015 s, but I

might have taken the picture at 0.01 s or at 0.02 s or anywhere in between. My time

has some uncertainty. What does the uncertainty in my stop watch time mean for the

uncertainty in my y value?

We can get a good approximation by graphically drawing vertical lines up from tmin



42 Chapter 3 Measurement and Uncertainty II

and tmax to the curve, and then extending horizontal lines from the intersections to the

y-axis. This gives us a ymin and ymax. Our actual height could be anywhere in between

these. This is a way to view our uncertainty in y.

We can use this idea to find a general way to calculate uncertainties. We could define

∆t = tmax − tmin. If our ∆t is small enough (so we can write it just dt), the curve is

essentially a straight line in the region between tmin and tmax. So if we knew the slope

of that line (the derivative dy/dt) we could easily figure out the ymax and ymin points to

get our uncertainty range, at least if we stay near our tn part of the curve. Recall that

our uncertainty in y using the high/low method is

δy =
ymax − ymin

2
=

∆y

2
Remembering that

y =
dy

dt
t+ b

then

∆y = ymax − ymin
=

dy

dt
tmax + b−

dy

dt
tmin − b

=
dy

dt
∆t

From your reading, you will recognize this as almost the uncertainty in a function of

one variable! But even if you don’t recognize it, we can show that this is true using our

high/low method. The quantity ∆t is

∆t = tmax − tmin
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so our uncertainty in t would be

δt =
tmax − tmin

2
=

∆t

2
then

δy =
ymax − ymin

2

=
1

2

dy

dt
∆t

=
dy

dt

∆t

2

=
dy

dt
δt

so

δy =
dy

dt
δt

So our uncertainty in y is just the slope at our point on the curve multiplied by our

uncertainty in t.

But what if we have more than one variable? Say, we have a function y(x, z), we

essentially have a two dimensional slope. Think of a hill, you can go down a hill in

more than one direction. So we need slope parts for each direction we can go.

0.0

x

-4-2024 5

-5

1.0

z 0.5

y

∆y =
dy

dx
x+

dy

dz
z

But there is a fix we need to make to this equation that you won’t learn for several math

classes to come. We want to have a slope in the x and z direction, but we want the

slopes to be independent (if you have already taken PH121, think of two dimensional

motion problems, we split the problem into components). The notation for this is

∆y =
∂y

∂x
x+

∂y

∂z
z

where
∂y

∂x
means the component of the slope just in the x direction. We take a derivative of
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the function y, but assume only x is a variable (treat z and all z terms with no x′s as

constants). This lets us separate the x and z parts. A special, one variable derivative

like ∂y/∂x is called a partial derivative because you only take one dimension of the

derivative at a time. The reading from Chapter 3 uses this type of derivative to find the

general formula for error propagation. If we wish to find the error in some general

function z (x, y) the error is given by

δy =

��
∂y

∂x

�2
δx2 +

�
∂y

∂z

�2
δz2

This looks a lot like our slope equation What we are doing is to assume the function

y (x, z) is �at in a small region around the point we are studying. then the function has

a slope ∂y/∂x in the x-direction, and ∂y/∂z in the y-direction. Each term like�
∂y

∂x

�
δx

gives how far off we could be in that direction (the x-direction in this case). Remember

that we have assumed that y (x, z) is essentially �at near our point of interest. The

square root may be something of a mystery, but remember what you have learned or are

learning about adding vectors in PH121. We add components of a vector to find the

magnitude like this

V =
�
V 2x + V 2y

This comes from the Pythagorean theorem. The x and y parts of the vector form two

sides of a triangle. We want the remaining side. So we use the Pythagorean theorem to

find the length of the remaining side.

We are doing the same for our small uncertainty lengths. We are just adding the x and

the y components of the error. We could write our error formula for the general case of

a function f , that depends onN different variables.

δf =

���	
N�

i=1

�
∂f

∂xi

�2
δx2i

We will use this formula a lot, so make sure you understand what it means (ask your

instructor for help if it is not clear).

How do we find the slope?

But now we have an equation in terms of slope written as dy/dx or dy/dz, but how

would we ever find these slops? Your calculus class has or will teach you this. So we

will just give you some quick formulas that will work for most equations, then you can

ask your instructor if you have something odd like an arctan function.
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For polynomials like,

f (x) = ax2 + bx+ c

each term follows the rule
d

dx
(axn) = anxn−1

that is, if I have a constant, a, times xn the slope of this curve is the constant, a, times

the power, n, times x to the n− 1 power.

Let’s take an example. What is the slope of the function y = 5x3?

d

dx

�
5x3



= (5) (3)x3−1 = 15x2

How about finding the slope of y = 7x2 − 2x+ 1

d

dx

�
7x2 − 2x+ 1



= (7) (2)x1 − (2) (1)x0 + 0

The last term illustrates that the slope of a constant is zero. That makes sense. Constants

don’t change. So the change in y just due to the last term (1) should be zero. We also

remember x0 = 1. So we are left with
d

dx

�
7x2 − 2x+ 1



= 14x− 2

This one rule will take care of most of our functions for now. Let’s try one more, say

y = x
1
2

d

dx

�
x
1
2

�
=

1

2
x−

1
2

This could be written as
d

dx

�√
x


=

1

2

1√
x

So we see we can handle square roots with this rule.

Tie to statistics

We need to tie our statistical ideas into what we have learned about error propagation.

Lets go back to our function f (x, y) the error is given by

δf =

��
∂f

∂x

�2
δx2 +

�
∂f

∂z

�2
δz2

but now we know we could express this in terms of standard deviations (provided you

don’t need to ensure all data are within your uncertainty range). We can write our

uncertainties as

σf =

��
∂f

∂x

�2
σ2x +

�
∂f

∂z

�2
σ2z

We can use this to show that the standard deviation of the mean (the best estimate of

our uncertainty) is given by
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σx̄ =
σx√
N

Think of calculating a mean value

x̄ =
x1 + x2 + · · ·xN

N
We can find the uncertainty in this function σx̄

σx̄ =

��
∂x̄

∂x1

�2
σ2x1 +

�
∂x̄

∂x2

�2
σ2x2 + · · ·+

�
∂x̄

∂xN

�2
σ2xN

You see we just take the partial derivative of our function x̄ with respect to each of the

variables xi and multiply by the uncertainty in that variable written now as a standard

deviation σi.

For this special case, all of the xi are the same (we are measuring the same value over

and over in taking an average) and all of the σi are the same so we just have

σx̄ =

�

N

�
∂x̄

∂x1

�2
σ2x1

and we can take the derivative using our rule. Only x1 is a variable, so we can write the

average x̄ as

x̄ =
x1
N

+
x2 + · · ·xN

N
This is a polynomial! The first term is 1

N
x1 and the whole second term is a constant if

we take a partial derivitive with respect to x1. The derivative is

∂x̄

∂x1
=

∂

∂x1

�
x1 + x2 + · · ·xN

N

�

=
1

N
x01 + 0

=
1

N
so our statistical error function is just

σx̄ =

�

N

�
1

N

�2
σ2x1

=

�
σ2x1
N

=
σx1√
N

or, since all the σxi are the same, we can just write this as

σx̄ =
σx√
N

Notice that in this example we had many xi and that to find the uncertainty we just

extended our equation from two variables

σf =

��
∂f

∂x

�2
σ2x +

�
∂f

∂z

�2
σ2z
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to N variables

σf =

���	
N�

i=1

�
∂f

∂xi

�2
σ2i

In this special case, we were trying to show a special result, but we can do this for any

function with any number of variables. If your function is complicated, you just need to

take more partial derivative terms under the square root.
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Assignment

Measure the acceleration due to gravity, g, four different ways. For each case, determine

an experimental value for g along with its uncertainty. Record how you find g and its

uncertainty for each method in your lab notebook. Try to obtain the best value you can

for each method.

Method 1: Timing a ball drop

Using a stop watch and a tennis ball, drop the ball over a known height and determine a

value for g.

Method 2: Using a pendulum

You will learn in PH123 that a pendulum oscillates back and forth at a certain rate. If

you don’t plan to take PH123, you still know that the pendulum of a grandfather clock

sets the rate at which the clock will run. The time it takes the pendulum to go back and

forth is called the period of oscillation. That period is given by the following equation

T = 2π

�
L

g

where for some reason the letter T stands for period, and L is the length of the

pendulum string, and g is the acceleration due to gravity. Build your pendulum, and

measure the period of oscillation using a photogate. From this obtain a value for g.

Plot Your Results

A spreadsheet program (e.g. MS Excel or LibreCalc) can graph data, and so can a piece

of software on our lab computers named LoggerPro. You man know how to make a

graph in one of these tools.

But we are learning MatLab this semester, and we need to know something about

making graphs in MatLab.

Start MatLab. The result should look like this
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So far we have learned that MatLab is like a calculator programing language. You can

type commands in the main command window and it will perform them very like your

calculator. Let’s try a simple plot first. In the command window type

x = [1 2 3 4 5 ];

y=x;

plot (x, y, ’o’)

This should make a plot that looks like this

You could copy these lines and put them in a script like we did this last lab. The

pressing the green arrow on the editor window will save and run the script. All the

commands in the script will run one after the other.

Let’s make a fancier graph that will plot our acceleration due to gravity data.

You could copy and paste the following lines into the command window and that will



50 Chapter 3 Measurement and Uncertainty II

work just fine.

method = [1,2,3]

gdata=[9.9 9.85 9.7] %replace these numbers with the values of g you found

Eg=[1 0.3 0.5] %replace these numbers with the error on your g values

errorbar(method,gdata,Eg,’.’)

set(gca,’Xtick’, [1 2 3])

set(gca,’XTickLabel’,{’Timer’;’Pendulum’;’Camera’})

xlabel (’Method’)

ylabel (’g [m/s^2]’)

axis([0 5 8.5 11.5])

Alternately you could open a script file by choosing to create a new script from the file

menu and pasting or typing the commands into the editor. I suggest you try this

You can run all the commands by clicking on the green arrow on the toolbar. MatLab

will ask you to save the file. It needs a name (you should give it one instead of letting

MatLab name it “untitled”) but MatLab is a little silly in that it insists you save your

script in it’s chosen directory. After you get it working you can copy your file to your

cloud or USB drive. You should see a graph like this, but the numbers will be different

than mine.
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These commands may seem mysterious now, but we will learn what many MatLab

commands mean in the next few labs. So for now, being able to create a script to

produce a graph is a good first step even if the commands are not all clear that do the

graphing.

Let’s see what each line of this “code” does.

The first line

method = [1,2,3]

defines a variable called “method.” The variable is a vector or a one dimensional matrix

that holds three values, 1, 2, and 3.

method =




1
2
3





We will measure g using three different methods. This just gives us an index for each

method we will use.

The next line does just about the same thing.

gdata=[9.9 9.85 9.7] %replace these numbers with the values of g you found

defines a variable called “gdata.” The variable is a vector or a one dimensional matrix

that holds three values, 9.9, 9.85, and 9.7.

gdata =




9.9
9.8
9.7





These are measurements of the acceleration due to gravity. You should replace these

value with the ones from today’s experiments. Note that we have used the “%” sign to

allow us to write a reminder of what this line means. MatLab ignores anything on the

line after a “%” sign. So we can make notes on what the line does after a “%.”

The next line does just about the same thing again.

Eg=[1 0.3 0.5] %replace these numbers with the error on your g values
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defines a variable called “Eg.” The variable is a vector or a one dimensional matrix that

holds three values, 1, 0.3, and 0.5.

Eg =




1
0.3
0.5





These are the uncertainties in the measured values of g. So you should replace these

with your calculated uncertainties.

The next line

errorbar(method,gdata,Eg,’.’)

Makes the plot with error bars. You can see that we gave this function our method,

gdata, and Eg variables. The “.” tells MatLab to plot a point at each of the gdata values.

The final two lines set up the vertical or y-axis.

ylabel (’g [m/s^2]’)

axis([0 5 8.5 11.5])

The first labels the y-axis with g(m/ s2) and the second sets up the range of values to

display from 8.5m/ s2 to 11.5m/ s2 in increments of 0.5m/ s2.

Of course you can change any of the axis labels are could even change the plot style

(say, change the “.” to a “o” and see what happens when you run the script again).

Method 3: High Speed Camera

Take high speed video of a falling ball. Include a meter stick or something of known

length in your video. Use the Logger Pro software to analyze the video. The steps to do

this are outlined in the Logger Pro help under “video analysis.”

Fit a curve to your data that comes from the video. From you PH121 experience you

know that the acceleration due to gravity is constant, so we can use the equation

y = yo + vot+
1

2
at2

to indicate the type of curve to use for our fit. If you have trouble finding the curve fit

function in Logger Pro, or have trouble using Logger Pro, call your instructor over.

The next two lines

set(gca,’Xtick’, [1 2 3])

set(gca,’XTickLabel’,{’Timer’;’Pendulum’;’Camera’})

format the horizontal axis. They tell matLab to use tick marks on the x-axis at locations

1, 2, and 3. then the next line labels the ticks “Timer”, “Pendulum”, and “Camera.”

The next line

xlabel (’Method’)

labels the whole x-axis “Method”



4 Experimental Design I:
Harmonic Oscillators
(masses and springs)

Introduction

We are going to tackle the subject of experimental design today, but it helps to have an

experiment in mind. You are learning or have learned Hook’s law for springs in your

PH121 class. You understand that when we attach a mass to a spring and stretch or

compress a spring we have a force

Fs = −kx
on the mass, where by k we mean the spring stiffness constant, and by x we mean the

displacement from the equilibrium position of the mass-spring system. We can make

such a system oscillate. This is really a PH123 problem, but let’s pretend that we are

scientists in Newton’s day and we don’t know much about oscillation (because most of

us don’t yet). We wish to find out more. We know that if we build a mass-spring system

we can get oscillation and we define the time it takes for the mass to travel through

one full oscillation (so the mass, say, starts from the highest point and it returns to it’s

highest point) as the period of oscillation and abbreviate it with the letter T.

Let’s further pretend that you have read Hook’s work and from this work have reason to

believe that period might be proportional to the square root of the mass.

T ∝
√
m

You want to verify this report and build your own model for the period of oscillation of
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a mass-spring system. You will use this model to make predictions, and by doing so,

you will see how well your model works. This is what we want to investigate, now let’s

see how to design our experiment.

Designing an experiment

One of our objectives in this course is to learn how to design an experiment so that it

will be successful.

Back in grade-school, an experiment was any science related activity (the proverbial

building of a volcano model was considered an experiment). But for a scientist,

an experiment is a specific thing. It is the testing of a hypothesis. You must test a

hypothesis with care because the entire foundation of science depends on the integrity

of how we do this testing.

In today’s lab I will give you a hypothesis to test (the period of oscillation for a

mass-spring system depends directly on the square root of the mass). The following

steps will help your experiment be successful.

1. Identify the system to be examined. In our case it is a mass-spring system. We

should identify all the inputs to the system. For example, we know there is a mass,

m, and you have heard about a spring constant, k. There is also the force due to

gravity and tension on a spring. These are inputs. You should describe your system

in your lab notebook and list the inputs. These inputs are the things you can possibly

change in the design of your experiment.

2. Identify the model to be tested. The word “model” means our mental picture of

how something works. As physicists, we would prefer to express a model in a

mathematical equation. For example, we have a model of how force depends on

acceleration. The bigger the acceleration, the more the force. But our model also

includes mass. The larger the mass, the larger the force needed to create the same

acceleration. This mental model can be expressed in an equation

F =ma

It is valuable to use both the word description of the model as well as our

mathematical representation. In our case today, our mental model is that period of

oscillation for a mass-spring system depends directly on the square root of the mass.

