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Preface

This document contains my lecture notes for a new, experimental course. The
goal of the course is to teach the introductory physics of waves, optics,
and electricity and magnetism for mechanical engineering students.
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Chapter 1

Where We Start

Fundamental Concepts

1.1 What is this class?

This class is designed to teach the physics of wave motion, electricity and mag-
netism, and optics. We have three major goals. One is to teach the physics that
is not covered by Statics, Dynamics, and the Engineering Electronics Course.
This physics can affect the mechanical systems you will design, build, or test,
so knowing this physics is a very good thing. The second objective is to teach
a different method of thinking about how things work. The third goal is to
describe electrical and wave motion enough that the quantum nature of atoms
and molecules make sense as our chemists take physical chemistry.

In engineering, the design parameters are often the goal. In physics, the
physical relationship is the goal. For design engineers, both views are useful
and important. The design is no good if the underlying principles preclude it
from working!

As an example, I once worked on an optics project with a strong mechanical
component. The system had scanning mechanisms that were fantastic mechan-
ical devices. It was part of an aircraft and integrated into the aircraft system.
But the optical system required two lasers that were separated in wavelength by
only a few nanometers. The chief engineer knew how to build all the systems,
but did not understand the physics that required the close wavelength spacing.
He judged that the difficulty in building the device at that wavelength spac-
ing outweighed any benefit, and he changed the specs to give two wavelengths
that were fifty nanometers apart. Fifty nanometers is a pretty small tolerance.
Surely it would be good enough! The resulting product did not work. For two
years he tried to fine tune the scanners, and servos to make it work. After ten

1
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million dollars and two years, he finally moved the wavelengths closer. The
cost of the change was an extra $100,000 dollars, about 1/100 of the cost of
the mistake. The system worked, but since this was a race to market, the time
lost and the reputation lost on the faulty product destroyed the viability of the
business. It is a bad day when you and your friends lose your jobs because you
made a fundamental physics mistake!

Physics courses stress how we know what we know. They support the disci-
pline called system engineering, which deals with the design of new and innova-
tive products. As a more positive example, the National Weather service often
releases requests for proposed weather sensing equipment. Their request might
say something like the following:

Measure the moisture of the soil globally from an altitude of 800 km
with an accuracy of 5%. The suggested instrument is a passive
microwave radiometer.

The job of a system engineer is to determine what type of instrument to
build. What is the underlying principle that it will use to do its job? What
signal processing will it need? What mechanical and electrical systems will
support this? This must all be determined before the bearings and slip-rings,
and structures can be designed and built.

The radiometer design that came out of this project is flying today (or one
very like it based on the original design) and is a major part of the predictive
models that tell us what the weather will be in a few days.

Because this type of reasoning is our goal, we will not only do typical home-
work problems, but we will also work on our conceptual understanding.

I will also emphasize a problem solving method that I used with my engi-
neering team in industry. It is a structured approach to finding a solution that
emphasizes understanding as well as providing a numeric answer for a particu-
lar design. When you are part of an innovative design team, you will have to
repeat a calculation over and over again each time some other part of the sign
changes. If you have produced a symbolic solution, a numerical model, or at
least a curve, you are ready for any changes in specifications. But if you have
just “found the answer” you will have to find that answer again every time the
overall design specs change. This approach is too slow, and, at least in my team,
would have you finding a new job because our design efforts were always done
against exacting schedules and budgets. By thinking in a structured method,
with an eye toward symbolic answers or relationships rather than end numbers,
you will learn to be a more valuable engineer. The process we will use is the
same approach I used to teach my new engineers in the defense industry. It has
been proven useful over and over for decades.

This same problem solving process is useful in chemistry, particularly as you
study physical chemistry.

So let’s get started. To understand waves, we need to get the waves moving.
You studied Oscillation in Dynamics or PH121. Oscillating systems are often
the disturbance that starts a wave. We will begin with a review of oscillation.
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1.2 Simple Harmonic Motion

You are, no doubt, an expert in simple harmonic motion (SHM) after your
PH121 or Dynamics class. But this will get us warmed up for the semester. In
class we will use our clickers and go through a few questions. We will usually
use the clicker system to answer a few questions to test your understanding of
the reading material. This allows me to not waste time on things you already
know, and to help me find the ones you don’t. Most lectures will consist of
me asking you if you have questions, and then if you don’t, I will ask you
“clicker questions.” Where there is reason to believe you don’t understand (with
a normal cutoff of 80% of the class answering correctly being our definition of
“understanding”), I will use the material from these written lectures to teach the
concepts. So we won’t always go through all the ideas and skills demonstrated
in these written lectures. If you feel you would have liked more explanation on
something but we did not cover that concept in class because most people were
“getting it,” you can come and see me in my office.

1.3 SHM

Let’s consider a mass attached to a spring resting on a frictionless surface1 . This
mass-spring system can oscillate.

In the position shown the spring is neither pushing nor pulling on the mass.
We will call this position the equilibrium position for the mass.

m

x=0 xmax

m

x=0 xmax

Definition 1 Equilibrium Position: The position of the mass when the spring
is neither stretched nor compressed.

1.3.1 Hooke’s Law

A law in physics is a mathematical expression of a mental model of how the
universe works. Long ago it was noticed that the pull of a spring grew in strength

1Yes, I know there are no actual frictionless surfaces, but we are starting out at freshman
level physics, so we will make the math simple enough that a freshman could do it by making
simplifying assumptions. In this case, that the surface if frictionless.
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as the spring was pulled out of equilibrium. The mathematical expression of
this is

Fs = −kx (1.1)

The force, Fs is directly proportional to the displacement from equilibrium, x.
Since a man named Hooke wrote this down, it is called Hooke’s law.

Hooke’s Law is, strictly speaking, not a law that is always obeyed. It is a
good model for most springs as long as we don’t stretch them too far. We will
often use the word “law” to mean an equation that gives a basic relationship.
In that sense, Hook’s law is a law.

m

x=0 xmax

m

x=0 xmax

m

x=0-xmax

Fs

Fs

m

x=0 xmax

m

x=0 xmax

m

x=0 xmax

m

x=0 xmax

m

x=0-xmax

m

x=0-xmax

Fs

Fs

Lets write Hooke’s Law using Newton’s second Law

ΣFx = max

If we assume no friction, we have just

−kx = max

We can write this as

ax = −
k

m
x (1.2)

This expression says the acceleration is directly proportional to the position,
and opposite the direction of the displacement from equilibrium. We can see
that the spring force tries to oppose the change in displacement. We call such
a force a restoring force.

Definition 2 Restoring force: A force that is always directed toward the equi-
librium position

This is a good definition of simple harmonic motion.
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1.4 Mathematical Representation of Simple Har-
monic Motion

Recall from your Dynamics or PH121 classes that acceleration is the second
derivative of position

a =
dv

dt
=

d2x

dt2

Hook’s Law tells us

F = ma = −kx

m
d2x

dt2
= −kx

We have a new kind of equation. If you are taking this freshman physics class
as a... well... freshman, you may not have seen this kind of equation before.
It is called a differential equation. But really the chances are that you are a
sophomore or junior (or even a senior) and have lot of experience with differential
equations. The solution of this equation is a function or functions that will
describe the motion of our mass-spring system as a function of time. We will
need to know this function, so let’s see how we can find it.

Start by defining a quantity ω as

ω2 =
k

m
(1.3)

why define ω2? Because experience has shown that it is useful to define ω this
way! But you probably remember ω as having to do with rotational speed, and
from trigonometry (trig) you may remember using ω to mean angular frequency

ω = 2πf

so our definition of ω may hint that k/m will have something to do with the
frequency of oscillation of the mass-spring system.

We can write our differential equation as

d2x

dt2
= −ω2x (1.4)

To solve this differential equation we need a function who’s second derivative is
the negative of itself. We know a few of these

x (t) = A cos (ωt+ φo) (1.5)

x (t) = A sin (ωt+ φo)

where A, ω, and φo are constants that we must find. Let’s choose the cosine
function and explicitly take its derivatives.

x (t) = A cos (ωt+ φo)

dx (t)

dt
= −ωA sin (ωt+ φo)

d2x (t)

dt2
= −ω2A cos (ωt+ φo)
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Let’s substitute these expressions into our differential equation for the motion

d2x

dt2
= −ω2x

−ω2A cos (ωt+ φo) = −ω2A cos (ωt+ φo)

As long as the constant ω2 is our ω2 = k/m we have a solution (now you
know why we defined it as ω2!). Since from trig we remember ω as the angular
frequency.

ω = 2πf

Thus

ω =

�
k

m
= 2πf (1.6)

The frequency of oscillation depends on the mass and the stiffness of the spring.

f =
1

2π

�
k

m
(1.7)

Let’s see if this is reasonable. Imagine driving along in your student car (say, a
1972 Gremlin). You go over a bump, and the car oscillates. Your car is a mass,
and your shock absorbers are springs. You have an oscillation. But suppose
you load your car with everyone in your apartment2 . Now as you hit the bump
the car oscillates at a different frequency, a lower frequency. That is what our
frequency equation tells us. Note also that if we changed to a different set of
shocks, the k would change, and we would get a different frequency.

We still don’t have a complete solution to our differential equation, because
we don’t know A and φo. From trigonometry, we recognize φo as the initial
phase angle. We will call it the phase constant in this class. We will have to
find this by knowing the initial conditions of the motion. We will do this in a
minute.

A is the amplitude. We can find its value when the motion has reached its
maximum displacement. Let’s look at a specific case

A = 5
φo = 0
ω = 2

2 If you are married, imagin taking two other couples with you in your car.
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We can easily see that the amplitude A corresponds to the maximum displace-
ment xmax.

1.4.1 Other useful quantities we can identify

We know from trigonometry that a cosine function has a period T.
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Figure 1.1:

The period is related to the frequency

T =
1

f
=
2π

ω
(1.8)

We can write the period and frequency in terms of our mass and spring constant

T = 2π

�
m

k
(1.9)

f =
1

2π

�
k

m
(1.10)



8 CHAPTER 1. WHERE WE START

1.4.2 Velocity and Acceleration

Since we know the derivatives of

x (t) = A cos (ωt+ φo) (1.11)

we can identify the velocity of the mass and its acceleration

v (t) =
dx (t)

dt
= −ωA sin (ωt+ φo)

Recall that A = xmax

v (t) =
dx (t)

dt
= −ωxmax sin (ωt+ φo) (1.12)

We identify

vmax = ωxmax = xmax

�
k

m
(1.13)

Likewise for the acceleration

a (t) =
dv (t)

dt
(1.14)

=
d

dt
(−ωxmax sin (ωt+ φo)) (1.15)

= −ω2xmax cos (ωt+ φo)

where we can identify

amax = ω2xmax =
k

m
xmax (1.16)

1.4.3 Comparison of position, velocity, acceleration

Let’s plot x (t) , v (t) , and a (t) for a specific case
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Red is the displacement, green is the velocity, and blue is the acceleration. Note
that each has a different maximum amplitude. That is a bit confusing until we
recognize that they each have different units. We have just plotted them on the
same graph to make it easy to compare their phases. Note that they are not in
phase!

t

TT/2

t

t

maxv

x

v

When x =xmax, v=0

When v=vmax, x=0

90 out of phase

t

TT/2

t

t

maxv

x

v

When x =xmax, v=0

When v=vmax, x=0

90 out of phase

The acceleration is 90 ◦ out of phase from the velocity.
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m

x=0 xmax

m

x=0 xmax

Figure 1.2:
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m
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k
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k

m
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m
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1.5 An example of oscillation

We want to see how to find A, ω, and especially φo. These quantities will be
important in our study of waves. So let’s do a problem.

Let’s take as our system a horizontal mass-spring system where the mass is
on a frictionless surface.

Initial Conditions

Now let’s find A and φo. To do this we need to know how we started the mass-
spring motion. We call the information on how the system starts it’s motion
the initial conditions.
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Suppose we start the motion by pulling the mass to x = xmax and releasing
it at t = 0. These our our initial conditions. Let’s see if we can find the phase.
Our initial conditions require

x (0) = xmax (1.17)

v (0) = 0

Using our formula for x (t) and v (t) we have

x (0) = xmax = xmax cos (0 + φo) (1.18)

v (0) = 0 = −vmax sin (0 + φo)

From the first equation we get

1 = cos (φo)

which is true if
φo = 0, 2π, 4π, · · ·

from the second equation we have

0 = sinφo

which is true for
φo = 0, π, 2π, · · ·

If we choose φo = 0, these conditions are met. Of course we could choose
φo = 2π, or φo = 4π, but we will follow the rule to take the smallest value for
φo that meets the initial conditions.

1.5.1 A second example

Using the same equipment, let’s start with

x (0) = 0 (1.19)

v (0) = +vi

that is, the mass is moving, and we start watching just as it passes the equilib-
rium point.

x (0) = 0 = xmax cos (0 + φo) (1.20)

v (0) = vi = −vmax sin (0 + φo)

from
0 = xmax cos (φo)

(first equation above) we see that3

φo = ±
π

2
3Really there are more possibilities, but we are taking the smallest value for φo as we

discussed above.
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but we don’t know the sign. Using our initial velocity condition

vi = −vmax sin
�
±π

2

�

vi = −ωxmax sin
�
±π

2

�

We defined the initial velocity as positive, and we insist on having positive
amplitudes, so xmax is positive. Thus we need a minus sign from sin (φo) to
make vi positive. This tells us to choose

φo = −
π

2

with a minus sign.
Our solutions are

x (t) =
vi

ω
cos
�
ωt− π

2

�

v (t) = vi sin
�
ωt− π

2

�

Remark 3 Generally to have a complete solution to a differential equation, you
must find all the constants (like A and φo) based on the initial conditions.

1.5.2 A third example

So far we have concentrated on finding φo. Let’s do a more complete example
where we find φo, A, and ω.

A particle moving along the x axis in simple harmonic motion starts from its
equilibrium position, the origin, at t = 0 and moves to the right. The amplitude
of its motion is 4.00 cm, and the frequency is 1.50Hz.

a) show that the position of the particle is given by

x = (4.00 cm) sin (3.00πt)

determine
b) the maximum speed and the earliest time (t > 0) at which the particle

has this speed,
c) the maximum acceleration and the earliest time (t > 0) at which the

particle has this acceleration, and
d) the total distance traveled between t = 0 and t = 1.00 s

m

V

m

V
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Type of problem
We can recognize this as an oscillation problem. This leads us to a set of

basic equations
Basic Equations

x (t) = A cos (ωt+ φo)

v (t) = −ωxmax sin (ωt+ φo)

a (t) = −ω2A cos (ωt+ φo)

ω = 2πf

vm = ωxm

am = ω2xm

T =
1

f

We should write down what we know and give a set of variables
Variables

t time, initial time =0 to = 0
x Position, Initial position =0 x (0) = 0
v
a
xm x amplitude xm = 4.00 cm
vm v amplitude
am a amplitude
ω angular frequency
φo phase
f frequency f = 1.50Hz

Now we are ready to start solving the problem. We do this with algebraic
symbols first

Symbolic Solution
Part (a)
We can start by recognizing that we can find ω because we know the fre-

quency. We just use the basic equation.

ω = 2πf

We also know the amplitude A = xmax which is given. Knowing that

x (0) = 0 = A cos (0 + φo)
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we can guess that

φo = ±
π

2

Using

v (0) = −ωxmax sin
�
0± π

2

�

again and demanding that amplitudes be positive values, and noting that at
t = 0 the velocity is positive from the initial conditions:

φo = −
π

2

We also note from trigonometry that

x (t) = xmax cos
�
2πft− π

2

�

which is a perfectly good answer. However, if we remember our trig, we could
write this using

cos
�
θ − π

2

�
= sin (θ)

Then we have

x (t) = xmax cos
�
2πft− π

2

�

= xmax sin (2πft)

Part (b)
We have a basic equation for vmax

vm = ωxmax

= 2πfxmax

to find when this happens, take

v (t) = vmax = −ωxmax sin
�
2πft− π

2

�

and recognize that sin (θ) = 1 is at a maximum when θ = π/2 so the entire
argument of the sine function must be π/2 when we are at the maximum dis-
placement, so

π

2
=
�
2πft− π

2

�

or
π = 2πft

then the time is
1

2f
= t

Part (c)
Like with the velocity we must use a basic formula, this time
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a (t) = −ω2A cos (ωt+ φo)

but recognize that the maximum is achieved when cos (ωt+ φo) = 1 or when
ωt+ φo = 0

t =
φo

ω

=
−π
2

2πf

=
−1
4f

The formula for amax is

amax = −ω2xmax
= −(2πf)2xm

Part (d)
We know the period is

T =
1

f

We should find the number of periods in t = 1.00 s

Nperiods =
t

T

and find the distance traveled in one period, and multiply them together. In
one period the distance traveled is

d = 4xm

dtot = d ∗ t

T
= 4fxmt

Numerical Solutions
We found algebraic answers (or symbolic answers) to the parts of our problem

above. We will always do this first. Then substitute in the numbers to find
numeric answers.

Part (a)

x (t) = xmax sin (2πft)

= (4.00 cm) sin (3.00πt)

Part (b)
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vm = 2π (1.50Hz) (4.00 cm)

0.377
m

s

1

2f
= t

1

2 (1.50Hz)
= t

= 0.333 s

Part (c)

t =
−1
4f

= −0.166 67 s

amax = (2πf)2xm

= (2π1.5Hz)2 (4.00 cm)

= 3. 553 1
m

s2

Part (d)

dtot = 4fxmt

= 4× 4.00 cm ∗ 1.50Hz ∗ 1.00 s
= 0.24m

We should make sure the units check. We put in units along the way, so
we can be confident that they do. But if you did not work along the way with
units, check them now.

We should also make sure our answers are reasonable. If the amplitude came
out to be a billion miles, you might guess something went wrong. Always look
over your answers to make sure they seem reasonable.

1.6 Energy of the Simple Harmonic Oscillator

If there is motion, there is energy. We can find the energy in a harmonic
oscillator. Let’s start with kinetic energy. Recall that

K =
1

2
mv2
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for our Simple Harmonic Oscillator (SHO) we have

K =
1

2
m (−ωxmax sin (ωt+ φo))

2

=
1

2
mω2x2max sin

2 (ωt+ φo)

=
1

2
m

k

m
x2max sin

2 (ωt+ φo)

=
1

2
kx2max sin

2 (ωt+ φo)

The potential energy due to a spring is given by (from your PH121 class or
Statics/Dynamics)

U =
1

2
kx2 (1.21)

Again for our SHO we have

U =
1

2
kx2max cos

2 (ωt+ φo) (1.22)

The total energy is given by

E = K + U (1.23)

=
1

2
kx2max sin

2 (ωt+ φo) +
1

2
kx2max cos

2 (ωt+ φo)

=
1

2
kx2max

�
sin2 (ωt+ φo) + cos

2 (ωt+ φo)
�

=
1

2
kx2max

This is an astounding result! The amount of energy at any given time is
equal to the amount of energy we started with. We are not changing how much
energy we have. We call such a value that does not change a constant of motion.

Remark 4 The total mechanical energy of a SHO is a constant of motion
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In the figure you can see that the kinetic and potential energies trade back and
forth, but the total amount of energy does not change. Note that the kinetic
and potential energy are out of phase with each other. If we plot them on the
same scale ( for the case φo = 0) we have

t

U K
U,K

t

U K
U,K
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Figure 1.3:

1.7 Circular Motion and SHM

That circular motion and SHM are related should not be a surprise once we
found the solutions to the equations of motion were trig functions. Recall that
the trig functions are defined on a unit circle

tan θ =
x

y
(1.24)

cos θ =
x

h
(1.25)

sin θ =
y

h
(1.26)

Let’s relate this to our equations of motion.
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xmax
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P
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Look at the projection x of the point P on the x axis. Lets follow this projection
as P travels around the circle. We find it ranges from −xmax to xmax. If we
watch closely we find its velocity is zero at the extreme points and is a maximum
in the middle. This projection is given as the cos of the vector from the origin
to P. This model, indeed fits our SHO solution.

Now lets define a projection of P onto the y axis. Again we have SHM, but
this time the projection is a sin function. Because

cos
�
θ − π

2

�
= sin (θ) (1.27)

we can see that this is just a SHO that is 90 ◦ out of phase.

Remark 5 We see that uniform circular motion can be thought of as the com-
bination of two SHOs, with a phase difference of 90 ◦.

The angular velocity is given by

ω =
v

r
(1.28)

j

î



vx

y

v

vx

j

î



vx

y

v

vx

A particle traveling on the x-axis in SHM will travel from xmax to −xmax and
from −xmax to xmax (one complete period, T ) while the particle traveling with
P makes one complete revolution. Thus, the angular frequency ω of the SHO
and the angular velocity of the particle at P are the same. (Now we know why
we used the same symbol). The magnitude of the velocity is then

v = ωr = ωxmax (1.29)

and the projection of this velocity onto the x-axis is

vx = −ωxmax sin (ωt+ φo) (1.30)

Just what we expected!
The angular acceleration of a particle at P is given by

v2

r
=

v2

xmax
=

ω2x2max
xmax

= ω2xmax (1.31)
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The direction of the acceleration is inward toward the origin. If we project this
onto the x-axis we have

ax = −ω2xmax cos (ωt+ φo) (1.32)

1.8 The Pendulum

T

m

L


mg



T

m

L


mg



A simple pendulum is a mass on a string. The mass is called a “bob.”
A simple pendulum exhibits periodic motion, but not exactly simple har-

monic motion.
The forces on the bob, m, are Fg, T the tension on the string. The tangential

component of Fg is always directed toward θ = 0. This is a restoring force!
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Let’s call the path the bob takes s. The path, s, is along an arc, then from
Jr. High geometry4 , we can use the arc-length formula to describe s

s = Lθ (10.01a)

and we can write an equation for the restoring force that brings the bob back
to its equilibrium position as

Ft = −mg sin θ (1.33)

= m
d2s

dt2

= mL
d2θ

dt2

or
d2θ

dt2
= − g

L
sin θ

This is a harder differential equation to solve. But suppose we are building a
grandfather clock with our pendulum, and we won’t let the pendulum swing
very far. Then we can take θ as a very small angle, then

sin (θ) ≈ θ (1.34)

In this approximation

d2θ

dt2
= − g

L
θ

and we have a differential equation we recognize! Compare to

d2x

dt2
= −ω2x (1.35)

if

ω2 =
g

L
(1.36)

we have all the same solutions for s that we found for x. Since ω changed, the
frequency and period will now be in terms of g and L.

T =
2π

ω
= 2π

�
L

g
(1.37)

Remark 6 the period and frequency for a pendulum with small angular dis-
placements depend only on L and g!

4From Jr. High, but if you are like me you have forgotten it until now.
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1.9 Damped Oscillations

Suppose we add in another force

Fd = −bv (1.38)

This force is proportional to the velocity. This is typical of viscus fluids. So this
is what we would get if we place our mass-spring system (or pendulum) in air
or some other fluid. We call b the damping coefficient. Now our net force is

ΣF = −kx− bvx = ma

We can write the acceleration and velocity as derivatives of the position

−kx− b
dx

dt
=m

d2x

dt2

This is another differential equation. It is harder to guess its solution

x (t) = Ae−
b
2m

t cos (ωt+ φo) (1.39)

but now our angular frequency, ω, is more complicated

ω =

�
k

m
−
�

b

2m

�2
(1.40)

We have three cases:

Case 7 1. the retarding force is small: (bvmax < kA) The system oscillates,
but the amplitude is smaller as as time goes on. We call this “under-
damped”

2. the retarding force is large: (bvmax > kA)The system does not oscillate.
we call this “overdamped.” We can also say that b

2m > ωo (after we define
ωo below)

3. The system is critically damped (see below)

For the following values,

A = 5cm

b = 0.005 kgs
k = .5 Nm
m = .5 kg

we have a graph that looks like this
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The gray lines are

±Ae−
b
2m

t (1.41)

They describe how the amplitude changes. We call this the envelope of the
curve.

A = 5cm

b = 0.05 kgs
k = .5 Nm
m = .5 kg
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A = 5 cm

b = 0.5 kgs
k = .5 Nm
m = .5 kg
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What happened?
When the damping force gets bigger, the oscillation eventually stops. Only

the exponential decay is observed. This happens when

b

2m
=

�
k

m
(1.42)

then

ω =

�
k

m
−
�

b

2m

�2
= 0 (1.43)

We call this situation we call critically damped. We are just on the edge of
oscillation. We define

ωo =

�
k

m
(1.44)

as the natural frequency of the system. Then the value of b that gives us critically
damped behavior is

bc = 2mωo (1.45)

Remark 8 When b
2π ≥ ωo the solution in equation (1.39) is not valid! If you

are a mechanical engineer you will find out more about this situation in your
advanced mechanics classes.
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1.10 Driven Oscillations and Resonance

We found in the last section that if we added a force like

Fd = −bv (1.46)

our oscillation died out. Suppose we want to keep it going? Let’s apply a
periodic force like

F (t) = Fo sin (ωf t)

where ωf is the angular frequency of this new driving force and where Fo is a
constant.

ΣF = Fo sin (ωf t)− kx− bvx = ma

When this system starts out, the solutions is very messy. It is so messy that
we will not give it in this class! But after a while, a steady-state is reached.
In this state, the energy added by our driving force Fo sin (ωf t) is equal to the
energy lost by the drag force, and we have

x (t) = A cos (ωf t+ φo) (1.47)

our old friend! BUT NOW

A =
Fo
m��

ω2f − ω2o

�2
+
�

bωf
m

�2 (1.48)

and where

ωo =

�
k

m
(1.49)

as before. It is more convenient to drop the f subscripts

x (t) = A cos (ωt+ φo) (1.50)

A =
Fo
m	

(ω2 − ω2o)
2 +
�

bω
m

�2 (1.51)

so now our solution looks more like our original SHM solution (except for the
wild formula for A).

Lets look at A for some values of ω. I will pick some nice numbers for the
other values.

Fo = 2N

b = 0.5 kgs
k = 0.5 Nm
m = 0.5 kg
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now let’s calculate ω

ωo =

�
0.5 Nm
0.5 kg

=
1.0

s

Notice that right at ω our solution gets very big. This is called resonance. To
see why this happens, think of the velocity

dx (t)

dt
= −ωA sin (ωt+ φo) (1.52)

note that our driving force is

F (t) = Fo sin (ωt) (1.53)

The rate at which work is done (power) is

P = F ·∆x
∆t

= F · v (1.54)

if F and v are in phase, the power will be at a maximum!

We can plot A for several values of b
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Green: b=0.005kg/s; Blue: b=0.05kg/s; Red b=0.01 kg/s

As b → 0 we see that our resonance peak gets larger. In real systems b can
never be zero, but sometimes it can get small. As b→large, the resonance dies
down and our A gets small.

An example of this is well known to mechanical engineers. The next picture
is of the Tacoma Narrows Bridge. As a steady wind blew across the bridge it
formed turbulent wind gusts.

Tacoma Narrows Bridge (Image in the Public Domain)

The wind gusts formed a periodic driving force that allowed a driving harmonic
oscillation to form. Since the bridge was resonant with the gust frequency, the
amplitude grew until the bridge materials broke.



Chapter 2

What is a Wave?

Fundamental Concepts

1. A wave requires a disturbance, and a medium that can transfer energy

2. Waves are categorized as longitudinal or transverse (or a combination of
the two).

2.1 What is a Wave?

Waves are organized motions in a medium.

2.1.1 Criteria for being a wave

Another way to think about waves is a transfer of energy through space without
transfer of matter.

Waves require:

1. some source of disturbance

2. a medium that can be disturbed

3. some physical mechanism by which the elements of the medium can influ-
ence each other

In the limit that the string mass is negligible we represent a one-dimensional
wave mathematically as a function of two variables, position and time, y (x, t) .
There are two ways to look at waves, we call them “snapshot” and “history”
(or video) views.

29
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2.1.2 Longitudinal vs. transverse

We divide the various kinds of waves that occur into two basic types:

Definition 9 transverse wave: a traveling wave or pulse that causes the ele-
ments of the disturbed medium to move perpendicular to the direction of propa-
gation

Definition 10 Longitudinal wave: a traveling wave or pulse that causes the
elements of the medium to move parallel to the direction of propagation

2.1.3 Examples of waves:

A pulse on a rope:

In the picture above, you see a wave that has just one peak traveling to the
right. We call such a wave a pulse. Notice how the piece of the rope marked
P moves up and down, but the wave is moving to the right. This pulse is
a transverse wave because the parts of the medium (observe point P ) move
perpendicular to the direction the wave is moving.
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An ocean wave:

Of course, some waves are a combination of these two basic types1 . Water waves,
for example, are transverse at the surface of the water, but are longitudinal
throughout the water.

Earthquake waves:

Earthquakes produce both transverse and longitudinal waves. The two types
of waves even travel at different speeds! P waves are longitudinal and travel
faster, S waves are transverse and slower.

2.2 Wave speed

We can perform an experiment with a rope or a long spring. Make a wave on
the rope or spring. Then pull the rope or spring tighter and make another wave.
We see that the wave on the tighter spring travels faster.

It is harder to do, but we can also experiment with two different ropes, one
light and one heavy. We would find that the heaver the rope, the slower the
wave. We can express this as

v =

�
Ts

µ

where Ts is the tension in the rope, and µ is the linear mass density

µ =
m

L

where m is the mass of the rope, and L is the length.
The term µ might need an analogy to make it seem helpful. So suppose I

have an iron bar that has a mass of 200 kg and is 2m long. Further suppose I
want to know how much mass there would be in a 20 cm section cut of the end
of the rod. How would I find out?

This is not very hard, We could say that there are 200 kg spread out over
2m, so each meter of rod has 100 kg of mass, that is, there is 100 kg/m of mass

1You may have noticed that in Physics we tend to define basic types of things, and then
use these basic types to define more complex objects.
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per unit length. Then to find how much mass there is in a 0.20m section of the
rod I take

m = 100
kg

m
× 0.20m = 20.0 kg

The 100 kg/m is µ. It is how much mass there is in a unit length segment of
something In this example, it is a unit length of iron bar, but for waves on
string, we want the mass per unit length of string.

If you are buying stock steel bar, you might be able to buy it with a mass
per unit length. If the mass per unit length is higher then the bar is more
massive. The same is true with string. The larger µ, the more massive equal
string segments will be.

We should note that in forming this relationship, we have used our standard
introductory physics assumption that the mass of the rope can be neglected.
Let’s consider what would happen if this were not true. Say we make a wave in
a heavy cable that is suspended. The mass at the lower end of the cable pulls
down on the upper part of the cable. The tension will actually change along
the length of the cable, and so will the wave speed. Such a situation can’t be
represented by a single wave speed. But for our class, we will assume that any
such changes are small enough to be ignored.

2.3 Example: Sound waves

Sound is a wave. The medium is air particles. The transfer of energy is done
by collision.

The wave will be a longitudinal wave. Let’s see how it forms. We can take a
tube with a piston in it.

As we exert a force on the piston, the air molecules are compressed into a
group. In the next figure, each dot represents a group of air molecules. In the
top picture, the air molecules are not displaced. But when the piston moves,
the air molecules receive energy by collision. They bunch up. We see this in the
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second picture.

The graph below the two pictures shows how much displacement each molecule
group experiences.

Suppose we now pull the piston back. This would allow the molecules to
bounce back to the left, but the molecules that they have collided with will
receive some energy and go to the right. This is shown in the next figure. Color
coded dots are displayed above the before and after picture so you can see where
the molecule groups started.

If we pull the piston back further, the molecules can pass their original positions.

Then we can push inward again and compress the gas.
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This may seem like a senseless thing to do, but it is really what a speaker does
to produce sound. In particular, a speaker is a harmonic oscillator. The simple
harmonic motion of the speaker is the disturbance that makes the sound wave.

2.4 One dimensional waves

To mathematically describe a wave we will define a function of both time and
position.

y (x, t) (2.1)

let’s take a specific example2

y =
2

(x− 3.0t)2 + 1
(2.2)

Let’s plot this for t = 0

2This is not an important wave function, just one I picked because it makes a nice graphic
example.
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The pulse travels along the x-axis as a function of time. We denote the speed
of the pulse as v, then we can define a function

y (x, t) = y (x− vt, 0) (2.3)

that describes a pulse as it travels. An element of the medium (rope, string,
etc.) at position x at some time t, will have the displacement that an element
had earlier at x− vt when t = 0.

We will give y (x− vt, 0) a special name, the wave function. It represents
the y position, the transverse position in our example, of any element located
at a position x at any time t.

Notice that wave functions depend on two variables, x, and t. It is hard to
draw a wave so that this dual dependence is clear. Often we draw two different
graphs of the same wave so we can see independently the position and time
dependence. So far we have used one of these graphs. A graph of our wave at
a specific time, to. This gives y (x, to). This representation of a wave is very
like a photograph of the wave taken with a digital camera. It gives a picture of
the entire wave, but only for one time, the time at which the photograph was
taken. Of course we could take a series of photographs, but still each would be
a picture of the wave at just one time.
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The second representation is to observe the wave at just one point in the
medium, but for many times. This is very like taking a video camera and using
it to record the displacement of just one part of the medium for many times.
You could envision marking just one part of a rope, and then using the video
recorder to make a movie of the motion of that single part of the rope. We
could then go frame by frame through the video, and plot the displacement of
our marked part of the rope as a function of time. Such a graph is sometimes
called a history graph of the wave.



Chapter 3

Waves in One and More
Dimensions

We studied waves in general last lecture. This time we will look at a specific
wave, the sinusoidal wave. You might think this is terribly restrictive, but we
will find that using sinusoidal waves, we can represent most any wave through an
elegant mathematical trick, and the idea of superposition (that we will explain
later).

Fundamental Concepts

1. The mathematical form of a sinusoidal wave is y (x, t) = ymax cos (kx− ωt+ φo)

2. There are names for parts of a sinusoidal wave. We need to recognize
the following terms: crest, trough, wavelength period frequency angular
frequency, phase constant, wave number.

3. Spatial frequency is “how often” something happens along some length.

4. The phase of a sinusoidal wave is given by φ = kx− ωt+ φo

5. Spherical waves have the form y = A (r) sin (kx− ωt+ φo)

6. Sufficiently far from the source of a wave, we can treat spherical waves
like plane waves.

3.1 Sinusoidal Waves

A sinusoidal graph should be familiar from our PH121 or Dynamics experience.
We can use what we know from oscillation to understand the equation for a

37
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sinusoidal wave. Remember that for simple harmonic oscillators we used the
function

y (t) = A cos (ωt+ φo) SHM (3.1)

but this only gave us a vertical displacement at one x-position. Now our sinu-
soidal function must also be a function of position along the wave.

y (x, t) = A cos (kx− ωt+ φo) waves (3.2)

But before we study the nature of this function, lets see what we can learn from
the graph of a sinusoidal wave. We will need both of our two views, the camera
snapshot and the video (history) of a point. Look at figure 3.1. This is two
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Figure 3.1:

camera snap shots superimposed. The red curve shows the wave (y position for
each value of x) at t = 0. At some some later time t, the wave pattern has moved
to the right as shown by the blue curve. The shift is by an amount x = vt. This
reminds us that we can write a wave function in the form

y (x− vt, 0)

3.1.1 Parts of a wave

The peaks in the wave are called crests. For a sine wave we have a series
of crests. We define the wavelength as the distance between any two nearest
identical points (e.g. crests) on the wave.

Notice that this is very similar to the definition of the period, T, when we
graphed SHM on a y vs. t set of axis. In fact, this similarity is even more
apparent if we plot a sinusoidal wave using our two wave pictures. In the
next figure, the snap-shot comes first. We can see that there will be crests. The
distance between the crests is given the name wavelength. We give it the symbol
λ. This is not the entire length of the whole wave. But is is a characteristic length
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of part of the wave that is easy to identify. The next figure shows all this using
our snapshot and history graphs for a sine wave.
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Note that there are crests in the history graph view as well. That is because one
marked part of the medium is being displaced as a function of time (think of our
marked piece of the rope going up and down, or think of floating in the ocean at
one point, you travel up and down as the waves go by). But now the horizontal
axis is time. There will be a characteristic time between crests. That time is
called the period. Like the wavelength is not the length of the whole wave, the
period is not the time the whole wave exists. It is just the time it takes the
part of the medium we are watching to go through one complete cycle. Notice
that this video picture is exactly the same as a plot of the motion of a simple
harmonic oscillator! For a sinusoidal wave, each part of the medium experiences
simple harmonic motion.

We remember frequency from simple harmonic motion. But now we have a
wave, and the wave is moving. We can extend our view of frequency by defining
it as follows:

Definition 11 The frequency of a periodic wave is the number of crests (or any
other point of the wave) that pass a given point in a unit time interval.
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Figure 3.2:

In figure 3.2, the blue curve has twice the frequency as the red curve. Notice
how it has two crests for every red crest. The maximum displacement of the
wave is called the amplitude just as it was for simple harmonic oscillators.

Wavenumber and wave speed

Consider again a sinusoidal wave.

y (x, t) = A cos (kx− ωt+ φo) (3.3)

We have drawn the wave in the snapshot picture mode
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To make this graph, we set t = 0 and plot the resulting function

y (x, 0) = A sin (kx+ 0) (3.4)

A is the amplitude. I want to investigate the meaning of the constant k. Lets
find k like we did for SHM when we found ω. Consider the point x = 0. At this
point

y (0, 0) = A sin (k (0)) = 0 (3.5)

The next time y = 0 is when x = λ
2
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λ

2
, 0

�
= A sin

�
k
λ

2

�
= 0 (3.6)

From our trigonometry experience, we know that this is true when

k
λ

2
= π (3.7)

solving for k gives

k =
2π

λ
(3.8)

Then we now have a feeling for what k means. It is 2π over the spacing between
the crests. The 2π must have units of radians attached. Then

y (x, 0) = A sin

�
2π

λ
x+ 0

�
(3.9)

We have a special name for the quantity k. It is called the wave number .

k ≡ 2π

λ
(3.10)

Both the name and the symbol are somewhat unfortunate. Neither gives
much insight into the meaning of this quantity. But from what we have done,
we can understand it better. For a harmonic oscillator, we know that

y (t) = A sin (ωt)

where

ω = 2πf =
2π

T

T is how far, in time, the crests are apart, and the inverse of this, 1
T is the

frequency. The frequency tells us how often we encounter a crest as we march
along in time. So 1

T must be how many crests we have in a unit amount of time.
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Now think of the relationship between the snapshot and the video represen-
tation for a sinusoidal wave. We have a new quantity

k =
2π

λ

where λ is how far, in distance, the crests are apart. This implies that 1
λ plays

the same role in the snap shot graph that f plays in the video graph. It must
tell us how many crests we have, but this time it is how many crests in a unit of
distance. We found above that k told us something about how often the zeros
(well, every other zero) will occur. But the crests must occur at the same rate.
So k tells us how often we encounter a crest in our snapshot graph.