Think about what this means. If I increase the mass, the period should get longer.

But if I double the mass, the period won’t double. This is a mental model that

allows us to do predictions of behavior. In physics it is almost required to reduce

this model to an algebraic equation that can be used to calculate a prediction and an

uncertainty on that prediction. For today’s experiment that equation is

T = C
√
m

where C is a factor that does not depend on mass, but for your experiment that

your group designs later in this course you will have to come up with your own

mathematical expression of your model. Record your model and the model equation
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in your lab notebook.

3. Plan how you will know if you are successful in your experiment. You are testing

a hypothesis, and you are much more likely to succeed in your test if you plan

what that success would look like. One way to do this is to plan how you will

communicate your results. It is a great idea to think of what graph you will make at

the end of the experiment to communicate whether your model works (or not). In

today’s experiment, a graph of T vs. m or even T vs.
√
mmight be useful along with

a curve fit. Notice I am suggesting you plan this before you perform the experiment.

I am not suggesting you decide on what the results will be, only how you will report

them. This focuses your attention on deciding what measurement you will make. In

our case today it is hard to plot T vs. m if you don’t measure T andm, planning the

graph in advance helps you plan the experiment. Mock up your graph or figure in

your lab notebook. Give axis titles and even units (but of course no data yet).

4. Rectify your equation. It would be good to be able to use a curve fit to analyze our

data. The strongest and most reliable curve fits are straight line fits where the fit

equation is something like

y = mx+ b
So if at all possible, we would like to reduce our equation to the equation of a

straight line. In today’s lab we can do this. We call this linearizing the equation. If

we can’t find a way to linearize the equation, we at least need to render our equation

into a form that we can use to predict the outcome of our experiment. Record your

new equation in your lab notebook.

5. Choose ranges of the variables. For today’s experiment we might have several, but

m and k are principal variables. It should be clear when you see the spring that

putting a thousand kilograms of mass on the spring would be a bad idea. but how

much mass is right? What will give you good results in testing your theory? Hooks

law is not valid for all m and k (if you doubt this, think of your Christmas slinky

after your brother got to it; it never looked the same again!). What values ofm are

best for performing the experiment? An error analysis based on your equation is

invaluable in making this decision. Changes in mass that produce a change in T that

is smaller than the uncertainty in T will not be noticeable. So taking measurements

for such small mass changes would be a waste of time and effort. We would like to

avoid this. Changes that are likely to break the equipment are also not desirable.

And of course you want to plan this before you do the experiment and find that you

did not get good data, and therefore must repeat all your work! Record your variable

ranges in your lab notebook. As you perform the experiment note any deviations

from this plan.

6. Plan the experimental procedure. As a group talk your way through the experiment.

You might find yourselves saying something like “then you take the stopwatch

and measure the period..” and you realize that you did not get a stop watch. For

your experiment that you design, you need to find out in advance if we have the

equipment you need. So get in the habit of working through the procedure in

advance to see if you have forgotten anything. Record your planned procedure in
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your lab notebook. As you perform the experiment, note any deviations from the

plan and the reason for the deviation. Deviations are fine, just make sure you record

them.

7. Perform the experiment and report on it in your lab notebook. This involves all the

things we have been including in our lab notebooks to date

• Describing the goal for the work. (This is probably already done in your plan)

• Give predictive equations and uncertainties for the predictions based on the physical

law. (This is probably already done in your plan)

• Give your procedure you actually followed, recording what you really did as you

do it. This will probably not be just a restatement of the plan because things will

change as you go. Record the equipment used and settings, values, etc. for that

equipment. Did you learn how to use any new equipment? What did you learn that

you want to recall later (say, when taking the final, or when you are a professional

and need to use a similar piece of equipment five years from now).

• Record the data you used. . If you have a large set of values, you can place them in

a file, and then record the file name and location in your lab notebook. Make sure

this is a file location that does not change (emailing the data to yourself is still not a

good plan).

• Give a record of the analysis you performed. You planned this above, now record

what you actually did

• Give a brief statement of your results and their associated uncertainties.

• Draw conclusions: Do your results support the theory? Why or why not? What

else did you learn along the way that you want to record. (This is where we may

compare the percent error to our relative uncertainty).
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Assignment

This week’s assignment follows the experimental design process outlined above. I have

mostly designed this experiment for you. So this week I want you to identify the design

parts and put them in our design process order. For our next deign lab, you will have

to design the experiment yourself. This week’s lab is to get familiar with the process.

Perform this experiment as a group.

First Part: Data Collection

1. Our system will be the mass-spring system and it’s hanger. Obtain a set of weights,

a spring, a weight hanger, a stand, and a stopwatch. Attach the spring to the stand,

and the weight hanger to the spring. Determine the inputs to this mass-spring

system that may affect the output quantity of interest (the period of oscillation).

Determine whether each of these inputs will affect the period of oscillation. If so,

explain how you will control for that input. If not, give justification for why you can

ignore that input.

2. Build a mathematical model beginning with the suggestion you got from reading

Hook’s work (above).

3. Determine how you will measure the period of oscillation. Remember that you

want to minimize the amount of uncertainty in your measurement. Techniques we

have learned in previous labs may help. Record your method. You should plan any

graphs you will make and in general plan how you will report your data and whether

or not your experiment is successful.

4. Discuss how you might go about making your equation look linear by a proper

substitution of variables. Explain why this might be useful.

5. Select a range of variables. (e.g. m = 20g, 30 g, 40 g, 50 g, and 100 g). Don’t use

80 g because I want to reserve this value for a special purpose below. Stop at about

100 g.

6. Plan your procedure and record your plan in your lab notebook.

7. Perform the experiment. Your plan probably includes determining the period of

oscillation for masses that you have selected. Be sure to record any measurement

uncertainty. Make the graphs of your data that you planned including the appropriate

error bars. Attach the graphs in your lab notebook. Record what you do and

highlight any deviations from your planned procedure. Record your data or your

data file name and location. Show your analysis and give your results. Draw

conclusions. We will check these conclusions in the next part. But state whether

you believe that T ∝
√
m

Hints on graphing:



58 Chapter 4 Experimental Design I: Harmonic Oscillators (masses and springs)

1. a. It might help to plan to fit a smooth curve through your graphed points.

b. You will need to tell your fitting routine what equation to use, so you should

pick a theoretical mathematical form before you try a curve fit. Hopefully you

linearized your equation, so the theoretical mathematical for is a straight line

y =mx+ b.

c. In MatLab the fit routine is the fit() command. If our data are y and x then

the command is FO=fit(x,y,’poly1’). The result ism and b, the values

for the constants in the equation you are using y = mx+ b for a straight line

which is a polynomial of order 1 (thus the ’poly1’ designation). The fit

command also gives what MatLab calls a confidence interval. This we will

interpret as the uncertainty in the fit parameters, but MatLab dies not give the

uncertainty directly. Instead, the confidence interval gives the high and low

points for m and b. But from lab 1 and the high/low method of calculating

uncertainties we know what to do

δm =
mmax −mmin

2
The fit parameters, and their high/low values are stored in the variable FO.

d. You can check your fit equation by using your value of m and b to calculate

a new set of y values yfit=m*x+b and then plotting them hold on;

plot(x,yfit); hold off;. This should place a straight line through

your plot of your data points if all went well.

Second Part: Interpolation and Extrapolation

We would like to test the equation or “law” you developed in the last part. We will use

the equation to predict periods for masses you have not yet used.

1. By interpolation, predict the period of oscillation for an 80 g mass. Record your

methods and results. Interpolation means to predict an output value (in this case, a

period) for an input value that falls within the range of the input values you have

used in your measurements. If you measured periods for 20 g, 30 g, 40 g, 50 g, and

100 g, then 80 g is within this range. Using the curve fit equation generated by the

data we measured, we can plug in 80 g and predict the period for our spring with an

80 g mass. This is interpolation. This will test our model to see if it works for new

inputs. If it does not, our model is probably not good.

2. By extrapolation, predict the period of oscillation for a 300 g mass. Record your

methods and results. Extrapolation means to predict an output value (in this case, a

period) for an input value that falls outside the range of the input values you have

previously measured. If you measured periods for 20 g, 30 g, 40 g, 50 g, and 100 g,
then 300 g is outside this range. Using the curve fit equation generated by the data

we measured, we can input 300 g and predict the period for our spring with an 300 g
mass. Extrapolation is more risky. The conditions of our experiment might change

outside our range (think, in a limiting case, we could break the spring, and get an

infinite period!). But if things are done carefully, this is also a test of the validity of

our model.
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3. Measure the period of oscillation for the 80 g and 300 g masses. Be sure to account

for all uncertainties. Compare your measurements with your predictions, and

comment on the level of agreement.

4. Now that we have tested our mathematical model for the relationship between

period and mass for a mass-spring system, you can report it. Determine values for

your constants, including uncertainties . Record your methods and results.

Third Part: Further Discussion

1. An often useful tool, especially when your data is not naturally linear, is to plot it on

a logarithmic scale. Create such a graph using Logger Pro or Excel (or MatLab) and

attach it to your lab notebook. For Logger Pro or Excel this is a graph axis option.

The command in MatLab is semilogy(x,y) where x and y are the arrays of x
and y data values. Comment on what you see.

2. Don’t forget to make good comments on what you did and how you did it in your

lab book.





5 Experimental Design II:
Conservation of Energy

This week we will practice experimental design with a new context. I wont spell out all

the steps, so your lab group and you will have to work through the experimental design

steps.

Suppose you have been told that energy is conserved (I hope you have by now in

PH121). This is our model–the idea that energy is conserved. That is, that it is never

lost, just transferred from one form of energy to another. A colleague suggests a method

to test this model. He builds a pine-wood derby track and a pinewood derby car.

Your colleague suggests to you that if energy is conserved, you should be able to predict

the velocity of the car at points y1 and y2.

Another colleague steps in and suggests that you need to be concerned about the energy

tied up in the rotational kinetic energy of the wheels. You may not have heard about

this in your PH121 class yet. She says that is OK, because you can do a quick fix. She

suggests that you should include a factor of about 10% of the translation kinetic energy.

That is, compute the kinetic energy in this case as

K = (1.1)
1

2
mv2

that should account for the wheel rotational kinetic energy.
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Assignment

Part 1:

As a group design an experiment to test the model. Your design should include the

steps from lab 4 (brie�y repeated here)

1. Identify the system to be examined. Identify the inputs and outputs. Describe your

system in your lab notebook.

2. Identify the model to be tested. Express the model in terms of an equation

representing a prediction of the measurement you will make. Record this in your

lab notebook. (If you have not solved this problem in your PH121 class yet, call me

over and we will go through it together).

3. Plan how you will know if you are successful in your experiment. Plan graphs or

other reporting devices. Record this in your lab notebook. For today’s lab, I will

provide photogates and the car and track. If you need other equipment, ask.

4. Rectify your equation if needed. Record this in your lab notebook.

5. Choose ranges of the variables. Record this in your lab notebook.

6. Plan the experimental procedure. Record this in your lab notebook.

7. Perform the experiment. Record this in your lab notebook. Go through all the steps

of performing an experiment. End with a conclusion that clearly states whether your

experiment supported the model, falsified the model, or, if neither was possible, try

to explain why.

Part 2

Work on your proposals. They are due in two weeks. Here are some tips on writing

your proposal:

Proposal writing:

A Proposal is a document that is intended to persuade someone (your professor, funding

agency, yourself, etc.) that you should be given the resources and support to perform

the experiment. For our class, the proposal consists of the following parts:

1. Statement of the experimental problem

2. Procedures and anticipated difficulties

3. Proposed analysis and expected results
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4. Preliminary List of equipment needed

Note that most of the steps involved in planning an experiment are contained in these

for parts of the proposal. Each of the steps is explained in more detail below.

Statement of the experimental problem: This is a physics class, so our

experiment should be a physics experiment. The job of an experimental physicist is

to test physics models. So your statement of the experimental problem should include

what model you are testing and a brief, high level, overview of what you plan to do to

test this model.

Procedures and anticipated difficulties: Hopefully, your reader will be so

excited by the thought of you solving your experimental problem that he or she will

want to know the details of what you plan to do. You should describe in some detail

what you are planning. If there are hard parts of the procedure, tell how you plan to get

through them. This is essentially steps 1-6 of our experimental design strategy.

Proposed analysis and expected results: You might think this is unfair, how are

you supposed to know what analysis will be needed and what the results should be until

you take the data? But really you both can, and should make a good plan for your data

analysis and figure out what your expected results should be before you start taking

data. After all, you have a model you are testing. You can encapsulate that model into a

predictive equation for your experiment. Then you can use that predictive equation to

obtain predicted results and uncertainties. Using this, you can design your experimental

apparatus by putting in the numbers from your experimental design and seeing what the

outcome should be. You can see if there is a chance that your experiment will measure

what you want with the equipment you have (this is where our differential form of error

calculation comes in).

If you don’t do this, you don’t know what equipment you will need or how sensitive

that equipment needs to be. If you are trying to measure the size of your text book, an

odometer that only measures in whole miles may not be the best choice of equipment.

This might be obvious, but depending on how well you need to measure your text

book, a ruler may not work either. You don’t know until you have an estimate of the

uncertainty. So to know what you need, do the calculations in advance with your range

of inputs as the values you take for the prediction.

Of course this means you must include a predictive calculation of the uncertainty.

Uncertainty in your result is governed by the uncertainty inherent in the measurements

you will take. The uncertainty calculation tells you what sensitivity you will need in

your measurement devices. In our text book case, you could see immediately that
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you need a different apparatus than the odometer. You might also find our ruler to be

problematic depending on what precision you need.

I remember a time in my career when the US Naval Research Labs asked us to build a

microwave radiometer to measure the sea wind direction from space. We spent some

time and our predicted analysis and uncertainty said that it would be a very expensive

instrument to be able to successfully measure the wind direction—it would take more

money than they were offering. NRL disagreed and built the device themselves at less

cost, but to lesser specifications with much greater uncertainties. Then they spent a

billion (yes, a billion with a “b”) dollars to launch the device into space. The device was

a total failure. The uncertainty was so big that the data was totally useless. We want

to find out whether our experiment will work before we risk our grades (or a billion

dollars) on it. So we will do the prediction ahead of taking the data.

You should do all of this symbolically if you can, numerically if you must, but almost

never by hand giving single value results. Some measurements will come back poorer

than you anticipated, or some piece of equipment will be unavailable. You don’t want to

have to redo all your calculations from scratch each time this happens. For example, in

the event of an equipment problem, your analysis tells you if another piece of equipment

is sufficiently sensitive, or if you need to find an exact replacement. When I perform an

analysis like this, I try for a symbolic equation for uncertainty. I like to program these

equations into Scientific Workplace, or Maple, or SAGE, or MathCAD, or Mathmatica

or whatever symbolic math processor I have. Then, as actual measurements change,

I instantly get new predictions. In the absence of a symbolic package, a spreadsheet

program will do fine (and we have Excel on our computers). A numerical program also

is quick and easy to re-run with new numbers when no symbolic answer is found.

Preliminary List of equipment needed

Once you have done your analysis, you are ready to list the equipment you need and the

sensitivity of the equipment you need (that is, list the uncertainties you need to achieve).

Final approval of the project and the ultimate success of your experiment depends on

the equipment you choose or are granted. You want to do a good job analyzing so you

know what you need, and a good job describing the experiment so you are likely to

have the equipment you want available when you start.

Performing the experiment

Once your proposal is accepted, I will provide you with the equipment we have agreed

upon from your proposal. You will have three weeks to perform your experimentation.

I will be available for advice and to watch for problems or safety issues. But you and

your team will perform the experiment. You will want to keep good notes in your lab
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notebook. You will likely have to change your procedure after you start because of

problems. Take careful note of what was actually done, and what your measurements

were. Give the reason for the change. Note any unusual things that happen. Carefully

record what you do.

Written report

The written report is designed to match a normal format for an applied physics article

in a journal like Applied Optics or the IEEE Transactions journals. It is useful to know

now how I will grade the report later so you can make sure you design in all the parts I

will look for. There should be an introduction, description of the procedure, description

of the data and results, a description of the analysis, and a conclusion. These sections

are described in detail in the following table.

Experimentation is a lot of fun if done right. It can be frustrating and discouraging if

not done well. Our goal is to learn how to perform and report on an experiment, so that

is what will be graded. If you show something new and interesting, that is just more

fun. If you show that your original model was not correct–that is science! If you have

done a good job designing and reporting your experiment, a negative result is just as

good as a positive result.
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6 Experimental Design III:
Standing Waves on Strings

Introduction

Standing waves result from making waves that re�ect back on themselves, or by making

waves on both ends of a string. When we were children we formed a type of standing

wave with jump ropes.

This standing wave had a part that went up and down in the middle and two parts that

did not move much on each end (called nodes). But if you had a bored kid, you might

have seen a standing wave that looks like this.

This is not so good for jumping, but makes an interesting picture. The part in the

middle that does not seem to be moving is called a node. Really there are also nodes

on each end of the rope as well. So altogether there are three nodes in this picture. We

can make standing waves that have many nodes. If you try this with a jump rope, you

will find that the more nodes you have, the faster you have to shake your end of the

rope. Another way to say this is that the frequency of your wave you are making must

increase with the number of nodes. This is part of today’s model.

In the setup on your table, ring stands are holding strings, and there is an oscillator on

one end that has a frequency control box. The other end has a pulley and a hanging

mass to provide tension on the string.
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Experimentally we find that not all frequencies will make standing waves. So our model

includes the idea that only some frequencies produce standing waves. Our model also

includes the idea that the weight of the string will change which frequency will make

a standing wave. If you play a stringed instrument, you may have noticed that some

strings are thicker than others. Thicker strings have different standing wave frequencies

than thinner strings. If you study this model (some of you will in PH123), you can

derive an equation that tells which frequencies will work

f =
n

2L

�
Mg

µ
(6.1)

where n is an integer (n = 1, 2, 3 . . .). This integer for strings is the number of nodes

minus one n = nnodes− 1. So you can form a standing wave, then count the places that

don’t seem to move (remember the ends!) and subtract one to find n. The frequency

that creates the standing wave should be a function of n. Our model tells us that

if we know n, we should be able to predict the frequency. You will find that for

each way you can make a standing wave, a small range of frequencies will make the

standing wave, not just one, single frequency. But the frequency that produces the

largest standing wave is the one we want (biggest amplitude–or the one for which the

wave looks bigger) . That was the f that was included in forming our model equation.

Of course there are other variables in our equation, so we should find out what they are.

The quantity, µ, is the linear mass density. It is defined as mass of the string divided by

the length of the string. So µ tells us how massive the string is.

The quantity, L is the length of the string that is participating in the waving,

g = 9.8004m/ s2 is the acceleration due to gravity, andM is the hanging mass tied to

the end of the string beyond the pulley.

One way we could verify our model equation is to use it to predict one of the input

values. Let’s use µ. The idea is to use our model equation to somehow find µ and

then measure µ to see if the model equation prediction is good.

It might be tempting to just solve the above equation for µ and report the answer from
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one measurement. And of course that will work. But since this is a final exam I want to

see if you can use some of the things we learned.

We learned earlier that we can take more than one measurement, and use those

measurements together with a curve fit to solve for a fit parameter. I want you to do

this. The quantity µ should be in one of the fit parameters. Then you can solve for

µ using the fit parameter given by your MatLab linear fit code, or LoggerPro (using

your code gives the most points). This is a more robust way to find µ, and it is the

way I want you to proceed (Even if you solve for µ several times and take a mean and

standard deviation–it will work and it is a good experimental technique–but I want to

see if you can find and use your linear least squares code, so using your code gives the

most points).

You may have to adjust the amplitude knob on the frequency controller for some

frequencies to keep the apparatus from shaking itself apart. The frequency controller

has a fine and a course frequency adjust knob, and a digital frequency display.
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Assignment

As a group design an experiment to test the model. Your design should include the steps from lab

4.

1. Identify the system to be examined. Identify the inputs and outputs. Describe your system in

your lab notebook.

2. Identify the model to be tested. Express the model in terms of an equation representing a

prediction of the measurement you will make. Record this in your lab notebook. (If you have

not solved this problem in your PH121 class yet, call me over and we will go through it

together).

3. Plan how you will know if you are successful in your experiment. Plan graphs or other

reporting devices. Record this in your lab notebook. For today’s lab, I will provide photogates

and the car and track. If you need other equipment, ask.

4. Rectify your equation if needed. Record this in your lab notebook.

5. Choose ranges of the variables. Record this in your lab notebook.

6. Plan the experimental procedure. Record this in your lab notebook.

7. Perform the experiment. Record this in your lab notebook. Go through all the steps of

performing an experiment. End with a conclusion that clearly states whether your experiment

supported the model, falsified the model, or, if neither was possible, try to explain why.



7 Numerical modeling of
Projectile motion

There are times when we would like to predict the motion of an object, but we would

like to make a computer do the hard work involved in solving the equations to get a

numeric answer, so we don’t have to do it. For example, we might want to calculate

the position of a satellite as it orbits. Or we might want to calculate the position of the

planets as they orbit the Sun. For simple cases, we might be able to do this by hand,

but predicting by hand where all the planets will be on July 4, 2200 might get tedious

without a computer.

As physics students, it is good to know how to approach solving problems on a

computer.1

Let’s start with some simple problems that we know how to do algebraically so we can

tell if the computer solution is reasonable by comparing to the exact answer. Then we

will tackle things we can’t do algebraically.

Consider a ball moving under constant acceleration in one dimension. This is a

kinematics problem. So we can use the kinematic equations you have learned (or will

very shortly learn) in PH121. Let’s remind ourselves of what these are:

x = xo + vot+
1

2
at2

v = vo + at

v2 = v2o + 2a (x− xo)

x = xo +
1

2
(vo + v) t

The first equation tells us the position, x, as a function of time. This could be position

in any direction, up and down, or side to side. If it is a ball being shot into the air, it

might be better to write y instead of x. But for now, we will use just x for position in

any direction. What this first equation tells us is that, once the ball is moving, we can

find the new position of the ball by starting with the initial position of the ball, xo, and

adding to this initial position how far it has gone in t seconds.

1 Most calculators qualify as computers now, since they are usually programmable. But we are talking

about going beyond the built in functions of calculators or even spreadsheet functions on computers.
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If the ball were going at constant speed, the additional distance would be just vot. This

comes from speed being distance over time.

v =
d

t
d = vt

But our ball is accelerating, so we have to add in a little more distance because our

speed is changing. That is what 12at
2 does.

Since the position is a function of t2, we know that the position vs. time graph for our

ball will be a parabola.

1 2 3 4 5 6

-50

0

50

100

time (s)

Position (m)

The second and third equations from our kinematic set give the speed of the object. The

second is the speed as a function of time. Since for this first problem in programming

we will only allow one dimensional motion (at first) we could say this is the velocity of

the object and allow negative values to mean going the opposite way of positive values.

Because the ball is accelerating, the speed will change. We can see that the velocity

changes linearly with time. Think of a straight line

y = mx+ b

our velocity equation is

v = at+ vo
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on a velocity vs. time graph, this has the form of a straight line. So the velocity vs. time

graph will be a straight line.
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Our goal is to get the computer to predict this motion. To do this we will use an

idea from calculus2 that we can take an infinitesimally small amount of time for our

experiment. We will call this very small amount of time a “time step” and label it ∆t.

Over this time interval, the change in velocity is essentially zero, that is, over our very

small time interval, we can take a ≈ 0, then our first kinematic equation becomes

xf ≈ xi + vo∆t
Remember that we have only let our experiment run for a very small time, ∆t, so even

if the velocity changed, it would not have changed much. So our equation will nearly

work. In the limit as ∆t→ 0 our equation will be exact.

Now suppose I want to go an additional small time interval, a second mini-experiment.

That is, I let the experiment keep going now starting from the end of the first

mini-experiment from the specific time t1 = ∆t and end this second mini-experiment

at the time t2 = t1 + ∆t (that is the second mini-experiment runs from times ∆t to

2∆t). We know where the ball is at the end of the first mini-experiment that lasted

∆t seconds. But now we let the ball keep falling. Where will it be after a second ∆t

seconds? We can predict that the next position will be

x(t2) = x(t1) + v(t1)∆t

x(t+∆t) = x(t1) + v(t1)∆t

where x (t1) is the position at the end of the first time interval (our old xf ). Likewise,

v (t1) is the velocity at the end of the first time interval. At this point, we have to

acknowledge that the speed of the ball is really changing. Otherwise the ball’s position

vs. time graph will go in a straight line as shown in the next figure

2 Not to worry if you are concurrently taking calculus. We will use very little calculus in this reading, so

little that you probably won’t notice it.
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The dotted line is what we get when we don’t change the velocity. The solid line is

what we should have. But we don’t yet know v (t1), we will have to find it.

We can find v (t1) using the second of our set of kinematic equations. We can modify

the equation

v = vo + at

for the first time interval,

v(t1) = vo + a∆t

where v(t1) means that v is a function of t and we have evaluated v at t1. This last

equation says that at time, ∆t, the ball is really going at velocity v (t1) where we

have to add (or subtract, depending on the sign of a) the change in velocity due to the

acceleration. That change is velocity is a∆t at the end of the first mini-experiment.

At the end of the second mini-experiment the velocity will have changed even more. I

can write this as

v(t+∆t) = v(t1) + a(t1)∆t

where again v(t) means that v is a function of t, and a (t) means that a is a function of

t.In our case, we know the acceleration is a (t) = −g, and we know that it really does

not depend on time, but let’s see how we would find the acceleration if we did not know

this. Let’s take Newtons’s second law. In one dimension,3. This may be something you

have not seen yet in PH121, so let me give you Newton’s second law. It simply states

that if you add up all the pushes and pulls on an object, the amount of push or pull

left over after opposing pushes cancel is what makes the object change it’s motion. In

physics, we call pushes and pulls “forces.” In a tug-o-war, both sides pull, but they pull

in opposite directions. The winning team has to pull a little bit harder than the loosing

team. This difference in the pull of the two teams is called the net pull or the net force.

That difference in the forces is what makes the rope accelerate. For our ball, we can

write (in calculus notion)

ΣFx =
d

dt
(mv) = ma

This means to sum up all the forces in the x-direction and it says that that sum will be

3 OK, I know it is weird that my x-axis is vertical. Usually the vertical axis is the y-axis. But that is just

tradition, we can pick our axes any way we want. And I wanted x to go up and down.
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equal to the mass of the ball multiplied by the acceleration. If we know the mass of the

ball and the sum of all the pushes and pulls, we can find the acceleration. If there is no

air resistance, all we have is the force of gravity pulling on our moving ball.

ma = −Fg
Then

ma = −mg
or

a =
−mg
m

= −g
So our ball’s acceleration is just the acceleration due to gravity.

a (t) = −g
which is not time dependent. This is not very surprising. But what is important here is

the method for obtaining the acceleration, and this method is general—we can use it in

more complicated situations. We will do this each time we need to find an acceleration

for our systems.4

For our falling ball, then, we could write our second kinematic equation as

v(t+∆t) = v(t1)− g∆t
But note that in our computer formulation, we did not have to assume the acceleration

was constant. In our problem the acceleration is constant, but in the problems to follow,

it will not be! Our method can handle non-constant acceleration. That is more than the

kinematic equations can do. This is exciting!

At this point we have two equations that calculate a new position and velocity forward

in time, based on what the ball’s position and speed currently are:

x(t2) = x(t+∆t) = x(t1) + v(t1)∆t

v(t2) = v(t+∆t) = v(t+∆t) = v(t1) + a(t1)g∆t

So far we have only talked about calculating two positions (two mini-experiments), but

we can use these equations to get a general expression for the next position, and the

next, and the next to as many mini-experiments as we want.

x(t+∆t) = x(t) + v(t)∆t

v(t+∆t) = v(t) + a(t)g∆t

These mean to take the position at the current time, x(t), and add the current speed,

v (t) times ∆t to get the next x position x (t+∆t) . And also take the speed at the

current time, v(t), and add the current acceleration, a (t) times ∆t to get the next speed,

4 For those who are taking PH 121 this semester, have a more experienced student work with you on this

part until your PH121 class catches up to net force.
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v (t+∆t) . By doing this, over and over we can find the position of the ball at each

time for a whole ball �ight.

You will notice that these expressions are coupled: the new position depends on the

previous velocity, and the new velocity depends on the previous position. We have to

use the equations together. To find the solution we will take a small step in time, ∆t,

and calculate a new position. We will also calculate a new speed. Then we will use the

new speed to find a new new position an additional ∆t later, and the new new position

to find a new new speed. We step these two quantities forward in time one ∆t at a time.

We can repeat the process indefinitely.

Let’s try an example. Suppose we throw a ball straight up with an initial velocity of

vo = 30m/ s and an initial position of xo = 0 (measured vertically) at t0 = 0 s. Let’s

take time steps of size ∆t = 0.001 s.We can calculate the next position at t1 = ∆t

x(t1) = x(t0) + v(t0)∆t

x(t1) = 0 + 30
m

s
× 0.001 s

= 0.03m

our ball has moved to up to the position x = 0.03m. Our ball will have changed speed.

We can find the new speed as

v(t1) = v(t0) + a(t)∆t

v(t1) = 30
m

s
− 9.8

m

s2
× 0.001 s

= 29. 99
m

s
as we would expect, the ball has slowed down a little. In the next time interval,

t2 = t1 +∆t, the ball will move to the new position

x(t2) = x(t1) + v(t1)∆t

x(t2) = 0.03m+ 29. 99
m

s
× 0.001 s

= 0.059 99m

Notice that we used the new velocity at t1 to find this second position at t2. We need to

find a new velocity at this position

v(t2) = v(t1) + a(t1)∆t

v(t2) = 29. 99
m

s
− 9.8

m

s2
× 0.001 s

= 29. 98
m

s
We can use this to find the third position
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x(t3) = x(t2) + v(t2)∆t

x(t3) = 0.059 99m+ 29. 98
m

s
× 0.001 s

= 0.089 97m

and the velocity at this position

v(t3) = v(t2) + a(t2)∆t

v(t3) = 29. 98
m

s
− 9.8

m

s2
× 0.001 s

= 29. 97
m

s
We can keep marching along, one ∆t at a time finding new positions, then finding new

speeds, then using the new speed to find a new position, and finding the new position to

find a new speed, and the new speed to find a new position, etc.