The frequency is how often we encounter a crest in the video graph, 1λ is how
often we encounter a crest in the snap shot graph. Thus 1

λ is playing the same
role for a snap shot graph as frequency plays for a history graph. We could call
1
λa spatial frequency. It is how often we encounter a crest as we march along
in position, or how many crests we have in a unit amount of distance. And λ
could be called a spatial period. Both 1/T and 1/λ answer the question “how
often something happens in a unit of something” but one asks the question in
time and the other in position along the wave.

My mental image for this is the set of groves on the edge of a highway. There
is a distance between them, like a wavelength, and how often I encounter one as
I move a distance along the road is the spatial frequency. If you are a farmer,
you may think of plowed fields, with a distance between furrows as a wavelength,
and how closely spaced the furrows are as a measure of spatial frequency. We
use this concept in optics to test how well an optical system resolves details
in a photograph. The next figure is a test image. A good camera will resolve
all spatial frequencies equally well. Notice the test image has sets of bars with
different spatial frequencies. By forming an image of this pattern, you can see
which spacial frequencies are faithfully represented by the optical system.

Resolution test target based on the USAF 1951 Resolution Test Pattern (not
drawn to exact specifications).

In class you will see that our projector does not represent all spatial frequencies
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equally well! You can also see this now in the copy you are reading. If you
are reading on-line or an electronic copy, your screen resolution will limit the
representation of some spatial frequencies. Look for the smallest set of three
bars where you can still tell for sure that there are three bars. A printed version
that has been printed on a laser printer will usually allow you to see even smaller
sets of three bars clearly.

Let’s place k in the full equation for the sine wave for any time, t.

y (t) = A cos (kx− ωt+ φo) (3.11)

We would like this to look like our wave function equation

y (x, t) = y (x− vt, 0)

With a little algebra we can do this

y (t) = A cos (kx− ωt+ φo)

= A cos

�
2π

λ
x− 2π

T
t+ φo

�

= A cos

�
2π

λ

�
x− λ

T
t

�
+ φo

�

This is in the form of a wave function so long as

v =
λ

T
(3.12)

then

y (x, t) = A sin

�
2π

λ
(x− vt) + φo

�
(3.13)

We can see that the wave travels one wavelength in one period. The simple
relationship

v =
λ

T
(3.14)

is of tremendous importance.

Wave speed forms

We found

v =
λ

T
(3.15)

but it is easy to see that

v =
2πλ

2πT
=

ω

k
(3.16)

and
v = λf (3.17)

This last formula is, perhaps, the most common form encountered in our study
of light.
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Phase

You may be wondering about the phase constant we learned about in our study
of SHM. We have ignored it up to now. But of course we can shift our sine
just like we did for our plots of position vs. time for oscillation. Only now with
a wave we have two graphs, a history and snapshot graphs, so we could shift
along the x in a snapshot graph or along the t axes in a history graph. So the
sine wave has the form.

y (x, t) = A sin (kx− ωt+ φo) (3.18)

were φo will need to be determined by initial conditions just like in SHM prob-
lems and those initial conditions will include initial positions as well as initial
times.

Let’s consider that we have two views of a wave, the snapshot and history
view. Each of these looks like sinusoids for a sinusoidal wave. Let’s consider a
specific wave,

y (x, t) = 5 sin
�
3πx− π

5
t+

π

2

�

And let’s look at a snapshot graph at t = 0

y (x, 0) = 5 sin
�
3πx− π

5
(0) +

π

2

�
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and another at t = 2 s

y (x, 2 s) = 5 sin
�
3πx− π

5
(2 s) +

π

2

�
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x

y

Comparing the two, we could view the latter as having a different phase constant

φtotal = ω∆t+ φo = −
π

5
(2 s) +

π

2

that is, within the snapshot view, the time dependent part of the argument of
the sine acts like an additional phase constant.
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Likewise, in the history view, we can plot our wave at x = 0

y (0, t) = 5 sin
�
3π (0)− π

5
t+

π

2

�
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and at x = 1.5m

y (1.5m, t) = 5 sin
�
3π (1.5m)− π

5
t+

π

2
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Within the history view, the kx part of the argument acts like a phase constant.

φtotal = k∆x+ φo = 3π (1.5m) +
π

2

Of course neither kx nor ωt are constant, But within individual views of the
wave we have set them as constant to form our snapshot and history represen-
tations. We can see that any part of the argument of the sine, kx − ωt + φo

could contribute to a phase shift, depending on the view we are taking.
Because of this, it is customary to call the entire argument of the sine func-

tion, φ = kx− ωt+ φo the phase of the wave. Where φo is the phase constant,
φ is the phase. Of course then, φ must be a function of x and t, so we have a
different value for φ (x, t) for every point on the wave for every time.

3.1.2 Sinusoidal waves on strings

Take a jump rope, and shake one end up and down while your partner keeps
his or her end stationary. You can make a sine wave in the rope. You can do a
better job by attaching a wave generator to the end.

Really, as long at the wave forms are identical and periodic, the relationships

f =
1

T
(3.19)

and
v = fλ (3.20)
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will hold. But we will make our device vibrate with simple harmonic motion.
Let’s call an element of the rope ∆x. Here the “∆” is being used to mean

“a small amount of.” We are taking a small amount of the rope and calling it’s
length ∆x.

Each element of the rope (∆xi) will also oscillate with SHM (think of a
driven SHO). Note that the elements of the rope oscillate in the y direction, but
the wave travels in x. This is a transverse wave.

Let’s describe the motion of an element of the string at point P.
At t = 0,

y = A sin (kx− ωt) (3.21)

(where I have chosen φo = 0 for this example). The element does not move
in the x direction. So we define the transverse speed, vy, and the transverse
acceleration, ay, as the velocity and acceleration of the element of rope in the
y direction. These are not the velocity and acceleration of the wave, just the
velocity and acceleration of the element ∆x at a point P.

Because we are doing this at one specific x location we need partial deriva-
tives to find the velocity

vy =
dy

dt




x=constant

=
∂y

∂t
(3.22)

That is, we take the derivative of y with respect to t, but we pretend that x is
not a variable because we just want one x position. Then

vy =
∂y

∂t
= −ωA cos (kx− ωt) (3.23)

and

ay =
∂vy

∂t
= −ω2A sin (kx− ωt) (3.24)

These solutions should look very familiar! We expect them to be the same as
a harmonic oscillator except that we now have to specify which oscillator—which
part of the rope—we are looking at. That is what the kx part is doing.

3.2 The speed of Waves on Strings

Let’s work a problem together. Let’s find an expression for the speed of the
wave as it travels along a string.

We will use Newton’s second law

Σ
−→
F =

−→
F net = m−→a

to do this, so we need a sum of the forces. What are the forces acting on an
element of string?

• Tension on the right hand side (RHS) of the element from the rest of the
string on the right, Tr



3.2. THE SPEED OF WAVES ON STRINGS 47

s

s



TT



Figure 3.3:

• Tension on the left hand side (LHS) of the element from the rest of the
string on the left, Tl

• The force due to gravity on our element of string, Fg

Lets assume that the element of string, ∆s, at the crest is approximately an
arc of a circle with radius R.

There is a force pulling left on the left end of the element that is tangent to
the arc, there is a force pulling right at the right end of the element which is also
tangent to the arc. The horizontal components of the forces cancel (T cos θ) .
The vertical component, (T sin (θ)) is directed toward the center of the arc.
Then these forces must be a mass times an acceleration and because they are
center seeking we can call these accelerations centripetal accelerations

a =
v2

R
(3.25)

If the rope is not moving in the x direction, then

ΣFx = 0 = −Tl cos θ + Tr cos θ

Tl = Tr

Then, the radial force Fr will have matching components from each side of the
element that together are 2T sin (θ) . Since the element is small,

ΣFr = 2T sin (θ) ≈ 2Tθ (3.26)

The element has a mass m.

m = µ∆s (3.27)
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where µ is the mas per unit length. Using the arc length formula

∆s = R (2θ) (3.28)

so
m = µ∆s = 2µRθ (3.29)

and finally we use the formula for the radial acceleration

Fr = ma = (2µRθ)
v2

R
(3.30)

Combining these two expressions for Fr

2Tθ = (2µRθ)
v2

R
(3.31)

T = (µR)
v2

R
(3.32)

T

µ
= v2 (3.33)

and we find that

v =

�
T

µ
(3.34)

Note that we made many assumptions along the way. Despite this, the
approximation is quite good.

3.3 Waves in two and three dimensions

So far we have written expressions for waves, but our experience tells us that
waves don’t usually come as one dimensional phenomena. In the next figure,
we see the disturbance (a drop) creating a water wave.

Picture of a water drop (Jon Paul Johnson, used by permision)

The wave is clearly not one dimensional. It appears nearly circular. In fact, it
is closer to hemispherical, and this limit is only true because the disturbance is
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at the air-water boundary. Most waves in a uniform medium will be roughly
spherical.
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Point Source
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Point Source

r

As such a wave travels away from the source, the energy traveling gets more
spread out. This causes the amplitude to decrease. Think of a sound wave, it
gets quieter the farther you are from the source. We change our equation to
account for this by making the amplitude a function of the distance, r, from the
source

y = A (r) sin
�−→
k · −→r − ωt+ φo

�
(3.35)

Of course, if we look at a very large wave, but we only look at part of the wave,
we see that our part looks flatter as the wave expands.

Very far from the source, our wave is flat enough that we can ignore the curvature
across it’s wave fronts. We call such a wave a plane wave. There are no true
plane waves in nature, but this idealization makes our mathematical solutions
simpler and many waves come close to this approximation. We will usually stick
with the plane wave approximation in this class.

Basic Equations

Our geneal wave eqauation is

y (x, t) = A cos (kx− ωt+ φo) (3.36)
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or
y (x, t) = A sin (kx− ωt+ φo) (3.37)

In general we found that the wave speed could be written as

v =
ω

k
(3.38)

v = λf (3.39)

For waves on strings we also found

v =

�
T

µ
(3.40)

We found that all of
φ = kx− ωt+ φo (3.41)

could be called the total phase of the wave, or to be breif, we could call it just
the phase of the wave.

The transverse postion, speed, and acceleration of a part of the medium are
given by

y = A sin (kx− ωt) (3.42)

vy = −ωA cos (kx− ωt) (3.43)

ay = −ω2A sin (kx− ωt) (3.44)

We found that waves in three dimensions have a more complicated amplitude

y = A (r) sin
�−→
k · −→r − ωt+ φo

�
(3.45)



Chapter 4

Light, Sound, Power

Fundamental Concepts

• Sound waves are formed when a disturbance causes a chain-reaction of
collisions in the molecules of the air or other substance.

• Power is an amount of energy expended in an amount of time

• Intensity is an amount of power spread over an area

• The human auditory system is not a linear , but rather a logarithmic

detector with perceived sound level given by β = 10 log10

�
I
Io

�

4.1 Waves in matter-Sound

We have said that sound is a longitudinal wave with a medium of air. Really
any solid, liquid, or gas will work as a medium for sound. For our study, we will
take sound to be a longitudinal wave and treat liquids and gasses. Solids have
additional forces involved due to the tight bonding of the atoms, and therefore
are more complicated. Technically in a solid sound can be a transverse wave
as well a longitudinal wave, but we usually call transverse waves of this nature
shear waves.

4.1.1 Periodic Sound Waves

Let’s go back to making sounds. Suppose we push our piston as we did before.

51
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When we push in the piston, it creates a region of higher pressure next to it.

When we pull back the piston the fluid expands to fill the void.

We create a rarefaction next to the piston.

Suppose we drive the piston sinusoidally. Can we describe the motion of the
particles and of the wave?

Definition 12 Compression: A local region of higher pressure in a fluid

Definition 13 Rarefaction: A local region of lower pressure in a fluid

We can identify the distance between two compressions as λ. We define
s (x, t) like we defined a wave function, y (x, t)) as the displacement of a particle
of fluid relative to its equilibrium position.

s (x, t) = smax cos (kx− ωt) (4.1)

but what is smax?

We remember that smax is the maximum displacement of a particle of fluid
from its equilibrium position. We plotted this using a bar graph to show dis-
placement from the equilibrium position for our molecules. As we push the
piston in and out we will get something like this.
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We found before that we get something that looks like a sine wave, but remem-
ber what the bars represent. They represent the displacement from original
position.

Bar Graph of 
Displacement 
from  Original 

Position
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We don’t usually draw bar graphs to represent sound waves, we usually just
draw the sine wave.

Fluid 

displaced to 

fill void smax

x

s

Propagating 

rarefaction

Fluid 

displaced to 

fill void smax

x

s

Propagating 

rarefaction

When the air molecules bunch up to form a compression, the pressure will be
higher. When the air molecules spread out to form a rarefaction, the pressure
will be lower than normal. The variation of the gas pressure ∆P measured from
its equilibrium is also periodic

which is why we often refer to a sound wave as a pressure wave. Think of when
the wave gets to your ear. The wave consists of a group of particles all headed
for your ear drum. When they hit, they exert a force. Pressure is a force spread
over an area,

P =
F

A

so in a sense, we hear changes in air pressure!
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4.2 Speed of Sound Waves

The speed of sound in air is around 340m/ s. The speed changes when we change
media, and even when we are in the same media but the temperature changes.
For sound in air, a good approximation near standard pressure and temperature
is

v = vo

�
1 +

Tc

To
(4.2)

where vo = 331
m
s and To = 273K (0 ◦C).1

Why temperature? The density and pressure of air change with temperature.
The air molecules gain kinetic energy and tend to move farther apart from each
other when they are warm. This changes the time it takes to transfer energy.

4.2.1 Boundaries

Suppose two pulses travel in the same medium, say, on a rope, and they ap-
proach a different rope with a different linear mass density. If the new rope is
heavier, we expect the wave speed to slow down. So as one pulse reaches the
boundary, it will go slower. This allows the second pulse to catch-up before it,
too, slows down at the boundary.

Now suppose a sinusoidal wave approaches the boundary. We can envision
the crests like pulses, and we expect the first crest to slow down when it reaches
the boundary, letting the other crests catch up. Once the wave passes the
boundary, the crests will be closer together. The wavelength changes as we
move to the slower medium.

But does the frequency change? We know that

v = λf

so

f =
v

λ

both the speed and the wavelength have changed, but did they change pro-
portionately so f is constant? This must be so. Think that the change in

1v = vo

�
1 + TC

To
= vo

�
To
To
+ TC

To
= vo

�
To+TC
To

= vo

�
TK
To
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wavelength is due to the relative speed of the wave in the two media. If ∆v is
small, the change in λ will be small because the crests are not delayed too long.
If ∆v is large, the crests are delayed by a large amount and so the change in λ
is large. We won’t derive the fact that f is constant, but we can see that it is
very believable that it is true.

This is true for all waves, even light. When a wave crosses a boundary from
a fast to a slow or a slow to a fast medium, λ will change and f will remain
constant.

Let’s find an expression for the new wavelength. The frequency of the light
must be the same.

fi = ff

and we know that in general

f =
v

λ

so
vi

λi
=

vf

λf

so

λf =
vf

vi
λi (4.3)

and we can see that if vf is slower than vi our wavelength does get shorter.

4.3 Waves in fields-Light

Sound is a wave in matter, but what is light? It will really take the rest of
the course (and then some) to answer this question. But we know that light
can travel through a vacuum. Therefore, light can’t be a wave in some type of
matter. We will find later that there exists something called an electromagnetic
field created by charged particles. It turns out that light seems to be a wave
in this electromagnetic field. It will take us a while to fully understand this
concept, but don’t worry. Physicists knew that light was a wave for almost 80
years before the electric field was shown to be the medium. We can do a lot
just knowing light behaves like a wave.

If light is a wave, the light we see is just one small part of a whole class
of waves that are possible in this electromagnetic field medium. Radio waves,
and microwaves, and x-rays are all just different types of electromagnetic waves.
The next figure shows where all of these electromagnetic waves fit ordered by
wavelength (and frequency).

Electromagnetic Spectrum (Public Domain image courtesy NASA)
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4.3.1 Speed of Electromagnetic waves

There is something very unique about this electromagnetic field medium. The
waves in this medium travel at a constant speed-no matter what frame of ref-
erence we are in. This fact leads to the formation of the Special Theory of
Relativity and the famous equation

E = mc2

where c is this speed of light

c = 299792458
m

s

Light does slow down when it enters a material medium, like glass, or even
air. The actual speed that light travels does not change. What happens is that
light is absorbed by the electrons in the atoms of the material substance. The
electron temporarily takes up all the energy from a bit of the light wave—but
only temporarily. It eventually has to give up the energy and the light wave
reforms and mixes with the incoming wave. But it has lost some time in the
process, so it’s average speed is less. How much less depends on how long the
electrons in the atoms can hang-on to the light. Each substance is different.

We can devise a way to express how much slower light will appear to go in
a substance using the ratio

c

v

the ratio of the speed of light, c, to the average speed in the substance, v. This
ratio is so useful that we give it a name, the index of refraction.

n =
c

v

4.4 Power and Intensity

We know that energy is being transferred by the wave, whether it is a light or
sound wave. We should wonder, how fast is energy transferring? This can mean
the difference between sunlight on a warm summer day and being burned by a
laser beam. We will start by considering the rate of energy transfer, power.

Power

The concept of power should be familiar to us from PH121 or Statics and Dy-
namics. We can find the power by

P = ∆E

∆t

where ∆E is the power transferred and ∆t is the time it takes to make the
transfer.
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4.4.1 Intensity

We now define something new.

I ≡ P
A

(4.4)

that is, the power divided by the area. But what does it mean?
Consider a point source.

24 rAsphere 

Point Source

r

24 rAsphere 

Point Source

r

it sends out waves in all directions. The wave crests will define a sphere around
the points source (the figure shows a cross section but remember it is a wave
from a point source, so we are really drawing concentric spheres like balloons
inside of balloons.). Then form our point source

I = P
4πr2

(4.5)

As the wave travels, its power per unit area decreases with the square of the
distance (think gravity) because the area is getting larger.

This quantity that tells us how spread our our power has become is called the
intensity of the wave.

Suppose we cup our hand to our ear. We can now hear fainter sounds. But
what are we doing that makes the difference?
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We are increasing the area of our ear. Our ears work by transferring the
energy of the sound wave to a electro-chemical-mechanical device that creates
a nerve signal. The more energy, the stronger the signal. If we are a distance r
away from the source of the sound then the intensity is

I = Psource

Awave

But we are collecting the sound wave with another area, the area of our hand.
The power received is

Preceived = IAhand

=
Ahand

Awave
Psource

and we can see that, indeed, the larger the hand, the more power, and therefore
more energy we collect. This is the idea behind a dish antenna for communi-
cations and the idea behind the acoustic dish microphones we see at sporting
events. In next figure, we can see that it would take an increasingly larger dish
to maintain the same power gathering capability as we get farther from the
source.

4.4.2 Sound Levels in Decibels

Our Design Engineer made an interesting choice in building us. We need to hear
very faint sounds, and very loud sounds too. In order to make us able to hear
the soft sounds without causing extreme discomfort when we hear the loud, He
gave up linearity. That is, we don’t hear twice the sound intensity as twice as
loud. The mathematical expression that matches our perception of loudness toQuestion 223.4.10

Question 223.4.11the intensity is

β = 10 log10

�
I

Io

�
(4.6)
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where the quantity Io is a reference intensity. We are comparing the intensity
of our sound with some reference intensity, Io, to see how much louder our sound
seems to be.

We call β the sound level. Io we choose to be the threshold of hearing, the
intensity that is just barely audible. Measured this way, we say that intensity
is in units of decibels (dB). The decibel, is an engineer’s friend (and useful for
physicists too!) because it can describe a non-linear response in a linear way
that is easy to match to our human experience.

Suppose we double the intensity by a factor of 2.

β = 10 log10

�
2Io

Io

�

= 10 log10 2

= 3. 010 3dB

The sound intensity level is not twice as large, but only 3dB larger. It is a
tiny increase. This is what we hear. A good rule to remember is that 3dB
corresponds to a doubling of the intensity.

The tables that follow give some common sounds in units of dB and W/m2.
Just for reference, I have measured a Guns n Roses concert at 120 dB outside
the stadium.

Sound Sound Level (dB)
Jet Airplane at 30m 140

Rock Concert 120
Siren at 30m 100

Car interior when Traveling 60mi/h 90
Street Traffic 70
Talk at 30 cm 65

Whisper 20
Rustle of Leaves 10

Quietest thing we can hear (Io) 0

Loudness and frequency
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Robinson-Dadson equal loudness curves (Image in the Public Domain courtesy
Lindosland)

Our ears are truly amazing in their range and ability. But, sounds with
the same intensity at different frequencies do not appear to us to have the same
loudness. The frequency response graph above show how this relationship works
for test subjects. We don’t hear high or low frequencies as well. We have a peak
response around 4000Hz.
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Chapter 5

Doppler Effect and
Superposition

Fundamental Concepts

• The frequency of a wave depends on the relative motion between the source
and detector.

• Two waves in the same medium add up point for point at every location
in the medium. This process is called superposition.

5.1 Doppler Effect

We have learned what happens when a sound wave is generated. But so far,
we have assumed that sound emitter was staying still. But we know of many
sound emitters that move. What happens if the emitter of the sound is moving?
Worse, Back in PH121 or Dynamics we considered the relative motion between
two reference frames. What happens to the sound emitter is stationary, but we,
the listener, are moving?

Let’s start by considering an inertial reference frame (remember this from
Dynamics/PH121?)

Suppose we pick two such inertial reference frames, one traveling with a
velocity vx with respect to the other. Let’s also place them far away from any
other object.
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y

x

vx

A
B

y

x

vxy

x

vxy

x

vx

A
B

Person A sees himself as stationary and sees person B traveling with velocity
vx. Person B sees himself as stationary, and person A traveling with velocity
−vx. We can’t tell which view point is correct. In fact, both are equally valid.
So it seems that whether the emitter moves, or the detector moves, either way
if the motion matters, it should matter the same for both cases. From this
brief review, it seems that is the relative speed vx that we must consider when
thinking about our sound waves.

Now suppose we have a wave generator (a point source) creating spherical
waves. Let the point source be at rest, say, in frame A.

Point Source

Spherical 

Wave Crests
Detector

Point Source

Spherical 

Wave Crests
Detector

Let’s also assume a detector. If the detector is stationary with respect to the
emitter, the detector sees a frequency of the wave, f just as it is created by the
emitter. But lets have the detector be in frame B

so that it moves relative to the emitter and take our point of view from the
detector frame. A top view might look like this
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Remember, that the frequency is the number of crests that pass by a given point
in a unit time. Does the moving detector see the same number of crests per unit
time as when it was stationary?

No, the frequency appears to be higher! That is because every time a wave
crest hits the detector, the detector moves toward the next wave crest.

How about if we let the detector move the other way?

The top view might look like this

Again the frequency seen by the detector is different, but this time lower. Each
time a wave crest hits the detector, the detector moves away from the next wave
crest, giving more time for the wave to catch up to the detector (if the period
between wave crests goes up, then the frequency must go down because f = 1

T ).
We can quantify this change. Take our usual variables fA, λA for the sta-

tionary emitter, fB, λB for the moving detector, and and the velocity of sound
vsound. When the detector moves toward the source, it sees a different velocity.
If you used the subscript system to do relative motion you might identify the
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speed of the sound wave created by the source in frame A as vaA and the relative
speed of the frame A as viewed from frame B as vAB. Then the speed of sound
from the source in frame A as viewed in frame B would be.

vaB = vaA + vAB

This is our normal Galilean transformation. We could abriviate the subscripts
as just.

vB = vsound + vx

Since the detector is riding along with frame B which is moving with speed vx

we could write

vd = vx

vB = vsound + vd (5.1)

where we are using vd as the detector speed. In effect, the relative speed adds
to the speed of sound making the wave crests come faster from the point of
view of the detector. The wavelength will not be changed (λA = λB), since the
distance between wave crests does not change, so

v = λf

tells us the frequency must change. The new frequency fB is given by

fB =
vB

λ
=

vsound + vd

λ

We can eliminate λ from this expression for the change in f by using vA = λfA

again, this time solving for λ

fB =
vsound + vd

vsound
fA observer moving toward the source (5.2)

Now if the detector is going the other way vd is negative.

vB = vsound − vd

We expect that as the wave crest approaches the detector, the detector moves
away from it. It takes longer for the crest to reach the detector. The frequency
will be smaller.

fB =
vsound − vd

vsound
fA observer moving away from the source (5.3)

From our thinking about the motion of two inertial reference frames, we
expect a similar situation if the detector is stationary and the source moves.
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Since the emitter is now riding along with frame A at the relative speed, vx we
could write

ve = vx

where ve is the speed of the emitter. In this case the detector will see a different
wavelength. The top down view might look like this

In fact, if we measure the distance between the crests we must account for the
fact that the source moved by an amount

∆x = veT =
ve

fA

during one period. Then the wavelength is seen to be shorter by this amount.

λB = λA −
ve

fA

Using the basic equation

λ =
v

f

once more, we can write the frequency as

fB =
vsound

λB
=

vsound

λA − ve
fA

and once more using the basic equation

λ =
v

f
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we can write this as
fB =

vsound
vsound

fA
− ve

fA

or
fB =

vsound

vsound − ve
fA Source moving toward observer (5.4)

When the source is moving away from the detector,

the top down view might look like this

we expect the wavelength to be larger. This gives

fB =
vsound

vsound + ve
fA Source moving away from observer (5.5)

We can combine these formulae to make one expression

fB =
vsound ± vd

vsound ∓ ve
fA (5.6)

where we use the top sign for the speed when the mover (detector or emitter)
is going toward the non-mover.

We can see that by moving the emitter or the detector, we get a frequency
change. This fact is named after the scientist who studied it. It is called the
Doppler effect and the change in frequency is called the Doppler shift.
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5.1.1 Doppler effect in light

Light is also a wave, and so we would expect a Doppler shift in light. Indeed
we do see a Doppler shift when we look at moving glowing objects. Here is an
optical spectrum of the Sun on the top and a spectrum of a similar star moving
away from us in the middle. The final spectrum is for a star moving toward us.

Top: Normal ’dark’ spectral line positions at rest. Middle: Source moving
away from observer. Bottom: Source moving towards observer. (Public domain
image courtesy NASA: http://www.jwst.nasa.gov/education/7Page45.pdf)

Note that the wavelength of the lines is shifted toward the red part of the
spectrum when the glowing object moves away from us. This is equivalent to
lowering of the frequency of a truck engine noise as it goes away from us. The
larger wavelengths indicate a lower frequency of light because

f =
c

λ

This gives us a way to determine if distant stars and galaxies are moving toward
or away from us. We look for the chemical signature pattern of lines, then see
whether they are shifted to the red (moving away from us) or blue (moving
toward us) compared to the position in their spectrum of the Sun. This photo
is of some of the most distant galaxies that are moving very fast away from us.
Their redshift is very large.
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High Readshift Galaxy Cluster shown here in false color from the Spitzer
Space Telescope. (Public domain image courtacy NASA/JPL-Caltech/S.A.

Stanford (UC Davis/LLNL)

Deriving the Doppler equation for light is more tricky because the speed of
light is constant in all reference frames. We really tackle this in our PH279
class. So I will just quote the result here.

λ− = λo

�
1 + v

c

1− v
c

receding source (5.7)

λ− = λo

�
1− v

c

1 + v
c

Approaching source (5.8)

5.2 Superposition Principle

What happens if we have more than one wave propagating in a medium? You
probably experienced this as a child. Your parents made you take a bath. You
discovered that you could make waves with your arm. But chances are you have
two arms, and that you discovered you could make two waves, one with each
arm. And when the two waves met in the middle, the water left the bath tub!
What happened was that the two wave crests met in the same place and the
medium (water) piled up there. We call the combination of two waves in the
same medium superposition. The word literally means putting one wave on top
of another. When we superimpose two waves, their wave functions simply add.

Definition 14 Superposition: If two or more traveling waves are moving through
a medium, the resultant wave formed at any point is the algebraic sum of the
values of the individual wave forms.
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So if we have

y1 (x, t) (5.9)

and

y2 (x, t) (5.10)

both propagating on a string, then we would see a resultant wave

yr (x, t) = y1 (x, t) + y2 (x, t) (5.11)

This is a fantastically simple way for the universe to act!

Let’s look at an example. let’s add the top wave (red) to the middle wave
(green). We get the bottom wave (purple)

Of course we are adding these in the snapshot view. So this is all done for just
one instant of time.

Let’s see how to do this.
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As an example, start at x = −2. In the figure, I drew a red bar to show the y
value at x = −2 for the red curve. Likewise, I have a green bar sowing the value
of y at x = −2 for the green wave. Note that this is negative. On the bottom
graph, the bars have been repeated, and we can see that the red bar minus the
green bar brings us to the value for the resulting wave at the point x = −2. We
need to do this at every point along all the waves for this instant of time.

This is tedious by hand, so we won’t generally do this calculation by hand.
But a computer can do it easily.

Note that this is really only true for linear systems. Let’s take the example
of a SlinkyTM . If we form two waves in the Slinky, they behave according to the
superposition principle most of the time. But suppose we make the amplitude
of the individual waves large. They may travel individually OK, but when the
amplitudes add we may overstretch the Slinky. Then it would never return to
it’s original shape. The wave form would have to change. Such a wave is not
linear. There is a good rule of thumb for when waves are linear.

A wave is generally linear when its amplitude is much smaller
than itswavelength.

5.2.1 Consequences of superposition

Linear waves traveling in media can pass through each other without being
destroyed or altered!
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Constructive Interference (Public Domain image by Inductiveload,
http://commons.wikimedia.org/wiki/File:Constructive_interference.svg)

Our wave on the string makes the string segments move in the y-direction.
Both waves do this. So putting the two waves together just makes the string
segments move more! There is a special name for what we observe

Definition 15 interference: The combination of separate waves in the same
region of space to produce a resultant wave.

We also have a special name for when the amplitude of the resultant wave
gets larger.

Definition 16 Constructive Interference: interference between waves when the
displacements caused by the two waves are in the same direction

What happens if one of the pulses is inverted?

Destructive Interference (Public Domain image by Inductiveload,
http://commons.wikimedia.org/wiki/File:Destructive_interference1.svg)
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When the two pulses meet, they “cancel each other out.” But do they go
away? No! the energy is still there, the string segment motions have just
summed vectorially to zero, the energy carried by each wave is still there in the
stretched string. Because we momentarily seem to destroy the wave pulses, we
call this type of interference “destructive interference.”

Definition 17 Destructive Interference: Interference between waves when the
displacements caused by the two waves are opposite in direction

5.3 Superposition and Doppler: Shock waves

What happens when the speed of the source is greater than the wave speed?

Remember that the wave speed depends only on the medium. Let’s call the
crests of a wave the wave front. In the picture below, a point source is generating
a wave and the red lines are the wave fronts.

When vs = vsound the waves superimpose. They begin to pile up. If we allow
vs > vsound then the wave fronts are no longer generated within each other.

so s1
s2 s3 s4

sn

vst

vs



so s1
s2 s3 s4

sn

vst

vs

so s1
s2 s3 s4

sn

vst

vs



The leading edge of the wave fronts superimpose to form a cone shape. The
half angle of this cone is called the Mach angle

sin θ =
vt

vst
=

v

vs
(5.12)

This ration v/vs is called the Mach number and the conical wave front is called
a shock wave. We see them often in water
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Boat wakes as a Doppler cone. Image courtesy US Navy. Image is in the
Public Domain.

and hear them when jet aircraft go supersonic. In the next figure we can see
a picture of a T-38 breaking the sound barrier. You can see the Mach cones,
but notice that there are several! Remember that a disturbance creates a wave.
There are disturbances created by the nose of the plane, the rudder, and the
wings, and perhaps the cockpit in this Schlieren photograph.

Dr. Leonard Weinstein’s Schlieren photograph of a T-38 Talon at Mach 1.1,
altitude 13,700 feet, taken at NASA Langley Research Center, Wallops in

1993. Image Courtacy NASA, image is in the Public Domain.

5.4 Importance of superposition

The combination of waves is important for both scientists and engineers. In
engineering this is the hart of vibrometry.
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Marshall and Cal Poly technicians wired the NanoSail-D spacecraft to
accelerometers, instruments which measure vibration response during

simulated launch conditions. Image couracy NASA, image in the Public
Domain.

Mechanical systems have moving parts. These moving parts can be the distur-
bance that creates a wave. If more than one wave crest arrives at a location in
the device, the amplitude at that location could become large. The oscillation
of this part of the device could rattle apart welds or bolts, destroying the device.
Later, as we study spectroscopy, we will see how to diagnose such a problem
and hint at how to correct it.
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Standing Waves

A special case of superposition is that of two waves of the same frequency
traveling opposite directions. Mixing two such waves can give rise to resonant
patterns. These resonant patterns are the basis of music, and are of concern in
building structures, among other things.

Fundamental Concepts

• When a wave meets a boundary, it will reflect

• Reflected waves will invert if the boundary is fixed or more like a fixed
boundary.

• Reflected waves will not invert if the boundary is free or more like a free
boundary.

• Two waves of equal frequency but traveling opposite directions can cause
resonant patterns called standing waves.

• Only certain frequencies will produce standing waves. The boundary con-
ditions determine which frequencies will work.

• The series of frequencies that produce standing waves is called the har-
monic series.

6.1 Mathematical Description of Superposition

We know what superposition is, but we don’t really want to add values for
millions of points in a medium to find out what a combination of waves will look
like. At the very least, we want to make a computer do that (and programs like

77
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OpenFoam do something very akin to this!). But where we can, we would like
to combine wave functions algebraically. Let’s see how this can work.

Let’s define two wave functions

y1 = A sin (kx− ωt)

and
y2 = A sin (kx− ωt+ φo)

These are two waves with the same frequency and wave number traveling the
same direction in the medium, but they start at different times. The graph of
y2 is shifted by an amount φo.

I will pick some values for the constants

λ = 2
k = 2π

λ
ω = 1
φo =

π
6

t = 0
A = 1

then for y1 we have

y1 = (1) sin

�
2π

λ
x− (1) t

�

= sin

�
2π

2
x− (1) t

�

= sin (πx− t)

here is a plot of the wave function, y1

1 2 3 4 5

-2

-1

0

1

2

x

y

Now let’s consider y2. Using the values we chose, y2 can be written as

y2 = A sin (kx− ωt+ φo)

= sin
�
πx− t+

π

6

�

which looks like this
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What does it look like if we add these waves using superposition? Symbolically
we have

yr = A sin (kx− ωt) +A sin (kx− ωt+ φo) (6.1)

and putting in the numbers gives

yr = sin (πx− t) + sin
�
πx− t+

π

6

�

which is shown in the next graph.
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Notice that the wave form is taller (larger amplitude). Also notice it is shifted
along the x axis.

We can find out how much by rewriting yr. We want to rewrite equation
(6.1) so it is easier to interpret. To do this we need to remember a trig identity

sin a+ sin b = 2 cos

�
a− b

2

�
sin

�
a+ b

2

�

Then, for our case, let a = kx− ωt and b = kx− ωt+ φo. This lets us rewrite
our resultant wave.

yr = A sin (kx− ωt) +A sin (kx− ωt+ φo)

= 2A cos

�
(kx− ωt)− (kx− ωt+ φo)

2

�
sin

�
(kx− ωt) + (kx− ωt+ φo)

2

�

= 2A cos

�−φo

2

�
sin

�
2kx− 2ωt+ φo

2

�

= 2A cos

�−φo

2

�
sin

�
kx− ωt+

φo

2

�

= 2A cos

�
φo

2

�
sin

�
kx− ωt+

φo

2

�
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where we used the fact that cos (−θ) = cos (θ) .
To interpret this new form of our resultant wave equation, let’s look at the

parts of this expression. First take

sin

�
kx− ωt+

φo

2

�
(6.2)

This part is a traveling wave with the same k and ω as our original waves, but
it has a phase constant of φo/2. So our combined wave is shifted by φo/2 or half
the phase shift of y2.

Now let’s look at other factor

2A cos

�
φo

2

�
(6.3)

This part has no time dependence. We recognize from our basic equation

y (x, t) = A sin (kx− ωt+ φo)

that the amplitude, A is a constant—not dependent on x or t, that multiplies
the sine function. But now we have a more complex term that is not dependent
on x or t that multiplies the sine function. The whole term must be the new
amplitude! It has a maximum value when φo = 0
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When φo = π, then

2A cos
�π
2

�
= 0

so when φo = 0 we have a new maximum amplitude of twice the original ampli-
tude, 2A, and when φo = π we have no amplitude. Here is our wave for several
choices of φo.
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We can see that in our case the fact that the two waves added to produce a
larger amplitude was just luck. We could have gotten anything from twice the
single wave amplitude to no amplitude at all.
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6.2 Reflection and Transmission

In our examples so far, we have not explained how we got two waves into a
medium. One way is to simply reflect one wave back on top of itself.

In class we made pulses on a long spring with one end of the spring fixed
(held by a class member). What happens when the pulse reaches the end of the
rope?

6.2.1 Case I: Fixed rope end.

There is a big change in the medium at the end of the rope—the rope ends.
This change in medium causes a reflection.

In the fixed end case, the pulse is inverted. We should consider why this
inversion happens.
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The end of the rope pushes up on the support (person, or nail or whatever).
By Newton’s third law the support must push back in an equal, but opposite
direction, on the rope. This force sends the pieces of rope near it downward.
We could think of the squashed nail atoms as having been given an amount
of spring potential energy. They will transfer this energy back to the rope by
pushing the end of the rope down. This downward motion becomes a new pulse
that is an inversion of the original pulse traveling the opposite direction.

Does this seem reasonable? Remember studying normal forces? Consider a
book on a table. The book has a force due to gravity. The table exerts a force
equal to mbookg on the book, or else the book smashes through the table.

The normal force exerted by the atoms of the table keep the book up. It is
this same type of force that keeps the rope on the nail. The atoms of the nail
must push down on the end of the rope. They exert a force and this causes the
inversion.