There is a typical short hand for these equations

xn+1 = xn + vn∆t

vn+1 = vn − g∆t
What this means is that we have labeled each new x and v by how many time steps, ∆t,

we have taken. The first ∆t will be n = 1, the second n = 2, and so on. Just to be

clear, let’s compare

x(t+∆t) = x(t) + v(t)∆t

xn+1 = xn + vn∆t

This means that we start with the initial velocity, v0 at the initial position x0. We use

these to calculate the position x1 and the speed v1 a time t = ∆t later.

x1 = x0 + v0∆t

v1 = v0 − g∆t
Then we start over with the new initial velocity, v1 at the initial new position x1 and

use them to calculate the position x2 and the speed v2 an additional time ∆t later

(t = 2∆t).

x2 = x1 + v1∆t

v2 = v1 − g∆t
Then we use x2 and v2 to find x3 and v3

x3 = x2 + v2∆t

v3 = v2 − g∆t
and so forth. Here is what we get after many iterations:
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Time (s)

Position (m)

the solid line is the result of the kinematic equation (the correct result). The little plus

signs are our computer solution. It is not too bad, but it is not too good either. Of

course, if we let our ∆t get smaller, we will have a better solution.

Time (s)

Position (m)

Notice that there are many more small plus signs now. We had to do more calculations

to get the improvement. This is the cost of the smaller ∆t. If we let ∆t be very small

the curves lie right on top of each other.

Time (s)

Position (m)

Euler came up with this method back in the 1700’s and we still call this method of

numerically finding results Euler’s method (pronounced like“oiler”).

Let’s take a moment and see what went wrong when ∆t was not small enough.
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In the figure, we can see a solid curve (green if you are seeing this in color). Let’s

suppose the solid curve represents the actual position of the ball as a function of time.

Lets also suppose ∆t = 2 s. If we use the method we have described to find the position

as a function of time, we will get an x1 that is shown as a diamond on the graph. We

have

x1 = x0 + v0∆t

v1 = v0 − g∆t
if we let vo = 30m/ s and xo = 0 like before, we get

x1 = 0 + 30
m

s
× 2 s = 60m

v1 = 30
m

s
− 9.81

m

s2
× 2 s = 10. 38

m

s
This is much too high. That is because our method assumes

dx

dt
= vo

for this entire time step. But observing the solid curve shows us that dx/dt is not

constant along the path. The slope changes because there is a negative acceleration. So

we have over-estimated x1. This error will compound as we go. For the next ∆t we

start with x1 and our new slope v1 and try to find x2.

x2 = x1 + v1∆t

v2 = v1 − g∆t
or, given our initial conditions,

x2 = 60m+ 10. 38
m

s
× 2 s = 80. 76m

v2 = 10. 38
m

s
− 9.81

m

s2
× 2 s = −9. 24 m

s
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We can see that if ∆t is too big, we take a step that is too high because our slope is too

big. This continually happens at each step. Our solution gets poorer and poorer.

We can see that using numerical techniques requires some caution. The farther from

your initial conditions you get, the poorer the result will be. In other words, if I look at

t = 0.5 seconds, the soliton is not too bad. But at t = 4 seconds our solution was 39.

163m off.

You might be tempted to ask “then why do this?” The answer is, we often do not have

easy kinematic equations that will solve our problems. Suppose, for example, the

acceleration is not constant.

Euler and Simple Systems with Not-So-Simple Dynamics.

Suppose we throw a ball, but we have air resistance. Your PH121 class only has you

throw balls in a vacuum–something that is only fun if you have a space suit. Real balls

have air resistance. To model air resistance is really a PH123 problem. So I will just

give you a formula for the force due to air resistance here. There is a resistive force

FR =
1

2
DEAv2

that depends on the cross-sectional area of the ball, A, the density of the air, E, the

speed of the ball, v, and the ball’s drag coefficient, D, that contains the effects like

surface ruffness and shape of the ball. So we have two forces working on the ball now,

the force due to gravity, and the resistive force. If we throw the ball straight up, then we

only have forces in one dimension. We can use our Newton’s second law method to

find the acceleration!

ΣFx =ma = −Fg + FR
so

a =
−Fg + FR

m
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or

a =
−mg + 1

2DEAv
2

m

= −g + DEAv
2

2m
Notice that this acceleration changes when v changes. And we know that v does

change as the ball goes up. We can’t use the kinematic equations at all with a changing

acceleration. But we can use our Euler method.

x(t+∆t) = x(t) + v(t)∆t

v(t+∆t) = v(t) + a (t)∆t

or

xn+1 = xn + vn∆t

vn+1 = vn + an∆t

The only difference is that now our acceleration is not −g, but a = −g + DρAv2

2m . So

instead of

xn+1 = xn + vn∆t

vn+1 = vn − g∆t
we will have

xn+1 = xn + vn∆t

vn+1 = vn +

�

−g + DEA (v(t))2

2m

�

∆t

The rest of the method stays the same. In fact, to change physical systems we usually

only need to change the acceleration function. This implies that we could build a

general Euler solver, and then just modify the acceleration part. That is such a good

idea that there are standard notations for this.

Standard Euler Notation

This is not really needed for our lab today, but might be helpful if you have to write a

Euler code in the future. It is convenient if you are a computer programer (which you

now are!) to write this method more generally, in particular, if we have two coupled
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differential equations of the form5

dx

dt
= v (t) = f(x, v, t)

dv

dt
= a (t) = g(x, v, t)

All we have done is to write the speed as f(x, v, t) and the acceleration as g(x, v, t).

Then we step them forward in time according to

xn+1 = xn + f(xn, vn, tn)∆t

vn+1 = vn + g(xn, vn, tn)∆t

where the subscript n refers to the number of time steps we have taken, and tn refers to

the time of the nth time step. This is really nothing new for us. We just wrote a and v a

different way.

f(x, v, t) = v (t)

g(x, v, t) = a (t)

so we have only invented a more difficult way to write our equations. We are right back

to

xn+1 = xn + vn∆t

vn+1 = vn + an∆t

But if I have more than two coupled equations (say, we let the ball move in two

dimensions), the extension is quite straightforward to incorporate the additional

equations in the new notation. If

dx

dt
= fx(x, y, vx,vy, t)

dy

dt
= fy(x, y, vx,vy, t)

dvx
dt

= gx(x, y, vx,vy, t)

dvy
dt

= gy(x, y, vx,vy, t)

then the Euler method notation would dictate

xn+1 = xn + fx(xn, yn, vxn,vyn , tn)(∆t)

yn+1 = yn + fy(xn, yn, vxn,vyn , tn)(∆t)

vxn21 = vxn21 + gx(xn, yn, vxn,vyn , tn)(∆t)

vyn21 = vyn21 + gy(xn, yn, vxn,vyn , tn)(∆t)

5 In computer programming books and Numerical Methods Books, they usually switch the v to the letter y

to be more general. That is because you may want to solve a differential equation that is not in terms of

position vs time. But for this first view of Euler’s method, I will stick with v.
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Let’s see what our ball with air resistance would look like in this notation.

xn+1 = xn + f(xn, yn, vxn,vyn , tn)(∆t)

vn+1 = vn + g(xn, yn, vxn,vyn , tn)(∆t)

with

f(xn, yn, vxn,vyn , tn) = v (tn)

g(xn, yn, vxn,vyn , tn) = −g + DEAvn(tn)
2

2m
We really just write out the acceleration equation on a different line, and that makes the

code easier to write.

In the event that your time steps are infinitely small (i.e. ∆t → 0), the Euler method

will give you an exact solution. In reality, we cannot take infinitely small time steps.

We can imagine making them really, really small, but then we have to take many, many

calculations. For example, if my time step were as small as 1 ns, I would have to take

one billion steps forward in time just to cover one second of experimental time!

The issue of taking large number of steps is not the only problem we face. Only

infinitely small time steps will give you an exact solution. Any time step that is not

infinitely small will only give you an approximate solution. The larger the time step, the

less accurate the approximation. It turns out that these approximate solutions turn sour

quickly, as we will see when we tackle mass-spring systems. Even with a very small

time step, an Euler’s method simulation of the mass-spring system becomes unphysical

after just one or two oscillations!

So we should ask, is this really useful? Is there some way to make numerical modeling

more accurate? The answer, of course, is yes to both questions.

Beyond Euler: The Runge-Kutta Method.

We won’t go beyond the Euler method in this class, unless you want to try for the extra

credit. But it is useful to think of how we would. So read this next part, but look fop

the concepts of how to make Euler better, and don’t worry about the details of writing

computer code to make the improvement happen.

The nastiness that evolves from the Euler method boils down to one simple fact: we

assume that the rate of change of the variable is constant over a given time step.

Obviously, this assumption is wrong in practically every circumstance6. To make

matters even worse, we take our “constant” rate of change from the endpoint of the time

interval, and the rate of change at the endpoint is by no means representative of the

6 The only exception would be, for example, where velocity was constant. In this case a numerical solution

would be completely unwarranted.
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entire interval. Here is an example. In the figure below, the solid curve is the function

we are trying to find. We will start at t = 10 s.

-10 10 20 30

-20

20

40

60

time (s)

Position (m)

I want to use a time step of ∆t = 5 s (way to large). We see that our Euler’s method

starts with our initial time at t = 10 s and makes a step

x1 = x0 + v0∆t

that is on the straight line. The slope of the straight line is given by v0. =
dx
dt

right at

our starting point, (xo, 10 s).We get the position x1 marked by the small diamond. But,

as we expect, this is not on the true curve at all!

An obvious improvement would be made if we could somehow estimate what the

average value of the slope (derivative) over the time interval would be. It would

logically be better to use this average value while progressing a given variable over

time (for example, using the average velocity over a time interval while evaluating the

position).

-10 10 20 30

-20
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40

60

time (s)

Position (m)

This is quite an improvement as you can see.

There are methods for doing just this. One way is to take a trial step across the entire

interval, estimate the values of the derivatives at the midpoint of the interval, and then
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use the midpoint derivatives to step over the entire interval. For the set of coupled

differential equations from before,

dx

dt
= f(x, v, t)

dv

dt
= g(x, v, t)

this process is re�ected by numerical iterations of the form

kx1 = (∆t)f(xn, vn, tn)

ky1 = (∆t)g(xn, vn, tn)

kx2 = (∆t)f

�
xn +

kx1
2
, vn +

kv1
2
, tn +

∆t

2

�

ky2 = (∆t)g

�
xn +

kx1
2
, vn +

kv1
2
, tn +

∆t

2

�

xn+1 = xn + kx2

vn+1 = yn + kv2

Lets take this apart to see what it means

The last two equations project our position and another variable (for us velocity)

forward to the next position.

xn+1 = xn + kx2

vn+1 = vn + kv2

If we were using Euler’s method we would know what these look like from our previous

work:

xn+1 = xn + vn∆t

vn+1 = vn + an∆t

We could identify

kx2 = vn∆t

kv2 = an∆t

or we could write these as

kx2 = (∆t)f(xn, vn, tn)

kv2 = (∆t)g(xn, vn, tn)

because

f(xn, vn, tn) = vn

g(xn, vn, tn) = an = −g
This would just be a more obscure way to write Euler’s method. We would use the

derivative or slope at x1 to find x2. But we want to find an average slope over the
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interval x1 to x2. To do this we start with the Euler steps

kx1 = (∆t)f(xn, vn, tn)

kv1 = (∆t)g(xn, vn, tn)

(note the subscript of the k′s changed) and use it to find the average slope. This is done

in the middle equations from our set

kx2 = (∆t)f

�
xn +

kx1
2
, vn +

kv1
2
, tn +

∆t

2

�

kv2 = (∆t)g

�
xn +

kx1
2
, vn +

kv1
2
, tn +

∆t

2

�

what this means is that to find the steps kx2 and kv2 we find the slope function

f(xn, vn, tn) but at the points x′n = xn+
kx1
2 , v

′
n = xn+

kv1
2 . Since kx1 is the distance

we would go in the x direction if we used the Euler method, kx1/2 is half that distance.

We are calculating the slope half way along the Euler step! This is not the true average

slope, but it is close to it. Of course we do the same thing for v, calculating the slope

(this time our acceleration) half way between vn and vn+1 that we find from the Euler’s

method.

Once we have the derivatives (slopes), we can multiply by ∆t to get our new step size.

Using

xn+1 = xn + kx2

vn+1 = vn + kv2

we project to the next xn+1 and vn+1 and start over to find the next set.

The extension to systems of more than two coupled equations, just as with the Euler

method, is straightforward. This method is referred to as the midpoint method or

second order Runge-Kutta method.

It is fair to point out that this method is still �awed. We’re still getting approximate

values for the midpoint derivatives based on some sort of extrapolation from the

conditions at the beginning of the interval. However, this method is a vast improvement

over the Euler method. The solution is far more stable, even for larger step sizes, and

thus more accurately approximates the exact solution.

We don’t need to stop here, however. A person could consider using the midpoints of

the half-intervals to further refine the numerical process. In so doing, one generally

estimates the value of the derivatives at four points and then takes a weighted average

of those derivatives. The resulting process is called the fourth-order Runge-Kutta
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method. Iterations of the form

kx1 = (∆t)f(xn, vn, tn)

ky1 = (∆t)g(xn, vn, tn)

kx2 = (∆t)f

�
xn +

kx1
2
, yn +

kv1
2
, tn +

∆t

2

�

kv2 = (∆t)g

�
xn +

kx1
2
, yn +

kv1
2
, tn +

∆t

2

�

kx3 = (∆t)f

�
xn +

kx2
2
, yn +

kv2
2
, tn +

∆t

2

�

kv3 = (∆t)g

�
xn +

kx2
2
, yn +

kv2
2
, tn +

∆t

2

�

kx4 = (∆t)f(xn + kx3, vn + kv3, tn +∆t)

kv4 = (∆t)g(xn + kx3, vn + kv3, tn +∆t)

xn+1 = xn +
kx1
6

+
kx2
3

+
kx3
3

+
kx4
6

vn+1 = vn +
kv1
6

+
kv2
3

+
kv3
3

+
kv4
6

In many physical situations, a fourth order Runge-Kutta solution is indistinguishable

from the exact solution, even when “relatively” large steps are used. I emphasize the

word “many,” though, because there will always be exceptions.

There are even further refinements that can be made to these methods. For example,

you can use a combination of second and fourth order Runge-Kutta steps and from

those extrapolate an nth order Runge-Kutta step. You can imagine ways in which you

would use the endpoint of the interval, as opposed to the beginning point, as the basis

for estimating your derivatives. You can implement numerical strategies that will adjust

the step size so that it is really small in places where the derivatives are large and really

large in places where the derivatives are small. You might even try combining all of

those methods together. You will probably be grateful to know that we won’t do any

of these things in our lab. That would take all semester to work out (and then some).

But you should be aware that there are ways to increase the accuracy of your numerical

solutions.
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Implementation

You are probably wondering how you would actually make a computer do all of this

calculation. In this section let’s consider how to write an Euler method code for our lab,

then I will comment on versions to use in further studies (later in your career). You

don’t need to read this section before class. What follows is a tutorial that will guide

you step-by-step through the first part of the lab. But if you want to, read on just to get

a feel for what we will do.

First let me give you a more proper introduction to the computer language we use in

our class. It is called MatLab7 and it is a commercial product8. One of the objectives

of this course is to introduce you to ways to do calculations with high level computer

programing languages. Our department has chosen MatLab as our language because it

is widely used in industry and academia.

So far we have made plots in MatLab, and we have done some simple calculations,

but truthfully, they might have been easier to do on your calculator or in a spreadsheet

program. Hopefully, you will see that this week’s assignment is not easier in a

spreadsheet or on your calculator. That is why we use MatLab or a similar computer

language to do calculations. Let’s take some time and get acquainted with MatLab.

MatLab–turn your computer into a giant calculator

We can think of MatLab as a tool that turns your computer into a very powerful

calculator. Like many powerful things, it takes some time to learn to use it. There are

no specific buttons for functions like on your calculator. In the last few labs we have

learned how to start MatLab. Do so now. You used MatLab’s statistical commands last

lab. We found that we had to type commands to get the functions we want. Let’s try a

new function now. Type

sin(90)

in the command window. You should see the result

ans=0.89400

7 If you are a computer science major, you may prefer another language to MatLab. That is fine, get

approval before you start so we can make sure your entire group can work together.
8 However there is a free programing language called Octave that you can use if you want to run your code

on your computer, but don’t want to pay for MatLab.
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We have taken the sine function of the number 90. On our calculator, we would type

90, then press the sin button to get the same result.

You may wonder about this answer. Usually sin (90 ◦) = 1.Why did MatLab give us

0.89400? MatLab, like most powerful mathematical languages, assumes we are using

radians. Try typing

sin(pi/2)

you should see

ans=1

What we mean by sin(pi/2)is of course

sin
�π
2

�

MatLab has some common constants predefined, like pi=π.

This may all seem nice, but not as convenient as the calculator that you have used for

many years. But, as we said before, MatLab can do some things your calculator cannot

do, and that is why we will begin to learn to use it this semester. Think of it as using a

large programmable calculator. The MatLab language is the calculator programming

language for our lab computers.

MatLab implementation

We will write our lab implementation of numerical integration in MatLab. Let’s tackle

the Euler method first, then you can modify your Euler code to produce the second

order Runge-Kutta version if you are going to attempt the extra credit (Euler is hard

enough if you are new at programming).

There are some new ideas in programing that might make this easier. The first is the

idea of an array. This is a column of data, like you might see on a spreadsheet. In last

lab we used an array variable that we named “data” to calculate means and standard

deviations. We will use the notation x(i) to mean a column of x values. For example,

the data in the following figure

could be named x(i) where the i part is the “index” telling you which element of the
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array you will get. The i part is like the row number in a spread sheet. In the spread

sheet, if I asked for the third row element of our first column, you would tell me the

value was 4. Likewise, if we put this data into an array, then x(3)= 4.You could

mentally think of x(i)as

x(i) =

1

2

4

8

We also need a way to do calculations over and over again. MatLab has a way to do

the same thing many times. It is called a “for” loop and we have seen it before. Let’s

take an example from life of something that we do over and over again and write it in

MatLab terms so we can see how it works. We go to class for 13 weeks. We meet every

week for lab either on Tuesday or Thursday. Let’s pick Thursday in our example. We

want to go for 13 weeks. So we write

for week=1:13

go to class on Thursday

end;

This says to go to class on Thursday for 13 weeks, then after the 13th week we end

(quit). Everything between the for and the end is done 13 times.

We can get fancier. We could include doing the reading and even celebrate when lab is

over:

for week=1:14

read the reading assignment

go to class on Thursday

do the lab assignment

shout "hurray week ", week, "is done!"

end;

This set of instructions will do all the things between the for and the end, this time

four separate things, fourteen times. Notice in the last instruction we shout “hurray,”

but in the statement the word week appears on its own with no quotation marks. This

word, week, is also used in the for statement. This is a variable called the loop

counter. It changes value by one every time the instructions that are in the loop are run.

The first time the loop instructions run the variable week has 1 stored in it. The second

time it will have 2 stored in it. The next time 3 and the next time 4 up to 13 for the last

time the instructions are run. The idea of a loop counter is very useful. If we want to



Implementation 91

work on the data stored in an array, the loop counter can be used as the array index to

access the data one “row” at a time.

Our computers can’t really execute instructions like “go to class,” so let’s try something

that a computer can do. Let’s take something from a previous lab as an example. To

make an average, we add up all the numbers in a set, and then divide by the how many

numbers we have. Let’s see how to make MatLab do this:

data = [34 38 33 38 38 36 35 47 36 32 40 40 45 36 ...

43 38 48 40 40 38 43 40 39 36 46 34 37 33 32 34 ];

N=30;

sx=0;

for n=1:N

sx=sx+data(n);

end;

ave=sx/N

This set of instructions starts by defining an array of numbers called data. Next, it

defines the variable N and sets it equal to 30. This is the number of data points in the

array data. Next a variable sx is defined and set equal to zero. This will be a memory

place to put the sum as we make the sum in the loop.

Next we have a for statement. The loop counter is the variable n. The loop

will run 30 times, because N = 30. Inside the loop we just have one statement,

sx=sx+data(n);. You may be saying, “wait, that last equation does not make

sense” and you would be right. It is not an equation but is a MatLab assignment

statement. It means “take the current value of variable, sx, and add the value of

data(n) to it , and place the answer back in the variable, sx.” Here we are using the

loop counter to choose the “row” in our array to use. Each time we run the statement

sx=sx+data(n); we want to use a different “row” in the array. This is like using a

different row in the column in our spreadsheet. We need to add up all the numbers in

data so we need to have a different “row” from the array each time. The loop counter

lets us do that. After N loops, we have added up the whole array and placed the result

in sx. To finish our average, we need to divide byN. The last statement does this, and

assigns the result toe the variable ave.

Notice that we started by setting the variable sx to zero. We may want to do that for an

entire array. A way to do that is the zeros() command.

t=zeros(1,N+1);
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This command makes an array called t that is N elements long and sets every element

of t to zero.

For our Euler code, you will want to define a variable for ∆t, say, deltat. You will

want to be able to change this so you can see the effect of making ∆t smaller. Since the

total number of calculations for a given total time and ∆t are related, you might choose

to calculateN from ∆t,

deltat=0.01; %in seconds

ti=0; %initial time

tf=20; %final time for our calculation

N = (tf-ti)/deltat;

Note that I am writing useful, informative things after a % sign. The % sign tells

MatLab to ignore anything after it. It allows us to make useful comments that we can

understand, but MatLab can’t. In this case, I included units (seconds) and told you what

data I would store in the variables tf and ti.

Another useful MatLab function is the array filler:

t = (0:deltat:tf)

This command fills the array, t starting with t(1)=0, and adding deltat each time

so you have t(2)=deltat and t(3)=2*deltat and t(4)=3*deltat and so

forth up to t(N)=(N-1)*deltat which should be tf. For example,

t=(0:0.5:2)

t =

0 0.5000 1.0000 1.5000 2.0000

This is very like the spreadsheet ability to start a calculation and copy it down a column

to make it calculate many rows the same way.

Yet another help is to realize that the condensed notation we have used

a = −g
xn+1 = xn + vn∆t

vn+1 = vn + a∆t

is very like, the assignment notation in a loop. We could write these as

a=-g;

x(n+1)=x(n)+v(n)*deltat;
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v(n+1)=v(n)+a*deltat;

where x(n) and v(n) are arrays. MatLab will understand these equations! These

statements would be included inside a loop, of course, so we could increase the index

n so we could calculate the x(n) and v(n) for every time step, ∆t. Alternately, we

could use our fancier notation

f(xn, vn, tn) = vn

g(xn, vn, tn) = −g

xn+1 = xn + (∆t)f(xn, vn, tn)

vn+1 = vn + (∆t)g(xn, vn, tn)

which requires four lines of assignments

f=v(n);

g=-9.8004; %m/s^2

x(n+1)=x(i)+deltat*f;

v(n+1)=v(n)+deltat*g;

which might be better. The point is, that our condensed notation is very like MatLab

code and is a guide in how to write our MatLab statements.

Step by step instructions

Armed now with a few MatLab commands, we can make the Euler code in MatLab.

Start by opening a new MatLab script file.

We want to be sure we know what the instructions will do later, so we should start by

making some comments. I suggest something like this

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% One dimensional free-fall Euler code %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PH150

% Brother Lines (<-your names here)

% 2012 August 14

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code will calculate the exact solution for ball in free fall

% having been shot straight up using Euler’s method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Since all of these lines start with % MatLab will ignore all of these lines. But they will

help us a lot to remember what we have done. Next, let’s define some of the variables

we need so they will be all in one place. This makes it easier to change the numbers

we put in these variables later when we compare our numerical prediction to an actual

experiment.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial conditions and physical setup constants

v0=30.0; %initial velocity (m/s)

x0=70; %initial position

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set up the time steps and number of calculations

deltat=0.01; %Time step in seconds

to=0; %Start up time in seconds t=0

tf=7.0; %Final time in seconds

The first two statements set up the initial speed of the ball and it’s initial height (given

the variable x in this code, like in our reading, but it is really the y-direction). The

next three statements define ∆t, and the initial time and final time to consider in

our calculation. Notice that there are other lines that start with %. These are more

comments.

Next, let’s calculate how many times we need the loop to run to make our Euler

solution. A little thought tells us that the total time the ball will be in the air is tf − to.
The number of time steps is then (tf − to) /∆t. Here it is in MatLab:

% calculate how many time steps to take

N=(tf-to)/deltat;

We need some arrays as places to put our Euler solution as we build it. This is like

making columns in a spreadsheet. MatLab does not have columns already built like as

spreadsheet does. We need to make them. We will use the array zero fill command.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define arrays and fill with zeros

t=zeros(1,N+1); % time array

x=zeros(1,N+1); % x positions (vertical position)

v=zeros(1,N+1); % velocity array
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Now we have an array of times, it would be good to put in time values. We can do this

using the array fill command:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fill the time array with times that are deltat apart

t=(0:deltat:tf);

Now we are ready to build the loop that performs the Euler calculation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%now perform an Euler’s Method Calculation

v(1)=v0; % initial velocity

x(1)=x0; % initial position

for n=1:N

f=v(n);

g=-9.8004;

x(n+1)=x(n)+deltat*f;

v(n+1)=v(n)+deltat*g;

end;

The first two lines put our initial position and initial speed into the first part of the

array. This is like putting the initial conditions in the first row of the position and speed

columns in our spreadsheet. The loop counter is n. Then we have MatLab versions of

our Euler equations

f(xn, vn, tn) = vn

g(xn, vn, tn) = −g
xn+1 = xn + (∆t)f(xn, vn, tn)

vn+1 = vn + (∆t)g(xn, vn, tn)

At the end of the loop we have a position and speed for each time in our t array. To see

how our ball traveled, we can plot position vs. time.

% plot the results

plot(t,x,’+’);

The plot should look something like this.
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And the completed code might look like this:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% One dimensional free-fall Euler code %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PH150

% Brother Lines

% 2012 August 14

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code will calculate the exact solution for ball in free fall

% having been shot straight up using Euler’s method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial conditions and physical setup constants

v0=30.0; %initial velocity (m/s)

x0=70; %initial position

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set up the time steps and number of calculations

deltat=0.01; %Time step in seconds

to=0; %Start up time t=0

tf=7.0; %Final time

% calculate how many time steps are in 20 seconds

N=(tf-to)/deltat;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define arrays and fill with zeros

t=zeros(1,N+1); % time array

x=zeros(1,N+1); % x positions (vertical position)

v=zeros(1,N+1); % velocity array
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fill the time array with times that are deltat apart

t=(0:deltat:tf);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%now perform an Euler’s Method Calculation

v(1)=v0; % initial velocity

x(1)=x0; % initial position

for i=1:N

f=v(i);

g=-9.8004;

x(i+1)=x(i)+deltat*f;

v(i+1)=v(i)+deltat*g;

end;

% plot the results

plot(t,x,’+’);

Implementation in your future work

Numerical schemes commonly employed by professional scientists are often more

complicated out of necessity. How those methods work, however, is beyond the scope

of our present discussion. For more information, I would direct your attention to

chapter 16 of the book Numerical Recipes in C, written by William H. Press, et al., and

published by Cambridge Press.[1] Although the algorithms in the text are written in

the C programming languages (there are also versions available in C++ and ForTran,

I use the ForTran edition), the text very clearly describes these numerical processes in

a way that is essentially independent of the programming language. There are several

sources of pre-written code that you can include in your programs to perform numerical

calculations. Numerical Recipes in C includes many. The Gnu Science Library (GSL)

also contains many good numerical routines. But you should be careful to only use such

routines when you know exactly how they work. Otherwise, you may have a terrible

surprise at some point when the routine fails because you have used it outside it’s valid

range.
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Assignment: Numerical modeling of Projectile motion

Because we are learning a major new skill. we will take three weeks to complete the experiment

we are starting today. This will affect your lab notebook. Complete each part of the lab each

week in an organized fashion in your lab notebook. Make graceful end-of-class entries so you

can start up again the following week. As always, part of the grade will be based on neatness and

organization!

1. Create a MatLab script that will numerically model the motion of a spherical projectile

shot straight up and then falling back down using Euler’s method. Assume there is no air

resistance. As input quantities you should provide the following:

• The initial y position of the projectile y = 70.00 meters

• The initial speed of the projectile. 30.0m/ s

• The time step size.0.1 seconds

• The acceleration due to gravity 9.8m/ s2

Make these quantities variables so you can easily change values and recalculate. There is a

step-by-step tutorial in today’s reading that will walk you through this part. Save your script

and record where you saved it. Include a scatter plot of y vs t in your lab notebook.

2. Copy and then modify your MatLab script to numerically model the motion of a spherical

projectile being launched from a cannon using Euler’s method. As input quantities you

should add the following (Make these quantities variables so you can easily change values

and recalculate):

• The initial x position of the projectile x = 0.00

• The launch angle for the projectile (measured from the positive x axis) 45 degrees

Include a plot of y vs x in your lab notebook. Save your script and record where you

saved it.

3. Copy and modify your script to include air resistance. Air resistance will add a new resistive

force that is proportional to the square of the projectile’s velocity, i.e.

FR =
1

2
DEAv2

whereD is the drag coefficient, E is the density of the air, A is the cross-sectional area of

the projectile presented to the air (in our case A = πr2), and v is the speed. The force is

directed opposite the velocity of the projectile. You will need components of this force. You

should convince yourself that

FRx = −1

2
DEAv (n) vx (n)

FRy = −1

2
DEAv (n) vy (n)

where

v (n) =

�
(vx (n))

2 + (vy (n))
2

and vx (n) and vy (n) are the components of the velocity. This form of the components of

the resistive force avoids having to calculate the angle at each of our Euler steps. As input

quantities you should provide the following (Make these quantities variables so you can
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easily change values and recalculate):

• The mass of the projectile.0.020 kg

• The radius of the projectile.0.02 meters

• The drag coefficient for the projectile 0.2

• The density of the air the projectile travels through 1.23 kg/m3

4. Include a scatter plot of your x and y positions for each time step in your lab notebook

If you also do this using the second order Runge-Kutta will receive extra credit–but this is not

required. Groups that use fourth order Runge-Kutta will receive extra extra credit. In order to

make sure all groups get through with the Euler’s method solution, I will try to limit my help just

to the Euler method.





8 Numerical modeling of a
Mass-Spring System

In our last lab we started using Euler’s method to solve physics problems. We started

with a problem we could do algebraically (a ball toss with no air resistance), but

then considered a problem that we could not do with just algebra (a ball toss with air

resistance). We did this by using the coupled equations

x(t+∆t) = x(t) + v(t)∆t

v(t+∆t) = v(t) + a (t)∆t

where for the first case

a (t) = −g
and for the second

a (t) = −g + DEAv(t)
2

2m
We said that to take on different problems using Euler’s method, we only have to

change the acceleration term. And we can see that this was true for our moving ball

cases. We are going to take on a very different physical system today, and we will see

that even though it is very different, we can still use Euler’s method to describe the

motion, and all we have to do is to change the acceleration term again.