6.2.2 Case II: Loose rope end.
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But what happens if the rope end is not fixed?
The rope end rises, and therefore there is no force exerted. The pulse (or at

least part of the pulse energy) is still reflected, but there is no inversion!
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The end of the rope will come down, but the reason is that the force due to
gravity acts on the mass of the rope end. The energy of the wave was made into
potential energy of the rope end. As the rope end loses potential energy, that
energy is put back into a wave going the opposite direction.

6.2.3 Case III: Partially attached rope end

Now lets tie the rope to another rope that is larger, more dense, than the rope
we have been using, what will happen when we make waves in this combined
rope?

The light end of the rope exerts a force on the heavy beginning of the new
rope

In this case consider momentum

The heavier rope resists being moved because of its larger mass. This resistance
to motion is a little like our fixed end case. It is harder to transfer energy to the
heavy rope, and the heavy rope resists the pull of the light rope. This resistance
pushes back on the end of the light rope. This is a downward push. So once
again we will have a reflected pulse in the light rope that is inverted.
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We could also make a pulse in the heavy rope. What would happen then when
the pulse reached the interface? You might be able to guess that the light rope
won’t have much effect on the end of the heavy rope. The light rope will cause
a reflection, but it’s weak downward push is not enough to cause the reflected
pulse to invert.

Going from a heavy rope to a light rope makes an interface that is more like a
free end.

Notice that in both cases there is a transmitted pulse. The transmitted pulse
is what is left of the energy from the original pulse that has not been reflected.
So we would not expect it to be inverted, and, indeed, it never is. We have split
the amount of energy traveling along the rope

6.3 Mathematical description of standing waves

Now that we have a way to make two waves to superimpose, we can study the
special case of a reflected wave. We will find that this special case can produce
interesting patterns of constructive and destructive interference.

The patterns of constructive and destructive interference are the result of the
superposition of two traveling waves with the same frequency going in opposite
directions. Let’s start with two standing waves with the same phase constant
for simplicity.

y1 = A sin (kx− ωt)

y2 = A sin (kx+ ωt)

The sum is

y = y1 + y2 = A sin (kx− ωt) +A sin (kx+ ωt)
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To gain insight into what these two waves produce, we use another of our favorite
trig identities

sin (a± b) = sin (a) cos (b)± cos (a) sin (b)

to get

y = A sin (kx− ωt) +A sin (kx+ ωt)

= A sin (kx) cos (ωt)−A cos (kx) sin (ωt) +A sin (kx) cos (ωt) +A cos (kx) sin (ωt)

= 2A sin (kx) cos (ωt)

= (2A sin (kx)) cos (ωt)

This looks like the harmonic oscillator equation

y = A cos (ωt+ φo)

with φo = 0. The factor 2A sin (kx) has no time dependence, so it could be
considered the amplitude of the harmonic oscillator. But this is a very odd
amplitude. It depends on position. That is, we can view the rope as a set of
harmonic oscillators who’s amplitudes are different for each value of x.

But this is just what we see in our standing wave! We can identify spots along
the x axis where the amplitude is always zero! we will call these spots nodes.
These happen when sin (kx) = 0 or when

kx = nπ

By using

k =
2π

λ
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we have

2π

λ
x = nπ

2

λ
x = n

x = n
λ

2

We can also find the places along x where the amplitude will be largest. this
occurs when sin (kx) = 1 or when

kx = n
π

2

or

2π

λ
x = n

π

2

x = n
λ

4

these are called antinodes.
This combination of two waves does not look like it goes anywhere. It seems

to “stand” in place. We call it a standing wave. We can also create standing
waves with sound or even light waves! But let’s look at standing waves in some
detail first.

6.4 Standing Waves in a String Fixed at Both
Ends
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If we attach a string to something on both ends, we find something interesting in
the standing wave pattern. Not all imaginable standing waves can be realized.
Some frequencies are preferred, and some never show up. These non-preferred
frequencies will make waves, but not standing waves. We say that the stand-
ing wave pattern is quantized, meaning that only certain frequency values will
make a standing wave pattern. The patterns that are allowed are called normal
modes. We will see this any time a wave confined by boundary conditions (light
in a resonant cavity, radio waves in a wave guide, electrons in an atom, etc.).
In the last figure we saw some standing waves on a ukulele string. But we can
draw the standing waves without the instrument.

The figure shows three normal modes for a string. Of course there are many
more.

We find which modes are allowed by first imposing the boundary condition
that each end must be a node. We start with

y = 2A sin (kx) cos (ωt)

and recognize that we have one condition met because y = 0 when x = 0. We
need y = 0 when x = L. That happens when

kL = nπ

I will write this as

knL = nπ

to indicate there are many values of k that could make a standing wave pattern.
Solving this for λn gives

2π

λn
L = nπ

2L

n
= λn
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Let’s see how this works, the first mode will have

λ1 = 2L

where L is the length of the string. Looking at the figure, we can see that this is
true. The first normal mode has a length that is half the first mode wavelength.

The second mode has three nodes (one on each end and one in the middle).
This gives

λ2 = L

We can keep going, the third mode will have five nodes

λ3 =
2L

3

and so forth to give

λn =
2L

n

We use our old friend
v = fλ

to find the frequencies of the modes

f =
v

λ

Thus
f1 =

v

λ1
=

v

2L

or, in general

fn =
v

λn
= n

v

2L

=
n

2L
v

=
n

2L

�
T

µ

The lowest frequency that works has a special name, the fundamental frequency.
The higher frequencies are integer multiples of the fundamental. When this
happens we say that the frequencies form a harmonic series, and the modes are
called harmonics.

6.4.1 Starting the waves

So, suppose we do not have a vibrating blade to make the wave patterns for a
string that is fixed at both ends. Can we just pluck it to make it vibrate on a
natural frequency?

Yes! only the normal modes will be excited by the pluck, any other frequen-
cies will die out quickly (we won’t show this mathematically in this class). So the
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only allowed frequencies (the ones that will result from a pluck) are the natural
frequencies or harmonics. The frequency of waves on the string is quantized !
That is, only some values are allowed. This idea is the basis behind Quantum
mechanics (which views light and even matter as waves).

6.4.2 Musical Strings

So how do we get different notes on a guitar or Piano?

fn =
n

2L

�
T

µ
(6.4)

A guitar uses tension to change the frequency or pitch (tuning) and length
of string (your fingers pressing on the strings) to change notes.

A Piano uses both tension and length of string (and mass per unit length as
well!). What do you expect and organ will do?



Chapter 7

Light and Sound Standing
waves

Reading Assignment 21.4, 21.5

Fundamental Concepts

• The harmonic series expressed by a system experiencing standing waves
depends on the boundary conditions.

• The harmonic series for open pipes is different that the harmonic series
for a pipe closed on one end.

• Energy persists in the waves that have the harmonic series frequencies
because of resonance.

7.1 Sound Standing waves (music)

Suppose we send a sound wave down a pipe. When the air molecules strike the
molecules next to them they end up being reflected back. This happens as the
wave goes down the pipe until the wave reaches the end of the pipe. Remember
that where the molecules bunch up, the pressure is higher. Question 223.7.1

When we reach the end of the pipe the molecules can’t bounce off the walls
of the pipe anymore. They travel out into the surrounding air. It is harder to
get the room pressure to change because molecules can come from any direction
to fill up a vacancy. This is an effective medium change, and there will be some
energy reflected back from this pipe-to-room interface. The reflected wave can
make a standing wave. This is the basis of wind instruments. Let’s repeat
the analysis we did last time and find the possible frequencies that can make a
standing wave, but this time for a sound wave in a pipe.

91
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Take a pipe as shown in the next figures.

If we have a pipe open at both ends, we can see that air molecules are free to
move in and out of the ends of the pipe. If the air molecules can move, the ends
must not be nodes. This is different than the string case we studied last time!
We expect that there must be a node somewhere. We can reasonably guess that
there will be a node in the middle of the pipe due to symmetry. Of course,
the pressure on both ends must be atmospheric pressure. So, remembering that
pressure and displacement are 90 ◦ out of phase for sound waves, we can guess
that there are pressure nodes on both ends.

For the first harmonic we can draw a displacement node in the middle and
we see that

λ1 = 2L

It takes two lengths of pipe to have the same length as the wavelength that is in
our one single pipe. Of course, our wave is hanging out of our pipe. But if we
set two additional pipes of length L along side our pipe, these two pipes would
be the same length as the wavelength. The frequency would be.

f1 =
v

2L
(7.1)

The next mode fits a whole wavelength

λ2 = L

f2 =
v

L
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but the next mode fits a wavelength and a half

λ3 =
2

3
L

f3 =
3v

2L

If we keep going

λn =
2

n
L (7.2)

fn = n
v

2L
n = 1, 2, 3, 4 . . . (7.3)

This is the same mathematical form that we achieved for a standing wave on a
string! Boom Whacker

and Length

Pipes closed on one end
Question 223.7.2

Boom Whacker
Demo

But what happens if we put a cap on one end of the pipe? The air molecules
cannot move longitudinally once they hit the end. This must be a displacement
node. So then it must also be a pressure anti-node.

The open end is a pressure node because it stays at atmospheric pressure.
This is just the same as the open ends in the open pipe case we did before. The
simplest possible standing wave is shown below.
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In the next figure we draw the first few harmonics for this case.

The first harmonic for the closed pipe are found by using

v = λf

f =
v

λ
just as we did for the string and open pipe cases. We know the speed of sound,
so we have v. Knowing that the first harmonic has a node at one end and an
anti node at the other end gives us the wavelength. If the pipe is L in length,
then L must be

L =
1

4
λ1

or
λ1 = 4L



7.1. SOUND STANDING WAVES (MUSIC) 95

We see it now takes four lengths of of pipe to be the same size as the wave that
is in our single pipe! Then the frequency is given by

f1 =
v

λ1
=

v

4L

The next configuration that will have a node on one end and an antinode on
the other will have

L =
3

4
λ2

which gives

λ2 =
4

3L
and

f2 =
v

λ2
=
3v

4L

If we continued, we would find

λn =
4

n
L (7.4)

and
fn = n

v

4L
n = 1, 3, 5 . . . (7.5)

This is different from the string and open pipe cases. Note that only odd
values of n make a standing wave. Changing the end condition changed which
frequencies would make standing waves.

7.1.1 Example: organ pipe

Organ Pipe Demo

The organ pipe shown is closed at one end so we expect

fn = n
v

4L
n = 1, 3, 5 . . . (7.6)

Measuring the pipe, and assuming about 20 ◦C for the room temperature we
have

L = 0.41m
R = 0.06m
v = 343 ms

(7.7)
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There is a detail we have ignored in our analysis, the width of the pipe matters
a little. I will include a fudge factor to account for this. With the fudge factor,
the wavelength is

λ1 = 4 (L+ 0.6R)

= 178. 4 cm

then our fundamental frequency is

f1 =
v

λ1
(7.8)

= 192. 26 (7.9)

We can identify this note, and compare to a standard, like a tuning fork or
a piano to verify our prediction.

7.2 Lasers and standing waves

Light is a wave. Can we make a standing wave with light? The answer is yes,
and surprisingly we do it all the time. A laser creates a standing wave as part
of it’s amplification system. Here is a laser just getting started.
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A flash of light from a flash bulb send light out in all directions. But some of
the light goes to the right toward a mirror. This is the light that will eventu-
ally become our laser beam. This light is reflected off of the mirror. The wave
inverts and travels back along the center of the laser. Because it is inverted, it
can cause destructive interference in places along the laser cavity. But this only
works if we have just the right frequency of light. The light has to fit an integer
number of half wavelengths between the two mirrors for the standing wave to
form.

So only certain frequencies will work. That is why lasers usually only have
one color, different frequencies of light give us different colors. So a red laser
has a frequency of about 4. 762× 1014Hz. We would expect another frequency
to work that is twice this fundamental frequency.

f2 = 2f1

= 2× 762× 1014Hz
= 152 4× 1014Hz

But this frequency is outside the visible range, so we can’t see it and chances
are it won’t go through the glass mirrors. So lasers usually only produce one
frequency of light. But gas lasers can be built with special mirrors that allow
many harmonics to be produced at once (e.g. CO2 lasers).

The laser has an additional complication, and that is that it amplifies the
light with a laser medium. That medium gives a new photon for every photon
that passes through it, doubling the amount of light each time the wave passes
through this gain medium. How that works is a subject for PH279. But for us,
we can see that we can make standing waves in light.

7.3 Standing Waves in Rods and Membranes

We have hinted all chapter that the analysis techniques we were building apply
to structures. We need more math and computational tools to analyze complex
structures like bridges and buildings, but we can tackle a simple structure like
a rod that is clamped. The atoms in the rod can vibrate longitudinally Since
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Atoms can move 

longitudinally here

The clamp prevents 

movement here
Atoms can move 

longitudinally here

Atoms can move 

longitudinally here

The clamp prevents 

movement here
Atoms can move 

longitudinally here

Figure 7.1:

Atoms can move 
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The clamp prevents 

movement here
Atoms can move 

longitudinally here

Atoms can move 

longitudinally here

The clamp prevents 

movement here
Atoms can move 

longitudinally here

Figure 7.2:

we have motion possible on both ends and not in the middle, we surmise that
this system will have similar solutions as did the open ended pipe.

fn = n
v

2L

The fundamental looks like

x

y

But suppose we move the clamp. The clamp forces a node where it is placed.
If we place the clap at L/4
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x

y

We can perform a similar analysis for a drum head, but it is much more
complicated. The modes are not points, but lines or curves, and the frequen-
cies of oscillation are not integer multiples of each other. See for example
http://physics.usask.ca/~hirose/ep225/animation/drum/anim-drum.htm.

Of course structures can also waggle on the ends. the ends can rotate counter
to each other, etc. These are more complex modes than the longitudinal modes
we have considered.
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Chapter 8

Single Frequency
Interference, Multiple
Dimensions

So far we have had only waves mixed in a one-dimensional medium and we have
only allowed for reflections to mix the waves. But surely we can make waves
with different sources and mix them. Consider setting up two speakers playing
the same frequency. We expect that we will still get regions of constructive and
destructive interference. Where these regions will be really depends on the total
phase difference between the two waves.

∆φ = (kx2 − ωt+ φ2)− (kx1 − ωt+ φ1)

= k (x2 − x1) + (φ2 − φ1)

=
2π

λ
(∆x) +∆φo

where we can see that there are at least two sources of phase difference here.
One can be from the two waves traveling different paths and then combining
(∆x) and the other is from them starting with a different phase to begin with
∆φ.

If we have two waves

y1 = A sin (kx1 − ωt+ φ1)

y2 = A sin (kx2 − ωt+ φ2)

and we look at a particular part of the medium, that part will oscillate with
an amplitude that depends on the relative starting points of the two waves,
∆φo and on how the relative distances the waves have traveled to get to our
particular location in the medium, ∆x.

Fundamental Concepts

101
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• In two dimensional problems, the total phase difference is given by ∆φ =�
2π∆r

λ +∆φo

�

• In the total phase difference ∆φ = 2π
λ (∆x)+∆φo, the first term is due to

path differences, the second to initial phase differences (whether the two
mixed waves start together).

8.1 Mathematical treatment of single frequency
interference

It is time to put our treatment of interference on a more general mathematical
footing.

We start with two waves in the same medium

y1 = ymax sin (kx1 − ωt+ φ1)

y2 = ymax sin (kx2 − ωt+ φ2)

Each wave has its own phase constant. Each wave starts from a different position
(one at x1 and the other at x2), The superposition yields.

yr = ymax sin (kx1 − ωt+ φ1) + ymax sin (kx2 − ωt+ φ2)

which is graphed in the next figure.
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Notice that the wave form is taller (larger amplitude). Noticed it is shifted along
the x axis. This graph is not surprising to us now, because we have done a case
like this before. We can find the shift in general rewriting yr. We need a trig
identity

sin a+ sin b = 2cos

�
a− b

2

�
sin

�
a+ b

2

�
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then let a = kx2 − ωt+ φ2 and b = kx1 − ωt+ φ1

yr = ymax sin (kx2 − ωt+ φ2) + ymax sin (kx1 − ωt+ φ1)

= 2ymax cos

�
(kx2 − ωt+ φ2)− (kx1 − ωt+ φ1)

2

�
sin

�
(kx2 − ωt+ φ2) + (kx1 − ωt+ φ1)

2

�

= 2ymax cos

�
kx2 − kx1

2
+

φ2 − φ1
2

�
sin

�
kx2 + kx1 − 2ωt+ φ2 + φ1

2

�

= 2ymax cos

�
k
x2 − x1
2

+
φ2 − φ1
2

�
sin

�
k
x2 + x1
2

− ωt+
φ2 + φ1
2

�

= 2ymax cos

�
k
∆x

2
+
∆φo

2

�
sin

�
k
x2 + x1
2

− ωt+
φ2 + φ1
2

�

= 2ymax cos

�
1

2

�
2π

λ
∆x+∆φo

��
sin

�
k
x2 + x1
2

− ωt+
φ2 + φ1
2

�

= 2ymax cos

�
1

2
(∆φ)

�
sin

�
k
x2 + x1
2

− ωt+
φ2 + φ1
2

�

where the last line is just a rearrangement to match the form we got last time
we did this problem with just one phase constant. Clearly, we see the amplitude
depends on what we call the phase difference And we can see our two sources
of phase difference. One can be from the two waves traveling different paths
and then combining (∆x) and the other is from the two waves starting with
a different phase to begin with, ∆φo. If the total phase difference between the
two waves is a multiple of 2π, then the two waves will experience constructive
interference

∆φ = m2π m = 0,±1,±2,±3, · · ·
Let’s see that this works. Our amplitude is

A = 2ymax cos

�
1

2
(∆φ)

�

and if we look at a cosine function we see that cos (θ) is either 1 or −1 at θ = nπ.
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-1

1

x (units of pi)

y

So if ∆φ =m2π then the amplitude is

A = 2ymax

�
1

2
(m2π)

�

= 2ymax cos (mπ)

We don’t really care if the amplitude function is big positively or negatively.
So we get constructive interference for either 1 or −1. Then, this our case for
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constructive interference.

∆φ =

�
2π

λ
∆x+∆φo

�
= n2π n = 0,±1,±2,±3, · · ·

How about for destructive interference? We start again with our amplitude
function

A = 2ymax cos

�
1

2
(∆φ)

�

but now we want when the cosine part is zero.

cos (θ) = 0

Looking at our cosine graph again, that happens for cosine when θ = π
2 ,

3π
2 ,

5π
2 , · · · .We could write this as θ =

�
m+ 1

2

�
π form = 0, 1, 2, · · · . But remember

that in our amplitude function, we already have the 1/2 in the function, so we
want ∆φ to have just the odd integer multiple of π. We could write this as

∆φ = (2m+ 1)π m = 0,±1,±2,±3, · · ·

So our condition for destructive interference is

∆φ =

�
2π

λ
∆x+∆φo

�
= (2m+ 1)π m = 0,±1,±2,±3, · · ·

We have developed a useful matched set of equations that will tell us if we mix
two waves when we will have constructive and destructive interference:

∆φ =

�
2π

λ
∆r +∆φo

�
= m2π m = 0,±1,±2,±3, · · · Constructive

∆φ =

�
2π

λ
∆r +∆φo

�
= (2m+ 1) π m = 0,±1,±2,±3, · · · Destructive

Let’s take an example to see how this can be used.

8.1.1 Example of two wave interference: Stealth Fighter
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The stealth fighter is coated with an anti-reflective polymer. This is part
of it’s mechanism for making the plane invisible to radar. Suppose we have a
radar system with a wavelength of 3.00 cm. Further suppose that the index of
refraction of the anti-reflective polymer is n = 1.50, and that the aircraft index
of refraction is very large, how thick would you make the coating?

We want destructive interference, so let’s start with our destructive interfer-
ence condition

∆φ =

�
2π

λ
∆r +∆φo

�
= (2m+ 1)π m = 0,±1,±2,±3, · · · Destructive

The radar waves all hit the plane in phase. From the figure, we see that the
radar wave will reflect off of the coating. Because the index of refraction of the
coating is large, this is like a fixed end of a rope. There will be an inversion.

But some of the wave will penetrate the polymer. This will reflect off of the
plane body. The plane body has a very large index of refraction, so once again
the wave will experience an inversion. The outgoing waves would then be in
phase and create constructive interference because

∆φo = π − π = 0

at this point. Thus

∆φ =

�
2π

λ
∆r

�
= (2m+ 1)π m = 0,±1,±2,±3, · · · Destructive

But ∆φo is not the only term in our equation, we also have to remember the
path difference. The part of the wave that entered the polymer travels farther.
If that path difference, ∆r, is just right we can get destructive interfearance.
For the m = 0 case

∆φ =

�
2π

λ
∆r

�
= (2 (0) + 1)π = π
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then the amplitude function would be

A = 2Emax cos

�
2π

λ
∆r

�

= 2Emax cos

�
1

2
(π)

�

= 0

and we have destructive interference. Note that these are electromagnetic waves,
so instead of ymax we have used Emax as the individual wave amplitude. But
the important thing is that the plane cannot be seen by the radar! Of course,
this works for m = 1 and m = 2, etc. as well. Any odd multiple of π will work.

2π

λ
∆r = (2m+ 1)π m = 0, 1, 2, · · ·

so that we are guaranteed an odd multiple of π. This is our condition for de-
structive interference.

But we are interested in the thickness. We realize that ∆r is about twice
the thickness, since the wave travels though the coating and back. So let’s let
∆r ≈ 2t

2π

λ
2t ≈ (2m+ 1)π

2t ≈ (2m+ 1) λ
2

2t ≈
�
m+

1

2

�
λ

t ≈
�
m+

1

2

�
λ

2

But there is a further complication. We should write our thickness equation
as

t ≈
�
m+

1

2

�
λin

2

because∆r has to provide an odd integer times the wavelength inside the coating
for the phase to be right. After all, the wave is traveling inside the coating. We
know that the wavelength will change as we enter the slower material.

To see this, consider two waves traveling to the right. One passes through
a slower medium. We expect the wavelength to shorten. We can see that, de-
pending on the thickness t, the wave may be in phase or out of phase. In the
next picture, the thickness is just right so that we have destructive interference.
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We have such a wavelength shift in the coating. But we don’t know the wave-
length inside the coating. All we know is the radar wavelength, λout. We can fix
it by writing the wavelength inside in terms of the wavelength outside. Earlier
in our studies we found that the new wavelength will be given by equation (4.3)

λf =
vf

vi
λi

Let’s rewrite this for our case

λin =
vin

vout
λout

We can express this in terms of the index of refraction

n =
c

v

by multiplying the left hand side by c/c then

λin =
cvin

cvout
λout

or

λin =
c

vout
c

vin

λout

=
nout

nin
λout

in the case of our aircraft coating the outside medium is air so nout ≈ 1

λin =
1

nin
λout

This is this wavelength we need to match as the radar signal enters the medium.
Using this expression for λin in

t ≈
�
m+

1

2

�
λin

2
m = 0, 1, 2, · · ·

will give us the condition for destructive interference. Let’s rewrite our λin

equation for our case of a coating and air

λin = λcoating =
1

nin
λout =

1

ncoating
λair
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thus

t ≈
�
m+

1

2

�
1

2

�
λair

ncoating

�
m = 0, 1, 2, · · ·

is our condition for being stealthy.
Let’s assume we want the thinnest coating possible, so we set m = 0. Then

t ≈
�
1

4

��
λair

ncoating

�

and our thickness would be

t ≈
�
1

4

��
3.00 cm

1.50

�
= 0.5 cm

This seems doable for an aircraft coating!
Of course we could also make a plane that would be more visible to radar by

choosing the constructive interference case. Suppose we are building a search
and rescue plane. We want to enhance it’s ability to be seen by radar in fog.
We start with the condition for constructive interference

∆φ =

�
2π

λ
∆r +∆φo

�
= m2π m = 0,±1,±2,±3, · · · Constructive

It will still be true that ∆φo = 0.

∆φ =

�
2π

λ
∆r

�
=m2π

and it is still true that ∆r ≈ 2t.
�
2π

λ
2t

�
≈ m2π

then �
1

λ
2t

�
≈ m

t ≈ 1

2
mλ

and we still have to adjust for the coating index of refraction

t ≈ m

2

�
λair

ncoating

�

And once again we have several choices for m

t ≈ m

2

�
λair

ncoating

�
m = 0, 1, 2, · · ·
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But now the coating will provide constructive interference, making it easier to
track on radar from the command center. For the thinnest possibility, set m = 1
because the m = 0 case doesn’t give us any thickness.

t ≈ m
1

2

�
λair

ncoating

�

=
1

2

�
3.00 cm

1.50

�

= 1cm

Note that we reasoned out these equations for the boundary conditions that
we have in our problem. If the boundary conditions change, so do the equations.

8.1.2 Example of two wave interference: soap bubble

Take a soap bubble for example.

Interference from a soap bubble. (Bubble image in the Public Domain,
courtesy Marcin Deręgowski)

Now we have a phase shift on the first reflection, but not one on the reflection
from the inside surface of the bubble because the bubble is full of air. The
index of refraction of air is less than that for the bubble material. So as we
leave the bubble material it is more like having a free end of a rope. As the
waves leave the surface, they are half a wavelength out of phase due to ∆φo

because of the single inversion from the bubble outer surface. We would have
destructive interference due to just this, but we also have to account for the
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bubble thickness. If this thickness is a multiple of a wavelength, then we are
still have half a wavelength out of phase and we have destructive interference.

Here are our basic equations

∆φ =

�
2π

λ
∆r +∆φo

�
= m2π m = 0,±1,±2,±3, · · · Constructive

∆φ =

�
2π

λ
∆r +∆φo

�
= (2m+ 1)π m = 0,±1,±2,±3, · · · Destructive

Suppose we want want constructive interference to get our colors, so we take
the first

∆φ =

�
2π

λ
∆r +∆φo

�
= m2π

and this time we have

∆φo = φtransmitted − φreflected

= 0− π

= −π

It is still true that ∆r ≈ 2t so from our constructive interference equation

2π

λ
2t− π = m2π

2

λ
t− 1

2
= m

2

λ
t = m+

1

2

t =
λ

2

�
m+

1

2

�

We again have the problem that this wavelength must be the wavelength inside
the bubble material λ = λin. But we see the outside wavelength λout. We can
reuse our conversion from outside to inside wavelength from our last problem
because we are once again in air and nair ≈ 1.

λin =
1

nin
λout

then

t =
λout

2nin

�
m+

1

2

�
m = 0, 1, 2, · · ·

Or writing this with nin = nbubble to make it clear that the inside material is
the bubble solution,

t =

�
m+

1

2

�
1

2

�
λair

nbubble

�
m = 0, 1, 2, · · ·
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but this was the equation for destructive interference for the plane! We can see
that memorizing the thickness equations won’t work. We need to start with our
conditions on ∆φ for constructive and destructive interference to be safe!

How about the dark parts of the bubble with no color (the parts we can see
through). These would be destructive interference

∆φ =

�
2π

λ
∆x+∆φo

�
= (2m+ 1)π

We can fill in the pieces to obtain

�
2π

λ
2t− π

�
= (2m+ 1)π

2

λ
2t− 1 = (2m+ 1)

2

λ
2t = (2m+ 1) + 1

4

λ
t = (2m+ 1) + 1

t =
λ

4
(2m+ 2)

t =
λ

2
(m+ 1)

t =
m+ 1

2

�
λout

nbubble

�

This is our condition for destructive interference for the bubble. We don’t have
to, but we could write m+ 1 = p where p is an integer that starts at 1 instead
of zero.

t =
p

2

�
λout

nbubble

�
p = 1, 2, · · ·

But this is very like the condition for constructive interference for the plane.

Hopefully, it is apparent that we have to start with our basic equations

∆φ =

�
2π

λ
∆x+∆φo

�
= m2π m = 0,±1,±2,±3, · · · Constructive

∆φ =

�
2π

λ
∆x+∆φo

�
= (2m+ 1)π m = 0,±1,±2,±3, · · · Destructive

each time we attempt an interference problem because the outcome depends
on both ∆x and ∆φo. We have to construct the equation each time for the
interference condition we want (constructive or destructive) finding ∆x and
∆φo for the boundary conditions we have.
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8.2 Single frequency interference in more than
one dimension

Two speaker
demoSuppose I put two speakers facing each other 3m apart. And suppose I want

four nodes in the middle so we can easily find them. Then I will need

2λ = 3m

or λ = 3
2 m. If we are at about 20 ◦C then v = 343m/ s and

f =
343m/ s
3
2 m.

= 228. 67Hz

If ∆φo = 0 the nodes should be spaced symmetrically between the two speakers.
The rest of the phase comes from the difference in starting positions.Are the nodes

symmetrically
placed?

But what happens if our waves don’t travel along the same line? Suppose
you are at a dance, and there are two speakers. Further suppose that you are
testing the system with a constant tone (either that, or you have somewhat
boring music with constant tones). Suppose the two speakers make waves in
phase. If you are equal distance from the two speakers, you would expect
constructive interference because both ∆φo = 0 and ∆x = 0 for this case.

But there are more places where we expect constructive interference, because we
know the sound wave is really spherical. Any time the path difference, ∆x = nλ,
then

∆φ =
2π

λ
(nλ) = n2π

and we will have constructive interference The next figure shows an example
where the path difference is one wavelength.
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But any of these spots will experience constructive interference. Note the loud
spots are where there are two crests or two troughs together.

We also expect to see destructive interference. This should occur where path
differences are multiples of ∆x = λ/2 so that

∆φ =
2π

λ

�
n
λ

2

�
= nπ

The situation of being just half a wavelength off is shown next



114CHAPTER 8. SINGLE FREQUENCY INTERFERENCE, MULTIPLE DIMENSIONS

but there are many places were we could be a multiple of a wavelength plus and
extra half a wavelength off. Each of these will produce destructive interference.

Recall that when you moved from one dimension to two dimensions in PH
121 or Dynamics problems, you changed from the variables x and y to the
variable r where

r =
�

x2 + y2

Thus our phase becomes

∆φ =

�
2π
∆r

λ
+∆φo

�

In our dance example, suppose we have speakers that are 4m apart and we
are standing 3m directly in front of one of the speakers. Further suppose that
we play an A just above middle C which has a frequency of 440Hz. The speed
of sound is 343m/ s. Our speakers are connected to the same stereo with equal
length wires. What is the phase difference at this spot?
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From the geometry we can tell that the path from the second speaker must be
5m. So

∆r = 5m− 3m
= 2m

We can tell that the wavelength is

λ =
v

f

=
343m/ s

440Hz
= 0.779 55m :

Since the speakers are connected to the same stereo with equal length wires,
∆φo = 0. Then

∆φ =
2π

λ
∆r +∆φo

=
2π

0.779 55m
(2m) + 0

= 5. 131 2π

= 2π + 3. 131 2π

We should ask, is this constructive or destructive interference? Well, it is nei-
ther purely constructive interference nor total destructive interference. Our
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amplitude would be

2A cos

�
1

2

�
2π

λ
∆r +∆φo

��

so in this case we get

2A cos

�
1

2
(2π + 3. 131 2π)

�
= −0.409 27A

which is smaller (in magnitude) than A, so it is partial destructive interference.
It would be quieter at this spot than if we had just one speaker operating.

You might guess that this sort of analysis plays a large part in design of
concert halls. It also is important in mechanical designs.

But you should have seen a deficit in what we have learned so far. Up to
this point, we have only mixed waves that have the same frequency. Can we
mix waves that have different frequencies? That will be the subject of our next
lecture.



Chapter 9

Multiple Frequency
Interference

Fundamental Concepts

• Mixing waves of different frequencies produces a time-varying amplitude
called beating.

• Complex waves can be treated as a superposition of simple sinusoidal
waves.

• Limited signals are multi-frequency

9.1 Beats

Up till now we only superposed waves that had the same frequency. But what
happens if we take waves with different frequencies?

y1 = ymax sin (kx− ω1t)

y2 = ymax sin (kx− ω2t)

We can plot both waves on the same graph, in this case a history graph.

117
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Notice that there are places where the waves are in phase, and places where
they are not. The superposition looks like this

-10 -8 -6 -4 -2 2 4 6 8 10

-4

-2

2

4

t

y(t)

where there is constructive interference, the resulting wave amplitude is large,
where there is destructive interference, the resulting amplitude is zero. We get
a traveling wave who’s amplitude varies. We can find the amplitude function
algebraically.

We can write these as

y1 = ymax sin (kx− 2πf1t)

y2 = ymax sin (kx− 2πf2t)

The sum is just

y = ymax sin (kx− 2πf1t) + ymax sin (kx− 2πf2t)
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We use another trig identity

sin (a) + sin (b) = 2 cos

�
a− b

2

�
sin

�
a+ b

2

�

which allows us to write tis as

y = 2ymax cos

�
kx− 2πf2t− (kx− 2πf1t)

2

�
sin

�
kx− 2πf2t+ kx− 2πf1t

2

�

= 2ymax cos

�
2π

f1 − f2
2

t

�
sin

�
−2πf1 + f2

2
t

�

=

�
2ymax cos

�
2π

f1 − f2
2

t

�

sin

�
kx− 2πf1 + f2

2
t

�

We see that we have a part that has a frequency that is the average of f1 and
f2. This is the frequency we hear. But we have another complicated amplitude
term, and this time it is a function of time (just to be confusing). The amplitude
has its own frequency that is half the difference of f1 and f2.

Aresultant = 2ymax cos

�
2π

f1 − f2
2

t

�

So the sound amplitude will vary in time for a given spatial location.
The situation is odder still. We have a cosine function, but it is really an

envelope for the higher frequency motion of the air particles.
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y

Our ear drum does not care which way the envelope function goes. We can see
that the green (thin line) wave will push and pull air molecules, and therefore
our ear drums, with maximum loudness at twice this frequency. So we will hear
two maxima for every envelope period!

This frequency with which we hear the sound get loud at a given location
as the wave goes by is called the beat frequency. The red envelope (solid heavy
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line in the last figure) has a frequency of

fA =
f1 − f2
2

So our beat frequency is
fbeat = |f1 − f2|

Question 223.9.2

9.2 Non Sinusoidal Waves

You have probably wondered if all waves are sinusoidal. Can the universe really
be described by such simple mathematics? The answer is both no, and yes.
There are non-sinusoidal waves, in fact, most waves are not sinusoidal. But it
turns out that we can use a very clever mathematical trick to make any shape
wave out of a superposition of many sinusoidal waves. So our mathematics for
sinusoidal waves turns out to be quite general.

9.2.1 Music and Non-sinusoidal waves

Let’s take the example of music.
From our example of standing waves on strings, we know that a string can

support a series of standing waves with discrete frequencies—the harmonic series.
We have also discussed that usually we excite the waves with a pluck or some
discrete event, not with an oscillator. Only the harmonic series of frequencies
will resonate, creating standing waves. Other frequencies waves die out quickly.
But there is no reason to suppose that we get energy in only one standing wave
at a time. Most sounds are a combination of harmonics.

The fundamental mode tends to give us the pitch we hear, but what are the
other standing waves for?

To understand, lets take an analogy. Making cookies and cakes.
Here is the beginning of a recipe for cookies.
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The recipe is a list of ingredients, and a symbolic instruction to mix and bake.
The product is chocolate chip cookies. Of course we need more information.
We need to know now much of each ingredient to use.

This graph gives us the amount of each ingredient by mass.

Now suppose we want chocolate cake.

The predominant taste in each of these foods is chocolate. But chocolate
cake and chocolate chip cookies don’t taste exactly the same. We can easily
see that the differences in the other ingredients make the difference between the
“cookie” taste and the “cake” taste that goes along with the “chocolate” taste
that predominates.

The sound waves produced by musical instruments work in a similar way.
Here is a recipe for an “A” note from a clarinet.
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and here is one for a trumpet playing the same “A” note.

A trumpet sounds different than a clarinet, and now we see why. There
are more harmonics involved with the trumpet sound than the clarinet sound.
These extra standing waves make up the “brassiness” of the trumpet sound. As
with our baking example, we need to know how much of each standing wave
we have. Each will have a different amplitude. For our trumpet, we might get
amplitudes as shown.
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Note that the second harmonic has a larger amplitude, but we still hear the
musical not as “A” at 440Hz. A Flugelhorn horn would still sound brassy, but
would have a different mix of harmonics.

The clarinet graph would look quite different, perhaps something like this

because it does not have as many “ingredients” as the trumpet.
All of this should remind you of our analysis of open and closed pipes.

Remember when we closed a pipe, we lost all the even multiples the fundamental
frequency. A similar thing is happening with our instruments. The rich sound of
the brass instrument includes more harmonics and this is achieved by the shape
of the instrument (the flared bell is a big part of making these extra harmonics
and providing the rich trumpet sound). Spectrometer

DemoWe have a tool that you can download to your PC to detect the mix of
harmonics of musical instruments, or mechanical systems. In music, the different
harmonics are called partials because they make up part of the sound. A graph
that shows which harmonics are involved is called a spectrum. The next figure is
the spectrum of a six holed bamboo flute. Note that there are several harmonics
involved.
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Note that our software display has two parts. One is the instantaneous spec-
trum, and one is the spectrum time history.

By observing the time history, we can see changes in the spectrum. We can also
see that we don’t have pure harmonics. The graph shows some response off the
specific harmonic frequencies. This six holed flute is very “breathy” giving a lot
of wind noise along with the notes, and we see this in the spectrum. In the next
picture, I played a scale on the flute.
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The instantaneous spectrum is not active in this figure (since it can’t show more
than one note at a time on the instantaneous graph) but in the time history
we see that as the fundamental frequency changes by shorting the length of the
flute (uncovering holes), we see that every partial also goes up in frequency. The
flute still has the characteristic spectrum of a flute, but shifted to new set of
frequencies. We can use this fact to identify things by their vibration spectrum.
In fact, that is how you recognize voices and instruments within your auditory
system!

The technique of taking apart a wave into its components is very powerful.
With light waves, the spectrum is an indication of the chemical composition of
the emitter. For example, the spectrum of the sun looks something like this

Solar coronal spectrum taken during a solar eclipse. The successive curved
lines are each different wavelengths, and the dark lines are wavelengths that
are absorbed. The pattern of absorbed wavelengths allows a chemical analysis
of the corona. (Image in the Public Domain, orignally published in Bailey,

Solon, L, Popular Science Monthly, Vol 60, Nov. 1919, pp 244)

The lines in this graph show the amplitude of each harmonic component of the
light. Darker lines have larger amplitudes. The harmonics come from the ex-
citation of electrons in their orbitals. Each orbital is a different energy state,
and when the electrons jump from orbital to orbital, they produce specific wave
frequencies. By observing the mix of dark lines in pervious figure, and com-
paring to laboratory measurements from each element (see next figure) we can
find the composition of the source. This figure shows the emission spectrum
for Calcium. Because it is an emission spectrum the lines are bright instead of



126 CHAPTER 9. MULTIPLE FREQUENCY INTERFERENCE

dark. We can even see the color of each line!