Mass Spring Systems

Let’s review Hook’s law for springs. Consider a system consisting of a mass attached to

a spring lying on a frictionless surface, as depicted in next figure.9

9 A mass-spring system is often called a harmonic oscillator, it will show up under this name in your

PH121 book.
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We assume that the spring strictly obeys Hook’s law, F = −kx, where k is the spring

constant and x is the displacement from the equilibrium position and F is the spring

force. There are only four inputs to this system: the spring constant, the mass, and the

initial velocity and initial displacement of the mass. We turn to Newton’s second law

again to find the acceleration. There is only one horizontal force.

ΣFx =ma = −kx
so

a = − k
m
x

so we can write a set of coupled equations for the mass-spring system

x(t+∆t) = x(t) + v(t)∆t

v(t+∆t) = v(t) +− k
m
x(t)∆t

This is our Euler’s method solution. We can use the same code as we started with last

lab for our one dimensional ball motion, but change the acceleration to a = − k
m
x.

The exact mass-spring solution

Of course, if you have taken PH123 you know we can also find an exact solution for the

motion of a mass-spring system’s motion. Let’s introduce or review this here. It has

quite a bit of calculus, so if you are concurrently taking M12, don’t worry. all you need

is the answer at the end.

Given the simplicity of this system, it is fairly easy to write down an equation that

describes the motion. If your calculus skills are up to it, we can rewrite this using

differentials. Recognizing that acceleration is the second time derivative of position,

a =
dv

dt
=
d

dt

�
dx

dt

�
=
d2x

dt2

we can rewrite our spring acceleration as

d2x

dt2
= − k

m
x

We call this type of equation a differential equation. In our case, we have an equation

that involves a quantity, x, along with it’s second derivative. Because we have the

second derivative of x, it is called a second order ordinary differential equation. If

you stare at this equation long enough, the solution becomes somewhat apparent.

Ask yourself: for what function can I take a derivative of twice and get the same

function back along with a negative sign and a constant? If you are far enough in your

M112 class the answer is obvious, a sine or a cosine.10 Of course it could also be a

10 But if you are not far along in M112, don’t worry. I am just trying to motivate the calculus savvy reader

to believe the position as a function of time will be a sine or cosine function.
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combination of sines and cosines, so we can write a general solution

x(t) = a sin (ωt) + b cos (ωt)

where A and B are constants and either could be zero. If we substitute this in for x in

our differential equation, and take a couple of quick derivatives we will see that our

solution works so long as

ω =

�
k

m
Note that there are two undetermined constants in this expression, namely a and b.

Using a little trig11, we can rewrite this in an equivalent way12

x(t) = A sin

��
k

m
t+ φ

�

with the undetermined constants A, which represents the amplitude or maximum

displacement of the oscillation, and φ which is referred to as a phase angle. This is true

because the sum of a sine and a cosine function is another sinusoidal function (think of

all those trig identities you memorized in your trig class!).

If we know what the initial displacement and velocity are, it is easy enough to determine

the values of A and φ. Doing so at this point would distract from our discussion, so we

will forgo the exercise for now. In any event, the solution is oscillatory, as you would

expect from a mass on a spring.

Adding friction (damping)

A frictionless mass-spring system is obviously not too realistic. Many oscillating

systems will not fit our exact equation too well. Real masses have frictional forces

acting on them. A mass spring that experiences friction is said to be damped.

To modify our Euler code to use damping, we go back to Newton’s second law one

more time. We need a new expression for the acceleration. There are two forces that

act on the spring: the spring force F = −kx which acts opposite the displacement

and a damping force F = −bv that acts opposite the velocity. Here b is the damping

coefficient and is constant for a given situation.

The dynamic equation that describes the system is then

ΣFx =ma = −kx− bv
We get a new acceleration

a =
−kx− bv
m

and use this in our coupled Euler equations.

11 OK, a lot of trig.
12 This is where you should start paying attention if you are concurrently taking M112.
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Review of the Euler Method

Let’s review how to turn this into an Euler solution.

Starting from the basic kinematic equation

∆x = vot+
1

2
at2

and assuming that for our time interval the change in velocity (acceleration) is

essentially zero, then

∆x = vo∆t

or

xf = xi + vo∆t

remember that we have only let our experiment run for a very small ∆t, so even though

it is accelerating, and the acceleration varies with x, it would not have changed velocity

much. And our equation will nearly work. In the limit as ∆t→ 0 our equation will be

exact, just as we said before.

Of course we want go an additional small time interval. That is, let the experiment run

from t = ∆t to t = t+∆t. Then we can predict that the next position will be

x(t+∆t) = x(t) + v(t)∆t

As before we need to estimate a new velocity at the end of our time step, ∆t.We again

use

v = vo + at

assuming a very small time interval (small enough that the acceleration does not change

a whole lot over the interval) I can write

v(t+∆t) = v(t) + a(t)∆t

where I don’t necessarily know that the acceleration is constant in time. But just like

in the last equation for position vs. time we did not assume the velocity was constant

(we just assumed it was essentially constant over a small ∆t) we will assume the

acceleration is nearly constant over the interval ∆t.

We found (above) that for a frictionless mass-spring system Newton’s second law gave

us

a = − k
m
x

This acceleration depends on position. It is not constant so technically we can’t use the

kinematic equations. But it is constant enough over a very small ∆t.

Knowing the acceleration, we can use it in our velocity equation.

v(t+∆t) = v(t)− k

m
x(t)∆t

Now, we have two equations that project the position and speed forward in time, based
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on what the position and speed currently are:

x(t+∆t) = x(t) + v(t)∆t

v(t+∆t) = v(t)− k

m
x(t)∆t

Just like before, these expressions are coupled: the new position depends on the current

velocity, and the new velocity depends on the current position. To find the solution we

will take a small step in time, ∆t, and calculate a new position. We will also calculate a

new speed. Then we will use the new speed to find the next new position ∆t later, and

the new position to find another new speed. Once we step these two quantities forward

in time, we can repeat the process indefinitely.

In short hand these equations become

xn+1 = xn + vn∆t

vn+1 = vn −
k

m
xn∆t

We have labeled each new x and v by how many time steps, ∆t, we have taken. The

first ∆t will be n = 1, the second n = 2, and so on. Just to be clear, let’s again compare

x(t+∆t) = x(t) + v(t)∆t

xn+1 = xn + vn∆t

This means that we start with the initial velocity, v0 at the initial position x0. We use

these to calculate the position x1 and the speed v1 a time t = ∆t later. Then we start

with the initial velocity, v1 at the initial position x1 and use the equations to calculate

the position x2 and the speed v2 an additional time ∆t later (t = 2∆t). Then we use x2

and v2 to find x3 and v3 and so forth.

General form for the mass-spring system

We can write our coupled equations in our general form for Euler’s method if we want

to. Here is how they would look.

Starting with the second order differential equation

d2x

dt2
= − k

m
x

we write this as two coupled first order differential equations:

dx

dt
= v

dv

dt
= − k

m
x = a
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To relate this to our general form,

dx

dt
= v(t) = f(x, v, t)

dv

dt
= a(t) = − k

m
x (t) = g(x, v, t)

We can write these for time tn as

f(xn, vn, tn) = v(tn)

g(xn, vn, tn) = − k
m
x (tn)

or more compactly,

f(xn, vn, tn) = vn

g(xn, vn, tn) = − k
m
xn

which gives us what we need to understand our general form

xn+1 = xn + (∆t)f(xn, vn, tn)

vn+1 = vn + (∆t)g(xn, vn, tn)

Of course this is really just

xn+1 = xn + (∆t)vn

vn+1 = vn + (∆t)

�
− k
m
xn

�

for our specific case. But sometimes it is easier to write a general routine and then

provide f(xn, yn, tn) and g(xn, yn, tn) for our specific case in a subroutine13. This

way the main routine can be easily used over and over and only the subroutines need to

be rewritten if we change specific cases.

Harder oscillation systems

There are problems worse than damping. After all, if you have taken PH 123 you know

that we can find a solution even to the damped case that is a single equation (but it

is hard to do). If I can solve a differential equation, why would I need to work out a

numerical solution? The answer is that not all differential equations have nice, neat

analytical solutions like the one that describes the mass-spring system. For example,

consider a pendulum bob on a massless string, as shown in next figure. We confine the

motion of the bob to the plane of the page, so that the displacement of the bob can be

conveniently described by the angle θ that the string makes with the vertical.

13 The terms “routine” and “subroutine” will be familiar to the computer science majors. For the rest of us

they mean “program” and “sub-program” or in MatLab “script” and “function.”
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T

m

L
θ

mg

θ

A Simple Pendulum

There are two forces acting on the pendulum bob: gravity, which pulls downward,

and the tension in the string. The acceleration of the bob can be expressed in terms

of a centripetal acceleration (parallel to the string) and a tangential acceleration

(perpendicular to the string). There is never a change in velocity in the direction of

the string, so the component of gravity parallel with the string must equal the tension.

The tangential acceleration of the bob, which is what changes the bob’s speed, is

thus provided by the component of gravity perpendicular to the string. If you do the

geometry, you find that this force has a magnitude of

F = −mg sin θ
Putting this into Newton’s second law, we end up with the relation

matan = −mg sin θ
The tangential acceleration is related to the angular acceleration by14

atan = Lα

where L is the length of the string, and the angular acceleration (α) is the second time

derivative of the angular position, i.e.

α =
d2θ

dt2

Inserting these latter two expressions into our dynamic equation, we get

mL
d2θ

dt2
= −mg sin θ

At this point, the masses cancel and we can isolate the derivative on the left hand side

of the equation:
d2θ

dt2
= − g

L
sin θ

Despite it’s relatively simple appearance, this second order nonlinear ordinary

differential equation does not have a simple analytic solution15. At this point, most

14 Understanding the details here is not so important as noticing that we are again using Newton’s second

law to find the acceleration.
15 The analytic solution involves a few not-so-straightforward operations involving differential calculus, as
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introductory physics texts use what is known as a small angle approximation, i.e. for

small angles sin θ ≈ θ, where θ is in radians. Once that approximation is made, the

differential equation has exactly the same form as the equation for the mass-spring

system, and can be solved analytically. However, we recognize that the solution will

only be valid for small angles, generally less than about 15◦ (it is only really very good

for very small angles < ˜4 ◦).

But what if you want to know something about the motion of the pendulum for

larger angles? You have two choices. Either you can go through the painful process

of solving the differential equation and numerically solving the resulting integral

(you physics majors will be able to do this by the time you are seniors), or you can

numerically approximate the solution to the differential equation in a way that gives

us useful information about how the system behaves, even when the angles are large.

In other words, you can numerically model the pendulum. It is generally true that,

with the introduction of some intermediate variable (in our case v), that any second

order differential equation can be broken down into two coupled first order ordinary

differential equations. For the pendulum, these first order equations are

dθ

dt
= ω

dω

dt
= − g

L
sin θ

This system (or any system like it) can be progressed forward in time using Euler’s

method just as simply as the mass-spring system. Thus we can solve any second order

differential equation using Euler. For the pendulum, we can find the motion without the

pesky requirement that the angle be small. Where no simple or easy analytic solution

exists, we can still solve the system numerically. This is a fantastic benefit that you

physicists and engineers will appreciate more as you take higher level classes!

It is worth noting that there are many more physical systems for which analytic

solutions simply cannot be found (not all differential equations have analytic solutions).

In those cases, you must solve numerically, there is no other choice!16

The easiest way to numerically model the dynamics of a system is to ask three

questions:

1. What is the current position or state of my system?

2. How fast is it moving, and in what direction?

3. Can I guess where the system will be a short time from now?

This is just what we did in using Euler’s method.

well as integrating the differential equation twice. The second integration is an elliptical integral of the first

kind which generally can’t be done without resorting to a numerical method.
16 You computer science majors have great job security!
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Assignment: Numerical modeling of mass-spring system

Complete this lab as a group and record your experience in an organized fashion in your lab

notebook. Part of the grade will be based on neatness and organization!

1. Copy, then modify your one dimensional Euler code and then modify it to numerically model

the motion of a mass-spring system with a mass of 200.0 grams, a spring constant of 0.500

N/m, an initial displacement from equilibrium of 15.0 cm, and an initial velocity of zero. Use

a time step of 0.01 seconds, and simulate the motion for a total of 20 seconds. Graph your

results, and comment.

2. Repeat problem 1, but this time using a damped oscillator. Damping is a resistive force

that is opposite the direction the mass is traveling. The resistive force has the form

FR (n+ 1) = bv (n) where v (n) is the mass speed and b is a constant that tells how much

resistance the system has. In your modeling, use b = 0.05 kg/s.

3. Investigate what happens with each of the above modeling scenarios when you increase or

decrease the time step.

4. If there is time, try different masses, spring constants, damping coefficients, and so on.

5. Extra Credit: Model the same system as in the previous problem, this time using a second

order Runge-Kutta algorithm. Graph your results, and comment.

6. Extra Extra Credit: Repeat problem 2, this time using a fourth order Runge-Kutta algorithm.





9 Measurement and Uncer-
tainty III

We should tie our numerical modeling knowledge into our understanding of uncertainty.

We want to be able to numerically predict the outcome of an experiment. But that

prediction should come with an uncertainty. How can we find an uncertainty for

something we found numerically?

Let’s think about what we have been calling the high/low method of finding an

uncertainty. Each measurement we make has an uncertainty. If we use those

measurements to calculate things like we did a few weeks ago to find the value of g,

we have to combine or propagate the uncertainties. We used large equations with

derivatives to do this when we knew the function that described our prediction. But

now we don’t have an equation that tells us how a ball will fall with air resistance. We

need another method for finding the uncertainty in a numerical solution like our Euler

method. But we can use our high/low method to develop a new, computational method

of finding the error.

Think back to our lab where we measured g. One way to find the uncertainty was to use

our equation to find the combination of values that gave the largest estimate for g. Then

find the combination of values that gave the smallest estimate for g. For example, when

you found g using the pendulum your equation should have been something like

g = 4π2
L

T 2

we can find the uncertainty by taking

gmax = 4π2
Lmax
T 2min

where Lmax = L+ δL and Tmin = T − δT.We can also find

gmin = 4π2
Lmin
T 2max

And then an estimate for the uncertainty would be half the difference between gmax and

gmin .

Of course we can’t exactly do this for our ball case because we don’t know the function

for our ball fall with air resistance. We don’t know whether to use max or min input

vales (like Lmax and Tmin above). Combinations that make the maximum distance and
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the minimum distance do exist. We just don’t know how to form them. We have lots of

inputs to our Euler’s method. Each has uncertainty. How do we know which ones to use

as maximum values and which ones to use as minimum values? We know that things

get funny when we divide, so without knowing the actual function we don’t know how

to combine the input values to get the maximum or minimum distance.

The answer is that we will have to guess, but guess systematically. That may sound

unsettling, but we have a computer that can help us to guess. We can choose random

values for each of our inputs such that the value we choose is within the uncertainty for

each measurement. Then run the code and see how far away the ball gets when it lands.