Emission spectrum of Calcium (Image in the Public Domain, courtesy NASA)

9.2.2 Vibrometry

Just like each atom has a specific spectrum, and each instrument, each engine,
machine, or anything that vibrates has a spectrum. We can use this to monitor
the health of machinery, or even to identify a piece of equipment. Laser or
acoustic vibrometers are available commercially.

Laser Vibrometer Schematic (Public Domain Image from Laderaranch:
http://commons.wikimedia.org/wiki/File:LDV_Schematic.png)

They provide a way to monitor equipment in places where it would be dangerous
or even impossible to send a person. The equipment also does not need to be
shut down, a great benefit for factories that are never shut down, or for a satellite
system that cannot be reached by anyone.

9.2.3 Fourier Series: Mathematics of Non-SinusoidalWaves

We should take a quick look at the mathematics of non-sinusoidal waves.
Let’ start with a superposition of many sinusoidal waves. The math looks

like this
y (t) =




n

(An sin (2πfnt) +Bn cos (2πfnt))

where An and Bn are a series of coefficients and fn are the harmonic series
of frequencies. The coefficients are amplitudes for the many individual waves
making up the complicated wave.
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9.2.4 Example: Fourier representation of a square wave.

For example, we could represent a function f (x) with the following series

f (x) = Co +C1 cos

�
2π

λ
x+ ε1

�
(9.1)

+C2 cos

�
2π
λ
2

x+ ε2

�
(9.2)

+C3 cos

�
2π
λ
3

x+ ε3

�
(9.3)

+ . . . (9.4)

+Cn cos

�
2π
λ
n

x+ εn

�
(9.5)

+ . . . (9.6)

where we will let εi = ωit+ φi

The C′s are just coefficients that tell us the amplitude of the individual cosine
waves. The more terms in the series we take, the better the approximation we
will have, with the series exactly matching f (x) when the number of terms,
N →∞.

Usually we rewrite the terms of the series as

Cm cos (mkx+ εm) = Am cos (mkx) +Bm sin (mkx) (9.7)

where k is the wavenumber

k =
2π

λ
(9.8)

and λ is the wavelength of the complicated but still periodic function f (x) .
Then we identify

Am = Cm cos (εm) (9.9)

Bm = −Cm sin (εm) (9.10)

then

f (x) =
Ao

2
+

∞


m−1
Am cos (mkx) +

∞


m−1
Bm sin (mkx) (9.11)

where we separated out the Ao/2 term because it makes things nicer later.

Fourier Analysis

The process of finding the coefficients of the series is called Fourier analysis.
We start by integrating equation (9.11)

� λ

0

f (x) dx =

� λ

0

Ao

2
dx+

� λ

0

∞


m−1
Am cos (mkx) dx+

� λ

0

∞


m−1
Bm sin (mkx) dx

(9.12)
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We can see immediately that all the sine and cosine terms integrate to zero (we
integrated over a wavelength) so

� λ

0

f (x) dx =

� λ

0

Ao

2
dx =

Ao

2
λ (9.13)

We solve this for Ao

Ao =
2

λ

� λ

0

f (x) dx (9.14)

To find the rest of the coefficients we need to remind ourselves of the orthog-
onality of sinusoidal functions

� λ

0

sin (akx) cos (bkx) dx = 0 (9.15)

� λ

0

cos (akx) cos (bkx) dx =
λ

2
δab (9.16)

� λ

0

sin (akx) sin (bkx) dx =
λ

2
δab (9.17)

where δab is the Kronecker delta.
To find the coefficients, then, we multiply both sides of equation (9.11) by

cos (lkx) where l is a positive integer. Then we integrate over one wavelength.

� λ

0

f (x) cos (lkx) dx =

� λ

0

Ao

2
cos (lkx) dx (9.18)

+

� λ

0

∞


m−1
Am cos (mkx) cos (lkx) dx (9.19)

+

� λ

0

∞


m−1
Bm sin (mkx) cos (lkx) dx (9.20)

which gives

� λ

0

f (x) cos (mkx) dx =

� λ

0

Am cos (mkx) cos (mkx) dx (9.21)

that is, only the term with two cosine functions where l = m will be non zero.
So � λ

0

f (x) cos (mkx) dx =
λ

2
Am (9.22)

solving for Am we have

Am =
2

λ

� λ

0

f (x) cos (mkx) dx (9.23)
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We can perform the same steps to find Bm only we use sin (lkx) as the
multiplier. Then we find

Bm =
2

λ

� λ

0

f (x) sin (mkx) dx (9.24)

Let’s find the series for a square wave using our Fourier analysis technique.
Let’s take

λ = 2 (9.25)

f(x) =

�
1 if 0 < x < λ

2

−1 if λ
2 < x < λ

(9.26)

since f (x) is odd, Am = 0 for all m. We have

Bm =
2

λ

� λ
2

0

(1) sin (mkx) dx+
2

λ

� λ

λ
2

(−1) sin (mkx) dx (9.27)

so

Bm =
1

mπ
(− cos (mkx) |

λ
2

0 +
1

mπ
(cos (mkx) |λλ

2

(9.28)

Which is

Bm =
1

mπ

�
1 cos

�
m
2π

λ
x

�����
λ
2

0

+
1

mπ

�
cos

�
m
2π

λ
x

�����
λ

λ
2

(9.29)

so

Bm =
1

mπ

��
− cos

�
m
2π

λ

λ

2

��
+ cos

�
m
2π

λ
(0)

��
(9.30)

+
1

mπ

��
cos

�
m
2π

λ
λ

�
− cos

�
m
2π

λ

λ

2

���
(9.31)
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which is

Bm =
2

mπ
(1− cos (mπ)) (9.32)

Our series is then just

f (x) =
∞


m−1

2

mπ
(1− cos (mπ)) sin (mkx) (9.33)

and we can write a few terms

Term
1 4

π sin (kx)
2 0
3 4

3π sin (3kx)
4 0
5 4

5π sin (5kx)

(9.34)

then the partial sum up to m = 5 looks like

With twenty terms we would have

In the limit of infinitely many waves, the match would be perfect. But
we don’t usually need an infinite number of terms. we can pick the part of the
spectrum that best represents the phenomena we desire to observe. For example,
oil based compounds all have specific spectral signatures in the wavelength range
between 3− 5 micrometers. If you wish to tell the difference between gasoline
and crude oil, you can restrict your study to these wavelengths alone.
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9.3 Frequency Uncertainty for Signals and Par-
ticles

Up to this lecture, when we thought of a wave we have mostly thought of
something like this

y = ymax sin (kx− ωt− φ)

which in practice might look like this

-5 -4 -3 -2 -1 1 2 3 4 5

-10

-5

5

10

x

y

And we have noticed that there is no start or stop to this kind of wave. Our
figure starts at x = −5 and ends at x = 5, but the equation does not! There is
a value of y for every x from −∞ to +∞. But many signals are not such waves.
They may be very limited in size.

We should investigate what happens when you have a limited wave. I did this
investigation using Python. Suppose we have a sine wave with f = 200Hz, but
I limit this wave’s existence by making it start at ti = 0 and then make it end
at tf = 10 s. I could do this in practice by turning on a radio transmission or
even an acoustic speaker, and then turning the device off ten seconds later. Our
screen resolution is terrible for plotting such a function, but in the figure below
you can see that our signal only exists from t = 0 to t = 10 s.

If I zoom in on a part of the graph we can see that it is really a sine wave.
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Python did equally bad at plotting this. All we see is a blue band.

But in the second graph, notice that we have plotted frequency. Python and
most scientific programing languages have functions to find a digital version of
a Fourier transform to produce a spectrum. It takes in a signal and finds which
frequencies are in a signal. It performs the job of a spectrometer, so we would
call the figure to the right a spectrogram (or just a spectrum).

We expect only one frequency, 200Hz, and that is mostly what we get. Since
our period for our wave is

T =
1

200Hz
= 0.005 s

and we have 10 s of data, that is four orders of magnitude more signal than a
period. The whole signal seems very long compared to a period. We expect this
to look kind of like an infinite signal. But suppose we take the same wave, but
for less time. We limit the wave more.

So we still get a blue blur for our wave picture, but now the wave only exists
for one instead of ten seconds. If you look closely at the frequency graph, you
will notice that the 200Hz peak representing our wave is a bit wider right at
the bottom.

We could limit our wave more, say, so it only lasts tf = 0.1 s. We would get
a set of graphs that look like this.
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Notice that not only can Python render the wave now, but more importantly
the 200Hz frequency peak is noticeable wider. This is profound! It means that
by limiting the wave, we no longer have just one frequency! The graph tells us
we have mostly 200Hz but we also have some 199Hz and some 201Hz and some
190Hz and some 210Hz, etc. The very fact that the wave does not go on so
long requires that we have more than one frequency in the wave. We could say
that as ∆t gets smaller, our ∆f is getting bigger. Here are two more examples
with smaller ∆t values.

The cost of limiting our waves is that we can’t have a single frequency for
the wave. For an engineer, this means that if you only measure a short segment
of the signal, you have an increased uncertainty in the frequency you will find
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from that signal. For chemists, it means that when we look at quantum wave
functions we can expect uncertainty in the frequency (or wavelength) because
the quantum particle (like an electron) is limited. It is important to know what
we mean by uncertainty in this case. In our example above, when we say that
∆f increased we really mean that we have more than one frequency. We don’t
just mean that we don’t know the frequency well. We really are mixing more
than one frequency. This idea of limiting waves creating uncertainty shows up
in physical chemistry as Heisenberg’s uncertainty principle.



Chapter 10

Interference of light waves

Fundamental Concepts

• Light is a wave in the electromagnetic field

• Light is a superposition of many small waves called photons

• The energy in a photon is proportional to the frequency of the photon

• If we mix two coherent light sources, we get interference, with an intensity
pattern given by I = Imax cos2

�
1
2

�
2π
λ d sin θ

��

• Most detectors cannot follow the fluctuation of light because their inte-
gration time is too long.

10.1 The Nature of Light

10.1.1 Physical Ideas of the nature of Light

Before the 19th century (1800’s) light was assumed to be a stream of particles.
Newton was the chief proponent of this theory. The theory was able to explain
reflection of light from mirrors and other objects and therefore explain vision. In
1678 Huygens showed that wave theory could also explain reflection and vision.

In 1801 Thomas Young demonstrated that light had attributes that were
best explained by wave theory. We will study Young’s experiment later today.
The crux of his experiment was to show that light displayed constructive and
destructive interference—clearly a wave phenomena! The theory of the nature of
light took a dramatic shift

In 1805 Joseph Smith was born in Sharon, Vermont.
In September of 1832 Joseph Smith received a revelation that said in part :

135
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For the word of the Lord is truth, and whatsoever is truth is light,
and whatsoever is light is Spirit, even the Spirit of Jesus Christ. And
the Spirit giveth light to every man that cometh into the world; and
the Spirit enlighteneth every man through the world, that hear-
keneth to the voice of the Spirit. (D&C 84:45-46)

In December of 1832 Joseph Smith received another revelation that says in
part:

This Comforter is the promise which I give unto you of eternal
life, even the glory of the celestial kingdom; which glory is that of the
church of the Firstborn, even of God, the holiest of all, through Jesus
Christ his Son–He that ascended up on high, as also he descended
below all things, in that he comprehended all things, that he might
be in all and through all things, the light of truth; which truth
shineth. This is the light of Christ. As also he is in the sun, and
the light of the sun, and the power thereof by which it was made.
As also he is in the moon, and is the light of the moon, and the
power thereof by which it was made; as also the light of the stars,
and the power thereof by which they were made; and the earth also,
and the power thereof, even the earth upon which you stand. And
the light which shineth, which giveth you light, is through him who
enlighteneth your eyes, which is the same light that quickeneth your
understandings; which light proceedeth forth from the presence of
God to fill the immensity of space–the light which is in all things,
which giveth life to all things, which is the law by which all things
are governed, even the power of God who sitteth upon his throne,
who is in the bosom of eternity, who is in the midst of all things.
(D&C 88:5-12)

Light, even real, physical light, seems to be of interest to Latter Day Saints.
In 1847 the saints entered the Salt Lake Valley.
In 1873 Maxwell published his findings that light is an electromagnetic wave

(something we will try to show before this course is over!).
Planck’s work in quantization theory (1900) was used by Einstein In 1905 to

give an explantation of the photoelectric effect that again made light look like
a particle.

Current theory allows light to exhibit the characteristics of a wave in some
situations and like a particle in others. We will study both before the end of
the semester.

The results of Einstein’s work give us the concept of a photon or a quantized
unit of radiant energy. Each “piece of light” or photon has energy

E = hf (10.1)

where f is the frequency of the light and h is a constant

h = 6.63× 10−34 J s (10.2)
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The nature of light is fascinating and useful both in physical and religious
areas of thought.

10.2 Measurements of the Speed of Light

One of the great foundations of modern physical theory is that the speed of light
is constant in a vacuum. Galileo first tried to measure the speed of light. He
used two towers in town and placed a lantern and an assistant on each tower.
The lanterns had shades. The plan was for one assistant to remove his shade,
and then for the assistant on the other tower to remove his shade as soon as he
saw the light from the first lantern. Back at the first tower, the first assistant
would use a clock to determine the time difference between when the first lantern
was un-shaded, and when they saw the light from the second tower. The light
would have traveled twice the inter-tower distance. Dividing that distance by
the time would give the speed of light. You can probably guess that this did not
work. Light travels very quickly. The clocks of Galileo’s day could not measure
such a small time difference. Ole Rømer was the first to succeed in measuring
the speed of light.

10.2.1 Rømer’s Measurement of the speed of light

A diagram illustrating Rømer’s determination of the speed of light. Point A is
the Sun, piont B is Jupiter. Point C is the immersion of Io into Jupiter’s

shadow at the start of an eclipse

Rømer performed his measurement in 1675, 269 years before digital devices
existed!. He used the period of revolution of Io, a moon of Jupiter, as Jupiter
revolved around the sun. He first measured the period of Io’s rotation about
Jupiter, then he predicted an eclipse of Io three months later. But he found his
calculation was off by 600 s. After careful thought, he realized that the Earth
had moved in its orbit, and that the light had to travel the extra distance due to
the Earth’s new position. Given Rømer’s best estimate for the orbital radius of
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the earth and his time difference, Rømer arrived at a estimate of c = 2.3×108 ms .
Amazing for 1675!

10.2.2 Fizeau’s Measurement of the speed of light

Hippolyte Fizeau measured the speed of light in 1849 using a toothed wheel
and a mirror and a beam of light. The light passed through the open space in
the wheel’s teeth as the wheel rotated. Then was reflected by the mirror. The
speed would be

v =
∆x

∆t

We just need ∆x and ∆t.
It is easy to see that

∆x = 2d

because the light travels twice the distance to the mirror (d) and back. So the
speed is just

v =
2d

∆t

If the wheel turned just at the right angular speed, then the reflected light
would hit the next tooth and be blocked. Think of angular speed

ω =
∆θ

∆t

so the time difference would be

∆t =
∆θ

ω

We find ∆θ by taking the number of teeth on the wheel and dividing by 2π by
that number.

∆θ =
2π

Nteeth
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Then the speed of light must be

c = v =
2d
∆θ
ω

=
2dω

∆θ

=
2dωNteeth

2π

=
dωNteeth

π

then if we have 720 teeth and ω is measured to be d = 7500m

c =
(7500m) (172. 79Hz) (720)

π

= 2. 97× 108 m
s

which is Fizeau’s number and it is pretty good!
Modern measurements are performed in very much the same way that Fizeau

did his calculation. The current value is

c = 2.9979× 108 m
s

(10.3)

10.2.3 Faster than light

The speed of light in a vacuum is constant, but in matter the speed of light
changes. We will study this in detail when we look at refraction. But for now,
a dramatic example is Cherenkov radiation. It is an eerie blue glow around the
core of nuclear reactors. It occurs when electrons are accelerated past the speed
of light in the water surrounding the core. The electrons emit light and the light
waves form a Doppler cone or a light-sonic boom! The result is the blue glow.

Cherenkov radiation from a 250kW TRIGA reactor. (Image in the Public
Domain, courtesy US Department of Energy)
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This does bring up a problem in terminology. What does the word “medium”
mean? We have used it to mean the substance through which a wave travels.
This substance must have the property of transferring energy between it’s parts,
like the coils of a spring can transfer energy to each other, or like air molecules
can transfer energy by collision. For light the wave medium is the electromag-
netic field. This field can store and transfer energy (we will see this later in
the course). But many books on physics call materials like glass a “medium”
through which light travels. The water in our last example is such a medium.
Are glass and water wave mediums for light? The answer is no. Light does not
need any matter to form it’s wave. The wave medium is the electromagnetic
field. So we will have to keep this in mind as we allow light to travel through
matter. We may call the matter a “medium,” but it is not the wave medium.

10.3 Interference and Young’s Experiment

Waves do some funny things when they encounter barriers. Think of a water
wave. If we pass the wave through a small opening in a barrier, the wave can’t
all get through the small hole, but it can cause a disturbance. We know that
a small disturbance will cause a wave. But this wave will be due to a very
small—almost point—source. So the waves will be spherical leaving the opening.
The smaller the opening the more pronounced the curving of the wave, because
the source (the hole) is more like a point source.

Now suppose we have two of these openings. We expect the two sources to make
curved waves and those waves can interfere.
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In the figure, we can already see that there will be constructive and destructive
interference were the waves from the two holes meet. Thomas young predicted
that we should see constructive and destructive interference in light (he drew
figures very like the ones we have used to explain his idea).

Young set up a coherent source of light and placed it in front of this source
a barrier with two very thin slits cut in it to test his idea.. He set up a screen
beyond the barrier and observed the pattern on the screen formed by the light.
This (in part) is what he saw.
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We see bright spots (constructive interference) and dark spots (destructive in-
terference). Only wave phenomena can interfere, so this is fairly good evidence
that light is a wave.

10.3.1 Constructive Interference

We can find the condition for getting a bright or a dark band if we think about it
a bit. Here are our equations that we developed for constructive and destructive
interference.

∆φ =

�
2π

λ
∆r +∆φo

�
= m2π m = 0,±1,±2,±3, · · · Constructive

∆φ =

�
2π

λ
∆r +∆φo

�
= (2m+ 1) π m = 0,±1,±2,±3, · · · Destructive

For constructive interference, the difference in phase, ∆φ, must be a multiple
of 2π. That means the path difference between the two slit-sources must be an
even number of wavelengths. We have been calling the path difference in the
total phase ∆x, or for spherical waves ∆r, but in optics it is customary to call
this path difference δ. So

δ = ∆r

and our total phase equation becomes

∆φ =

�
2π

λ
δ +∆φo

�
=m2π
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Our light going through the slits is all coming from the same light source. So
as long as the light hits the slits at a 90 ◦ angle, ∆φo = 0− 0 = 0 so we don’t
have a change in phase constant. But we do have a change in ∆r = δ. Let’s
suppose that the screen is far away so the distance from the slits to the screen,
L ≫ d, the slit distance. Then we can say that the blue triangle is almost a
right triangle, and then δ is

δ = r2 − r1 ≈ d sin θ

so then

∆φ =

�
2π

λ
d sin θ + 0

�
= m2π

We can do a little math to make this simpler.

2π

λ
d sin θ = m2π

1

λ
d sin θ = m

d sin θ =mλ

We started by knowing our wave needs to sift by an integer number times 2π
radians but now we see that is equivalent to shifting an integer number times the
wavelength, λ. This will make the two waves experience constructive interference
(a bright spot).

δ = d sin θ =mλ (m = 0,±1,±2 . . .) Constructive

where in optics m is called the order number. That is, if the two waves are off
by any number of whole wavelengths then our total phase due to path difference
will be 2π. In optics, the the bright spots formed by constructive interference
are called fringes.

If we assume that λ ≪ d we can find the distance from the axis for each
fringe more easily. This condition guarantees that θ will be small. Using the
yellow triangle we see

tan θ =
y

L

but if θ is small this is just about the same as

sin θ =
y

L

because for small angles tan θ ≈ sin θ ≈ θ. So if theta is small then

δ = d sin θ

= d
y

L

and for a bright spot or fringe we find

d
y

L
=mλ
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Solving for the position of the bright spots gives

ybright =
λL

d
m (m = 0,±1,±2 . . .) (10.4)

We can measure up from the central spot and predict where each successive
bright spot will be.

10.3.2 Destructive Interference

We can also find a condition for destructive interference. Our destructive inter-
ference equation is

∆φ =

�
2π

λ
∆r +∆φo

�
= (2m+ 1)π

Once again ∆φo = 0 and ∆r = δ

�
2π

λ
δ

�
= (2m+ 1)π

�
2

λ
δ

�
= (2m+ 1)

δ =
λ

2
(2m+ 1)

δ = λ

�
m+

1

2

�

This just shows us again that a path difference of an odd multiple of a half
wavelength will give distractive interference.

δ = d sin θ =

�
m+

1

2

�
λ (m = 0,±1,±2 . . .)

will give a dark fringe. The location of the dark fringes will be

ydark =
λL

d

�
m+

1

2

�
(m = 0,±1,±2 . . .) (10.5)

10.4 Double Slit Intensity Pattern

The fringes we have seen are not just points, but are patterns that fade from a
maximum intensity. This is why they are called fringes. We can calculate the
intensity pattern to show this. We need to know a little bit about electric fields
to do this.
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10.4.1 Electric field preview

We can represent an electromagnetic wave using just the electric field (the mag-
netic field pattern is very similar and can be derived from the electric field
pattern).

We represent the field by an equation like

y = yo sin (kr − ωt)

but since the medium for light waves is the electric field, let’s use the symbol E
instead of y so we can see that we have a change in the field strength and not
a displacement of some material thing.

E = Emax sin (kr − ωt) (10.6)

where the amplitude of the wave is Emax and ω is the angular frequency. This
is just our traveling wave equation, but with electric field strength, labeled E,
for the amplitude.

Then to find the intensity pattern, we take two waves in the electric field,
one from slit one

E1 = Emax sin (kr1 − ωt+ φo)

and the other from slit two.

E2 = Emax sin (kr2 − ωt+ φo)

This is mathematically just like superposition of sound waves.

10.4.2 Superposition of two light waves

Remember when we superimposed waves before, we mixed the waves

y1 = A sin (kr1 − ωt+ φ1)

y2 = A sin (kr2 − ωt+ φ2)

and using

sin a+ sin b = 2 cos

�
a− b

2

�
sin

�
a+ b

2

�

we found the resultant wave

yr = 2A cos

�
1

2
(∆φ)

�
sin

�
k
r2 + r1
2

− ωt+
φ2 + φ1
2

�

Our light waves are just two waves. They may be the superposition of many
individual photons, but the combined wave is just a wave.
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At the slits, the waves have the same amplitude Emax and the same phase
constant, φ1 = φ2 = φo, but E2 travels farther than E1, so ∆φ is due to the
path difference. We expect to find that the path difference would be

∆φ = k∆r +∆φo

= kδ + 0

=
2π

λ
d sin θ

Now superimposing E1 and E2 at point P on the screen gives

EP = E2 +E1

= Emax sin (kr2 − ωt) +Eo sin (kr1 − ωt)

and using our prior result, we have

EP = 2Emax cos

�
1

2
∆φ

�
sin

�
k
(r2 + r1)

2
− ωt+ φo

�

and using our equation for ∆φ above we get

EP = 2Emax cos

�
1

2

�
2π

λ
d sin θ

��
sin

�
k
(r2 + r1)

2
− ωt+ φo

�

We have a combined wave at point P that is a traveling wave
�
sin
�
k (r2+r1)

2 − ωt+ φo

��

but with amplitude
�
2Emax cos

�
1
2

�
2π
λ d sin θ

���
that depends on our total phase

∆φ = 2π
λ d sin θ.

But the situation is more complicated because of how we detect light. Our
eyes, and most detectors measure the intensity of the light. We know that

I =
P
A

later in the course we will show that the power in an electromagnetic field wave
is proportional to the square of the electric field displacement.

P ∝ E2P (10.7)

For now, let’s just assume this is true. Then the intensity must be proportional
to the amplitude of the electric field squared.

I ∝ E2P

= 4E2max cos
2

�
1

2

�
2π

λ
d sin θ

��
sin2

�
k (r2 + r1)

2
− ωt+ φo

�

Light detectors collect energy for a set amount of time. So most light detec-
tion will be a value averaged over a set integration time. This means that the
detector sums up (or integrates) the amount of power received over the detector
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time. Usually the integration time is much longer than a period, so what is
really detected is like a time-average of our intensity.
�

many T

Idt ∝ =

�

many T

4E2max cos
2

�
1

2

�
2π

λ
d sin θ

��
sin2

�
k (r2 + r1)

2
− ωt+ φo

�
dt

= 4Emax cos
2

�
1

2

�
2π

λ
d sin θ

���

many T

sin2
�
k (rx2 + r1)

2
− ωt+ φo

�
dt

but the term �

many T

sin2
�
k (r2 + r1)

2
− ωt+ φo

�
dt =

1

2
(10.8)

To convince yourself of this, think that sin2 (ωt) has a maximum value of 1
and a minimum of 0. Looking at the graph

should be convincing that the average value over a period is 1/2. The average
over many periods will still be 1/2.

So we have

Ī =

�

many periods

Idt ∝ 2Emax cos
2

�
1

2

�
2π

λ
d sin θ

��
(10.9)

where Ī is the time average intensity. The important part is that the time
varying part has averaged out.

So, usually in optics, we ignore the fast fluctuating parts of such calculations
because we can’t see them and so we write

I = Imax cos
2

�
1

2

�
2π

λ
d sin θ

��

where we have dropped the bar from the I, but it is understood that the intensity
we report is a time average over many periods.

We should remind ourselves, of our intensity pattern

I = Imax cos
2

�
1

2

2π

λ
d sin θ

�

is really

I = Imax cos
2

�
∆φ

2

�
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Which is just our amplitude squared for the mixing of two waves. All we have
done to find the intensity pattern is to find and expression for the phase differ-
ence ∆φ.

Our intensity pattern should give the same location for the center of the
bright spots as we got before. Let’s check that it works. We used the small
angle approximation before, so let’s use it again now. For for small angles

I = Imax cos
2

�
πd

λ
θ

�

= Imax cos
2

�
πd

λ

y

L

�

Then we have constructive interference when

πd

λ

y

L
= mπ

or

y =m
Lλ

d
which is what we found before.

The plot of normalized intensity

I

Imax
= cos2

�
∆φ

2

�

verses ∆φ/2 is given next,
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but we will find that we are not quite through with this analysis. Next time we
will find that there is another compounding factor that reduces the intensity as
we move away from the midpoint.
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Let’s pause to remember what this pattern means. This is the intensity of light
due to interference. It is instructive to match our intensity pattern that Young
saw with our graph.

The high intensity peaks are the bright fringes and the low intensity troughs are
the dark fringes. The pattern moves smoothly and continuously from bright to
dark.
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Chapter 11

Many slits, and single slits

Last lecture we found the pattern that results from sending light through two
slits. This lecture takes on many slits, and even the pattern that results from a
single slit.

Fundamental Concepts

• Many slit devices are called diffraction gratings

• These devices can be use to build spectrometers

• Single slits also produce an interference pattern

11.1 Diffraction Gratings

We have discussed the interference that comes from having two small slits. But
what if we have more slits?

151
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Rainbow Glasses

A diffraction grating is an optical element with many many parallel slits
spaced very close together. Here is a typical diffraction grating created by
etching lines in a piece of glass. The etchings scatter the light, but the un-
etched part allows the light to pass through. The un-etched parts are essentially
a series of slits.

Surface of a diffraction grating (600 lines/mm). Image taken with optical

transmission microscope. (Image in the public domain courtesy Scapha)

A typical grating might have 5000 slits per unit centimeter. You have probably
used a diffraction grating to see rainbow colors in a beginning science class.

If we use 5000 slitscm for an example, we see that the slit spacing is

d =
1

5000
cm (11.1)

= 2.0× 10−6m (11.2)

Take a section of diffraction grating as shown below
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At some point, two of the slits will have a path difference that is a whole
wavelength, and we would expect a bright spot. But what about the other
slits? If we have a slit spacing such that each of the succeeding slits has a
path difference that is just an additional wavelength, then each of the slits
will contribute to the constructive interference at our point, and the point will
become a very bright spot.

The light leaves each slit in phase with the light from the rest of the slits. At
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some distance L away and at some angle θ, we will have a path difference

δ = d sin (θbright) =mλ m = 0,±1,±2, . . . (11.3)

This looks a lot like our condition for constructive interference for two slits.
This equation tells us that each wavelength, λ, will experience constructive

interference at a slightly different angle θbright. Knowing d and θ allows an ac-
curate calculation of λ. This may seem a silly thing to do, but suppose we add
into our system a sample of a chemical to identify

We could then record the intensity of the transmitted light as a function
of angle, which is equivalent to λ. We can again generate a spectrum. This is
a traditional way to build a spectrometer and many such devices are available
today.Demo a student

spectrometer
with a gas tube

11.1.1 Resolving power of diffraction gratings

For two nearly equal wavelengths λ1 and λ2, we say that the diffraction grating
can resolve the wavelengths if we can distinguish the two using the grating. The
resolving power of the grating is defined as

R =
(λ1 + λ2)

2 (λ1 − λ2)
=

λ̄

∆λ
(11.4)

We can show that for the m-th order diffraction, the resolving power is

R = Nm (11.5)

where N is the number of slits. So our ability to distinguish wavelengths in-
creases with the number of slits and with the order (which is related to how far
off-axis we look).

Note that for m = 0 we have no ability to resolve wavelengths. The central
peak is a mix of all wavelengths and usually looks white for normal illumination.

That the resolution depends on the number of slits, N, means that we can
improve our spectrometer by using more lines. Here is a representation of what
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happens as we increase N

we can see that the peaks get narrower as N increases. These graphs are for a
particular λ. If the peaks for a particular λ get narrower, then there will be less
overlap with adjacent λ′s which means that each wavelength can more easily be
resolved.

Spectrometers are used in many places. One that has some public interest
today is monitoring the atmosphere. Instruments like the one shown below
detect the amount of special gasses in the atmosphere using IR spectrometers.
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AIRS sensor, spectrometer design, and global CO2 data. (Images in the Public

Domain courtesy NASA)

The instrument shown is the AIRS spectrometer. You can see in the diagram
that it uses a grating spectrometer. The picture of the Earth is a composite of
AIRS data showing the northern and southern bands of CO2.

11.2 Single Slits

We have looked at interference from two slits, and for many slits. The two slits
acted like two coherent sources. We might expect that a single slit will give only
a single bright spot. But let’s consider a single slit very closely. To do this, let’s
return to the work of Huygens.1 His idea for the nature of light was simple. He
suggested that every point on the wave front of a light wave was the source (the
disturbance) for a new set of small spherical waves. The next wavefront would
be formed by the superposition of the little “wavelets.” Here is an example for
a plane wave and a spherical wave.

1Huygens method is technically not a correct representation of what happens. The actual
wave leaving the single opening is a superposition of the original wave, and the wave scattered
from the sides of the opening. You can see this scattering by tearing a small hole in a piece of
paper and looking through the hole at a light source. You will see the bright ring around the
hole where the edges of the paper are scattering the light. But the mathematical result we
will get using Huygens method gives a mathematically identical result for the resulting wave
leaving the slit with much less high power math. So we will stick with Huygens in this class.
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In each case we have drawn spots on the wave front and drawn spherical waves
around those spots. where the wavefronts of the little wavelets combine, we
have new wave front of our wave. This is sort of what happens in bulk matter.
Remember that light is absorbed and re-emitted by the atoms of the material.
This is why light slows down in a medium. Because of the time it is absorbed,
it effectively goes slower. But the light is not necessarily re-emitted in the
same direction. Sometimes it is, but sometimes it is not. This creates a small,
spherical wave (called a wavelet) that is emitted by that atom. So Huygens idea
is not too bad.

We can use this idea for a single slit and look at what happens as the light
goes through. Here is such a slit.

Figure 11.1:

In the figure above, we have divided a single slit of width a into two parts,
each of size a/2. According to Huygens’ principle, each position of the slit acts
as a source of light rays. So we can treat half a slit as two coherent sources.
These two sources should interfere. So what do we see when we perform such
an experiment?
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The figure shows a diffraction pattern for a thin slit. There are several terms
that are in common use to describe the pattern

1. Central Maximum: The broad intense central band.

2. Secondary Maxima:The fainter bright bands to both sides of the central
maxima

3. Minima: The dark bands between the maxima

Let’s see how these structures are formed.

11.3 Narrow Slit Intensity Pattern

Let’s use figure 11.1 to find the dark minima of the single slit pattern. First we
should notice that figure 11.1 could have another set of rays that contribute to
the bright spot because they will also have a path difference of (a/2) sin θ. Let’s
fill these in. They are rays 2 and 4 of the next figure.

Before we started with what we are now calling rays 1 and 3. Ray 1 travels
a distance

δ =
a

2
sin (θ) (11.6)

farther than ray 3. As we just argued, rays 2 and 4 also have the same path
difference, and so do rays 3 and 5. If this path difference is λ/2 then we will
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have destructive interference. The condition for a minima is then

a

2
sin (θ) = ±λ

2
(11.7)

or

sin (θ) = ±λ

a
(11.8)

Now we could also divide the slit into four equal parts. Then we have a path
difference of

δ =
a

4
sin (θ) (11.9)

and to have destructive interference we need this path difference to be λ/2

a

4
sin (θ) = ±λ

2
(11.10)

or

sin (θ) = ±2λ
a

(11.11)

We can keep going to find a minima at

sin (θ) = ±3λ
a

(11.12)

and in general at

sin (θ) = m
λ

a
m = ±1,±2,±3 . . . (11.13)

Question 223.11.1
We only found the dark spots in a single slit intensity pattern. The bright

spots must be in between the dark spots, but finding them is a little more trouble
than finding the dark spots. Do do this, let’s lok at the intensity function for a
single slit interference pattern.
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11.3.1 Intensity of the single-slit pattern

We could derive the single slit intensity pattern, it’s not too hard to do. But
instead I will just give the result here and we will interpret that result.

I = Imax

�
sin
�

π
λa sin θ

�
π
λa sin θ

�2
(11.14)

Notice this has the form

sinx

x

which has a distinctive shape.
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This is known as a sinc function (pronounced like “sink”). It has a central max-
imum as we would expect. Of course our intensity pattern has a sinc squared
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You can see the central maximum and the much weaker minima produced by
this function. Indeed, it seems to match what we saw very well. Putting it all
together, our pattern looks like this.
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This is really an interesting result. You might wonder why, when we found
the two slit interference pattern, there was no evidence of the single slit fringing
that we discovered in this chapter. After all, a double slit system is made from
single slits. Shouldn’t there be some effect due to the fact that the slits are
individually single slits? The answer is that we did see some hint of the single
slit pattern. Remember the figure below.

The intensity of the peaks seems to fall off with distance from the center. We
dealt with only the center-most part of the pattern. If we draw the pattern for
larger angles, we see the following.
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It takes a bright laser or dark room to see the secondary groups of fringes
easily, but we can do it. We can also graph the intensity pattern. It is the
combination of the two slit and single slit pattern with the single slit pattern
acting as an envelope.

I = Imax cos
2

�
πd sin (θ)

λ

�

sin
�

πa sin(θ)
λ

�

πa sin(θ)
λ



2

(11.15)

Note that one of the double slit maxima is clobbered by a minimum in the single
slit pattern. We can find out the order number of the missing maximum. Recall
that

d sin (θ) = mλ

describes the maxima from the double slit. But

a sin (θ) = λ

describes the minimum from the single slit. Dividing these yields

d sin (θ)

a sin (θ)
=

mλ

λ

d

a
= m

so the

m =
d

a
(11.16)

double slit maximum will be missing.
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Apertures and
Interferometers

Fundamental Concepts

• Round apertures act very much like slits, with some added numerical
factors

• If λ≪ D we see little evidence for the wave nature of light. This limit is
called the geometric optics limit or the ray approximation

• Interferometers can measure phenomenally small displacements using the
wave nature of light

12.1 Circular Apertures

Our analysis of light going through holes has been somewhat limited by squarish
holes or slits. But most optical systems, including our eyes don’t have rectangu-
lar holes. So what happens when the hole is round? The situation is as shown
in the next figure.

163
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Before we discuss this situation, let’s think about what we know about the width
of a single slit pattern. We remember that

sin (θ) = (1)
λ

a

for the first minima, or, because the angles are small,

θ ≈ λ

a

and from the figure we can see that

tan θ =
y

L

or
θ ≈ y

L

so long as θ is small, then we find the position of the first minimum to be

y =
λ

a
L

This is the distance from the center bright spot to the first dark spot. The
width of the bright spot is twice this distance

w = 2
λ

a
L

We expect something like this for our circular aperture. The derivation for the
circular aperture is not really to hard, but it involves Bessel functions, which
are beyond the math requirement for this course. So I will give you the answer

θ = 1.22
λ

D

where D is the diameter of the circular aperture (like a was the width of the
slit) and as before

tan θ =
y

L
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so

θ ≈ y

L

which gives us a first minimum location of

y = 1.22
λ

D
L (12.1)

and a width of

w = 2.44
λ

D
L (12.2)

The picture in most books is a little bit deceptive. The pattern looks a littleAiry Pattern
Demolike the slit pattern. But the secondary maxima are actually very small for the

circular aperture case. Much smaller than the secondary maxima in the slit
case. Here is a larger version of a cross section of the intensity pattern.
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Notice how small the secondary and tertiary maxima are. A three dimensional
version of the intensity pattern from the circular aperture.
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With a bright enough laser, they pattern becomes visible.

12.2 Interferometers
nterferomenter
Demo Before we leave wave properties of physics and go to the ray approximation, we

should study some devices that use interference.

12.2.1 The Michelson Interferometer

The Michelson interferometer is another device that uses path differences to
create interference fringes.
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The device is shown in the figure. A coherent light source is used. The light
beam is split into two beams that are usually at 90 ◦ apart. The beams are
reflected off of two mirrors back along the same path and are mixed at the
telescope. The result (with perfect alignment) is a target fringe pattern like the
first two shown below.

If the alignment is off, you get smaller fringes, but the system can still work.
This is shown in the last image in the previous figure.

In the figure, we have constructive interference in the center, but if we move
one of the mirrors half a wavelength, we would have destructive interference and
would see a dark spot in the center. This device gives us the ability to measure
distances on the order of the wavelength of the light. When the distance is
continuously changed, the pattern seems to grow from the center (or collapse
into the center).

Notice that if the mirror is moved λ
2 , the path distance changes by λ because

the light travels the distance to the mirror and then back from the mirror (it
travels the path twice!).
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12.2.2 Holography
Hologram demo-
picture of woman

Hologram demo-
chess pieces

You may have seen holograms in the past. We have enough understanding of
light to understand how they are generated now.

Object
Interference Pattern
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Light from laser 

expanded with 

beam expander

Object
Interference Pattern
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expanded with 
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A device for generating a hologram is shown in the figure above. Light from a
laser or other coherent source is expanded and split into two beams. One travels
to a photographic plate, the other is directed to an object. At the object,
light is scattered and the scattered light also reaches the photographic plate.
The combination of the direct and scattered beams generates a complicated
interference pattern.

The pattern can be developed (like you develop photographic film). Once
developed, it can be re- illuminated with a direct beam. The emulsion on the
plate creates complicated patterns of light transmission, which combine to cre-
ate interference. It is like a very complicated slit pattern or grating pattern.
The result is a three-dimensional image generated by the interference. The in-
terference pattern generates an image that looks like the original object.
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12.3 Diffraction of X-rays by Crystals

If we make the wavelength of light very small, then we can deal with very small
diffraction gratings. This concept is used to investigate the structure of crystals
with x-rays. The crystal latus of molecules or atoms creates the regular pattern
we need for a grating. The pattern is three dimensional, so the patterns are
complex.

Let’s start with a simple crystal with a square regular latus. NaCl has such
a structure.

If we illuminate the crystal with x-rays, the x-rays can reflect off the top layer
of atoms, or off the second layer of atoms (or off any other layer, but for now
let’s just consider two layers). If the spacing between the layers is d, then the
path difference will be

δ = 2 (d sin (θ)) (12.3)

then for constructive interference

2d sin (θ) = mλ m = 1, 2, 3, . . . (12.4)

This is known as Bragg’s law. This relationship can be used to measure the
distance between the crystal planes.

A resulting pattern is given in the following figure.

Diffraction image of protein crystal. Hen egg lysozyme, X-ray souce Bruker
IµS, λ = 0.154188 nm, 45 kV, Exposure 10 s.

DNA makes in interesting diffraction pattern.
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X-ray diffraction pattern of DNA

12.4 Transition to the ray model
Question 223.12.4

In the next figure, two waves of different wavelets go through a single opening.
The wave representing the central maximum is shown in each case, but not the
secondary maxima.

Notice that the smaller wavelength has a narrower central maxima as we would
expect from

sin (θ) = 1.22
λ

D

or

θ ≈ 1.22 λ
D
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we see that the ratio of the wavelength to the hole size determines the angular
extent of the central maxima. The smaller the ratio, the smaller the central
region. We can use this to explain why the wave nature of light was so hard to
find.

The patch of light on a screen that is created by light passing through the
aperture is created by the central maximum.

For the long wavelength (red) the central maximum is larger than the screen.
The short wavelength spot will be wholly on the screen as shown. The geometric
spot is what we would see if the light traveled straight through the opening.
Notice that the short wavelength spot is closer to the size of the geometric spot.
In the limit that

λ≪ a

or for circular openings
λ≪ D

then

θ ≈ λ

a
≈ 0

or

θ ≈ λ

D
≈ 0

and the spot size would be very nearly equal to the geometric spot size.
This is the limit we will call the ray approximation.
For most of humankind’s time on the Earth, it was very hard to build holes

that were comparable to the size of a wavelength of visible light. So it is no
wonder that the waviness of light was missed for so many years.

But this ray limit is very useful for apertures the size of camera lenses. So
starting next lecture we will begin to use this small λ, large aperture approxi-
mation.



172 CHAPTER 12. APERTURES AND INTERFEROMETERS



Chapter 13

Ray Model

Fundamental Concepts

• When the aperture size is given by Daperture =
√
2.44λL we are at a

critical size bounding the geometric and wave optics regions

• Coherent light is light that maintains a common phase, direction, and
wavelength.

• Light reflects from a specular surface with equal angles

13.1 The Ray Approximation in Geometric Op-
tics

Last time we said that when the geometric spot size was about the same size as
the spot due to diffraction we could ignore diffraction. This is usually true in
our personal experiences. But this may not be true in experiments or devices
we design. We should see where the crossover point is.

Intuitively, if the aperture and the geometric spot are the same size, that
ought to be some sort of critical point. That is when the aperture size is equal
to the spot size

Daperture = 2.44
λ

Daperture
L

This gives

Daperture =
√
2.44λL

173



174 CHAPTER 13. RAY MODEL

Of course this is for round apertures, but for square apertures we know we
remove the 2.44. This gives about a millimeter for visible wavelengths.

Daperture =
�
2.44 (500nm) (1m)

= 1. 104 5× 10−3m

for apertures much larger than a millimeter, we expect interference effects
due to diffraction through the aperture to be much harder to see. We expect
them to be easy to see if the aperture is smaller than a millimeter. But what
about when the aperture is about a millimeter in size? That is a subject for
PH375, and so we will avoid this case in this class. But this is not too restrictive.
Most good optical systems have apertures larger than 1mm. Cell phone cameras
may be an exception (but I don’t consider cell phone cameras to be good optical
systems). Even our eyes have an aperture that varies from about 2mm to about
7mm, so most common experiences in visible wavelengths will work fine with
what we learn. Note that for microwave or radio wave systems this may really
not be true!

How about the other extreme? Suppose λ ≫ D. This is really beyond our
class (requires partial differential equations), but in the extreme case, we can
use reason to find out what happens. If the opening is much smaller than the
wavelength, then the wave does not see the opening, and no wave is produced
on the other side. This is the case of a microwave oven door. If the wavelength
is much larger than the spacing of the little dots or lines that span the door,
then the waves will not leave the interior of the microwave oven. Of course
as the wavelength becomes closer to D this is less true, and this case is more
challenging to calculate, and we will save it for a 300 level electrodynamics
course.

To summarize

λ≪ D Wave nature of light is not visible
λ ≈ D Wave nature of light is apparent
λ≫ D Little to no penetration of aperture by the wave

We can see that early researchers might not have spent a lot of time with sub-
millimeter sized holes, so the wave nature of light was not as apparent to Newton
and his contemporaries.

13.1.1 The ray model and phase

There is a further complication that helps to explain why the wave nature of
light was not immediately apparent to early researchers. Let’s consider a light
source.
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For a typical light source, the filament or light emitting diode (LED) is larger
than about a millimeter, which is much larger than the wavelength. So, we
should already expect that diffraction might be hard to see. But the filament
is made of hot metal (we will leave LED workings for another class). The
atoms of the hot metal emit light because of the extra energy they have. The
method of producing this light is that the atom’s excited electrons are in upper
shells because of the extra thermal energy provided by the electricity flowing
through the filament. But the electrons eventually fall to their proper shell,
and in doing so they give off the extra energy as light. It is not too hard to
believe that this process of exciting electrons and having them fall back down
is a random process. Each electron that moves starts a wave. The atoms have
different positions, so there will be a path difference ∆r between each atom’s
waves. There will also be a time difference ∆t between when the waves start.
We can model this with a ∆φo.

It is also true that not all of the electrons fall from the same shell. This
gives us different frequencies, so we expect beating between different waves
from different atoms. It is also true that we have millions of atoms, so we have
millions of waves.

Let’s look at just two of these waves

λ = 2
k = 2π

λ
ω = 1
φo =

π
6

t = 0
Eo = 1

N
C

E1 = Emax sin (kx− ωt)

1 2 3 4 5
-2

2

x

E

E2 = Emax sin (kx− ωt+ φo)
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1 2 3 4 5
-2

2

x

E

then
Er = Emax sin (kx− ωt) +Eo sin (kx− ωt+ φo)

We found a nice meaningful way to write the resultant wave.

Er = 2Emax cos

�
φo

2

�
sin

�
kx− ωt+

φo

2

�

1 2 3 4 5-2
0
2

x

E

But suppose we complicate the situation by sending out lots of waves at
random times, each with different amplitudes and wavelengths. If we look at
a single point for a specific time, we might be experiencing interference, but it
would be hard to tell. Lets try this mathematically. I will combine many waves
with random phases, some coming from the right and some coming from the
left.

E1 = Emax sin
�
5x− ωt+

π

4

�
+ 0.5Emax sin

�
0.2x− ωt− π

6

�

+3.6Emax sin
�
.4x− ωt+

π

10

�
+ 4Emax sin

�
20x− ωt− π

7

�

+.2Emax sin (15x− ωt+ 1) + 0.7Emax sin (.7x− ωt− .25)

Here is what E1 would look like.
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And now let’s make another random wave, E2

E2 = Emax sin (0.2x+ ωt+ π) + 2Emax sin
�
5x+ ωt+

π

6

�

+6Emax sin
�
0.4x+ ωt+

π

3.5

�
+ 0.4Emax sin (20x+ ωt− 0)

+Emax sin (15x+ ωt+ 1) + 0.7Emax sin (.7x+ ωt− 4)
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Which looks like this
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Then E1 +E2 looks like
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In this example, you could think about the superposition of E1 and E2 and
predict the outcome, but if there were millions of waves, each with it’s own
wavelength, phase, and amplitude, the situation would be hopeless. Note that
the fluctuations in these waves are much more frequent than our original waves.
With all the added waves, we get a rapid change in amplitude.

Now if these waves are light waves, our eyes and most detectors are not able
to react fast enough to detect the rapid fluctuations. So if there is constructive
or destructive interference that might be simple enough to distinguish, the in-
terference pattern will change so fast that we will miss it due to our detection
systems’ integration times. To describe this rapidly fluctuating interference pat-
tern that we can’t track with our detectors, we just say that light bulbs emit
incoherent light. The ray approximation assumes incoherent light.

But then light bulbs and hot ovens and most things must emit incoherent
light. Does any thing emit coherent light? Sure, today the easiest source of
coherent light is a laser. That is why I have used lasers in the class demonstra-
tions so far. Really though, even a laser is not perfectly coherent. One property
of the laser is that it produces light with a long coherence length, or it produces
light that can be treated under most circumstances as begin monochromatic
and having a single phase across the wave for much of the beam length. Radar
and microwave transmitters emit coherent light (but at frequencies we can’t see)
and so do radio stations.

In the past, one could carefully create a monochromatic beam with filters.
Then split the beam into two beams and remix the two beams. This would
generate two mostly coherent sources if the distances traveled were not too
large. This is what Young did.
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13.1.2 Coherency

To be coherent,

1. A given part of the wave must maintain a constant phase with respect to
the rest of the wave.

2. The wave must be monochromatic

These are very hard criteria to achieve. Most light, like that from our light
bulb, is not coherent.

13.2 Reflection

In the Star Wars movies inter-galactic star ships blast each other with laser
cannons. The laser beams streak across the screen. This is dramatic, but not
realistic. For us to see the light, some of the light must get to our eyes. The
light must either travel directly to our eyes from the source, or it must bounce
off of something.

Using the ray approximation we wish to find what happens when a bundle of
rays reaches a boundary between media. If the media boundary is very smooth,
then the rays are reflected in a uniform way. This is called specular reflection

If it is not smooth, then something different happens. The rays are reflected,
but they are reflected randomly
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This is called diffuse reflection Question 223.13.6

This difference can be seen in real life

We said the surface must be smooth for there to be specular reflection. What
does smooth mean? Generally the size of the rough spots must be much smaller
than a wavelength to be considered smooth. So suppose we have a red laser.
How small do the surface variations have to be for the surface to be considered
smooth? The wavelength of a HeNe laser is

λHeNe = 633nm

This is very small. Modern optics for remote sensing are often manufactured to
1/10 of a wavelength, which would be 63nm.

How about a microwave beam of light like your cell phone uses?

c = λf

λ =
c

f
=
3× 108 ms
1GHz

= 0.3m

We can see that we must be careful in our definition of “smooth.”

13.2.1 Law of reflection

Experience shows that if we do have a smooth surface, that light bounces much
like a ball. This is why Newton though light was a particle. Suppose we take
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a flat surface and we shine a light on it. We have a ray that approaches at an
angle θi measured from the normal. Then the reflected ray will leave the surface
with an angle θr measured from the normal such that

θr = θi

This is called the law of reflection.

13.2.2 Retroreflection

Let’s take an example

1 2

3

4



1 2

3

4



Let’s take our system to be two mirrors set at a right angle. We have a beam
of light incident at angle θ1. By the law of reflection, it must leave the mirror
at θ2 = θ1. We can see that α must be 90 ◦ − θ2 and it is clear that θ3 = α. By
the law of reflection, θ3 = θ4. Then, since

90 ◦ = θ2 + α

= θ2 + θ3

and
90 ◦ = θ1 + θ4

then the total angular change is

90 ◦ + 90 ◦ = 180 ◦

or the outgoing ray is sent back toward the source! If we do this in three
dimensions we have a corner cube.
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Radar retroreflector tower located in the center of Yucca Flat dry lake bed. Used as

a radar target by maneuvering aircraft during "inert" contact fusing bomb drops at

Yucca Flat. Sandia National Laboratories conducted the tests on the lake bed from

1954 to 1956. (Image in the Public Domain in the United States_

The figure above is a radar corner cube set. The one below is an optical
corner cube set on the moon.

Apollo Retroreflector (Images in the Public Domain courtesy NASA)

We use this optical corner cube array to reflect light off of the moon. The time it
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takes the light to go to the moon and back can be converted into an Earth-Moon
distance for monitoring how close the moon is to the Earth.Question 223.13.9

13.3 Reflections, Objects, and seeing

Armed with the law of reflection, we can start to understand how we see things.
Using the ray concept, we can say that a ray of light must leave the light source.
That ray then reflects from something. Suppose you look at the person sitting
next to you in class. Light from the ceiling lights has reflected from that person.
But is the person a specular or diffuse reflector?

Once again, we can only give an answer relative to the wavelength of light.
For visible light, your neighbors do not look like mirrors. The are diffuse reflec-
tors. Light bounces off of them in every direction. Your eye is designed to take
this diverging set of rays and condense it into a picture of the person that your
brain can interpret.

We tend to not draw the rays that bounce off the diffuse reflector but that don’t
get to our eyes, because we don’t see them. So a ray diagram is usually much
simpler.

This is easy to understand, but we must keep in mind the wildly fluctuating
waviness that is masked by our macroscopic view.

We can use the idea of a ray diagram to solve problems. Suppose you hold
a mirror half a meter in front of you and look at your reflection. Where would
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the reflection appear to be?

Knowing that rays travel in straight lines and that our mind interprets rays as
going in straight lines, then we can use rays to see where the light appears to
be from. The image is half a meter behind the mirror. Now suppose we look at
an image of that image in a mirror behind us.

The ray diagram makes it easy to see that the image will appear to be 2m
behind the big mirror.
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Chapter 14

Refraction and images

We studied light reflecting from a surface. We can see the reflection in the
image above. But light also is transmitted through the piece of glass in the
figure. Note the change in direction at the interfaces. This is penetration of a
material by light is called refraction, and will be the subject of this lecture.

Fundamental Concepts

• Refraction is a change of direction of a light ray as it crosses an interface

• The wavelength of the light changes at an interface

185
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• The angle changes according to Snell’s law ni sin θi = nt sin θt

• When going from a high index to a low index material, the light may
totally reflect, with no transmission

• Refraction can form images

14.1 Refraction

Not all surfaces reflect all the light. Some, like the lenses shown below, reflect
some light at visible wavelengths, but are transparent so most of the light travels
through them.

We need a way to deal with transparent materials. This is tricky, because
different wavelengths of light penetrate different materials in different ways. As
an example, this is also a lens

IR lens. (Image in the Public Domain, courtesy US Navy)

but it clearly is not transparent at visible wavelengths. But it is transparent in
the infrared. So what might be transparent at one wavelength might not be at
another.

When light travels into a material, we say it is transmitted. The situation
is shown schematically below.
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In the figure we see a ray incident on an air-glass boundary. Some of the
light is reflected just as we saw before. But some passes into the glass. Notice
that the angle between the normal and the new transmitted ray is not equal
to the incident ray. We say the ray has been bent or refracted by the change
of media. Many experiments were performed to find a relationship between the
incident and the refracted angles. It was found that

sin (θ2)

sin (θ1)
=

v2
v1
= constant (14.1)

Many optics books write this as

sin (θt)

sin (θi)
=

v2
v1
= constant (14.2)

where the subscript i stands for “incident” and the subscript t stands for “trans-
mitted.” Note that we are using the fact that the average speed of light changes
in a material. We should probably recall why this should occur

14.1.1 Speed of light in a material

In a vacuum, light travels as a disturbance in the electromagnetic field with
nothing to encounter. In a material (like glass) the light waves continually hit
atoms. We have not studied antennas, but I think many of you know that an
antenna works because the electrons in the metal act like driven harmonic os-
cillators. The incoming radio waves drive the electron motion. Here each atom
has electrons, and the atoms act like little antennas, their electrons moving and
absorbing the light. But the atom cannot keep the extra energy (PH433), so it
is readmitted. It travels to the next atom and the process repeats. Quantum
mechanics tells us that there is a time delay in the re-emission of the light. This
causes a secondary wave to mix with the incoming wave. The combined result
is that the propagation energy in the light wave slows down. Thus the speed of
light is slower in a material.
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But why does this slowing cause the light ray to bend? As a mechanical analog,
consider a rolling barrel.

As the barrel rolls from a flat low-friction concrete to a higher-friction grass
lawn, the friction slows the barrel. If the barrel hits the lawn parallel to the
boundary (so it’s velocity vector is perpendicular to the boundary), then the
barrel continues in the same direction at the slower speed. But if it hits at an
angle, the leading edge is slowed first.

This makes the trailing edge travel faster than the leading edge, and the barrel
turns slightly.
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We expect the same behavior from light.

We can see that the left hand side of the wave hits the slower (green) material
first and slows down. The rest of the wave front moves quicker. The result is
the turning of the wave. Question 223.14.1

14.1.2 Change of wavelength

We have found that when a wave enters a material, its speed may change. But
we remember from wave theory

v = λf (14.3)

But it is time to review: does λ change, or does f change? If you will recall,
we found that the change in speed at the boundary changes the wavelength.
Recall that if we go from a fast material to a slow material, the forward part of
the wave slows and the rest of the wave catches up to it.
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This will comperes pulses, and lower the wavelength. Now that we know more
about light we can also argue that f cannot change because

E = hf

If f changed, then we would either require an input of energy or we would store
energy at the boundary because

∆f =
∆E

h

This can’t be true. If the wavelength changes, there is no such change in energy.
Since

v1 = λ1f

and
v2 = λ2f

then the ratio
v1
v2
=

λ1
λ2

and we again have our solution for the wavelength in the material

λ2 = λ1
v2
v1

which agrees with our previous analysis.

14.1.3 Index of refraction and Snell’s Law
Question 223.14.2

Question 223.14.3 Because the equation
sin (θ2)

sin (θ1)
=

v2
v1
= constant

has a constant ratio of velocities, it is convenient to define a term that represents
that ratio. We already have a concept that can help. The index of refraction is
just such a term. It assumes that one speed is the speed of light in vacuum, c.

n ≡ c

v

Then for our example
sin (θ2)

sin (θ1)
=

cv2
cv1

=
n1
n2
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or

sin (θ2)

sin (θ1)
=
1

n2

Suppose we don’t have a vacuum (or air that is close to a vacuum). We can
write our formula as

n1 sin (θ1) = n2 sin (θ2) (14.4)

where we have determined

n1 =
c

v1

and

n2 =
c

v2

This is called Snell’s law of refraction after the scientist who experimentally
determined the relationship.

Again let’s consider our wavelength change. Using the index of refraction
we can write our equation relating the ratio of velocities and wavelengths as

v1
v2
=

λ1
λ2
=

2
n1
c

n2

=
n2
n1

which gives

λ1n1 = λ2n2

and if we have vacuum and a single material we can find the index of refraction
from

n =
λ

λmaterial
(14.5)

where λmaterial is the wavelength in the material. Question 223.14.4

Question 223.14.5

14.2 Total Internal Reflection
Question 223.14.6

Up to now we have assumed that light was coming from a region of low index
of refraction into a region of high index of refraction. We should pause to look
at what can happen if we go the other way.
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We start with Snell’s law

n1 sin θ1 = n2 sin θ2

but this time n = n1 and n2 ≈ 1 so

n sin θ1 = sin θ2

which gives
θ2 = sin

−1 (n sin θ1) (14.6)

If we take n = 1.33 (water) we can plot this expression as a function of θ1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

Theta 2

Theta 1

we see that at θ1 = 0.850 91 rad (48. 754
◦) the curve becomes infinitely steep.

If we use this value in our equation this gives

θ2 = sin−1 (n sin (0.850 91))

= 1. 570 8 rad (14.7)

= 90 ◦
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The light skims along the edge of the water! Internal Reflec-
tion Demo

We can find the value of θ1 that makes this happen without graphing. Set
θ2 = 90

◦ then

n1 sin θ1 = n2 sin θ2

becomes
n1 sin θ1 = sin (90

◦) = 1

sin θ1 =
1

n1
so then θ1 is given by

θ1 = θc ≡ sin−1
�
1

n

�
(14.8)

We give this value of θ1 a special name. It is the critical angle for internal
reflection. But what happens if we go farther than this (θ1 > θc)? We will no
longer have a transmitted ray. The ray will be reflected. This is why when you
dive into a pool and look up, you see a region of the roof of the pool area (or
sky) but off to the side of the pool the surface looks mirrored. It is also why
you sometimes see the sides of a fish tank appear to be mirrored when you look
through the front.

It is also why cut gems (like diamonds) sparkle. They capture the light with
facets that are cut at angles that create total internal reflection. The light that
enters the gem comes back out the front (We will study how to make the pretty
colored sparkles next time). Question 223.14.7

Question 223.14.8

Question 223.14.9
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14.2.1 Fiber Optics

Beyond pretty pebbles, this effect is very useful! It is the heart and soul of fiber
optics.

An interior material with a lower index of refraction is inclosed in a cladding
with a higher index. This creates a light pipe that traps the light in the fiber.

Giant Fiber
Demo Modern fibers don’t always have a hard boundary. The fibers have a gradual

change in index of refraction that changes the direction of the light gradually.
This keeps the light in the fiber but tends to direct along the fiber so the beam
is not crisscrossing as it goes.

The cutting edge of fiber design today uses hollow fibers or fibers filled with
different index material.

14.3 Images Formed by Refraction

Let’s think about what an image is. Take a piece of paper and a lens, and holdMake Images with
Lens Demo up the lens is a darkened room that has some bright object in it. Move the

lens or the paper back and forth, and at just the right distance, a miniature
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picture of the bright object will appear. We should think about what the word
“picture” means in this sense.

We have talked about how we see something. Remember the BYU-I guys from
last time.

Our eyes gather rays that are diverging from the object because light has
bounced off of the object. Our eyes intersect a diverging set of rays that form a
definite pattern. That diverging set of rays forming a pattern is the picture of
the object.

So when we say that the lens has formed a miniature picture of our dark
room object, we mean that the lens has somehow formed a diverging set of rays
that form a pattern that looks like the pattern formed by the diverging set of
rays coming from the object, itself. In other words, the object forms a diverging
set of rays, as normal, and our lens forms a duplicate set of rays in the same
pattern, so we see the same thing. The lens’ version is smaller, and upside down,
but it is still essentially the same pattern.

As a first step to see how this works, consider our fish tank again. It would
be bad on the fish, but think about looking at a fish in air. The room light
would bounce off of the fish, and we would have a diverging set of rays from
every point on the fish.
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We can see that the picture is made from every point on the fish being “imaged”
to a point on the retina. We collect the rays leaving every point on the fish, and
bring them to corresponding points on the retina to make the picture.

It will take us a few lectures to see exactly how this is done by the lens
system in the eye, but as a first step, let’s consider the fish tank, itself. Put the
fish back in the tank and look at it.

Rays still come from the fish. But we now know that the change from a slow
material to a fast material will bend the light. These bent rays are collected by
our eyes, and the picture of the fish is formed on the retina just as before. But
our eyes interpret the light as though it went in straight lines with no bends
(dotted lines in the last figure). our mind is designed to believe light travels in
straight lines, so our mind tells us there is a fish, but that the fish head (and
every other part of the fish) is closer than it really is. We call this apparent fish
at the closer location an image of the fish, because this is where we think the
diverging set of rays come from that form the fish pattern.

The next figure shows the details of the rays leaving a dot on the fish head
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The dot on the fish head is our object for this set of rays. The distance from
the fish-head dot and the edge of the water/air boundary is called the object
distance and is given the symbol s.

The distance from the image of the fish-head dot to the edge of the water/air
boundary is called the image distance and is given the symbol s′. Note that this
is not a derivative, it is just a distance like s, because it appears to be where
the rays come from, but it is a different distance because of the refraction of the
rays. So to make it look different we put a prime mark on it. Do this math, you

will circle back to
this

We can find where the image is (s′) knowing s. We can see from the figure
that

ℓ = s tan θ1

= s′ tan θ2

so
s tan θ1 = s′ tan θ2

or

s
tan θ1
tan θ2

= s′

from Snell’s law, we know that

sin θ1
sin θ2

=
n2
n1

Usually we can take the small angle approximation. This would limit our
analysis to rays that are near the central axes. Let’s call this central axis the
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optics axis and the rays that are not too far away from this axis paraxial rays.
Then for our small angles we can write

tan θi ≈ sin θi

so

s
tan θ1
tan θ2

≈ s
sin θ1
sin θ2

= s
n2
n1
= s′

and we have the image distance

s′ = s
n2
n1

This is not so useful unless you have some burning need to know where your
fish are in a tank. But we now have the vocabulary to discuss the larger problem
of how a lens works, which we will take up next time.
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Dispersion and Thin Lenses

Fundamental Concepts

• Index of refraction is wavelength dependent

• We can describe the operation of thin lenses using three easy-to-draw rays.

15.1 Dispersion

Question 223.15.1

Who hasn’t played with a prism? We immediately recognize a rainbow.
But why does the prism make a rainbow? The secret lies in the nature of the
refractive index.

199
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Notice that in the figure, the index of refraction depends on wavelength. This
means that as light enters a material, different wavelengths will be refracted at
different angles.

White light is not really a color of light. White light is made up of many
colors—in fact, all the colors of the rainbow!1 Thus white light is pulled apart
by refraction into a rainbow. This process is called dispersion. The reason is
that for different wavelengths of light it is more likely to for the light waves to
be absorbed and re-emitted than for other wavelengths. This has to do with
the spacing of the atoms relative to the wavelength, and it has to do with the
electron structure of the material. Here is a graph that shows the index of
refraction for some materials as a function of wavelength.

Figure 15.1: Index of refraction as a function of wavelength ( Ohara optical glass

http://www.oharacorp.com/fused-silica-quartz.html data and Schott optical glass

data http://www.uqgoptics.com/materials_glasses_schott.aspx)

The graph tells us that blue light bends more than red light for these mate-
rials.

1Ah, but some light sources fool us. As long as there are the right amounts of red, green,
and blue, we can think the light is white. Fluorescent lights and LED lights do this, and the
lack of a full spectrum of light explains why plants don’t grow well under fluorescent lights
and some LED lights.
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We call the change in direction measured from the original direction of travel,
δ, the angle of deviation. The colors we can see are called the visible spectrum.Question 223.15.2

Let’s look at a natural rainbow. The dispersion is caused buy small droplets
of water. The white sunlight enters the drop and is dispersed. It bounces off
the back of the drop and then leaves the drop, again being dispersed. Red light
leaves the drop at about 42 ◦ from its input direction, and blue light leaves at
about 40 ◦.

15.1.1 Calculation of n using a prism

Let’s do a problem using the idea of dispersion. Let’s find the index of refraction
of a the material. Suppose we make a prism as shown2 . We know the apex
angle of the triangle, Φ, and can measure the exit angle δ. In terms of these two
variables, what is n?

2 In this problem, we have carefully arranged the light so it goes horizontally across the
prism. This is not always the case—and it is not usually the case in the problems in the
homework.
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Our strategy should be to use Snell’s law

n1 sin θ1 = n2 sin θ2

If we can find θ1 and θ2 in terms of Φ and δ then we can solve for the index
of refraction of the material (we know n1 ≈ 1). Using the notation indicated in
the figure, we choose θ1 such that the interior ray is horizontal.3

θ1 = θ2 + α

δ = 180− β

180 = β + 2α

Then
δ = β + 2α− β

or

δ = 2α

and

α =
δ

2

90 = α+ θ2 + φ

3WARNING! in the homework problems you can’t make the same assumptions!



15.1. DISPERSION 203

and

180 = Φ+ 2α+ 2φ

or

90 =
Φ

2
+ α+ φ

Then

α+ θ2 + φ =
Φ

2
+ α+ φ

θ2 =
Φ

2

We can put these in our equation for θ1

θ1 = θ2 + α

=
Φ

2
+

δ

2

=
Φ+ δ

2

We now know θ1 and θ2. Now we can use Snell’s Law to find n

sin (θ1) = n sin (θ2)

sin

�
Φ+ δ

2

�
= n sin

�
Φ

2

�

then

n =
sin
�
Φ+δ
2

�

sin
�
Φ
2

� (15.1)

This gives a value for the index of refraction, but it would be better to repeat
the analysis for several wavelengths. The resulting values for n can be combined
into a n vs. λ curve like the one shown in figure 15.1.

15.1.2 Filters and other color phenomena

We have assumed without proof, that white light is made up of all the colors of
the rainbow. Diffraction gratings were pretty good hints that this is true. Now
that we know how prisms work, we have additional evidence of this. But knowing
that white light is made a superposition of waves of different wavelengths, we
should ask why a red shirt is red, or why passing light through a green film
makes the light look green as it leaves.

Both of these phenomena are examples of removing wavelengths from white
light.

In the case of the red shirt, the red dye in the cloth absorbs all of the visible
colors except red. The red is reflected, so the shirt looks red. The filter is much
the same. The green pigment in the film causes nearly all visible colors to be
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absorbed except green. So only green light is transmitted. This is why leaves are
green. Chlorophyll absorbs red and blue wavelengths, so the green is reflected
or transmitted.

chlorophyll spectrum (Public Domain image courtesy Kurzon)

Knowing the nature of white light, we can start to understand lens systems and
their challenges.

15.2 Ray Diagrams for Lenses

Before we do a lot of math to describe how lenses work, lets think about our
early childhood experiences. You may have burned things with a magnifyin g
glass. Using the idea of a ray diagram, here is what happens.

The rays from the Sun come from so far away that they are essentially parallel.
We know that these rays come together to a fine point that can start a fire. The
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point where these rays converge is important to us. We will call this the focal
point.

Knowing that the light will follow the same paths either direction, we would
expect that if we put a light source at the focal distance, the rays should come
out parallel.

We need one other bit of information, to understand lenses. We have seen this
case before.

A flat block does refract the light, but when the light leaves the block it is only
displaced, it retains the original direction. We will use these three situations to
describe what happens when light travels through a lens.

We know that for every point on the object, we get millions of reflected rays
that diverge. The lens must collect these rays together to form the corresponding
point on the image.
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In the figure, the object is an upright arrow. We suppose that the arrow either
glows, or that light is reflecting off the arrow. The arrow is a diffuse reflector,
so the light bounces off in all directions. In the figure, you see light bouncing off
the tip. Of course, this happens for every point on the image. Here is another
drawing with light bouncing off the middle of the arrow.

But we usually pick the top of the object. If we place the bottom of the object
on the optic axis, the bottom of the image will also be on the optic axis. So
knowing where the bottom of the image is, and finding the top of the image
gives a pretty good idea of where the rest of the image must be. So we will draw
diagrams for the top of the object to find the top of the image.

But suppose this is not true? For example, when we use a camera, we do
not align the optical system so the bottom of the subject is in the middle of the
lens, on an axis, before we shoot.
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We can, of course, trace some rays for the bottom of the images well as for the
top in this case and find the location of the bottom of the image. The middle
of the image will still be in between the top and the bottom.

Notice that we said that light bounced off the arrow in all directions, but
we did not draw all the rays going in all directions. Drawing millions of rays is
impractical, and fortunately, not needed. We instinctively only drew rays that
headed toward the lens. Any ray that does not head toward the lens won’t take
part in forming the image created by the lens. But could we make due with
even less rays?

It turns out that we can choose three simple rays that leave the top of the
object , and see where these rays converge to form the top of the image. Let’s
start with a ray that travels from the top of the object and travels parallel to
the optic axis. We recognize this ray as being like one of the rays from the Sun.
It comes in parallel, so it will leave the lens and travel through the focal point.

For a second easy ray, lets take the case that is like our flat block. Near the
center of the lens, the sides are nearly flat. So we expect that the ray will leave
in about the same direction as it was going before it struck the lens.
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Two rays are really enough to determine where the top of the image will be,
but there is a third ray that is easy to draw, so let’s draw it to give us more
confidence in our answer. That ray is one that leaves the top of the object and
passes through the focal point on the object side of the lens. This situation we
also recognize. This ray will leave the lens parallel to the optic axis.

Where all three rays interest, we will have the top of the image.
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Because the rays come together or converge we call a lens like this a converging
lens. Notice that in this case, the image is upside down. That is normal. Also
notice that it is smaller than the object. We say that the image is magnified,
which may seem a little bit strange. But in optics, a magnification of greater
than one means that the image is bigger than the object. This is like a movie
projector that makes a large image of a small film segment. The magnification
can be equal to one, meaning the object and image are the same size. And
finally, the magnification can be less than one. This means that the image is
smaller than the object. This is a convenient definition, because then we can
use the same equation to describe all three situations.

m ≡ Image height

Object height
=

h′

h

where h is the object height, and h′ is the image height. It turns out that we
can also write the magnification of a lens in terms of the object distance, s and
image distance s′ (see more on this below).

m = −s′

s

Notice the negative sign. By convention (meaning physicists got together and
voted on this) we say that an upside down image has a negative magnification.
You just have to memorize this, there is no obvious reason for this except it is
mathematically convenient. Question 223.15.4

15.2.1 Thin Lenses

It is time to introduce another approximation Suppose the lens is very thin.
Then ray number 2 would travel through the lens with no deviation at all. This
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is sometimes a good approximation, and will make the math easier, so for this
class we will often use it. But there are times when it really does not work, so in
practice you have to be careful. PH375 goes beyond the thin lens formulation.Question 223.15.3

We should pause to realize that our new understanding of Snell’s law tells us
that we have a problem with our lenses. The index of refraction is wavelength
dependent. This means that different wavelengths will focus in different posi-
tions. Here is our light from the Sun again, but note that I drew blue light and
red light only.

Having removed all the other colors, we can see that the blue light focuses nearer
to the lens than the red light. This is because the index of refraction for the
blue light is larger. Each visible wavelength will focus somewhere in between
these two (except for purple, of course). When we make an image, this means
that we get multiple images of our object, one in each color. Usually the images
overlap, so we end up with a colored blur.

This problem is called Chromatic Aberration. We can fix this by using a com-
bination of lenses.
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where each lens has a different index of refraction. The converging lens is de-
signed to form the image, while the diverging lens (a term we explain below)
realigns all the colors.

15.2.2 Virtual images

Lets take another case and draw a ray diagram. This time let’s place the object
closer than the focal distance. This is the case when we use a lens as a magnifying
glass. The rays will look like this.

Notice that these rays never converge! We won’t get an image that could project
on a paper. But we know that there is an image, we can look through the lens
and see it! And that is the key. The image does not really exist. We look
through the lens, and our mind interprets the diverging rays coming from the
lens as though they had only traveled in straight lines. If we extend these rays
backwards along straight lines, they appear to come from a common point.
This is the point they would have had to have come from if there were no lens.
Because our brain believes light travels in straight lines, we believe we see an
image at this location. But no light really goes there! Because this image is
not really made from light diverging from this position, we recognize this as a
virtual image. The image we formed before that could be projected on a screen
is called a real image.

By convention, we say the distance, s′, from the lens to the virtual image
has a negative value.



212 CHAPTER 15. DISPERSION AND THIN LENSES

15.2.3 Diverging Lenses

So far our lenses have only been the sort that work as magnifying glasses. We
call these converging lenses. These lenses are fatter in the middle and thinner
on the edges. Because of this they are sometimes called convex lenses. By
convention, we say the focal distance for this type of lens is positive. For this
reason, they are often called positive lenses.

But what if we make a lens that is thinner in the middle and thicker on
the edges. We can call this sort of lens a concave lens, and we will give in a
negative focal length by convention, so we can also call it a negative lens. But
what would this lens do? If we think about our three rays and Snell’s law, ray 1
won’t be bent toward the optic axis for this type of lens. In fact, if we observe
an object through this lens, ray number 1 will appear to come from the focal
point. Ray number 2 will still go through the middle of the lens, and if the lens
is thin enough, ray 2 will pass through undeviated.

finally ray three will go as if it were aiming for the far focal point, but it will
hit the lens and leave parallel to the optic axis. From the figure we see that
these three rays will never converge. We expect they will form a virtual image.
If we extend the rays backward as shown, we see that the extensions all meet
at a point. The rays leaving the lens appear to come from this point. This is
the location of the virtual image.

You might wonder what good such a lens could do, but we will find that this
type of lens is used to correct vision for nearsighted people.



Chapter 16

Image Formation

Last lecture we learned how to find an image location graphically, now let’s do
it algebraically.

Fundamental Concepts

• A curved interface between two media can cause light rays to cross

• The lens-maker’s formula is given by 1
f = (n− 1)

�
1

R1

− 1
R2

�

• The thin lens formula is given by 1
s +

1
s′ =

1
f

• The sign of quantities that go into the lens-maker’s equation and the thin
lens formula are determined by a sign convention.

16.1 Thin lenses and image equation

In this lecture, we will work toward understanding the equations that allow us
to solve for the image location given the object location for a thin lens. Let’s
start by thinking of a special case for refraction. A circular or spherically curved
surface on a very large piece of glass. We will assume that the piece of glass is
semi-infinite, but all it has to be is very large.