Then choose a new random set of inputs and see if it get’s farther. The computer can

do this quickly, so we can run hundreds of combinations in just a few minutes. For our

ball-shot-out-of-a-cannon model, say, we used

• The initial y position of the projectile y = (27.00 + 1) cm

• The initial speed of the projectile. (6.8 + 0.2) m/ s

• The launch angle for the projectile (measured from the positive x axis) (45 + 1) ◦

• The mass of the projectile.(0.0003 + 0.00001) kg

• The radius of the projectile.(0.0125 + 0.000) 1m

• The drag coefficient for the projectile 0.46 + 0.2

• The density of the air the projectile travels through (1.23 + 0.1) kg/m3

• the acceleration due to gravity is (9.8004 + 0.001) m/ s

Then we could try again with the choices

• The initial y position of the projectile y = (27.00− 1) cm

• The initial speed of the projectile. (6.8− 0.2) m/ s

• The launch angle for the projectile (measured from the positive x axis) (45− 1) ◦

• The mass of the projectile.(0.0003− 0.00001) kg

• The radius of the projectile.(0.0125− 0.000) 1m

• The drag coefficient for the projectile 0.46− 0.2

• The density of the air the projectile travels through (1.23− 0.1) kg/m3

• the acceleration due to gravity is (9.8004− 0.001) m/ s

If we do this hundreds of times, each time with a different combination input

parameters, we can take a mean and standard deviation and have our predicted value

and uncertainty for our distance that the ball will go.

We might not get the actual maximum (or minimum distance) combination without

trying millions of combinations (maybe more!). But knowing some statistics, we can

still estimate the uncertainty We can average our predicted distances and use this

average as our prediction for where the ball will hit. We can take a standard deviation
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of our predicted distances and use this for an uncertainty. A standard deviation of the

mean might be even better.

This is a little like throwing darts at a target and taking the mean and standard deviation

to tell where we were aiming and with what precision. But now we are doing that

with our numerical prediction. We make many predictions with our inputs within their

respective uncertainties, and then average at the end.

We know that when we use a standard deviation for our uncertainty, we miss some

cases, only 68% of the predicted distances will fall within that standard deviation. So

it is not as important to run our code millions of times if we can make due with a

standard deviation as our estimate of uncertainty. A few hundred combinations should

be enough.
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Assignment: Modeling and Uncertainty

In this lab we will finally test our numerical modeling of a projectile. We will use our

spring cannons and shoot balls that have large drag coefficients. Be careful not to

shoot people, including you–don’t look down the barrel of the cannon! Also, don’t

load the cannon by pushing down on the ball in the cannon, set the spring first and

then gently put in the ball If you push on the Styrofoam balls you will have �at

balls that don’t match our models.

There is too much to do in this lab to have everyone do all the parts. You will have to

split up your group. So how do you record all the experiment if you only do part of it?

The way this is done is to write down the results obtained by the other subgroups, and

refer to their lab notebooks for the details.

1. Predict the maximum range for the path of a Styrofoam ball (or a plastic ball if

we don’t have any Styrofoam balls) shot out of the spring cannon. Do this with a

numerical model of the ball’s�ight path written by one (or more) of the members of

your group that has been changed so that it can find the error estimate as described

in today’s lab reading.

2. Determine the uncertainty in your prediction with your new code that chooses

values for the input parameters randomly from within the parameter uncertainty

ranges. This is actually more efficient than trying to pick values in a non-random

way to cover all possible combinations of uncertainties! You will need to take

about 100 or more sets of parameters to get a good estimate, but if you built your

code so you can easily change your parameters, this will go quickly (if you put

actual numbers into your equations in the previous labs, it might be faster to fix

your MatLab code first to make this part go more quickly. If you need help, call me

over). I will have an example code for you to look at if you get stuck.

• You will need a maximum and a minimum value for each parameter. Here is an

example for the drag coefficient.

Dmax=0.48; %kg/s Maximum value of the drag coefficient

Dmin=0.45;%kg/s Minimum value of the drag coefficient

• Then you will need to pick a value in between the max and the min randomly

D=Dmin+(Dmax-Dmin)*rand(1);% kg/s Current value for the drag coefficient

the rand(1)command gives you a random value between 0 and 1. So

Dmin + (Dmax −Dmin) ∗ rand (1)
gives a random value betweenDmax andDmin.

• Of course, you want to do this for every variable that has uncertainty, and you

want to do the calculation many times so you get a good idea of the precision of

your answer. Here is a figure showing an example result
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Part of your team should do this work and report back to the rest of the group.

3. You will need to find the drag coefficient. A subteam should find a value (and

uncertainty) for the drag coefficient. One way to do this is to use our high speed

cameras and film the ball dropping. Since there is significant air resistance, the ball

will reach terminal speed. At this point, there is no acceleration, so�
F = 0 = R− Fg
Fg = R

mg =
1

2
DEAv2

so

D =
2mg

EAv2

Since we know or can measure everything except D, we can solve for D. Use

g = (9.8004± 0.0001) m/ s and E = (1.23± 0.1) kg/m3.

• The rest of the values you will need to measure. Use the digital camera and

Logger Pro to estimate the terminal velocity. You will have to drop the ball from

high up to get a good value (you have to give it time to reach terminal velocity).

Near the ground there can be problems due to the air �ow hitting the ground, so

don’t use positions that are close to the ground..

• I suggest you have a team of people from your group do this while a second

team modify your MatLab code. Remember you need an uncertainty in D.

4. Verify the prediction. Did the ball land within your error range? If you use the

digital cameras again for this part, you can determine if the �ight path falls within

the range of possible �ight paths. A figure like the following might help you decide
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5. Does the data support your modeling prediction? If not, what is likely the problem?

• In your discussion make sure your other team members understand the part of

the project that you did.

• You might consider having a third team collect data for the ball shoot with the

digital camera while the first two teams are working on the drag coefficient and

the numerical prediction.

6. If there is time, polish your proposal.



10 Communicating Results II:
Curve fits and Least Squares

To report our results, we often incorporate a curve fit. We have done this in the previous

lab. But there is more to comparing data to a curve than just saying “it fit the equation.”

Immediately your esteemed colleagues should ask “how well did the equation fit the

data.”

From a curve fit, we generally want three things:[1]

1. The fit parameters that our curve fit software found that make the equation type fit

our particular set of data.

2. The uncertainty in those fit parameters

3. Some measure of how well the resulting fit equation matches the data.

In what follows I have derived the equations for Linear Least Squares. I have done

this is excruciating detail. I think it is helpful to see where the method comes from so

you know it’s limitations. But you will not have to code up the derivation. You are

principally interested in the results of the nasty math below. So take heart, and wade

through the development of the Linear Least Squares method, but with the hope that the

actual implementation will be fairly simple.

Least Squares

The idea behind Least Squares is to find a “best” function that fits a set of data.

For example, lets take the following data set.
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We would like to fit this data with a line that in some way is the “best fit” for the

data. But it is not clear what the “best fit” means. There are many choices we might

make. We really need an agreed-on method that others will understand so we can

communicate with the general science community.

Finding the fit parameters

Let’s use what we have learned in lab so far. Over the last two weeks we learned that it

is useful to linearize the data first. So here is our linearized version of the data:
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Linearized

Now we will apply the idea of least squares on our linear data. Our data consists of

many x and y points. From our MatLab experience, we recognize the notation xi. This

means that we have a column or array of x values and we have a counter, i, that tells us

which row in the column (or which item in the array) we are talking about.

For every xi we have a measured value yi. Since we linearized our data, we want to

find a straight line that predicts y-values for every x-value (all the xi-values that we
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measured, and all other x-values we did not measure). We will call the predicted values

that we get from the straight line fit, Yi (with a capital letter to show it is the predicted

value instead of the measured value). So

Yi = mxi + b

is the equation that predicts the Yi. values. What we mean is that we take each of our xi

values and plug them into the equation Yi =mxi + b to get our predicted Yi values.

The problem is, that we don’t knowm and b. If we did, we could just plot the line as

shown in the next figure:
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But we don’t know them and b. That is what we are trying to find.

Let’s consider a way to do this. Suppose we take the difference between the two

y-values, the measured and predicted

∆yi = yi − Yi
where here ∆yi is just a name for the difference between the two y’s. The differences

∆yi are shown on the next graph. the red circles are the predicted Yi values. The blue

diamonds are the measured yi values, and the red lines connecting them represent the

differences ∆yi = yi − Yi
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This is where we can begin to define a criteria for “best” fit. We want to minimize all

the ∆yi at the same time. If you have taken M112 or if your M112 class is far enough

along, you know that we can minimize a function using derivatives, so is believable that

we could actually find the minimum of our ∆yi values. But we have to think carefully

about how we do this.

It would be tempting to just add up all the ∆yi and minimize this sum. But because

some ∆yi values are negative and some are positive, this sum would usually be very

close to zero no matter how big the ∆yi values. They all cancel each other out, but this

would not minimize the distance between the line and the measurements. For example,

consider this data set and line
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Bad Idea

The line does go through the data, and the quantity



∆yi ≈ 0, but the distance

between each measured point and the line is not minimized. It is hard to say that this is

a “best fit.”

Instead, let’s minimize the square of ∆yi. This eliminates the problem with negative

values. We want to find the minimum difference between the Yi’s and the yi’s, so let’s

minimize

Σi (∆yi)
2
= Σi (yi − Yi)2

For convenience, I want to give this a name, say, the Greek letter χ or, since it is

traditional, χ2 as our variable (which is a little silly, so if you prefer, just call χ2,M for
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minimum). The point is that χ2 is just a variable name.

χ2 = Σi
(yi − Yi)2
σ2yi

Well, actually I divided what we had before by σ2yi which is the uncertainty in the y

value for each y value. This makes some sense if we think about it. We are adding up

the square of the deviation point by point. But if some points have larger error than

others, it would be nice to weight the points that have the lowest error more strongly.

We can do that if we divide the term for each point by the error in that point. This

situation is ideal, but makes the math more difficult. So we are going to assume that all

the σyi are the same, so we can write χ2 as

χ2 =
1

σ2y
Σi (yi − Yi)2

Now, the Yi’s really depend onm and b.We can use our equation of the line,

Yi = mxi + b

to write χ2 as

χ2 =
1

σ2y
Σi (yi − (mxi + b))

2

We want them and the b that make χ2 a minimum. We can take derivatives of χ2 with

respect to m and b and set the result to zero in order to find these values. This is our

standard way of finding a minimum of a function using calculus,

∂χ2

∂m
= 0

∂χ2

∂b
= 0

Then we solve the resulting equations for m and b. If this is not a familiar practice,

think of what a derivative means. The derivative is the slope of the line. When the line

has a minimum, the slope is zero.

x

y

so we can find the minimum by looking for the place where the slope is zero. That is

where the derivative is zero.

To find the derivative it is useful to write out χ2 in detail

χ2 =
1

σ2y
Σi (yi − (mxi + b))

2

χ2 =
1

σ2y
Σi (yi − (mxi + b)) (yi − (mxi + b))
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χ2 =
1

σ2y
Σi

�
y2i − 2yi (mxi + b) + (mxi + b)

2
�

χ2 =
1

σ2y
Σi
�
y2i − 2yimxi − 2yib+ (mxi + b) (mxi + b)




χ2 =
1

σ2y
Σi
�
y2i − 2yimxi − 2yib+m

2x2i + 2bmxi + b
2



χ2 =
1

σ2y

�
Σiy

2
i −Σi2yimxi −Σi2yib+Σim

2x2i +Σi2bmxi +Σib
2



χ2 =
1

σ2y

�
Σiy

2
i − 2mΣiyixi − 2bΣiyi +m

2Σix
2
i + 2bmΣixi +Nb

2



χ2 =
1

σ2y

�
Σiy

2
i +m

2Σix
2
i +Nb

2 + 2bmΣixi − 2mΣiyixi − 2bΣiyi



Now we can just take the derivatives. Note that these are partial derivatives. We just

take the derivative with respect to one variable at a time.

This is the important thing to remember. We have found χ2 as a function that represents

how far away the points of our fit line are from the actual data points, and we will find

the slope,m and y-intercept, b, by minimizing χ2. The rest is just mathematics.

Let’s perform the minimizations starting with respect tom

∂χ2

∂m
= 0

=
1

σ2y

�
2mΣix

2
i + 2bΣixi − 2Σiyixi




so

0 = 2mΣix
2
i + 2bΣixi − 2Σiyixi

and now with respect to b

∂χ2

∂b
= 0

=
1

σ2y
(2Nb+ 2mΣixi − 2Σiyi)

so we have two messy equations

0 = 2mΣix
2
i + 2bΣixi − 2Σiyixi

0 = 2Nb+ 2mΣixi − 2Σiyi

and we have two variables,m, and b.We can solve them simultaneously. Say, we solve

the first one for b

b =
Σiyi −mΣixi

N
and plug it into the first equation and solve form

0 = 2mΣix
2
i + 2

�
Σiyi −mΣixi

N

�
Σixi − 2Σiyixi

0 = 2mΣix
2
i +

2ΣiyiΣixi
N

− 2mΣixiΣixi
N

− 2Σiyixi
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0 = 2mΣix
2
i −

2mΣixiΣixi
N

+
2ΣiyiΣixi

N
− 2Σiyixi

0 = m

�
Σix

2
i −

ΣixiΣixi
N

�
+

ΣiyiΣixi
N

−Σiyixi

0 = m
�
NΣix

2
i −ΣixiΣixi



+ΣiyiΣixi −NΣiyixi

m
�
NΣix

2
i −ΣixiΣixi



= −ΣiyiΣixi +NΣiyixi

Then

m =
NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
�

This is our equation form.We can use this to find b now

b =
Σiyi −mΣixi

N

b =
Σiyi
N

− mΣixi
N

b =
Σiyi
N

− Σixi
N



NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
�





b =
Σiyi
N

−



ΣixiΣi (yixi)−ΣixiΣixiΣiyi�
NΣix2i − (Σixi)

2
�





b =
Σiyi

�
NΣix2i − (Σixi)

2
�

N
�
NΣix2i − (Σixi)

2
� −



ΣixiΣi (yixi)−ΣixiΣixiΣiyi�
NΣix2i − (Σixi)

2
�





b =
NΣiyiΣix2i −Σiyi (Σixi)

2

N
�
NΣix2i − (Σixi)

2
� −



N (ΣixiΣi (yixi)−ΣixiΣixiΣiyi)

N
�
NΣix2i − (Σixi)

2
�





b =
NΣiyiΣix

2
i − Σiyi (Σixi)

2 −N (ΣixiΣi (yixi)−ΣixiΣixiΣiyi)

N
�
NΣix2i − (Σixi)

2
�

b =
NΣiyiΣix2i −NΣixiΣi (yixi)

N
�
NΣix2i − (Σixi)

2
�

So

b =
ΣiyiΣix

2
i −ΣixiΣi (yixi)�

NΣix2i − (Σixi)
2
�

We have achieved our goal of finding the fit parameters,

m =
NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
� (10.1)

b =
ΣiyiΣix

2
i −ΣixiΣi (yixi)�

NΣix2i − (Σixi)
2
�

This may look bad, but remember we can use a computer to sum things up easily, and

sums like Σi (yixi) are just numbers when the summing is done. So reallym and b are
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very easy to calculate.

The strategy should be to calculate Σi (yixi) and Σixi and Σiyi and Σix
2
i first, then,

just use the result to findm and b.

We have achieved our first goal. We have the fit parameters m and b for a straight

line fit. We still need to find the uncertainty in the fit parameters and a measure of the

goodness of the fit.

Finding the uncertainty in the fit parameters

Many graphing programs give fit parameters likem and b, but really we should not be

satisfied until we have an uncertainty onm and b. This is often hard to get out of our

graphing program. But we know how to do this also! Remember our standard error

propagation equation

σf =

��
∂f

∂x

�2
σ2x +

�
∂f

∂z

�2
σ2z · · ·

We can use this to find the uncertainty inm and b.

σ2m =

�
∂f

∂x1

�2

x1

σ2x1 . . .