We can call this a semi-infinite bump of glass.

Take a point object that either glows, or has rays of light reflecting from
it. The rays leave the object and reach the surface of the glass. The rays
will refract at the surface. Each bends toward the normal, but because of the
curvature of the glass, the rays all converge toward the center. We can identify
this convergence point as the image of the point object. Since our object is a

213
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Figure 16.1:

point, so is our image.1 Of course we could make an extended object out of
many points, and then we would have many image points as well.

At the surface we can find the refracted angles using Snell’s law

n1 sin θ1 = n2 sin θ2

We will again use the small angle approximation. Then θ1 and θ2 are small
and none of the rays are very far away from the axis. This is our paraxial
approximation. Snell’s law becomes

n1θ1 = n2θ2

Let’s try to see where the image will be using Snell’s law.

Using the more detailed figure above, we observe triangles SAC and PAC. We
recall that for triangle SAC the top angle labeled η, plus θ1 must be 180.

180 ◦ = θ1 + η

or

η = 180 ◦ − θ1

1Within the limits of diffraction. So it is really a small circle of light. But it’s mostly a
point.
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We also know that the sum of interior angles must equal 180. So for triangle
SAC we know

180 ◦ = η + α+ β

Let’s substitute in for η

180 ◦ = (180 ◦ − θ1) + α+ β

then
θ1 = α+ β

Likewise, from triangle PAC,

180 ◦ = σ + θ2 + γ

and
180 ◦ = β + σ

so
σ = 180 ◦ − β

and
180 ◦ = (180 ◦ − β) + θ2 + γ

which reduced to
β = θ2 + γ

then,
θ2 = β − γ

and we can write our paraxial Snell’s law as

n1θ1 = n2θ2

n1 (α+ β) = n2 (β − γ)

n1α+ n1β = n2β − n2γ

n1α+ n2γ = n2β − n1β

n1α+ n2γ = β (n2 − n1)

Looking at the figure. We see that d is a leg of three different right triangles
(SAV, ACV , and PAV ). The ray in the figure is clearly not a paraxial ray.
If we use an actual paraxial ray, then the point V will approach the air-glass
boundary. When this happens, then SV = s, V C = R, and V P = s′. So we
can write

tanα ≈ α ≈ d

s

tanβ ≈ β ≈ d

R

tan γ ≈ γ ≈ d

s′
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so our Snell’s law becomes

n1α+ n2γ = β (n2 − n1)

n1
d

s
+ n2

d

s′
=

d

R
(n2 − n1)

We can divide out the common factor, d.

n1
s
+

n2
s′
=
(n2 − n1)

R
(16.1)

We can use this formula to convince ourselves that no matter what the angle
is (providing it is small), the rays will form an image at P. So all the rays in
figure (16.1) will converge at P.

Real images will be inside the glass for our example. This may seem a
problem, but we will fix this with non-infinite lenses soon. And for the case of
our eyes, this is exactly what happens. We have fluid (sort of a jelly) in our
eyes, and the image is formed in the fluid. The curved surface is our cornea (the
spot where your contacts go).

Physicists got together and decided on a mathematical system of signs to
make the math easier and consistent. We have called such a scheme a sign
convention already. We started collecting parts of this system last lecture. Let’s
write it all out in a table so we can use it in today’s lecture. Here is the
convention for the case of a curved semi-infinte surface.

Quantity Positive if Negative if

Object location (s) Object is in front of surface
Object is in back of surface

(virtual object)

Image location (s′)
Image is in back of surface

(real image)

Image is in front of surface

(virtual image)

Image height (h′) Image is upright Image is inverted

Radius (R)
Center of curvature is in

back of surface

Center of curvature is in

front of surface

where the “front” of the lens is the side that gets the light from the object.

Question
223.165.2
Question
223.165.3
Question
223.165.4
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We could go through the entire derivation and switch the indices of refraction
(in effect, go along the same path, but going backwards). It turns out we get
the same equation. The light is bending the other way as it travels the path,
but the equation will be the same. So our equation describes light entering a
pice of glass, or light leaving a piece of glass.

16.1.1 Flat Refracting surfaces

Let’s return to our fist tank. The fish tank has an interface, but it is flat.
Can we use our equation (16.1) to describe this?

The answer is yes, if we let R = ∞. This makes sense for a flat surface. If
we have an infinitely large sphere, then our small part of that spherical surface
that makes up the fish tank wall will be very flat.

Then
n1
s
+

n2
s′
=
(n2 − n1)

∞
or

n1
s
+

n2
s′
= 0

we see that
s′ = −sn2

n1

This is what we got before for this case, except before we just got the dis-
tance, and now we have included the effects of our sign convention. The negative
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sign means that the image is in front of the surface. By “in front” we always
mean to follow the light from the source (fish) to the optical boundary. This
boundary is the water/air boundary of the tank, so the fact that our image is
in the water means that our image is in front of the optical boundary. As we
know, this means the image is virtual.

16.2 Thin Lenses

Lets’ find an equation for a lens made from sections of spherical surfaces once
more. But this time, let’s let it be more practical and not make the “lens”
semi-infinite. We will need to deal with two sides of the lens because (usually)
both will be curved.

We found that for refraction

n1
s
+

n2
s′
=
(n2 − n1)

R

but we did this for a spherical bump on a semi-infinite piece of glass. For
this problem let’s make a few assumptions:

• We have two spherical surfaces, with R1 and R2 as the radii of curvature

• We have only paraxial rays

• The image formed by one refractive surface serves as the object for the
second surface

• The lens is not very thick (the thickness is much smaller than both R1
and R2)

The answer we will get is quite simple

1

s
+
1

s′
=
1

f
(16.2)

where
1

f
= (n− 1)

�
1

R1
− 1

R2

�
(16.3)

but to appreciate what it means, lets find out where it comes from.

16.2.1 Derivation of the lens equation

Let’s find the thin lens formula. Really, we could just assume the formula and be
fine, but we are going through the derivation because it will help teach us how
to deal with multiple surfaces in an optical system. Telescopes and microscopes
all have multiple surfaces. So this will help us understand how they work.

Consider the optical element in the figure below. Notice that our object is
a dot, so our image will also be a dot.
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By now you have realized that this is not as boring as it sounds if we considerQuestion
223.165.6any object can be considered as a collection of dots.

The Pont Neuf by Hippolyte Petitjean. Petitjean was a Pointillist, one who
painted with dots of paint instead of continuous application of paint. This
illustrates the thought that all objects can be though of collections of small
points that reflect or emit light. So we can consider an optical system by
considering individual points of light and how the system reacts to those

points of light. (Image in the Public Domain)

So we can consider anything as a collection of dots, and work out our formulas
for a dot (because it is easier to think about just one dot at a time).

Light enters at a spherical surface on the left hand side. We use a point
object located at S on the principal axis, and trace two rays. The ray along the
principal axis crosses each spherical surface at right angles, and therefore traves
straight through the optic. The second ray hits the first spherical surface at
point A. It is refracted and travels to point B. It is again refracted and travels
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toward the principal axis, crossing at P. The image location is the intersection
of these rays, so we have an image at P.

Lets study the surfaces separately

Surface 1:

We treat surface 1 as though surface 2 did not exist. After all, the light does
not know about surface 2 as it hits surface 1.

By considering surface 1 on its own, we have just our semi-infinite bump
problem, so we know that

n1
s
+

n2
s′
=
(n2 − n1)

R

We can consider n1 = 1 and n2 = n for an air-glass interface and noting
that s′1 is negative by our convention. Then

1

s1
− n

s′1
=
(n− 1)
R1

(16.4)

Note that our rays are not converging in the glass. We can find the image
formed by this surface 1 of our lens by tracing the diverging rays backward as
we did for the fish tank or magnifying glass. The image formed from the first
side of the lens is virtual.

Surface 2: Now consider the second surface.
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The second surface sees light diverging as though it came from a semi-infinite
piece of glass with the origin at P1. The virtual image formed by surface 1 serves
as the object for surface 2 because the diverging light is just the same pattern
as if there were a light source at P1. The distance from P1 to surface 2 is

s2 = s′1 + t

We again use our refractive equation for a semi-infinite bump

n1
s
+

n2
s′
=
(n2 − n1)

R

but we identify n1 = n and n2 = 1. We have for surface 2

n

s2
+
1

s′2
=
(1− n)

R2
(16.5)

or
n

s′1 + t
+
1

s′2
=
(1− n)

R2
(16.6)

Now we take our thin lens approximation. Let t → 0. Then equations 16.4
and 16.6 become

1

s1
− n

s′1
=
(n− 1)
R1

n

s1
+
1

s′2
=
(1− n)

R2

I would like a single equation that gives s′2 in terms of s1. That is the form
of the thin lens equation that we are looking for. Adding these two equations
can give me such an equation.

1

s1
− n

s′1
+

n

s′1
+
1

s′2
=
(n− 1)
R1

+
(1− n)

R2
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or
1

s1
+
1

s′2
= (n− 1)

�
1

R1
− 1

R2

�

This equation is very useful. If we again let s1 =∞ (put the object at ∞ so
the rays enter surface 1 parallel) we find

1

s′2
= (n− 1)

�
1

R1
− 1

R2

�

The spot where the rays gather if the object is infinitely far away is the focal
point, f, so we can identify s′2 = f as the focal length of the optic in this special
case.

Then we can identify

1

f
= (n− 1)

�
1

R1
− 1

R2

�

which is known as the lens makers’ equation. It gives us a way to make a
lens that will have a particular focal distance. You grind one side of the lens
to have a radius of curvature R1 and the other side to have radius of curvature
R2. Then with index n, you will have the focal length you desire.

We have a relationship between the object distance in front of the lens, and
the final image in back of the lens:

1

s1
+
1

s′2
= (n− 1)

�
1

R1
− 1

R2

�

=
1

f

If we drop the subscripts (which we can do now that we let t = 0 since the
internal distances for the inside points are not important) then.

1

s
+
1

s′
=
1

f

This is called the thin lens equation. The resulting approximate geometry is
shown below.
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Of course any real object is made of lots of points, but each point is imaged
in a corresponding point on the image

so, as we claimed earlier, our simple analysis explains the formation of actual
images and not just point images.

16.2.2 Sign Convention

We need to add to our sign convention table a second radius, and the focal
length.

Quantity Positive if Negative if

Object location (s) Object is in front of surface
Object is in back of surface

(virtual object)

Image location (s′)
Image is in back of surface

(real image)

Image is in front of surface

(virtual image)

Image height (h′) Image is upright Image is inverted

Radius (R1 and R2)
Center of curvature is in

back of surface

Center of curvature is in

front of surface

Focal length (f) Converging lens Diverging lens

Again the front surface is the surface that gets the light from the object.
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Note that each radius has a sign. If the two radii are the same magnitude,
it looks like

1

f
= (n− 1)

�
1

R1
− 1

R2

�

should be undefined (the focal length should be infinite) but usually that is not
true because either R1 or R2 will be negative.

16.2.3 Magnification

The image is not likely to be the same size as the object. We would like to have
a quantity that tells us how big the image is. The measure of choice is the ratio
of the two heights.

m =
h′

h
(16.7)

where h is the object height and h′ is the image height. Note that with our
sign convention, if m > 0 then the image is upright, and if m < 0 the image is
inverted (upside down).We call this ratio the magnification of the lens.

We can find an expression for the magnification in terms of s and s′. By
observing the figure, and using the ray that goes right through the middle of
the lens, we can see that

tan θ =
h

s
and

tan θ =
h′

s′

thus
h

s
=

h′

s′

then
s′

s
=

h′

h
which we can use to form a new equation for the magnification.

m = −s′

s
(16.8)
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16.3 Images formed by Mirrors

All of us have looked in a mirror at some time. We know what to expect. We see
an image of ourselves. To study mirrors we need to establish a sign convention
and some standard notation

In the figure above, we have a person observing an object O in a mirror. The
object is located at a distance s from the mirror. Just like with lenses, we
will call this the object distance. The image appears to be located at a point I
beyond the mirror a distance s′. This is the image distance.

It might be good to review how images are formed. Images are located at
a point from which rays of light diverge or at a point from which rays of light
appear to diverge. This only makes sense. If you remember how we see things,
our eyes intercept rays of light diverging from an object. So if we can create a
situation that makes rays diverge in the same way the object did, we will have
an image of the object.

Mirrors create what we have called virtual images because the image appears
to be created from diverging rays from behind the mirror, but if we look behind
the mirror no rays exist at the image location (if they did exist, they would not
make it through the mirror!).

16.3.1 Image from a Flat Mirror
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Let’s look at a simple image as shown in the figure above. The object (of
course) is an arrow. We could trace all the rays that diverge from this object
and build a very nice representation of the arrow2 but that would take time and
computation power. We only really need to use two rays, and remember what
the object looked like.

We pick one ray from the top of the arrow that travels straight to the mirror.
This ray will travel a distance s and bounce back. We pick a second ray from
point P that travels the path PR. This ray bounces off the mirror at an angle
θ. So it appears that the tip of the arrow is at position P ′ and the rays from
the tip appear to travel the paths P ′P and P ′R. Again, our visual processing
center in our brain interprets the rays as traveling in straight lines.

16.4 Mirror reversal

Look into a mirror. Raise your left hand. Your image raises what appears to
be a right hand. It looks like a mirror switches the left and right sides of the
image. But lie sideways on the ground in front of the mirror and raise a hand.
Your hand does not get inverted (and neither do your feet and head). What
is happening? A flat mirror performs a front-back reversal. What this means
is that, following the light direction, the object is positioned so that the back
is encountered first, then the front, but in the image the front of the image is
encountered first, then the back.

this has the effect of making it look like the left hand is raised when the object’s
right hand is raised.

16.4.1 Concave Mirrors

Concave mirrors can form images. I’m sure you know that many telescopes are
made with mirrors. We should see how this works. Let’s proceed like we did for

2Ray tracing-based computer graphics actually does this—the way movies like Toy Story
are made.
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lenses, but looking at what happens when light strikes the surface of the new
material, this time the mirror surface. First, lets look at rays that come from
very distant objects so they enter parallel to the optic axis. We recall the law
of reflection

θi = θr

Armed with this, we can see what would happen. Each ray has a different
normal due to the curvature of the mirror. The result is that the rays all meet
at a spot on the axis.

This is a focal point!

16.4.2 Paraxial Approximation for Mirrors

The correct shape of a mirror is more like a parabola, but parabolas are hard to
machine or build. Spherical shapes are relatively easy. So we often see spherical
mirrors just like we often see spherical lenses. This will work so long as we allow
only rays that make small angles with respect to the principal axis. We can see
why this works if we plot a sphere and a parabola (and a hyperbola). For small
deviations from the center, the shape of the functions all look alike.
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We would expect the reflections to be similar under these circumstances, so,
if we meet the criteria for the paraxial approximation, our spherical mirrors
should work. Note that when you need the entire mirror, say, in a communica-
tions antenna, you must do better than a spherical approximation to the correct
shape for your mirror.

Like with our flat mirror. we will measure distances from the mirror surface
(from point V ). We can find the image location by again taking two rays. One
convenient ray is the ray that passes through the center of curvature, C. This
ray will strike the mirror surface at right angles and bounce back along the same
path. Another convenient ray is the ray from the tip of the object to point V.
This ray will bounce back with angle θ. Where these two reflected rays cross,
we will find the image of the tip of our object (a tree this time, I got tired of
imaging arrows). Knowing the shape of the object and that the bottom is on
the axis, we can fill in the rest of the image.

We can calculate the magnification for this case. We use the gold triangle
to determine that

tan θ =
h

s
and the blue triangle to determine that

tan θ =
h′

s′

so we have

m =
h′

h
=
−s′ tan θ
s tan θ

= −s′

s
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We want to indicate that the image is inverted by making it’s sign negative. We
recall that h′ is negative if the image is inverted. So we added a negative sign
to make this fit with our sign convention.

16.4.3 Mirror Equation

We can further exploit this geometry to get a relationship between s, s′, and R.
Notice that

tanα =
h

s−R

and that

tanα =
−h′

R− s′

Then
h

s−R
=

−h′
R− s′

or
R− s′

s−R
= −h′

h

We can use our magnification definition to replace h′/h

R− s′

s−R
=

s′

s

we perform some algebra

(R− s′) s = s′ (s−R)

−s′s+Rs = ss′ −Rs′

Rs+Rs′ = ss′ + s′s

Rs+Rs′ = 2ss′

Rs′

Rss′
+

Rs

Rss′
=

2ss′

Rss′
1

s
+
1

s′
=

2

R

This is called the mirror equation.

16.4.4 Focal Point for Mirrors

Now that we know the mirror equation, let’s let s be very large. Then

1

s′
≈ 2

R

or

s′ ≈ R

2



230 CHAPTER 16. IMAGE FORMATION

Using the same logic as with the lens, we can identify this as the focal point,
F and the distance s′ in this case will be called the focal length, f. We see that

f =
R

2
(16.9)

so we can write the mirror equation as

1

s
+
1

s′
=
1

f
(16.10)

For a mirror, the value of f does not depend on the mirror material (this is
not true for refractive optics). Of course we have a sign convention, but it is
similar to the convention for lenses. Here is the convention for mirrors.

Quantity Positive if Negative if

Object location (s) Object is in front of surface
Object is in back of surface

(virtual object)

Image location (s′)
Image is in front of surface

(real image)

Image is in back of surface

(virtual image)

Image height (h′) Image is upright Image is inverted

Radius (R1 and R2)
Center of curvature is in

front of surface

Center of curvature is in

back of surface

Focal length (f) Concave mirror Convex mirror

Where the front is, as usual, the part of the mirror that receives the light first
from the object.

Notice that s′ is negative for virtual images as always.

16.4.5 Ray Diagrams for Mirrors

We have been drawing diagrams to find where images are formed for lenses, we
should do the same for mirrors. We use a similar set of three rays. These rays
are defined as follows:

Principal rays for a concave mirror:
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1. Ray 1 is drawn from the top of the object such that its reflected ray must
pass through f .

2. Ray 2 is drawn from the top of the object through the focal point to reflect
parallel to the principal axis.

3. Ray 3 is drawn from the top of the object through the center of curvature.
This ray will be incident on the mirror surface at a right angle and will
be reflected back on itself.

We can do the same for an object closer than a focal length

We also may have a mirror that curves, but curves the other way.
Principal rays for a convex mirror:

1. Ray 1 is drawn from the top of the object such that its reflected ray
appears to have come from f .

2. Ray 2 is drawn from the top of the object to reflect parallel to the principal
axis.
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3. Ray 3 is drawn from the top of the object so that it appears to have
come from the center of curvature. This ray will be incident on the mirror
surface at a right angle and will be reflected back on itself.

16.4.6 Spherical Aberration

Spherical shapes are easier to make than parabolas or hyperbole, or other shapes.
So optics manufacturers have been using spherical optics for centuries.

If we let rays converge from any direction from our spherical mirror we find
we have a problem. The rays do not form a single image. Instead, they converge
on a volume near where the image should be. Rays from larger angles converge
at different distances than rays from small angles. This problem is known as
spherical aberration. Most of the time, we will point our optics so the object is
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near the principal axis, so we can make the paraxial approximation that fixes
this problem.

The same problem happens with lenses

This problem is called spherical aberration and it was made famous as the
main problem with the Hubble Telescope.

There are many aberrations that come from making lenses that are easy to
manufacture, but that are not the perfect shape. We won’t study these in this
class. If you are curious, we cover these in PH375.

Just a note, we have run into another aberration, chromatic aberration,
before. Mirrors in optical systems don’t experience chromatic aberration. this
is because mirrors in optical systems don’t include a glass layer in front of the
reflective surface like mirrors in your bathroom do. That glass is to protect the
reflective surface from damage due to water (or toothpaste, etc.). In an optical
system, this glass layer would cause unwanted reflection and absorption of the
light, so it is not included. So mirrors don’t have any refraction associated with
them. This means that there will be no dispersion from a mirror.
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Chapter 17

Optical systems

Fundamental Concepts

17.1 Combinations of lenses

So far we have only used one lens or mirror at a time. But most optical systems
are made from several lenses or mirrors (or a combination of both lenses and
mirrors). We should think about how lenses work together to form optical
systems like telescopes or microscopes or even compound camera lenses.

To combine lenses, we do the same thing we did for the two surfaces of a
thin lens. We form the image from the first lens as though the second lens is not
there. Then we use the image from the first lens as the object for the second
lens. Suppose we take two lenses of focal lengths f1 and f2 and place them a
distance d apart.

Because this system would use a magnified image as the object for lens 2,
the final magnification is the product of the two lens magnifications

Mcombined =M1M2 (17.1)
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Let’s see that this must be true

M1 = −
s′1
s1
=

h′1
h

and

M2 = −
s′2
s2
=

h′2
h′1

then

M1M2 =
h′1
h

h′2
h′1
=

h′2
h

which is what we mean when we give the magnification of the optical system.
We compare the output image size with the original object size.

It is a little more complicated to show where the final image will be. For the
first lens we have

1

s1
+
1

s′1
=
1

f1
(17.2)

where s′1 is our first lens image distance. We can solve for s′1

s′1 =
s1f1

s1 − f1
(17.3)

We then take as the second object distance

s2 = d− s′1

we use the lens formula again.

1

s2
+
1

s′2
=
1

f2

and again find the image distance

s′2 =
s2f2

s2 − f2

but we can use our value of s2 to find

s′2 =
(d− s′1) f2
(d− s′1)− f2

=
(d− s′1) f2
d− s′1 − f2

We have and expression relating the image distances, d and f2. But we would
really like to have an expression that relates s1 and s′2. Lets use

s′1 =
s1f1

s1 − f1
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and substitute it into our expression for s′2

s′2 =

�
d− s1f1

s1−f1

�
f2

d− s1f1
s1−f1

− f2

This looks messy, but we can do some simplification

s′2 =
df2 − s1f1f2

s1−f1

d− f2 − s1f1
s1−f1

(17.4)

Well, it is still a little messy, but we have achieved our goal. We have s′2 in
therms of the focal lengths, d, and s1.

Suppose we let d→ 0. Then

s′2 =
−s1f1f2

s1−f1

−f2 − s1f1
s1−f1

=

s1f1f2
s1−f1

f2(s1−f1)
s1−f1

+ s1f1
s1−f1

=
s1f1f2

f2s1 − f2f1 + s1f1

=
s1f1f2

s1 (f2 + f1)− f2f1

So

s′2 =
s1f1f2

s1 (f2 + f1)− f2f1

Lets undo the math that brought us s′2 in the first place

1

s′2
=

s1 (f2 + f1)− f2f1
s1f1f2

=
s1 (f2 + f1)

s1f1f2
− f2f1

s1f1f2

=
(f2 + f1)

f1f2
− 1

s1

or
1

s′2
+
1

s1
=
(f2 + f1)

f1f2

Which looks very like the lens formula with

1

f
=
(f2 + f1)

f1f2

If we unwind this expression, we find

1

f
=

f2
f1f2

+
f1
f1f2
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1

f
=
1

f1
+
1

f2
(17.5)

This is how we combine thin lenses. We see that the two lenses are equivalent
to a single lens with focal length f as long as they are close together.

Of course, we had to place our lenses right next to each other for this to
work. This is not the case for a telescope or microscope. We should look at
such a case. There is no need for more math. We can go back to equation
(17.4).

s′2 =
df2 − s1f1f2

s1−f1

d− f2 − s1f1
s1−f1

But let’s look at a case using ray diagrams. For this case, let’s take two lenses,
and let’s have the first lens make a real image. Once again, let’s have that image
be the object for the second lens. But this time, let’s move the second lens so
that the image from the first lens (object for the second lens) is closer to the
second lens than f2. If that is the case, the second lens works like a magnifier.
The final image is enlarged.

17.2 The Camera

in 1900 George Eastman introduced the Brownie Camera. This event has
changed society dramatically. The idea behind a camera is very simple.
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The camera has a lens (often a compound lens like the ones we have just
discussed) and a screen for projecting a real image created by the lens.

Let’s take an example camera. Say we wish to take a picture of Aunt Sally.
Aunt Sally is about 1. 5m tall. She is standing about 5m away. Then to fit the
image of Aunt Sally on our 35mm detector, we must have

h = 1.5m
h′ = 0.035m
s = 5m
f = 0.058m

We wish to find s′ and m. Let’s do m first.

m =
h′

h
=
−0.035m
1.5m

= −2. 333 3× 10−2

so our image is small and inverted. The small size we wanted. But now we
know that the image in our cameras is upside down. A digital camera uses it’s
built-in computer to turn the image right side up for us on the display on the
back of the camera.

Now let’s find s′.

s′ =
fs

s− f

= 5. 868 1× 10−2m
= 58.681mm

so our detector must be 58.681mm from the lens.
Now suppose we want to photograph a 1000m tower from 2 km away. Then

m = −0.035m
1000m

= −3. 5× 10−5

and

s′ =
(0.058m) (2000m)

2000m− (0.058m)
= 5. 800 2× 10−2m
= 58.002mm

Notice that the image distance changed, but not by very much. This is why
you need a focus adjustment on the lens of a good camera. Objects far away
require a different s′ value than objects that are close. Usually you twist the lens
housing to make this adjustment. The lens housing has a threaded screw system
that increases or decreases s′ as you twist. Cell phones and consumer cameras
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often have an motor that makes this adjustment for you. In some cameras you
may see the lens move back and forth as someone takes a picture.

There are several things that govern whether a picture will be good. When
you buy a quality manual lens, it will be marked in f#s. The specification of
an automatic lens will be given in terms of f/#s. To help us buy such lenses,
we should understand what the terminology means.

Most things we want to take a snapshot of are much farther than 58mm
from the camera. For such objects we can revisit the magnification.

m = −s′

s

but from the thin lens formula

1

s
+
1

s′
=
1

f

If s≫ f then we can say that 1/s ≈ 0 and so s′ ≈ f. Then

m = −f

s

and we see that the size of the image is directly proportional to the focal distance.
If we change the focal distance, we can change the size of the image. This is
how a zoom lens works. A zoom lens is a compound lens, and the focal length is
changed by increasing the distance between the component lenses. This is what
your camera is doing when it zooms in and out when you push the telephoto
button.

Remember we studied intensity

I =
P

A

Photographic film and digital focal plane arrays detect the intensity of light
falling on them. We can see that the area of our image depends on our mag-
nification, which depends on s′ and for our distant objects it is proportional to
f. The image area is proportional to s′2 ≈ f2. So we can say that the area is
proportional to f2. Then

I ∝ P

f2

The power entering the camera is proportional to the size of the aperture (hole
the light goes through). A bigger aperture lets in more light. A smaller aperture
lets in less light. If the camera has a circular opening, this area is proportional
to the square of the diameter of the opening, D2 so

I ∝ D2

f2

This ratio is useful because it gives us a relative measure of how much intensity
we get in terms of things we can easily know. Good cameras have changeable
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aperture sizes, and good lenses have changeable focal lengths. By using the
combination of these two terms, we can ensure we will get enough light (but not
too much) when we take the picture.

It would be good to give this ratio a special name. But instead, we named
the ratio

f/# ≡ f

D
(17.6)

It is called the f/# (pronounced f-number) so

I ∝ 1

(f/#)2
(17.7)

So good cameras have adjustable lens systems marked in f/#′s. Typical values
are f/2.8, f/4, f/5.6, f/8, f/11, and f/16. Notice that since I is proportional

to (1/f/#)2 these common f/# values give an increase of intensity of a factor
of 2 each time you change the f/# by one marked stop.

f/# change Intensity change factor
f/11 to f/8 2
f/8 to f/5.6 2
f/5.6 to f/4 2
f/4 to 4f/2.8 2

This terminology is used for telescope design as well. The Hubble telescope is
an f/24 Ritchey-Chretien Cassegrainian system with a 2.4m diameter aperture.
The effective focal length is 57.6m.

It is important to realize that electronic (and biological) sensors don’t react
instantly to what we see. The intensity is

I =
P

A
=
∆E

∆tA
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so there is a time involved. The time it takes to collect enough light to form an
image on the sensor is called the exposure time.

∆t =
∆E

IA

So changing our f/# changes the needed exposure time by changing the inten-
sity. How sensitive our camera sensor is also affects the exposure time. Modern
sensors have adjustable sensitivity. The photography world gives the three let-
ters ISO for the name for this detector sensitivity. There isn’t a standard for
exactly what ISO setting gives what exposure. Different manufacturers use
slightly different numbers. But a change in ISO settings usually are equivalent
to one f/# change in exposure.

This is part of what a good photographer does in taking a picture. The
photographer will adjust the f/# and the exposure time and ISO to get a
photograph that is not too exposed (too light) or underexposed (to dark).



Chapter 18

Eyes and magnifiers

Fundamental Concepts

• Angular magnification compares the apparent size of an image with and
without an optical system.

• The power of a lens is measured in Dipopters which are defined to be
1/f (m)

• Compound magnifiers use an objective lens to form an image, and an
eyepiece to magnify the image.

18.1 The Eye

The figure above shows the parts of the eye. The eye is like a camera in
its operation, but is much more complex. It is truly a marvel. The parts that
concern us in this class are the cornea, crystalline lens, pupil, and the retina.
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Details of the eye (more than we need in our class). Image courtesy of the US

National Institutes of Health. (Image in the Public Domain)

The Cornea-lens system refracts the light onto the retina, which detects the
light. The lens is focused by a set of mussels that flatten the lens to change
it’s focal length. The focusing process is different from a standard camera. The
camera moves the lens to achieve a different image distance. Our eye can’t
change the distance between the lens system and the retina. So our eye changes
the shape of the lens, changing it’s focal length.

The crystaline lens becomes thicker, and therefore more curved when the cilliary

musscle flexes. Austin Flint, “The Eye as an Optical Instrument,” Popular Science

Monthly, Vol. 45, p203, 1894 (Image in the public domain)

The focusing system is called accommodation. This system becomes less
effective at about 40 because the lens becomes less flexible. The closest point
that can be focused by accommodation is called the near point. It is about
25 cm on average. There is, of course, no such thing as an average person. All
of us are a little bit different. You young students probably have a much shorter
near point than 25 cm. For those of us that are a little older, 25 cm or more is
more likely.
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The farthest point that can be focused is ideally a long way away. It is
called the far point. Both the near and far points degrade with years leading to
bifocals.

The iris changes the area of the pupil (the aperture of the eye). The pupil
is, on average, about 7mm in diameter.

18.1.1 Nearsightedness

In some people the cornea-lens system focuses in front of the retina. This is
called nearsightedness or myopia. This is usually because the eye, itself, is
elongated into the eye socket, so the retina is too far away from the lens system.

18.1.2 Farsightedness

Sometimes the cornea-lens system does not focus quickly enough so the focus
point is in back of the retina. This is often caused by the eye socket being too
shallow so the retina is not far enough away from the lens system. This is called
farsightedness or hyperopia. It is corrected with a converging lens
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18.1.3 Diopters

Eye glass perscriptions use a different unit of measure to describe how they bend
light. The unit is the diopter and it is equal one over the focal length

diopter =
1

f (m)
(18.1)

18.1.4 Color Perception

The eye detects different colors. The respecters called cones can detect red,
green, and blue light.

The eye combines the red, green, and blue response to allow us to perceive many
different colors.

Most digital cameras also have red, green, and, blue pixels to provide color
to images. The detectors in digital cameras are often have much narrower
frequency bands than the eye. Likewise, television displays and monitors have
red, green, and blue pixels. By targeting the eye receptors, power need not be
wasted in creating light that is not detected well by the eye. The difference in
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band width can cause problems in color mixing. Yellow school busses (perceived
as different amounts of green and red light) may be reddish or green if the
bandwidths are chosen poorly.

The science of human visual perception of imagery is called image science.
There are many applications for this field, from forensics to intelligence gather-
ing.

18.2 Optical Systems that Magnify

Magnification is so useful to scientists and engineers that we have designed
many optical systems to do this job. We will look at three basic types, the
simple magnifier, the microscopetelescope, and the telescope.

18.2.1 Simple Magnifier

You may have noticed that, so far, when we say “magnification” we are defining
it in a way that is different than every-day usage of the word. We defined
magnification to be how big the image is compared to how big the object is.
But in every-day speech, magnification means how big the image is using a
lens or optical system compared to how big it looks without the lens or optical
system. We will call this kind of magnification the angular magnification.

We already encountered the simple magnifier when we studied ray diagrams.
Let’s use the simple magnifier to define angular magnification. To understand
angular magnification, we can use what we know about easy rays to draw the
rays that go straight through the lens of the eye. If we pick a ray from the top
of our object that goes through the center of the lens, that ray won’t seem to
change direction at all. It will hit the retina to form the top of the image of
the object. We can do the same for the bottom of the object. Then we can see
from the next figure

that the angle θo subtends both the object and the image of the object. If the

angle increases, so does the size of the image on the retina.
If we move the object closer, θo increases, and so does the size of the image.

When we get to about 25 cm, we reach the limit of the eye for focusing. If we
move the object any closer, it will appear fuzzy. We called this position, the
closest point where we can place an object and still bring it into focus with our
eye, the near point. Thus the maximum value of θo will be at the near point for
unaided viewing.

But suppose we want to see this object in more detail. We can use a magni-
fying glass. If we place the object closer to the magnifying glass than the focal



248 CHAPTER 18. EYES AND MAGNIFIERS

Figure 18.1:

Figure 18.2:

distance (s < f), then (lower part of the figure) we have a virtual image with
magnification

m =
−s′
s

(18.2)

which is larger than one and positive (because s′ is negative).
But what we really want to know is how much bigger the image looks with

the lens than it did without the lens. We define the angular magnification to
do this job.

M =
θ

θo
(18.3)

This is the ratio of the image sizes with and without the magnifier lens.
This is really different than the magnification we have studied before. The

magnification we have been using compared the size of the image with the size of
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the object. So, the angular magnification compares how big the object seems to
be with and without a lens or lens system. We can think of this as a comparison
between the size of the real image on the retina formed with just our eye, and
the one formed with the magnifier.

If the virtual image formed is farther than the near point of the eye, (s′ >
˜25 cm) it will seem smaller than it would be at the near point because it is
farther away. If the virtual image is closer than the near point, it will be fuzzy
because the eye cannot focus closer than the near point. Thus, the value of M
will be maximum when s′ is at the near point of the eye. We can find where
to place the image so that we get maximum magnification. Taking just the
magnifier,

1

s
+
1

s′
=

1

f
1

s
+

1

−25 cm =
1

f

and
1

s
=
−25 cm− f

−f (25 cm)
or

s =
(25 cm) f

25 cm + f
(18.4)

Returning to figure (18.2). Note that the person has adjusted her viewpoint
so the ray that passes through the middle of the lens also passes through the
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middle of her eye lens (cornea). So the angle θ in the figure is also the angle
that subtends the image on her retina. This was nice of her because it makes
our math easier. Using small angle approximations, we can write

tan θo =
h

25 cm
≈ θo

and

tan θ ≈ h

s
≈ θ

then the maximum angular magnification is

mmax =
θ

θo
=

h
s
h

25 cm

=
25 cm
25 cmf
25 cm+f

=
25 cm+ f

f

= 1 +
25 cm

f

We can also find the minimum magnification by letting s be at f. This gives

θ =
h

f

mmin =
θ

θo
=

h
f

h
25 cm

=
25 cm

f

When you use a magnifying glass, notice that you move the lens back and forth
between these extremes until you can see the level of detail you want.

But the idea of a magnifier is more than just seeing the details small objects.
We use the idea of a simple magnifier in combination with other lenses to make
the magnification happen in telescopes, microscopes, and other instruments that
magnify.

18.2.2 The Microscope

To see things that are very small, we add another lens to our simple magnifier.
We will place this lens near the object. Since this new lens is near the object,
let’s give it the name objective lens or just objective. We gwill keep a simple
magnifier and place it near the eye. Since our simple magnifier is near our eye,
let’s call it the eyepiece.
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The objective will have a very short focal length. The eyepiece will have a
longer focal length (a few centimeters).

We separate the lenses by a distance L where

L > fo

L > fe

We place the object just outside the focal point of the objective. The image
formed by the objective lens is then real and inverted. We use this image as the
object for the eyepiece. The image formed is upright and virtual, but it looks
upside down because the object for the eyepiece (first image for the objective)
is upside down.

The magnification of the first lens is

mo =
−s′1
s1

≈ − L

f1

because s1 ≈ f1. and s′1 ≈ L The magnification of the eyepiece is just that of a
simple magnifier when the object is placed at the focal point f1

me =
−s′2
s2

≈ 25 cm

f2
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The combined magnification is

m = mome = −
L

f1

25 cm

f2
(18.5)

this is the minimum magnification.

18.3 Telescopes

There are two types of telescopes refracting and reflecting. We will study re-
fracting telescopes first.

18.3.1 Refracting Telescopes

Like the microscope, we combine two lenses and call one the objective and the
other the eyepiece. The eyepiece again plays the role of a simple magnifier,
magnifying the image produced by the objective.

We again form a real, inverted image with the objective. We are now looking
at distant objects, so the image distance s′o ≈ fo. We use the image from the
objective as the object for the eyepiece. The eye piece forms an upright virtual
image (that looks inverted because the object for the eyepiece is the image from
the objective, and the real image from the objective is inverted). The largest
magnification is when the rays exit the eyepiece parallel to the principal axis.
Then the image from the eyepiece is formed at infinity (but it is very big, so it
is easy to see). This gives a lens separation of fo+ fe which will be roughly the
length of the telescope tube.

The angular magnification will be

M =
θ

θo
(18.6)

where θo is the angle subtended by the object at the objective. That is the
angle we would have with no lenses and just our eye, because it is the angle



18.3. TELESCOPES 253

subtended by the object without the optical system. The angle θ is subtended
by the final image at the viewer’s eye using the optical system. Consider so is
very large. We see from the figure that

tan θo = −
h′

fo
(18.7)

and with so large we can use small angles.

θo = −
h′

fo
(18.8)

The angle θ will be the angle formed by rays bent by the lens of the eye.
This angle will be the same as the angle formed by a ray traveling from the tip
of the first image and traveling parallel to the principal axis. This ray is bent
by the objective to pass through fe. Then

tan θ =
h′

fe
≈ θ (18.9)

A good extimate for the magnification is then

m =
θ

θo
=

h′

fe

−h′

fo

= −fo

fe
(18.10)

18.3.2 Reflecting Telescopes

Reflecting telescopes use a series of mirrors to replace the objective lens. Usu-
ally, there is an eyepiece that is refractive (although there need not be, radio
frequency telescopes rarely have refractive pieces).
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There are two reasons to build reflective telescopes. The first is that reflec-
tive optics do not suffer from chromatic aberration. The second is that large
mirrors are much easier to make and mount than refractive optics. The Keck
Observatory in Hawaii has a 10m reflective system. The largest refractive sys-
tem is a 1m system. The Hubble telescope has a 2.5m aperture.

The telescope pictured in the figure is a Newtonian, named after Newton,
who designed this focus mechanism. Many other designs exist. Popular designs
for space applications include the Cassegrain telescope.

The rough design of a reflective telescope can be worked out using refractive
pieces, then the rough details of the reflective optics can be formed.
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Resolution and Charge

Fundamental Concepts

• Two points can be distinguished when imaged if their angular separation
is a minimum of θmin = 1.22

λ
D

• There is a property of matter called “charge.”

• There seem to be two types of charges, called “positive” and “negative.”

19.1 Resolution

We have emphasized that an extended object can be viewed as a collection of
point objects. Then the image is formed from the collection if images of those
point objects. It would be great if optical systems could form images with
infinite precision—that is, the image of a point object would be a point image.
The fact that light acts as a wave prevents this from being true. The quality
of our image depends on how poorly a point object is imaged. If each point
object makes a large circle of light on the screen or detector array, we get a very
confusing image (it will look blurry to us).1 Let’s see why this will happen so
we can know how to minimize the effect.

We already know that if we take light and pass it through a single slit, we
get an intensity pattern that has a central bright region.

1 In Fourier Optics, the intensity pattern that comes from imaging a single point is called
a point spread function because it shows how spread out the light from a single point will be.
In mechanical engineering, we might call this an impulse response function. It is the same
idea applied to optics.
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Remember that normal objects will be made up of many small points of light
(either due to reflection or glowing) and each of these will form such an intensity
pattern on a screen. Here is a bright point source that is not on the axis, and
we see that it too makes a bright spot on the screen (and smaller bright spots
or rings, depending on the shape of the aperture)

So our images will be made up of many central bright spots, each of which
represents a point of light from the object. These central bright spots may
overlap, (and their secondary maxima certainly will overlap).

Let’s take a simple case of two points of light, S1 and S2. If we take a single
slit and pass light from two distant point sources through the slit, we do not get
two sharp images of the point sources. Instead, we get two diffraction patterns.



19.1. RESOLUTION 257

If these patterns are formed sufficiently far from each other, it is easy to tell
they were formed from two distinct objects. Each point became a small blur,
but that is really not so bad. We can still tell that the two blurs came from
different sources. If our pixel size is about the same size of the blur, we won’t
even notice the blurriness in the digital imagery.

But if the patterns are formed close to each other, it gets hard to tell whether
they were formed from two objects or one bright object. We now have a problem.
Suppose you are trying to look at a star and see if it has a planet. But all you
can see is a blur. You can’t tell if there is one source of light or two.
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Long ago an early researcher titled Lord Rayleigh developed a test to deter-
mine if you can distinguish between two diffraction patterns.

When the central maximum of one point’s image falls on the first
minimum of anther point’s image, the images are said to be just
resolved.

This test is known as Rayleigh’s criterion.
We can find the required separation for a slit. Remember that

sin (θ) = m
λ

a
m = ±1,±2,±3 . . . (19.1)

gives the minima. We want the first minimum, so

sin (θ) =
λ

a
(19.2)

If we place the second image maximum so it is just at this location, the two
images will be just barely resolvable. In the small angle approximation, sin (θ) ≈
θ so

θmin =
λ

a
(19.3)

Now you may be saying to yourself that you don’t often take pictures through
single illuminated slits, so this is nice, but not really very interesting.

Suppose, instead, that we image a circular aperture. Again, we won’t go
through all the math (there are Bessel functions involved) but the criterion
becomes

θmin = 1.22
λ

D
(19.4)

where D is the aperture diameter.
Still, you may say, I don’t like pictures taken through small circles any better

than through small slits! Yet, in fact, you do. Most cameras have circular
apertures. The light that passes into your phone camera must pass though the
circular lens. For that matter, the pupil of our eye is a circular aperture. So
most images we see are made using circular apertures.

The Rayleigh criteria tells you, based on your camera aperture size, how a
point source will be imaged on the film or sensor array. If we consider extended
sources (like your favorite car or Aunt Matilda) to be collections of many point
sources, then we have a way to tell what features will be clearly resolved on the
image and what features will not (like you may not be able to see the lettering
on the car to tell what model it is, or you may not be able to distinguish between
the gem stones in Aunt Matilda’s necklace because the image is too blurry to
see these features clearly).Question 223.19.2

In the next three figures you can see two easily resolved intensity patterns,
then two that can be resolved using Rayleigh’s criterion, and finally a more
modern astronomical resolution criterion made by a researcher called Sparrow.
Finally there is figure with two intensity patterns that would not be resolvable
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(would look like just one point of light).
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Pattern from two circular sources.
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Rayleigh Criteria: Pattern from two circular soruces where the sources are close

enough that the maximum from one pattern is placed on the minimum of the other.

Lord Rayleigh gave this as the criteria for just barily being resolved.
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Sparrow Criteria: This is a less concervative resolution criteria than Rayleigh.
When the intenisty pattern is flat on the top, there must be two sources. This

criterial is used in astronomy.
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Two circular sorces unresolved.

Here are our four cases again but with pictures that show what you would see
in an image of the two light sources for each criterion.

From our equation we can see that we have better resolution if D is bigger.
This is why professional photographers use large lenses and not their cell phones.
The cell phone cameras have apertures that are a few millimeters. Typical
professional cameras have 67mm apertures. We can see that for a cell phone
the angle for minimal resolution is about

θmin = 1.22
500nm

3mm
= 2. 033 3× 10−4 rad

For the professional lens, the minimum resolution is about

θmin = 1.22
500nm

67mm
= 9. 104 5× 10−6 rad

That is a whopping factor of 22 better resolution. If you need to find a small
crack in a structure, or if you want to print a wall sized portrait of your Aunt
Miltilda, the extra resolution might be necessary for your application.

19.2 Charge model

So far we have claimed that light is a wave in an electromagnetic field. We talked
about light waves being made in the electromagnetic field by moving charges.
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But we have not proved it this to be the case. We will find that it will take the
rest of the semester to do so! We ned to start by looking at charge and what
makes charges move.

But let’s think about this conceptually and see if we can motivate our study.
We know that there is an electromagnetic spectrum, and that visible light is

just a small part of that spectrum. Radio waves are also part of the spectrum
of light. Question 223.19.3

PHET Radio
Wave Applet

And we should review, how are radio waves produced? We know electricity
is involved.

The answer is that charged particles, like the electrons flowing through the
antenna of our radio station, create an electromagnetic field. That field is drug
along when the electrons move in the antenna. If we make the electrons oscillate,
we can make waves in the field. This is much like having a 3rd grade class all
hold the edges of a parachute and having the 3rd graders jump up and down.
Waves are made in the parachute.

But what is charge? How do we know there are such things as charged
particles?

That is the subject we will take up next. Then we will study the motion and
actions of these charged particles. Finally we will show that the fields made by
charged particles can act as a medium for waves, and that there is good evidence
that those waves exist.

19.2.1 Evidence of Charge

Let’s start with something we all know. Let’s rub a balloon in someone’s hair.
If we do this we will find that the balloon sticks to the wall. Why? Baloon and 2 by 4

demo

Balloon on wall
demo
Comb and bits of
paper demo

We say the balloon and comb have become charged. What does this mean?
We will have to investigate this more as we learn more about how matter is
structured, but for now let’s assume charge is some property that provides this
phenomena we have observed with the balloon (i.e. it sticks to the wall). Now
lets try rubbing other things. We could rub two rubber or plastic rods.

Glass and Rubber
Rod Demo
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Two charged rubber rods are placed close together. The rods repel each other.

and we could also rub two glass rods
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Notice that in each case we have created a force between the two rods. The
rods now repel each other.

Now let’s try a glass and a rubber rod

Now the two different rods attract each other.
Notice that in our demo, rods that are the same repel and rods that are

different attract. We make the intellectual leap that the different rods have
different charges. So we are really saying:

1. There are two types of charge.

2. Charges that are the same repel one another and charges that are different

attract one another.

3. Friction seems to produce charge, but you have to rub the right materials

together.

We will call the rubber or plastic rod charges negative and the glass rod
charges positive but the choice is arbitrary. Ben Franklin is credited with making
the choice of names. He really did not know much about charge, so he just picked
two names (we will see that in some ways his choice was somewhat unfortunate,
but hay, he was an early researcher who helped us understand much about
charge , so we will give him a break!).

19.2.2 Types of Charge

We now have reason to believe that there are at least two types of charge, one
for rubber and one for glass. But are there more?
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Let’s start by introducing a new object, only this time we won’t rub it with
anything.emo

Now this is strange. The new item is attracted to both rods! What is going
on? Have we discovered a new type of charge, one that attracts the other two
types we have found?

Maybe, but maybe the explanation of this phenomena is a little different.
To understand this, let’s consider how charge moves around. Question 223.19.4

Question 223.19.5

19.2.3 Movement of Charge

One of the strange things about charge is that it is quantized. We learned this
word in when we found that only certain standing waves could be formed be-
tween boundaries. We are using this word in a similar way now. It means that
charge has a smallest unit, and that it only comes in whole number multiples of
that unit. Charge comes in a basic amount that can’t be divided into smaller
amounts. So like our standing wave frequencies, only certain amounts are pos-
sible As far as we know, the smallest amount of charge possible is the electron
charge.2 This charge we will call negative. We say that the electron is the
principle charge carrier for negative charge. This fundamental unit of charge
was found to be about

e = 1.60219× 10−19C (19.5)

where the C stands for Coulomb, the SI unit of charge.
Any larger charge must be a multiple of this fundamental charge

Q = n× e (19.6)

The proton is the principle charge carrier for positive charge. From chem-
istry, you know protons are located in the nucleus of an atom, along with the
neutron. In the Bohr model of the atom, the nucleus is surrounded by a cloud
of electrons. The proton has the same amount charge as the electron (e), but is
opposite in sign.

In a gram of mater, there are many, many, units of charge. There are about
5. 012 5 × 1022 carbon atoms in one gram of carbon. Each carbon atom has
twelve protons and about twelve electrons. That is a lot of charge! But notice
that the net charge is zero (or very close to it!). It is common for most mater
to have zero net charge.

As far as we know, charge is always conserved. We can create charge, but
only in plus or minus pairs, so the net charge does not change. We can destroy
charge, but we end up destroying both a positive and a negative charge at the
same time. The net charge in the universe does not seem to change much. So
when something becomes charged, we expect to find that the charge has come
from another object.

2 I am not counting quarks here, which have a charge of 1
3
or 2

3
of the basic electron charge.

But still, 1
3
of the basic electron charge seems to be a real fundamental unit for quark based

particles. And quarks aren’t stable on their own, so we never see fractional charge in nature.
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Lets go back to our rubber rod and glass rod demo. We rubbed the rod that
was in our hand, but where did the charge come from? We believe that we are
moving charge carriers (usually electrons) from one object to another, stripping
them from their atoms. This happens when we use friction (rubbing) to charge
the rods.

But what about our object that we did not rub, or our paper (we did not rub
the bits of paper). We believe that charge can move, that is why scientists looked
for and found charge carriers. Even in an atom, if I bring a charged object near
the atom then the negative charge carriers (electrons) will experience a force
directed away from the charged object, and the positively charged nucleus will
experience a force pulling toward the charge object
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Notice that the electrons and the nucleus will attract each other, so the atom
won’t split apart. But it will become positively charged on one side because there
are more positive charge carriers on that side. It will become more negatively
charged on the other side, because there are more negative charge carriers on
that side. We could draw the atom like this (figure 19.1)The force due to charge

-+ -+

Figure 19.1: Polarized Atom

depends on how far away the charges are from each other. The attractive force
between the positively charged side of the atom and the negative rod will have
a stronger force than the negatively charged side of the atom and negatively
charged rod will experience because the negative side if farther away. We will
say that the atom has become polarized.
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The positive side will experience an attractive force. The negative side will
experience a repelling force. The net force due to the charge will be an attractive
force. The atom will be accelerated toward the rod! We have seen something
like this before. Remember an object in a fluid experiences a downward pressure
force on the top, and an upward pressure force on the bottom. The pressure
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force is larger on the bottom, so there is an upward Buoyant force. The case
with our polarized atom is very similar. We have a net electrical attractive
force.
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Now suppose we have lots of atoms (like our uncharged object or our bits of
paper). Will they be attracted to the rod? Yes!

How about if we use a glass rod?
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Everything is the same, only we switch the signs. The glass rod is positively
charged. It will attract the electrons, and repel the nucleus. The atom becomes
charged. The net force is attractive (positive rod and closer negative side of the
atom)

We sometimes call the separation of charge in an insulator polarization.

19.2.4 Flow of Charge

Let’s start by introducing a new object, a salt shaker (my salt shaker is glass
with a metal top). We will rub the salt shaker and see if it gets charged by
placing it next to our charged rods. Salt Shaker Demo

Now this is strange. We rubbed the object, but it was attracted to both
rods as if there were no charge. We know glass can be charged. What is the
problem? Question 223.19.6

It turns out that some materials allow charge carriers to flow through them.
Our experience with the lighting in our house might suggest that metals will do
this. Let’s try some other metal objects and see what we find. Metal Demo

It seems that the atoms are not maintaining a charge separation in these
metal atoms! Some materials allow charge carriers to move through them.
Usually these materials are metals, but most materials will allow some charge
to go through them-even you-which is what is happening in this case. I charge
the rod, but the charge leaves through my body. Other materials resist the flow
of charge. Materials that allow charge to flow are called conductors. Materials
that resist the flow of charge are called insulators.

19.2.5 Charging by Induction

Knowing that charge carriers can flow though a material, we can think of a way
to charge a conductor. Lets suspend a conducting rod.
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It is not initially "charged" meaning that it has the same number of positive
charges and negative charges, and they are evenly mixed together. I will bring
a charged rod next to it.
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but let’s attach a wire to the other end of the rod to allow the charge to flow
away from our conducting rod. We will connect the rod to the ground (in this
case, to a water pipe) because the ground seems to be able to accept large
amounts of charge carriers. So the charge carriers will flow to the ground.

-
-

-

-
--

-
-

-
- -

-
-

-
--

-
-

-
--

-
+
+
+

+
+
++

+
+
++

+
+
++

+
+
++

-
-

-

-
-

-
-

-
-

-

-

-
-

---+

-

-
-

-
--

-
-

-
--

-
-

-
- -

-
-

-
--

-
-

-
--

-
+
+
+

+
+
++

+
+
++

+
+
++

+
+
++

-
-

-

-
-

-
-

-
-

-

-

-
-

---+
-
-

-

-
--

-
-

-
- -

-
-

-
--

-
-

-
--

-
+
+
+

+
+
++

+
+
++

+
+
++

+
+
++

-
-

-

-
-

-
-

-
-

-

-

-
-

---+

-

-
-

-
-

Figure 19.2:

(The strange little triangular striped thing is the electronics sign for a con-
nection to the ground)

Now let’s disconnect the wire from the rod. Is there a net charge on the
conducting rod?

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

-
-

- - -+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

+
+
++

-
-

- - -

The answer is yes, because we now have more positive charges in the conducting
rod than we have negative charges, so the net charge is positive.

19.2.6 Charging by Conduction

Suppose instead, I perform the same experiment, but I touch the rods. Now
charge carriers can flow. Starting with and uncharged conductor,
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I again bring in a charged rod. Again the charges separate in our conducting
rod.
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Then we touch the two rods. The excess charge on our charged rod flows to the
conductor. Since in our drawing, the excess charge is negative, then some of the
positive charge on the conductor is neutralized.
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When we separate the rods, our conducting rod will have an excess of negativeTake home lab
assignment (using
Scotch Brand
Tape)

charge.

+ +

+
+

+
+

+
-
-

-

-
--

-
-

-
- -

-
-

-
--

-
-

-
--

-

+ +

+
+

+
+

+
-
-

-

-
--

-
-

-
- -

-
-

-
--

-
-

-
--

-

Notice that there is something different in our study of this new force. In
the past, it was easy to tell which object was creating the environment and
which was the mover. The Earth, being so much larger than normal objects,
was the environmental object creating the gravitational acceleration that balls
and cars and people move it. Then the balls and cars and people were the
movers. Generally the thing causing the force, the environmental object, was
much bigger than the mover. That is not true in our charge experiments so far.
The rods are about the same size. So which is the environmental object and
which is the mover? We will have to pick one to be our environmental object,
and the other to be our mover. Sometimes the context of the problem helps.
If the problem you are solving asks for the motion or the force on the rod on
the right side of the diagram, then it is the mover and the rod on the left is the
environmental object. If one charge is much larger than the other, we might
be justified in calling this large charge the environmental object and a smaller
charge near the big charge would be the mover.

Basic Equations

The minimum angle between two objects that can be resolved (according to
the Rayleigh criteria) is

θmin = 1.22
λ

D
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Chapter 20

Electric charge

Fundamental Concepts

• We have a model for how charge acts. The model tells us there are two
types of charge, and that charges of similar type repel and charges of
different type attract.

• We call the types of charge “positive” and “negative”

• In metals, the valence electrons are free to move around. We call materials
where the charges move “conductors.”

• Materials where the valence electrons cannot move are called “insulators.”

• In insulators, the atoms can “polarize.”

20.1 Charge

Let’s summarize what we tried to learn last time:

269
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Model for Charge
Frictional forces can add or remove charge from an object

There are two, and only two kinds of charge

Two objects with the same kind of charge repel each other

To objects with different kinds of charge attract each other

The force between two charged objects is long ranged

The force between two charged objects decreases with distance

Uncharged objects have an equal mix of both kinds of charge

There are two types of materials, conductors (in which charges can move)

and insulators (in which charges are fixed in place)

Charge can be transferred from one object to another by contact between the two objects

A serious shortcoming of this model is that it does not tell us what charge
is. This is a shortcoming we will have to live with. We don’t know what
charge is any more than we can say exactly what mass or energy are. Charge
is fundamental, as far as we can tell. We can’t find a way to change charge
into something else or to change something else into charge. For fundamental
particles (like protons and electrons) either a particle has charge, or it does not.

20.1.1 Conservation of charge

In some ways, this is really great! We have a new quantity that does not ever
change. We can say that charge is conserved in the universe. Like energy, we
can move charge around, but we don’t create or destroy it. When we rubbed the
plastic rods with rabbit fur or wool, we were removing charge that was already
there in the atoms of the fur. If you take PH279 you might find that there are
some caveats to this rule. We can make positron and electron pairs from high
energy gamma rays. But when we do this we must always make a pair; one
positive, and one negative. So the net charge remains unaffected.

20.2 Insulators and Conductors
Question 223.20.5

Let’s return to charges and atoms. We have an intuitive feeling for what is a
conductor and what is an insulator, but let’s see why conductors act the way
they do.

20.2.1 Potential Diagrams for Molecules

Back in high school or in a collage chemistry class you learned that electrons
move around an atom.
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In the figure there are two energy states represented. You may even remember
the names of these energy states. The orange-yellow lines show one “orbital
distance” for the electrons near the nucleus. The red line shows another electron
at a larger orbital distance. The inner orbital is a 1s state and the outer orbital
is a 2s state. If these were satellites orbiting the earth, you would recognize
that the two orbits have different amounts of potential energy. This is also true
for electrons in orbitals. If we plot the potential energy for each state we get
something that looks like this

You can think of this as potential energy “shelves” where we can put electrons.
If you were a advanced high school student, you learned that on the first two
shelves you can only fit two electrons each. The higher shelves can take six, and
so forth. But that won’t concern us in this class.

20.2.2 Building a solid

So far I have really only talked about single atoms. What happens when we
bind atoms together? Let’s take two identical atoms. When they are far apart,
they act as independent systems. But when they get closer, they start acting
like one quantum mechanical system. What does that mean for the electrons in
the atoms?

Electrons are funny things. They won’t occupy the exactly the same energy
state. I can only have two electrons in a 1s state, but as I bring two atoms
near each other I will have four! How does the compound solve this problem?
The energy “shelves” split into more shelves. As the atoms get closer, we see
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something like this
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At some distance, r, the states split. So each electron is now in a different state.
Suppose we bring 5 atoms together.
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I get additional splitting of states. Now I have five different 1s states, enough
for 5 atoms worth of 1s electrons. But solids have more than five atoms. Let’s
bring many atoms together.
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Now there are so many states that we just have a blue blur in between the
original two split states. We have created a nearly continuous set of states in
two bands. Each electron has a different energy, but those energy differences
might be tiny fractions of a Joule. The former two states have almost become
continuous bands of allowed energy states.

The atoms won’t allow themselves to be too close. They will reach an equi-
librium distance, ro where they will want to stay.
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Since this is where the atoms usually are. We will not draw the whole diagram
anymore. We will instead just draw bands at ro.(along the dotted line). Here
is an example.
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1s

2s

2p

3s

3p

1s

2s

2p

3s

3p

This means we have bands of energies that are allowed, that electrons can
use, and gaps of energy where no electron can exist.

20.3 Conduction in solids

Notice that in our last picture, the 3s and 3p bands have grown so much that
they overlap. The situation with solids is complicated. Notice also that the
lower states are blue. We will let blue mean that they are filled with electrons
taking up every available energy state. The upper states are only partially
filled. Yellow will mean the energy states are empty. We will call the highest
completely filled band the valance band and the next higher empty band the
conduction band.

We have three different conditions possible.

20.3.1 Metals

In a metal, the highest occupied band is only partially filled

the electrons in this band require only very little energy to jump to the next
state up since they are in the same band and the allowed energies are very closely
spaced. Remember that movement requires energy. So if I connect a battery to
provide energy, the electrons must be allowed to gain the extra energy, kinetic



20.3. CONDUCTION IN SOLIDS 275

energy in this case, or they will not move. But in the case of a metal, there are
easily accessible energy states, and the electrons flow through the metal.

We can say that the outer electrons are shared by all the atoms of the entire
metal, so the electrons are easy to move for metals.

20.3.2 Insulators

A second condition is to have a full valance band and an empty conduction
band. The bands are separated by an energy gap of energy Eg.

Conduction Band

Valance Band

Energy Gap, Eg

Conduction Band

Valance Band

Energy Gap, Eg

In this case, it would take a whopping big battery to make the electrons move.
The battery would have to supply all of the gap energy plus a little more to get
the electron to move. You might envision this as if there were an electrical “glue”
that keeps the electrons in place. Before they can move, you have to free them
from the “glue.” It takes an amount of energy, Eg, to free the electrons before
they are able to accept kinetic energy. If we do connect a very large battery, say,
33000V, then we can get electrons to jump the gap to a higher energy “shelf.”
But high voltages are not normal conditions, so this is not usually the case. A
material that has a large energy gap between it’s valance band and an empty
conduction band is called an insulator.

A mental picture for this might be as shown in the next figure.
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The insulator atoms keep their valence electrons bound to the nuclei of the
atoms. But for a conductor, the valence electrons are free to travel from atom
to atom.Question 223.20.6

Question 223.20.7 In an isolated conductor, normally the charge is balanced, so the electrons
may move but generally they stay near a nucleus. But if a conductor has extra
electrons, the electrons that can move will move because they repel each other.
So any extra charge will be on the surface of the conductor.

This happens very quickly, generally we do find the extra charge distributed
on the outside of a conductor.

20.3.3 Semiconductors

The third choice is that there is a band gap, but the band gap is small. In this
case, some electrons will gain enough thermal energy to cross the gap. Then
these electrons will be in the conduction band. Devices that work this way are
called semiconductors. We won’t deal with semiconductors much in this class,
but you probably used many of them in ME210. Diodes, and transistors are
made from semiconductors.

20.3.4 Charging and discharging conductors

Conductors can’t usually be charged by rubbing. The electrons in the conductor
may move when rubbed, but then they are free to move around in the conductor,
so they don’t leave. But if we rub an insulator, the electrons are not free to
travel in the insulator material, so we can break them free. Once this happens,
we can take our charged insulator and place it in contact with a conductor. The
charge can flow from the insulator to the conductor (and arrange itself on the
conductor surface). Once the charge has moved to the exterior, it will reach
what we call electrostatic equilibrium. All of the repelling electrical forces are
in balance, so the charges come to rest with respect to the conductor.Question 223.20.8

We can remove the extra charge by creating a path for the charge to follow.
Consider charging a balloon by rubbing it on your hair. Then you connect a
wire to the balloon that is also connected to a metal water pipe. The charge
can flow through the metal conducing wire. If there is a large body that can
attract extra charge, the charge will flow. The Earth is such a large body that
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can attract the extra charge. The charge will flow through the wire and pipe
and go into the ground.

You may have heard of electrical grounds. This literally means tying your
device to the Earth through a wire. Since you are made mostly of water that
contains positive ions, you are also a conductor. So if we touch a charged object,
we will most likely discharge the object. This is also why we must be careful
with charge. Large amounts of charge flowing through us leads to death or
injury.

If an object is grounded, it cannot build up extra charge. This is good for
appliances and houses, and people.

We talked last time about insulator atoms being polarized.

Remember that for each atom the electrons are displaced relative to the
nucleus.

We can define a center of charge much like we defined a center of mass. In the
case in the figure, we can define a negative center of charge and a positive center
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of charge.

Notice that the negative and positive center of charge are not in the same placeQuestion 223.20.9

when the atom is polarized. We have a name for a pair of positive and negative
charges that are separated by a distance, but that are still bound together. We
call it an electric dipole. Often we just draw the centers of charge joined by a
line.

Using this we can explain why humidity affects our last lecture experiments so
much. The water molecule has two hydrogen atoms and one oxygen atom. The
covalent bond between the oxygen and hydrogen atoms forms when the oxygen
“shares” the hydrogen’s electrons. The electrons from the hydrogen atoms spend
their time with the oxygen atom making one side of the molecule more positive
and the other side more negative.
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Thus if you have a charged balloon on a humid day, one side of the water
molecules in the air will be attracted to the extra charge on the balloon. The
extra charge will attach to the water molecules, and float away with them. This
will discharge the balloon.

20.4 Note on drawing charge diagrams

We will have to draw diagrams in our problem solutions. Normally we won’t
draw atoms, so we will be drawing large objects with or without extra charge.
We know that all materials have positive nuclei and negative electrons. When
these are balanced, there is an electron for every proton, so if we add up the
charges we get zero net charge. These charges don’t contribute to net forces
because for every attraction there is a repulsion of equal magnitude.

So we won’t draw all of these charges, but we should remember they are
there. We usually draw a cross section, so here is the cross section of a round,
conducting ball.

But if we have extra charge, we should draw it. We will just add plus signs or
minus signs. We won’t draw little circles to show the electrons (we can’t draw
them to scale, they are phenomenally small). Here is an example of two round
objects, one positive and one negative

If the objects are not conductors, the extra charge may be spread out. We draw
the charge throughout the cross section of the object.
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Note that if you transfer charge, from one object to another, you should try to
keep the same total number of “+”’ or “-” signs to show the charge is conserved.

Basic Equations

None so far.



Chapter 21

Coulomb’s Law and Lines of
Force

Fundamental Concepts

• Our “charge” force is called the Coulomb force, and is given by F =

ke
|q1||q2|

r2

• A field is a quantity that has a value (magnitude and direction) at every
point in space

• The Coulomb force is caused by an electric field

• We use field lines to give ourselves a mental picture of a field

21.1 Coulomb’s Law

Sometime ago in your PH121 or Dynamics class you learned about gravity. Let’s
review for a moment.

From our experience we know that more massive things exert a stronger
gravitational pull than less massive things. We also have some idea that the
farther away an object is, the less the gravitational pull. Newton expressed this
as

Fg = G
m1m2

r212

where the two masses involved (say, the Earth and you) are m1 and m2 and
the distance between the two masses is r12 (e.g. the distance from the center
of the Earth to the center of you). The constant G is a constant that puts the

281
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force into nice units that are convenient for us to use, like newtons (N) . It has
a value of

G = 6.67428× 10−11 Nm
2

kg2

You might ask, how do we know this? The answer is that Newton and others
performed experiments. Newton’s law of gravitation is empirical, meaning that
it came from experiment. Lord Cavendish used a clever device to verify this
law. He suspended two masses from a wire. Then he placed two other masses
near the suspended masses.

He knew the torsion constant of the wire (how much it resists being twisted).
Then by observing how far the suspended masses moved, he could work out the
strength of the gravitational force. This is called a torsion balance.

Charles Coulomb thought he could use the same device to measure the
strength of the electric force. Here is his experimental design.
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Coulomb’s Torsion Balance Apparatus

You can see this is really just a torsion balance. This time objects with equal
mass and equal charge are suspended on either end of a rod. The rod is hung
on a wire. Two other charges are brought an equal distance, r12, from the
other charges. Knowing the torsional properties of the wire, the force due to
the charges can be found.

Coulomb determined that the force due to a pair of charges has the following
properties:

1. It is directed along a line connecting the two charged particles and is
inversely proportional to the distance between their centers

2. It is proportional to the product of the magnitudes of the charges |q1| and
|q2| .
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3. It is attractive (the charges accelerate towards each other) if the charges
have different signs, and is repulsive (the charges accelerate away from
each other) if the charges have the same signs.

We can write this in an equation

F = ke
|q1| |q2|
r212

(21.1)

Note how much this looks like gravitation! In the denominator, we have the
distance, r12, between the two charged particles’ centers. We have two things in
the numerator. But now we have |q1| and |q2| instead of m1 and m2. We have
a constant ke instead of G, but the equation is very much like Newton’s law of
gravitation. That should be comforting, because we know how to use Newton’s
law of gravitation from PH121 or Dynamics. There is a very big difference,
though. Gravitation can only attract masses, The Force due to charges can
attract or repel.

Again there is a constant to fix up the units. Our constant is

ke = 8.9875× 109
Nm2

C2
(21.2)

which allows us to use more meaningful units (to us humans) in the force equa-
tion.

How about strength? Is gravity or is this force due to charge stronger?

Force Varies with Distance Attracts Repels Acts without contact Strength

Gravity Yes Always Never Yes Weaker

Charge Force Yes Sometimes Sometimes Yes Stronger

Lets try an example problem:
Calculate the magnitude of the electric force between the proton and electron

in a hydrogen atom. Compare to their gravitational attraction. We expect the
electrical force to be larger. We need some facts about Hydrogen

Item Value
Proton Mass 1.67× 10−27 kg
Electron Mass 9.11× 10−31 kg
Proton Charge 1.6× 10−19C
Electron Charge −1.6× 10−19C
Proton-electron average separation 5.3× 10−11m

then,

Fe = ke
|q1| |q2|

r2

= 8.9875× 109 Nm
2

C2

�
−1.6× 10−19 C

� �
1.6× 10−19C

�

(5.3× 10−11m)2

= −8. 190 8× 10−8 m
s2
kg
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and

Fg = G
m1m2

r2

= 6.67× 10−11N m
2

kg2

�
1.67× 10−27 kg

� �
9.11× 10−31 kg

�

(5.3× 10−11m)2

= 3. 612 5× 10−47 m
s2
kg

which shows us what we expected, the gravitational force is very small compared
to the electric force.

21.1.1 Permittivity of free space

It is customary to define an additional constant

ǫo =
1

4πke
= 8.85× 10−12 C2

Nm2
(21.3)

Using this constant

F =
1

4πǫo

|q1| |q2|
r2

(21.4)

which really does not seem to be an improvement. But if you go on to take an
advanced class in electrodynamics you will find that this form is more convenient
in other unit systems. So we will adopt it even though it is an inconvenience
now.

21.2 Direction of the force

What about direction? So far we have only calculated the magnitude of the
force. But a force is a vector, so it must have a direction. Notice that our
equation has absolute value signs in it. We will only get positive values from
Coulomb’s law.

To find a strategy for getting the direction, let’s observe two charged objects

Experiments show that they seem to be pulled straight toward each other. The
force seems to be along the line that passes through the center of charge for
each of the two charged objects. We have to find this line from the geometry of
our situation and our choice of coordinate systems. To make matters worse, we
could have two of the same kind of charge.
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The force will still be on the line connecting the centers of charge, but it will be
in the opposite direction compared to the last case where the charges were of
different sign. This seems complicated, and it is. We must observe the geometry
of our situation and note whether the charges are the same or different signs to
find the direction. Our equations can’t tell us the direction on their own. You
can’t put the signs of the charges into the formula and expect a direction to
come out! You have to draw the picture. Here is the process:

1. Define your coordinate system.

2. Find the line that connects the centers of charge. The force direction will
be on that line.

3. Determine the direction by observing the signs of the charges. If the
charges have the same sign, the force will be repulsive, if the charges have
different signs, it will be attractive.

21.3 More than two charges

It is great that we know the force between two charges, but we have learned
that there are billions of charges in everything we see or touch. It would be nice
to be able to use our simple law of force on more than one or two charges. We
did this with gravity. Let’s review.

Suppose I have a satellite orbiting the Earth. That satellite feels a force
given by

Fg = G
MEms

r2

= G

�
ME

r2

�
ms

but consider that on the Earth below the satellite, there is a rock on the surface
of the Earth.
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Part of the force due to gravity on the satellite must be due to this rock. We
could write our force due to gravity as

Fg = G

�
Mrest

r2rest

r̂rest +
Mrock

r2s
r̂rock

�
ms

where Mrest is the mass of all the rest of the Earth, minus the rock. If we take
the Earth rock by rock, we would have

Fg = G

�
Σi

Mi

r2i
r̂i

�
ms

where Mi is the mass of the ith piece of the Earth and r̂i is the direction from
Mi to ms. We would not really want to do this calculation, because it would
take a long time. Instead, back in PH121 or Dynamics we found we could add
up all the mass and treat the Earth as one big ball of mass and represent it as
if the mass was all at it’s center of mass (as long as there is no rotation so no
torque). But let’s think about all this mass. Does the force between a rock in
China and our satellite get diminished because our rock in Rexburg is in the
way?
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No, the force due to gravity is really the sum of all the little forces between all
the parts of the Earth and our satellite. One bit of mass does not interfere with
the force from another bit of mass.

Now let’s look at the electric force. Suppose we have many charges in some
configuration (maybe a round ball of charge). We could call the total charge,
QE. Then our force magnitude on a mover charge qm, would be

Fe = ke
|QE| |qm|

r2

The collection of charge QE would be the environmental charge. But we can
picture this as the individual parts of QE all with little forces pairs acting on
qm summing up to get Fe.

Fe = keΣi

� |Qi|
r2i
r̂i

�
|qm|

where Qi is a piece of the total charge QE.
This is an amazingly simple idea. The force on a mover charge, qm, due to

any number of charges is just the sum of the forces due to each charge acting
on qm. Sometimes the mover charge is called a test charge, but we will call it a
mover charge and we will call the Qi environmental charges.

Suppose in our ball of charge, we have an element of charge on the opposite
side of the ball and another element of charge close to us. Would the near
charge element “screen off” or some how reduce the force due to the far charge
element?

Like with gravity, it would not. Note that because one charge is farther
away, the force from the far charge is not the same magnitude as that of the
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near charge. But we calculate both using our formula, and add them up (a
vector sum) with all the others.

While we are talking about it, it might seem that the rest of the matter in
the ball will screen off the electric force. But matter, itself, does not interfere
with our electric force. Only other charges will change the force, and then
only following the idea of that their forces add as vectors (remember that for
electricity they can cancel, because we have both positive and negative charges).

Recall that in our study of waves, when we had two waves in a medium we
found we could just added up displacements point for point. We called this
superposition. We will use the same word here, but it has a slightly different
meaning. We are not adding up wave displacements. We are adding up forces.
But we still do it point for point.

Now where there are forces, there will be Newton’s second law! Let’s consider
a problem. Suppose we have three charges, equally spaced apart as shown where
each has the charge of one electron (qe) but the middle charge is positive and
the other two are negative

r r

We identify the middle charge as the mover (since we are asked for the force on
this charge) and the left and right charges as the environmental charges. We
can draw a free body diagram for the mover charge.

FRFL

and find the net force on the mover charge, then

−→
Fnet = m−→a = −→FR +

−→
FL

We only have x-components so we can write this as

Fnetx = ma = FRx − FLx

where the minus sign is used for FLx because it is pointing to the left and that
is usually the minus x direction.

We may ask, is this mover charge accelerating? We may suspect that the
answer is no, but here we have something new. We don’t know the magnitude
of FR or FL. We now have to find the magnitudes to know. Back in PH121 you
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would have been given the magnitude of the forces, but in a charge problem we
know how to calculate the magnitudes, so let’s do that. We can use the formula
for the Coulomb force

F = ke
|q1| |q2|

r2

we can use r as the distance from the middle charge to each of the other charges
since in this special case they are both the same distance from the middle charge.
Then

FR = ke
q2e
r2

FL = ke
q2e
r2

these are the magnitudes. We should notice that FL points to the left. So we
need to include a minus sign in front of it’s magnitude.

Fnetx = ma = FRx − FLx

Fnetx = ma = ke
q2e
r2
− ke

q2e
r2

= 0

now we can say that the middle charge is definitely not accelerating.
Of course this is a pretty easy Newton’s 2nd law problem. It was all in the

x-direction. But suppose that is not true. Then we need to take components of
the forces vectors. Let’s try one of those.

Here is a new configuration of our charges. There will be a Coulomb force
between each negative charge the positive charge. What is the net force on the
positive charge?

Again we need Newton’s second law and the Coulomb force equation. We
identify the positive charge as our mover, and the negative charges as the envi-
ronmental charges. Our basic equations are

F = ke
|q1| |q2|

r2

−→
F = m−→a

but this time we need an x and a y Newton’s second law equation. Let’s draw
the free body diagram. I have chosen the positive y-direction to be upward and
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the positive x-direction to be to the right.

Fup
FL

The negative charge that is above our positive charge will cause an upward force.
The negative charge to the right will cause a force that pulls to the right. This
is a two-dimensional problem, so we need to split our Newton’s second law into
two one-dimensional problems.

Fnetx = max = FL

Fnety = may = Fup

so

Fnetx = ke
q2e
r2

Fnety = ke
q2e
r2

We can see that there will be a force in both the x and the y direction. How do
we combine these to get the net force? We use our basic equations for combining
vectors:

Fnet =
	

F 2netx + F 2nety

=

��
ke

q2e
r2

�2
+

�
ke

q2e
r2

�2

=
√
2
1

r2
keq

2
e

but we are not done. We need a direction. Generally we use the angle with
respect to the positive x-axis.