�
∂f

∂xN

�2

xN

σ2x2 +

�
∂f

∂y1

�2
σy1 . . .

�
∂f

∂yN

�2
σyN

You don’t see the square root sign because on the left hand side I have the square of

the uncertainty (I have squared both sides). For our lab this week, we will assume the

measurement uncertainty in the xi is small enough we can ignore it (if not, we can use

our knowledge of σxi , but it requires more math). Then for the uncertainty inm we

would have

σ2m =

�
∂m

∂y1

�2
σy1 + . . .

�
∂m

∂yN

�2
σyN

Since we know that or our case all of the σyi are the same we know σ2y. But if we don’t

know the uncertainty in each yi we can still give a rough estimate the uncertainty based

on the spread of the data.

Consider

σy =

�
Σi (yi − (mxi + b))

2

N − 2
This gives us the spread of the ∆yi which is an estimate of the uncertainty (kind of

an average of how far away the points are from the line–this is kind of an optimistic

uncertainty estimate, much like a standard deviation). LoggerPro does this, and so does

Excel. It’s not a perfect estimate of our uncertainty in y, but it makes sense that the data

can be at least as far off as this, since this is very like the average distance the data are

from the fit line. The error must at least be as big as this.
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But, there is a huge cost to this. If we substitute this σy into χ2 we get

χ2 =
1

��
Σi(yi−(mxi+b))

2

N−2

�2Σi (yi − (mxi + b))
2

= N − 2

no matter what, which is not helpful. By using this estimate of σy we have given up our

goodness of fit estimate. This is why Excel and LoggerPro use a correlation estimate

(called R2) as their goodness of fit. This estimate of σy is much more risky, and should

be avoided where possible. We will stick with actual uncertainties for our calculations.

This limits us to equal uncertainties (all the σyi = σy, a constant value). For those

of you who take PH336 we will show you how to go beyond this, but for everyone

else a good curve fitting routine will also do this right, so you just need to buy a better

software package to go beyond what we will do in PH 150.

For the uncertainty inm we have

σ2m =

�
∂m

∂y1

�2
σ2y + . . .

�
∂m

∂yN

�2
σ2y

= σ2y

��
∂m

∂y1

�2
+ . . .

�
∂m

∂yN

�2�

which will reduce to just

σ2m = σ2y

�

Σk

�
∂m

∂yk

�2�

where k is an additional summation index.

All that is left is taking the derivative of m. But this looks like a difficult task.

Remember that

m =
NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
�

Let’s write out our expression form a bit.

m =
N (y1x1)− y1Σixi�
NΣix2i − (Σixi)

2
� +

N (y2x2)− y2Σixi�
NΣix2i − (Σixi)

2
� + . . .

+
N (ykxk)− ykΣixi�
NΣix2i − (Σixi)

2
� + . . .+

N (yNxN)− yNΣixi�
NΣix2i − (Σixi)

2
�

This only makes it look messier! But consider, we need to take the derivative with

respect to a particular yk, holding all the other y′is constant. Only one term in our

expression form depends on yk. So then we have only

∂m

∂yk
=

N (xk)−Σixi�
NΣix2i − (Σixi)

2
�

Again, this is because the partial derivative assumes all the yi where i 
= k are constants
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along with all the xi. Squaring this is not too hard
�
∂m

∂yk

�2
=
N2x2k − 2N (xk)Σixi + (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

To find our uncertainty inm we need a term like this for every value of k. So we wish

to sum this over k
�

k

�
∂m

∂yk

�2
=
�

k

N2x2k − 2N (xk)Σixi + (Σixi)
2

�
NΣix2i − (Σixi)

2
�2

�

k

�
∂m

∂yk

�2
=



kN

2x2k −


k 2N (xk)Σixi +



k (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

�

k

�
∂m

∂yk

�2
=
N2



k x

2
k − 2N



k (xk)Σixi +N (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

Now both i and k run over the same numbers, so we can switch from k to i in the sums

like


k (xk)

�

k

�
∂m

∂yk

�2
=
N2



i x

2
i − 2N



i xiΣixi +N (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

�

k

�
∂m

∂yk

�2
=
N2



i x

2
i −N



i xiΣixi�

NΣix2i − (Σixi)
2
�2

�

k

�
∂m

∂yk

�2
=
N
�
N


i x

2
i −



i xiΣixi




�
NΣix2i − (Σixi)

2
�2

�

k

�
∂m

∂yk

�2
=

N�
NΣix2i − (Σixi)

2
�

which gives

σm = σy

���	
N�

NΣix2i − (Σixi)
2
�

That was a lot of work, but we only need the result, and calculating it is fairly easy. We

already have Σix2i and Σixi from calculatingm, itself, and we know σy.

We need to do the same thing for b

b =
ΣiyiΣix2i −ΣixiΣi (yixi)�

NΣix2i − (Σixi)
2
�

b =
y1Σix

2
i − (y1x1)Σixi�

NΣix2i − (Σixi)
2
� +

y2Σix
2
i − (y2x2)Σixi�

NΣix2i − (Σixi)
2
� + . . .

+
ykΣix

2
i − (ykxk) Σixi�

NΣix2i − (Σixi)
2
� + . . .

yNΣix
2
i − (yNxN)Σixi�

NΣix2i − (Σixi)
2
�
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Again only one term survives if we take the derivative with respect to a particular yk
∂b

∂yk
=

Σix
2
i − xkΣixi�

NΣix2i − (Σixi)
2
�

and we square this to put it in our uncertainty formula
�
∂b

∂yk

�2
=

�
Σix2i


2 − 2xkΣixiΣix2i + (xkΣixi)
2

�
NΣix2i − (Σixi)

2
�2

and sum up the contribution for each yk
�

k

�
∂b

∂yk

�2
=



k

�
Σix

2
i


2 −
k 2xkΣixiΣix
2
i +



k (xkΣixi)

2

�
NΣix2i − (Σixi)

2
�2

We can simplify this a little

�

k

�
∂b

∂yk

�2
=
N
�
Σix

2
i


2 − 2ΣixiΣix
2
i



k xk +



k x

2
k (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

�

k

�
∂b

∂yk

�2
=
N
�
Σix

2
i


2 − 2ΣixiΣix
2
i



k xk + (Σixi)

2

k x

2
k�

NΣix2i − (Σixi)
2
�2

�

k

�
∂b

∂yk

�2
=
N
�
Σix2i


2 − 2 (Σixi)
2Σix2i + (Σixi)

2Σix2i�
NΣix2i − (Σixi)

2
�2

�

k

�
∂b

∂yk

�2
=
N
�
Σix

2
i


2 − (Σixi)
2Σix

2
i�

NΣix2i − (Σixi)
2
�2

�

k

�
∂b

∂yk

�2
=

Σix2i

�
N
�
Σix2i



− (Σixi)

2
�

�
NΣix2i − (Σixi)

2
�2

�

k

�
∂b

∂yk

�2
=

Σix2i�
NΣix2i − (Σixi)

2
�

so, putting this in our formula for the uncertainties we get

σb = σy

���	
Σix2i�

NΣix2i − (Σixi)
2
�

Which gives the second part of our goal, we have the errors on the fit parameters.

σm = σy

���	
N�

NΣix2i − (Σixi)
2
� (10.2)

σb = σy

���	
Σix2i�

NΣix2i − (Σixi)
2
�

We have achieved the second of our goals. we have the uncertainties in our fit
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parameters. One goal to go, the goodness of fit parameter.

We should brie�y return to what we would do if we had σyi that differed for each

measured yi point. Then we would use

σ2m =

�
∂m

∂y1

�2
σy1 . . .

�
∂m

∂yN

�2
σyN

where we can now use our derivatives�
∂m

∂yk

�2
=
N2x2k − 2N (xk)Σixi + (Σixi)

2

�
NΣix2i − (Σixi)

2
�2

and �
∂b

∂yk

�2
=

�
Σix

2
i


2 − 2xkΣixiΣix
2
i + (xkΣixi)

2

�
NΣix2i − (Σixi)

2
�2

to obtain

σ2m =





N2x21 − 2N (x1)Σixi + (Σixi)

2

�
NΣix2i − (Σixi)

2
�2






2

σy1+. . .





N2x2N − 2N (xN)Σixi + (Σixi)

2

�
NΣix2i − (Σixi)

2
�2






2

σyN

and

S2b =






�
Σix2i


2 − 2x1ΣixiΣix2i + (x1Σixi)
2

�
NΣix2i − (Σixi)

2
�2






2

σy1 +

. . .+






�
Σix

2
i


2 − 2xNΣixiΣix
2
i + (xNΣixi)

2

�
NΣix2i − (Σixi)

2
�2






2

σyN

This procedure is a little bit harder to implement in code, so we will stay with our

assumption that all the σyi values are the same and wait until PH336 to implement this.

Finding a measure of goodness of fit

We really already know how to do this too! We started out to minimize

χ2 =
1

σ2y
Σi (yi − Yi)2

if we calculate χ2 by taking ourm and b

χ2 =
1

σ2y
Σi (yi − (mxi + b))

2

we can compare χ2 to zero and see how well we did. The value of χ2 should be

small–the smaller, the better the fit. This completes our requirements for a useful curve

fit for a linear equation.
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Summary

Our job, then, is to calculate

m =
NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
�

b =
ΣiyiΣix

2
i −ΣixiΣi (yixi)�

NΣix2i − (Σixi)
2
�

and

σm = σy

���	
N�

NΣix2i − (Σixi)
2
�

σb = σy

���	
Σix2i�

NΣix2i − (Σixi)
2
�

and

χ2 =
1

σ2y
Σi (yi − (mxi + b))

2

This gives us a complete set of information for our linear curve fit. Note that terms like

Σixi and Σi (yixi) show up in more than one place in these equations. That means we

can precalculate them, and just use the result. It would be good to precalculate

Σixi, Σiyi, Σi (yixi) , Σix
2
i , (Σixi)

2
then use them to calculate m, b, and finally

σm,σb and χ2.

Finally, then, we have all we need to know about our straight line fit equation

y = mx+ b

because we knowm and b and we know our uncertainty inm and b and our goodness

of fit χ2.

A note about implementations in the field

In the built-in MatLab least squares routine and many other commercial products that

tackle least squares use iterative methods to find m and b. This means that they need

to start with initial guesses and work to find the minimums, given the uncertainties

σyi . You might guess that more uncertainty makes it harder to find them and b values.

Standard software like Excel and LoggerPro only use an estimate of the uncertainty σy.

We should prefer routines that can use our best estimated uncertainties, so wherever

we can, we choose more robust products (or write our own). If you are writing your

own software, and in it you need to fit data, you may despair at having to write a

least-squares type routine every time you do a calculation. But don’t worry, there are

great libraries that have least squares routines already coded that you can use. The Gnu
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Science Library (GSL) is an example.

What happens if I can’t linearize my equation?

If you can’t linearize your equation you can still use least squares, but you will have

to do all this math to find your coefficients for each type of equation you wish to fit.

This is what Excel, Logger Pro, and the MatLab easy fitting GUI have done. They

pre-calculate the fit equations for several standard functions. We used

Yi = mxi + b

but you could do the same thing with

Yi = ae
−bxi + c

This works adequately for most beginning physics functions. But there are some things

to worry about. For example, let’s take our exponential function.
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6

0 2 4 6 8 10

Y

X

Exponential Data

Because of the steep decent on the left hand side of the function, the errors are often

larger. But on the right hand side, the ∆y values are small. Situations like this will

fool our least squares routine. It will do a great job on the �atter part of the curve, and

not so good a job on the steep part. There are ways to help fix this, but it is always a

concern with non-linear least squares. MatLab, Octave, Scilab, (and other programs

like Gnuplot) will all do a general non-linear least squares to any function but it is often

hard to get them to converge to a truly good fit. They require good initial guesses for

the fit parameters. We will return to this problem in PH336.

Homework Assignment:
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1. What is the equation for the slope in a linear least-squares fit?

2. What is the equation for the y-intercept in a linear least-squares fit?

3. What is the equation for the uncertainty in the slope parameter in a linear

least-squares fit?

4. What is the equation for the uncertainty in the y-intercept parameter in a linear

least-squares fit?

5. What is the equation for the “goodness of fit” parameter for linear-least squares.
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Assignment

1. Transfer your homework to your lab notebook.

2. On I-learn, you will find a table of x and y values. Download this table onto a

laptop.

3. Open the table using Excel, Notepad, the MatLab editor, or Word, or whatever.

4. Using the methods described above, determine the least squares linear fit (slope

and intercept) to this data. This is easy in MatLab and there are instructions below.

Report the slope,m and the y-intercept, b.

5. Determine the uncertainty (standard deviation) of the slope and intercept.

6. Calculate the goodness of the fit.

7. Print your work, and attach it to your lab notebook..

8. For the grader’s convenience, record your final results in a table at the end of the lab

entry. Include the following:

• slope:

• standard deviation of slope:

• intercept:

• standard deviation of intercept:

• sum of squares of residuals:

9. Begin to brainstorm topics for your group experimental design project

MatLab Hints

To get your data into MatLab we need to import it. Under File choose Import

Data. A dialog box will come up and you should choose the file least-squares_data.txt.

A new dialog box will come up that looks like this

You should see the data on the right hand side. When you click the Next button, your
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data will be saved in the variable named data. Our function will be used by typing

[m,b,deltam, deltab, CHI2]=lstsq(x,y,deltay, N), so we need to

build the variables x, y, deltay, and N. The variable data is a two dimensional

array, that is, structured as rows and columns like a spread sheet. Specifically, it is three

columns of data that are 50 rows long. We need the first column to be our x values, the

second to be y values, and the third to be our deltay values. The following code will

create these variables:

x=data(:,1)

y=data(:,2)

deltay=data(:,3)

N=50;

Now that we have our data in the proper variables, we should consider how to code our

formulas. Let’s take ourm equation as an example

m =
NΣi (yixi)−ΣixiΣiyi�
NΣix2i − (Σixi)

2
�

We have several mini-calculations to do in this formula. We need to calculate

Σixi

Σiyi

Σi (yixi)

Σix
2
i

and

(Σixi)
2

We have done such things before. The first calculation is just the sum of all the xi.We

could do this with the command

sum(x);

The same is true for the sum of the y values

sum(x);

Or we could write our sums as a loop. Let’s try this for the xi values

N=50; %the number of data points

sx=0; %the place to put our sum of the x values

for i=1:N

sx=sx+x(i);

end;

This takes more lines, but is more �exible. Suppose we take on Σi (yixi) . We could

write this as
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%the place to put our sum of the product of the x and y

values

sxy=0;

% now perform the sum

for i=1:N

sxy=sxy+x(i)*y(i);

end;

We might do something similar for (Σixi)
2

If we call the sum of the x values sx, and the sum of the y values sy and use sxy as the

sum of the product of the x and y values and finally sx2 as the sum of the x values

squared, then ourm equation is

m =
N × sxy − sx× sy�
N × sx2− (sx)2

�

We do the same thing for b and σm, σb, and χ2.

It also might be a good reminder to see how to plot the data. The command

plot(x,y,’o’)

will do this. We would also like to plot our line through the data after we run our

least-squares code. Our code created the slope m and the y-intercept, b. We can

generate our line by calculating y values for each of our x values based on m and b.

yfit=m.*x+b

Then

hold on;

plot(x,yfit);

hold off;

Will complete the plot. It should look something like this:
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11 Work on Student Designed
Experiments

No Assignment





12 Work on Student Designed
Experiments

No Assignment





13 Work on Student Designed
Experiments: Final Paper

No Assignment





14 Final Exam

No Assignment
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