θ = tan−1
�
Fnety

Fnetx

�

= tan−1
�
ke

q2e
r2

ke
q2e
r2

�

=
π

4
rad

so we have a net force of F =
√
2 1r2 keq

2
e at a 45 ◦ angle with respect to the

x-axis.
Of course, this is still fairly simple, we should also review taking components

of vectors that are not directed along the x and the y axis. Suppose we move
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the top charge as shown below

Once again the positive charge is the mover and the negative charges are the
environment. Now our free body diagram looks like this:

F2

FL

Once again we have a two-dimensional problem. We need to convert it into two
one-dimensional problems.

Fnetx = max = FLx
+ F2x

Fnety = may = FLy
+ F2y

but we don’t know FLx
, F2x, FLy

, and F2y. But our basic equations should in-
clude how to make vector components

vx = v cos θ

vy = v sin θ

where θ is measured from the positive x-axis. So

Fnetx = max = FL cos θL + F2 cos θ2

Fnety = may = FL sin θL + F2 sin θ2

and we realize that
θL = 0

and that

cos (0) = 1

sin (0) = 0

so

max = FL + F2 cos θ2

may = 0 + F2 sin θ2

This gives the x and y components of the net force on the positive charge. Using
our Coulomb force for the magnitudes, we have

Fnetx = ke
q2e
r2
+ ke

q2e
r2
cos θ2

Fnety = ke
q2e
r2
sin θ2
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I will tell you θ = π
4 rad (or 45 ◦). So we can find

Fnetx = ke
q2e
r2
+ ke

q2e
r2

�√
2

2

�
= ke

q2e
r2

�
1 +

√
2

2

�

Fnety = ke
q2e
r2

�√
2

2

�

and

Fnet =
	

F 2netx + F 2nety

=

����
�
ke

q2e
r2

�
1 +

√
2

2

��2
+

�
ke

q2e
r2

�√
2

2

��2

=
keq

2
e

r2

	
2 +

√
2

This is not so nice and easy. The angle is

θ = tan−1




ke
q2e
r2

�√
2
2

�

ke
q2e
r2

�
1 +

√
2
2

�




= tan−1
�
1

2

√
2

1
2

√
2 + 1

�

= 0.392 70 rad

Note that I am using symbols as long as I can. This will become ever more
important in this course. The problems will become very complicated. It is
easier to make mistakes if you input numbers early.

Also notice that I carefully placed the charges the same distance, r, from
each other. Of course that will not always be true. If the distances are different,
we will use subscripts (e.g. r1, r2) to distinguish the distances.

21.4 Fields

If you are taking PH223 you should have already taken PH121 or an equivalent
class. In PH121, you learned about how things move. You learned about forces
and how force relates to acceleration

−→
F = m−→a

The force,
−→
F , is how hard you push or pull. This push or pull changes the

motion of the object, represented by it’s mass, m. The change in motion is
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represented by its acceleration, −→a . Notice that both
−→
F and −→a are vectors. We

will need all that you learned about vectors in PH121.
Since physics is the study of how things move, we are going to study the

motion of objects again in this class. But in this section of our class we will
learn about new sources of force, that is, new ways to push or pull something.

Really these new sources of force are not entirely new. You have heard
of them and probably experienced them. They are electrical charge and mag-
netism. You have probably had a sock stick to you after pulling it out of a
dryer, and you have probably had a magnet that sticks to your refrigerator. So
although these new sources of force are new to our study of physics, they are
somewhat familiar in every day lives.

Let’s review a particular force, the force due to gravity. This makes sense
to do because our equation for electrical force is so very much like Newton’s
equation for gravity. Think of most of our experience with gravity. We have an
object moving near the Earth. There is a force acting on the object, and that
force is because of Earth’s gravity.

We can think of the Earth as creating an environment in which the object
moves, feeling the gravitational force. This is a property of all non-contact
forces.

Think of a ball falling, We considered this as an environment of constant
acceleration. In this environment, the ball feels a force proportional to its mass

−→
F = m−→g

where g = 9.81 ms is the acceleration due to gravity. This is true anywhere near
the Earth’s surface. We could draw this situation as follows:

where the environment for constant acceleration is drawn as a series of arrows in

the acceleration direction (downward toward the center of the Earth). Anywhere
the ball goes the environment is the same. So we draw arrows all around the
ball to show that the whole environment around the ball is the same.

Notice that the environment is described by an acceleration, g given by

−→g =
−→
F

m
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that is, the environment is described by the force per unit mass.

This environment is caused by the Earth being there. If the Earth suddenly
disappeared, then the acceleration would just as suddenly go to zero. So we can
say that the Earth creates this constant acceleration environment.

Notice that there are two objects involved, the ball and the Earth. Also
notice that one object creates an environment in which the other object moves.
In our case, the Earth created the environment and the ball moved through the
environment. This situation will recur many times, so let’s give the objects these
names, the Earth as the “Environmental object”, and the ball as the “mover.”

We should ask ourselves, does something like this happen with our electrical
force? The electric forces is also a non-contact force. Could we view one charge
as creating an environment in which the other charge moves? And if there is an
environment, what would that environment be. Would it be an acceleration, or
something else?

Michael Faraday came up with answers to this questions. To gain insight
into his answers, let’s consider our force again.

Fe = ke
|QE| |qm|

r2

but let’s take qm as a very small test charge that we can place near a larger
distribution of charge QE. This is like the Earth and our small ball. The large
QE is the environmental charge and the small qm is the mover charge. We want
qm to be so small that it can’t make any of the parts of QE rearrange themselves
or any of the atoms forming the body that is charged with QE to polarize. Then
we define a new quantity

−→
E =

−→
F

qm

This is the force per unit charge. This is very like our gravitational acceleration
which is a force per unit mass. Then

−→
F = qm

−→
E (21.5)

This is really like
−→
F = m−→g

but with the mass replaced by qm and the acceleration replaced by this new
force-per-unit-charge thing. For gravity it is the mass that made the gravita-
tional pull. With the electric force it is the charge that creates the pull. So
replacing m with qm makes some sense. But what does it mean that the ac-

celeration has been replaced by
−→
E . Well, since −→g was the representation of the

environment, can see that this new quantity is taking the place of the environ-
ment, but it can’t be an acceleration. It does not have the right units. Let’s
investigate what it is.



296 CHAPTER 21. COULOMB’S LAW AND LINES OF FORCE

Let’s write the magnitude of E

E =
F

qm

=
ke
|QE||qm|

r2

qm

= ke
QE

r2

But this is really not a quantity that we have seen before It depends on how
far away we are from the environmental charge QE. It has a value at every
point in space—the whole universe! (think of our acceleration environment being
all around the moving ball) though it’s values for large r are very small. The
quantity is only large in the near vicinity of the charge, QE .

We can picture this quantity as being like a foot ball field with something
(an environmental charge) hidden out there on the grass. If we know where the
object is, we can tell a searcher how “warm” or “cold” they are as they wander
around looking for the object. For every location, there is a value of “warmness.”

If we extend this idea to three dimensions, we are close to a picture of
−→
E . The

environment quantity
−→
E has a value at every point in three dimensional space.

Since this is a new quantity, we need to give it a name. We will call it an electric
field.

A field is a quantity that has a value (magnitude and/or direction) at every
point in space.

But we have to add one more complication. It is a vector, so it also has a
direction at each point in space as well. This direction is the direction the force
would be on qo, the mover, if we placed it at that location.

But where does this field come from? We say that an environmental charge
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QE creates a field

−→
E = ke

QE

r2
r̂ (21.6)

centered at the charge location. The field is our environment for our mover.

Now we can understand our classical model about how gravity works! Have
you wondered how a satellite knows that the Earth is there and that it should
be pulled toward the Earth? We can say the Earth sets up a gravitational field
because it has mass. The gravitational field shows up as an acceleration field.
The satellite (the mover) feels the gravitational field because the field exists at
the location of the satellite (it exists at all locations, so it exists at the satellite’s
location). The satellite does not have to know that the Earth is there, because
it feels the field right where it is. The satellite reacts to the field, not directly
with the Earth that created the field.1

Likewise, our charge QE has the property of creating an electric field as
the environment around it. Other charges (movers) will feel the field at their
locations, and therefore will feel a force due to the field created by QE.

21.5 Field Lines

We need a way to draw the environment created by the environmental charge
Q. We could draw lots of arrows like in the previous pictures. and we will do
this sometimes. But there is another way to draw the environment that has
become traditional. Have you ever taken iron filings and placed a magnet near
them? If you do, you will notice that the filings seem to line up.

If you took PH121 you probably heard that there is a magnetic force. It is
a non-contact force, so we expect it has a magnetic field. The iron filings are
aligning because they are acted upon by the field. It is natural to represent this
field as a series of lines like the ones formed by the iron filings. We will do this
in a few lectures!

But there is a similar experiment we can do with the electric force. This is
harder, but we can use small seeds or pieces of thread suspended in oil. These
small things become polarized in an electric field. They line up like the iron
filings.

1Here I am taking a quantum mechanical view of gravity. In General Relativity, the “field”
is space that is warped by the mass of the Earth.
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http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/elec_field_lines.jpg

We can represent the electric field by tracing out these lines. The last figure
would look like this

We can’t tell if the charge was negative or positive from oil suspension picture,
but if it was positive, by convention we draw the field lines as coming out of
the charge. If it were negative the field lines would be drawn as going in to the
charge. Here is a combination of a negative and a positive charge or dipole.

http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/elec_field_lines2.jpg

In this case both the positive and negative charges are working together to make
the environment or field that a third charge could move through. The field line
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drawing would look like this.

This combination of positive and negative charges had equal charges, the only
difference was the sign change. Here is one where the positive charge has more
charge than the negative charge.

Notice that the number of field lines is proportional to the field, but there is no
set proportionality. If the field from one charge is twice that of the other, we
pick a number of field lines for, say, the negative charge, and double the lines
on the larger positive charge.

This gives us a way to picture the electric field in our minds!
Some things to notice:

1. The lines begin on positive charges

2. The lines end on negative charges

3. If you don’t have matching charges, the lines end infinitely far away (like
the single charges in the first picture).
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4. Larger charges have more lines coming from them

5. Field lines cannot cross each other

6. The lines are only imaginary, they are a way to form a mental picture of
the field.

We only draw the field lines for the environmental charges. Of course the
mover charge also makes a field, but this self-field can’t cause the mover charge
to move. If it could we could have perpetual motion and that violates the
second law of thermodynamics. Since the mover’s self-field is not participating
in making the motion, we won’t take the time to draw it!2

Remember, field lines are not real, but are a nice way to draw the field made
by the environmental charge. We will use field lines often in drawing pictures
as part of our problem solving process.

21.6 On-Line demonstrations

An applet that demonstrates the electric field of point charges can be found
here:

http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_en.html
If you prefer a video game, try Electric Field Hockey:
http://phet.colorado.edu/en/simulation/electric-hockey
As a wacky example of Coulomb forces, see this video of charged water

droplets orbiting charged knitting needles on the Space Shuttle:
http://www.nasa.gov/multimedia/videogallery/index.html?media_id=131554451

Basic Equations

2This picture will be a little more complicated when we allow for relativistic motion of
charges and other more difficult effects, but that can wait for more advanced physics courses.
For most engineering applications, this is a great approximation.



Chapter 22

Electric Fields of Standard
Charge Configurations Part
I

Fundamental Concepts

• Adding of vector fields for point charges

• Standard configurations of charge

22.1 Standard Charge Configurations

Actual engineering projects or experimental designs require detailed calcula-
tions of fields using computers. These field simulations use powerful numerical
techniques that are beyond this sophomore class. But we can gain some great
insight by using some basic models of simple charged objects. We will often
look at the following models:

Standard Configurations of Charge
Point charge

Several point charges
Line of Charge

Semi-infinite sheet of charge
Charged sphere

Charged spherical shell
Ring of Charge

301
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22.2 Point Charges

We have already met one of these standard configurations, the point charge

−→
E =

1

4πǫo

q

r2
r̂

The field of the point charge is represented below

This picture requires a little explanation. The arrows are larger nearer the
charge to show that the field is stronger. But note that each arrow is the
magnitude and direction of the charge at one point. We really need a three
dimensional picture to describe this, and even then the fact that the arrows
have length can be misleading. The long arrows cover up other points, that
should also have arrows. We can only draw the field at a few points, and at
those points the field has both magnitude and direction. But we must remember
that there is really a field magnitude and direction at every point.

To go beyond single charges we need a group of point charges of some sort.
The fields add like forces −→

E =



i

−→
E i

were we recognize that we are summing vectors. Let’s take a look at a few
combinations of charges and find their fields

22.2.1 Two charges

Let’s go back to our idea of an environmental charge, QE, and a mover charge,
qm. The mover charge is considered to be small enough that its effect on QE is
negligible. So the field due to the large charge is unaffected by this small charge.

Of course, the total field is a superposition of both fields. We call the field
produced by the little mover charge it’s self-field. But the mover charge can’t
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move itself.1 The mover’s self-field can’t move the mover. So we don’t draw the
field due to qm. We we can envision an environmental field that is just due to
the environmental charge, QE, as if there are no other charges any where in the
whole universe. Of course this is not the case, but this is how we think of the
field due to charge QE. Question 223.22.1

Question 223.22.2
We can identify that a charge qm placed in this field due to QE will feel a

force

−→
F e = qm

−→
E

=
1

4πǫo

QEqm

r2
r̂

due to the field

−→
E =

1

4πǫo

QE

r2
r̂

where this field is just due to QE and does not contain the contribution from
qm. So the charge qm only feels a force due to the field created by charge QE. A

third charge, qnew brought close to the other two would feel both
−→
EQ and

−→
E q.

Then both QE and our original qm would be environmental charges and the new
charge qnew would be the mover. At this point, we would probably relabel QE

and qm as Q1 and Q2 and relabel qnew as qm so we could tell that the original
two charges are now the environment and the new charge is the mover.

22.2.2 Vector nature of the field
Question 223.22.3

Question 223.22.4
Remember that the field is a force per unit charge. Forces add as vectors, so we
should expect fields to add as vectors too. Let’s do a problem.

1This would allow perpetual motion, breaking the second law of thermodynamics.



304CHAPTER 22. ELECTRIC FIELDSOF STANDARDCHARGECONFIGURATIONS PART I

Two charges are separated by a distance d. What is the field a distance L
from the center of the two charges?

We should recognize this as our old friend, the dipole.

Note that both of these charges are environmental charges. We are asked in
this problem to find the environment, the field. We don’t really have a mover
charge. But we could pretend we do have a mover, qo at point P where we want
to know the environment if it helps us picture the situation. But really we are
calculating what the environment around the two charges will be.

We start by drawing the situation. I chose not to draw field lines. Instead
I drew the field vectors at the point, P, where we want the field. The field
lines would tell me about the whole environment everywhere, and that might
be useful. But this problem only wants to know the field at one point, P. So it
was less work to draw the field using vectors at our one point.
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Note that I need a vector for each of the environmental charges. Each con-
tributes to the environment. The contribution to the field due to environmental
charge q1 is labeled E1 and likewise the contribution to the field from environ-
mental charge q2 is labeled E2.
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The net environment is the superposition of the fields due to each of the envi-
ronmental charges. −→

Enet =
−→
E1 +

−→
E3

From the figure, we see that if we had a small mover charge, qo on the
axis a distance at point p then we would get two forces, one from each of the
environmental charges q1 and q2. We can use Newton’s second law to find the
net force on our imaginary qo.

Fnetz = maz = −F1 cos θ + F2 cos θ

Fnety = may = F1 sin θ + F2 sin θ

we can see that the distance from each charge to point P is

r =

�
d2

4
+ L2

so

sin θ =
d

2
	

d2

4 + L2

we also know from Coulomb’s law that

F1 = F2 =
1

4πǫo

qqo

r2

but we want the field, so we need to divide all of this by qo

E1 = E2 =
1

4πǫo

q

r2
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Our Newton’s second law becomes an equation for the components of the com-
bined electric field.

Fnetz

qo
= −F1

qo
cos θ +

F2
qo
cos θ

Fnety

qo
=

F1
qo
sin θ +

F2
qo
sin θ

or just

Enetz = −E1 cos θ +E2 cos θ

Enety = E1 sin θ +E2 sin θ

We can see from the figure that in the z-direction we will have no net field,

Ez = −E1 cos θ +E1 cos θ = 0

But in the y-direction we have

Ey = E1 sin θ +E2 sin θ

= 2E1 sin θ

=
2

4πǫo

q

r2
sin θ

and since we found that

sin θ =
d

2
	

d2

4 + L2

and

r2 =
d2

4
+ L2

we can write our field as

Ey =
2

4πǫo

q�
d2

4 + L2
�


 d

2
	

d2

4 + L2




=
1

4πǫo

qd
�

d2

4 + L2
� 3
2

This is our total field at the distance L away on the axis. This is the environment
that a mover charge could move through.

Note that we pretended that we had a mover, qo, but in finding the field
the qo canceled out, so indeed we are left with just the environment in our
calculation, we just have the field.

Now suppose our mover charge is very far away. That is, suppose we make
L very large. So large that L≫ d then

lim
L≫d

1
�

d2

4 + L2
� 3
2

=
1

L3



308CHAPTER 22. ELECTRIC FIELDSOF STANDARDCHARGECONFIGURATIONS PART I

Then our field becomes

E = Ey =
2

4πǫo

qd
�

d2

4 + L2
� 3
2

=
1

4πǫo

qd

L3

Since many charged particles are small, like atoms or molecules, this limit is
often useful.

Suppose we repeat the calculation, but this time we chose a point that is L
away, but that is on the y-axis above the charges, we would find

E = Ey =
2

4πǫo

qd

L3

The result is similar, but the field is a little stronger in this direction.
Let’s look at one of these cases by graphing it.
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We can see that the dipole field (solid green line) falls off much faster than a
point charge field (dashed red line). This makes sense because the farther away
we get, the more it looks like the two charges are right next to each other, and
since they are opposite in sign, they are essentially neutral when viewed together
from far away. We can see why atoms don’t exhibit a significant charge forces
at normal distances.

This arrangement of charges we already know as a dipole. We are treating
the two charges as a unit making the environment in which other charges might
move. Since we are treating the two charges as one unit, it is customary to
define a quantity

p = qd

and to make this a vector by defining the direction of p to be from the negative
to the positive charge along the axis.

Then we can write the dipole field as

−→
Ey =

2

4πǫo

−→p
L3

We could also treat this dipole as a complicated mover charge in some other
environmental field! Then this quantity −→p will help us understand how a dipole
will move when placed in an environmental electric field. For example, we
know that water molecules are dipoles. A microwave oven creates a strong
environmental electric field that makes the water molecules rotate. When we
studied rotational motion we found a mass-like term that helped us to know
how difficult something was to make rotate. That was the moment of inertia.
This dipole term, −→p , will tell us how likely a dipole is to spin, so we will call −→p
the dipole moment.

22.2.3 Three charges
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Question 223.22.5

We are working our way toward many charges that will require using inte-
gration to sum up the contributions to the field. But let’s make this transition
slowly. Next let’s add just one more environmental charge, for a total of three.

Let’s just start with the fields this time. From our picture, we expect in this
case to have only z-components. Since all the charges are the same sign,

then

Enetz = E1 cos (−θ) +E2 +E3 cos (θ)
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We can guess from symmetry that

E1 = E3 =
1

4πǫo

q

r2

But this time, since we have redefined d, the distance from q1 and q3 to the
point P where we want to know the field is

r =
�

d2 + L2

so

E1 = E3 =
1

4πǫo

q

(d2 + L2)

and

E2 =
1

4πǫo

q

L2

and observing the triangles formed and remembering our trigonometry, we have

cos θ =
L√

d2 + L2

so

Ez =
1

4πǫo

q

(d2 + L2)

�
L√

d2 + L2

�

+
1

4πǫo

q

L2

+
1

4πǫo

q

(d2 + L2)

�
L√

d2 + L2

�

or

Ez =
q

4πǫo

�
2L

(d2 + L2)
3

2

+
1

L2

�

This is our answer.
Once again let’s consider the limit L ≫ d. If our answer is right, when we

get very far from the group of charges they should look like a single charge with
the amount of charge being the sum of all three environmental charges. In this
limit

lim
L≫d

1

(d2 + L2)
3

2

=
1

L3

so our limit becomes

Ez ≈ q

4πǫo

�
2L

L3
+
1

L2

�

=
1

4πǫo

�
3q

L2

�
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so on the central axis
−→
E ≈ 1

4πǫo

�
3q

L2

�
k̂

And indeed, this is very like one charge that is three times as large as our actual
charges if we get far enough away.

This shows us a pattern we will often see. Far away, our field looks like
what we would expect if the net charge were all congregated in a point. Near
the charges, we must calculate the superposition of the fields. But far away we
can treat the distribution as a point charge. This is very like what we did with
mass in PH121 or Dynamics. We could often treat masses as point masses at
the center of mass, if the distances involved were larger than the mass sizes.Question 223.22.6

Of course, in these last two problems we picked nice places along axes to
find the electric field. If we picked less convinient places we would have both y
and z-components.

22.3 Combinations of many charges

We have found the field from a point charge.

−→
E =

1

4πǫo

qE

r2
r̂ (22.1)

where the field is in the same direction as r̂ if the charge is positive, and in
the opposite direction if the charge is negative (think of our field lines, they go
toward the negative charge). This will become one of a group of standard charge
configurations that we will use to gain a mental picture of complex configurations
of charge. We have done this already for combinations of point charges. We can
combine the point charge fields to get the total field.

The other standard models are combinations of many, many charges.

22.3.1 Line of Charge

Another is an infinitely long line of charge, or a infinite charged wire. Since this
long line of charge is infinite, it must have an infinite amount of charge. But we
can describe “how much” charge it has with a linear charge density

λ =
Q

L
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22.3.2 Semi-infinite sheet of charge

A sheet or plane of charge,usually a semi-infinite sheet of charge is also useful

We have the same problem of having infinite charge, but if we define an amount
of charge per unit area

η =
Q

A

we can compare sheets that are more charge rich than others.

22.3.3 Sphere of charge

Finally, we have drawn a sphere of charge already

We can define an amount of charge per unit volume to help describe this
distribution

ρ =
Q

V

The spherical shell of charge is related to a sheet of charge, so we will include
it here
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This configuration of charge is drawn in cross section like the others. From
your calculus experience you can guess that a spherical shell of charge with a
certain volume charge density might be useful in integration, but we also can
easily produce such a configuration of charge by charging a round balloon or a
spherical conductor.

The ring of charge is similar to the spherical shell, but is also much like the
line of charge.

In our next lecture, we will take on the job of finding the fields that result
from these last few charge configurations except the spherical shell, which will
have to wait a few lectures.

22.4 On-Line Visualizations

For a 2D visualization of the field try:
https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-

fields_all.html

https://icphysweb.z13.web.core.windows.net/simulation.html
http://www.falstad.com/emstatic/index.html
And here is a 3D visualization:

http://www.falstad.com/vector3de/

Basic Equations
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It’s time to put Newton’s second law back on your equation sheet

Fnetz = maz

Fnety = may

Charge densities:

λ =
Q

L

η =
Q

A

ρ =
Q

V
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Chapter 23

Electric Fields of Standard
Charge Configurations Part
II

Fundamental Concepts

• Integrating vector fields for continuous distributions of charge

— Start with
−→
E = 1

4πǫo

�
dq
r2 r̂

— Find an expression for dq

— Use geometry to find expressions for r and to eliminate r̂

— Solve the integral

23.1 Fields from Continuous Charge Distribu-
tions

Question 223.23.1

Suppose we have a continuous distribution of charge with some mover charge
qm fairly far away. You might ask, how do we get a continuous distribution of
charge? After all, charge seems to be quantized. Well, if we have a collection
of charges where the distances between the individual charge carriers are much
smaller that the distance from the whole collection of charges to some point
where we want to measure the field (where the mover charge might be), then in
our field calculations at this distant point we can model the charge distribution
causing the field as continuous. As an analogy, think of your computer screen.
It is really a collection of dots of light. But if we are a few feet away, we see

317
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a continuous picture. We can treat the dots as though there were no space
in between them. For our continuous charge model, it is the same. We are
supposing we are observing from far enough away that we won’t notice the
effects of the charges being separated by small distances.

We should remember, though, that this is a macroscopic view. At some
point it must break down, since charge is carried in discrete amounts. If we
want the field very close to a distribution of charges, we must treat our charge
distribution as a collection of individual charges like we did in the last lecture.
Notice in our last lecture that we found that the field infinitely far from the
charges was always zero. That is too far away for our continuous charge model
to be useful. But if we went far enough away—but not too far, the three charge
configuration looked like a point charge with a total charge that was the sum of
the individual charges. At such distances, the separation between the charges
become unimportant. This is the sort of large distance we are talking about in
our continuous charge distribution model.

To find the field due to a continuous charge distribution, we break up the
charged object into small pieces in a calculus sense. Each small piece is still
a continuous distribution of charge. It will have an amount of charge ∆qE,
where here the ∆ means “a small amount of.” Then we calculate the field due
to this element of charge. We repeat the process for each element using the
superposition principle to sum up all the individual field contributions. This is
very like our method of finding the field from individual charges, only instead
of a sum we want to let ∆qE become very small and use an integral. The field
due to this bit of charge is

∆
−→
E =

1

4πǫo

∆qE

r2
r̂

Recall that here ∆ means “a small bit of” and is not a difference between two
charge values or two field values. We learned that we can sum up the fields from
each piece

−→
E ≈




i

∆
−→
E i

≈ 1

4πǫo




i

∆qi

r2i
r̂i

and now we use our M215 (or M113) tricks to convert this into an integral. We
let our small element of charge become very small (but not so small that we
violate our assumption that the charge distribution of ∆qE is continuous).

−→
E = lim

∆qi→0
1

4πǫo




i

∆qi

r2i
r̂i

=
1

4πǫo

�
dqE

r2
r̂

The limits of the integration must include the entire distribution of charge if
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we want the total field. This will be our basic equation for finding the field for
continuous distributions of charge.

Let’s do some examples.

23.1.1 Line of charge

Question 223.23.2

Let’s try this for a line of charge. This may seem like a simple charge
configuration, but this problem is really quite challenging. Let’s say that the
charge is evenly distributed along the line. Then we can use the linear charge
density

λ = Q/L

to find dq. The quantity Q is the total amount of charge on the wire and L is
the length of the wire. Then

dq = λdy

Of course, we may not always have a constant density, then we need to have
and element of charge that varies with position. For a line charge, we would
have

dq = λ (y) dy

but for now, let’s assume the linear charge density is constant. Our basic formula
tells us that we should add up all the dq elements. But we have an obstacle.
We need a different r̂i for every dqi. How do we deal with this?

Just like with last lecture, we only need the component of the part of the
field that does not cancel. Here we need to have drawn a good picture. From
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our drawing we can tell that, in this case, only the z component will survive
(the y-components cancel). So we only need to find

Ez =
−→
E · k̂

This is a good thing, because our basic equation has an r̂ in it

−→
E =

1

4πǫo

�
dq

r2
r̂

and we don’t know how to do this integral including the r̂. So we need to
eliminate the direction part before we can proceed. Since we just need the
z-component,

Ez =
−→
E · k̂

=
1

4πǫo

� L/2

−L/2

dq

r2
r̂ · k̂

and we recognize
r̂ · k̂ = cos θ

So we are left with just

Ez =
1

4πǫo

� L/2

−L/2

dq

r2
cos θ

which is much more likely be be integrable with what we know from M113 or
M215.

Like in our last lecture, we will want to express

r =
�

y2 + z2

and it makes it easier if we write

cos θ =
z�

y2 + z2

Then our integral can be written as

Ez =
1

4πǫo

� L/2

−L/2

λdy

y2 + z2
z�

y2 + z2

=
λz

4πǫo

� L/2

−L/2

dy

(y2 + z2)
3

2

This now looks like a M215 or M113 problem. We can find this integral in an
integral table or you can use your calculator, or a symbolic math package, or
you can remember your M215 or M113 and prove that

� L/2

−L/2

dx

(x2 ± a2)
3

2

=
±x

a2
√
x2 ± a2
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so

Ez =
λz

4πǫo

� L/2

−L/2

dy

(y2 + z2)
3

2

=
λz

4πǫo

�
y

z2
�

y2 + z2

�����

L/2

−L/2

=
λz

4πǫo


 L/2

z2
	
(L/2)2 + z2

− −L/2

z2
	
(−L/2)2 + z2




=
λ

4πzǫo

L	
(L/2)2 + z2

=
1

4πǫo

Q

z
	�

L
2

�2
+ z2

This is the field due to a charged rod of length L.

Note that there are only a few integrals that we can solve in closed form to
find electric fields. It might be a good idea to build your own integral table for
our exams, including the integrals from the problems and examples we work.

An infinitely long line of charge is one of our basic charge models. So far
our line of charge is not infinitely long. We can find the field due to an infinite
line of charge by letting L become large

Ez = lim
L→∞

1

4πǫo

Q

z

	�
L
2

�2
+ z2

=
1

4πǫo

Q

z
�

L
2

�

=
1

4πǫo

2λ

z

=
1

4πǫo

2λ

z

or if we use r now in place of z to define the distance from the center of the line
of charge (so it is easier to compare to our point charge formula), we have

−→
Ez =

1

4πǫo

2λ

r
k̂

We should get a mental picture of what this means. Question 223.23.3
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The field around a long line of charge only depends on the distance away from
the line, and on the linear charge density. As we would expect, the field gets
weaker as we get farther away. But it does not get weaker as fast as the point
charge case. That makes some sense, because our infinite line of charge is, well,
really big. You are never really too far away from something that is infinitely
big. So we should not expect such a charge configuration to look very like a
point charge no matter how far away we go. Of course an infinite line of charge
is not something we can really build. So this is a useful approximation near,
say, a charged wire. But farther from the wire the approximation would not be
so good and we would have to go back to our finite line solution.

23.1.2 Ring of charge

Question 223.23.4
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Using what we have learned from the line of charge, we can find the axial
field of a ring of charge. Again, our picture is critically important. We will need
to solve the problem of eliminating r̂. From the picture, we can see that we will
only have a z-component again. So we can eliminate r̂ the same way as in the
last problem. We model the ring as a line of charge of length 2πR that has been
bent into a circle. Again we have the basic equation

−→
E =

1

4πǫo

�
dq

r2
r̂

Since the ring of charge is like a line of charge bent into a hoop. So we can plan
to work this problem very like the the line charge. Start again with

dq = λdy

but now we know that for the hoop

dq = λds

where s is the arc length. Recall that

s = Rφ

ds = Rdφ

where R is the radius of the ring and φ is an angle measured from the x-axis.
So our dq expression becomes

dq = λRdφ

For the whole ring

Q = λR2π

= 2πRλ

We also need to use geometry to find r, the distance to our point were we want
to know the field.

r =
	

y2i + z2

but since this is a ring, our yi = R for all i. So

r =
�

R2 + z2

and using the same reasoning as in our last problem,

cos θ =
z√

R2 + z2

Then we can set up our integral.

Ez =
−→
E · k̂

=
1

4πǫo

� L/2

−L/2

dq

r2
r̂ · k̂
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Putting in all the parts we have found yields

Ez =
1

4πǫo

�
dq

R2 + z2
z√

R2 + z2

=
1

4πǫo

�
zλRdφ

(R2 + z2)
3

2

=
zλR

4πǫo (R2 + z2)
3

2

� 2π

0

dφ

This is an easy integral to do! and we see that the axial field is

Ez =
z2πRλ

4πǫo (R2 + z2)
3

2

or, using our form for Q

−→
E =

1

4πǫo

zQ

(R2 + z2)
3

2

k̂

Once again we should check to see if this is a reasonable result. If we take
the limit as z goes to infinity, we get zero. That is comforting. But if we just
let z be much larger than R, but not too big

lim
z≫R

−→
E = lim

z≫R

1

4πǫo

zQ

(R2 + z2)
3

2

k̂

=
1

4πǫo

zQ

(z2)
3

2

k̂

=
1

4πǫo

zQ

z3
k̂

=
1

4πǫo

Q

z2
k̂

we again have a point charge field with total charge Q. Since a ring of charge
should look like a point charge if we get far enough away, this is reasonable.

We have worked two problems for continuous charge distributions. The
pattern for solving both problems was the same. And we will follow the same
pattern for solving for the field from continuous charge distributions in all our
problems:

• Start with
−→
E = 1

4πǫo

�
dqE
r2 r̂

• Find an expression for dqE

• Use geometry to find an expressions for r, the distance from dqE to the
point, P, where we want to know the field.

• Eliminate r̂
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• Solve the integral

If you have a harder problem, one where you need the field from a continuous
charge distribution at a point that is not on an axis, or your problem has little
symmetry, you can go back to

−→
E ≈




i

∆
−→
E i

≈ 1

4πǫo




i

∆qi

r2i
r̂i

and perform the sum numerically. We won’t do this in our class, but you might
in practice or in a higher level electrodynamics course.

Basic Equations

The basic equation from this chapter is the equation for finding the field
from a distribution of charge

−→
E =

1

4πǫo

�
dqE

r2
r̂

The process for using this equation is

• Start with
−→
E = 1

4πǫo

� dqE
r2 r̂

• Find an expression for dq

• Use geometry to find an expressions for r

• Eliminate r̂ in the usual way by turning a two or three-dimensional prob-
lem into two or three one-dimensional problems (using vector components,
etc.)

• Solve the integral(s) (Don’t forget to report the direction)
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Chapter 24

Motion of Charged
Particles in Electric Fields

Fundamental Concepts

• The capacitor

• Field of an ideal Capacitor

• Motion of particles in a constant electric field

24.1 Sheet of Charge
Question 223.23.5

Let’s try a two dimensional distribution of charge, a uniform flat sheet of charge.
We will assume that the sheet is infinitely large (so we don’t have to deal with
what happens at the edges). Let’s call the surface charge density η = Q/A where
Q is the total charge and A is the total area. Of course, we can’t calculate this
surface charge density directly from the totals, because they are infinite. But
we could take a square meter of area and find the amount of charge in that
small area. The ratio should be the same for any area so long as η is uniform.
We will find the electric field to the right of the sheet at point P .

327
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Once again we start with

−→
E =

1

4πǫo

�
dq

r2
r̂

We need to find dq, an expression for r, and get rid of r̂
Since the disk is uniformly charged, then, knowing the surface charge density

η =
Q

A

we can find the total amount of charge for an area

Q = ηA

so
dq = ηdA

but what area, dA, should we use? Notice the green patch in the figure that is
marked dA. Think for a moment about arc length

s = Rφ

This little area is about ds = Rdφ long, and about dR wide. If we let dA be
small enough, this is exact. So

dA = RdφdR

Then our dq is just η times this

dq = ηRdφdR

From geometry we identify

r =
�

z2 +R2
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and, due to symmetry we expect only the z-component of the field to survive.
So to get rid of r̂ we multiply (dot product) by k̂. There will be an angle, θ,

between r̂ and k̂. So we expect the result of the dot product to be that we
multiply by the cosine of θ

cos θ =
z√

z2 +R2

We want to put all this into our basic equation. This time the radius R
changes, so let’s call it R′ so we recognize that it is a variable over which we
must integrate, then

−→
E =

1

4πǫo

�
dq

r2
r̂

becomes

Ez =
1

4πǫo

�
ηR′dφdR′

(z2 +R′2)
r̂ · k̂

=
1

4πǫo

�
ηR′dφdR′

(z2 +R′2)
cos θ

and we will integrate from R′ = 0 to R′ = R.

Ez =
1

4πǫo

� 2π

0

� R

0

zηR′dφdR′

(z2 +R′2)
3

2

Performing the integration over dφ just gives us a factor of 2π

Ez =
zηπ

4πǫo

� R

0

2R′dR′

(z2 +R′2)
3

2

where, for convenience, we have left the 2 inside the integral (it will be useful
later).

We need to solve the integral over dR′. A u-substitution is one way. Suppose
we let

u = z2 +R′2

so
du = 2R′dR′

We will need to adjust the limits of integration, for R′ = 0 we have

u = z2

and for R′ = R
u = z2 +R2

then our integral becomes

Ez =
zπη

4πǫo

� z2+R2

z2

du

(u)
3

2
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We get

Ez =
zπη

4πǫo

�
−2
(u)

1

2

�����

z2+R2

z2

=
zπη

4πǫo

�
−2

(z2 +R2)
1

2

− −2
(z2)

1

2

�

=
−2zπη
4πǫo

�
1

(z2 +R2)
1

2

− 1
z

�

=
−2πη
4πǫo

�
z

(z2 +R2)
1

2

− 1
�

=
−2πη
4πǫo

�
1

1
z (z

2 +R2)
1

2

− 1
�

The result is

Ez =
2πη

4πǫo


1− 1

�
1 + R2

z2

� 1
2




or

Ez =
2πη

4πǫo

�
1−
�
1 +

R2

z2

�− 1

2

�

This looks messy, but this is the answer.
But wait, this is really a disk of charge with radius R. We wanted an infinite

sheet of charge. So. suppose we let R get very big. Then

ER→∞ = lim
R→∞

2πη

4πǫo

�
1−
�
1 +

R2

z2

�− 1

2

�

=
2πη

4πǫo

=
η

2ǫo

This is the field for our semi-infinite sheet of charge.Question 223.23.6

We should take some time to figure out if this makes sense.
This sheet cuts the entire universe into to two parts. It is so big, that it

is hard to say anything is very far away from it. So we can understand this
answer, The field from such a sheet of charge is constant every where in all of
space. No matter how far away we get, it will never look like a point charge, in
fact, it never really looks any farther away!

Note we did just one side of the sheet, there is a matching field on the other
side. So this sheet of charge fills all of space with a constant field.
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Of course this is not physically possible to build, but we will see that if we
look at a large sheet of charge, like the plate of a capacitor, that near the center,
the field approaches this limit, because the sides of the sheet are far away.Visualization fal-

stad 3DLet’s go back and consider the disk of charge.

Ez =
2πη

4πǫo

�
1−
�
1 +

R2

z2

�− 1

2

�

Suppose we look at this distribution from vary far away for a finite disk. We
expect that it should look like a point charge with total charge Q. Let’s show
that this is true. When z gets very large R/z is very small.

Ez≫R =
2πη

4πǫo

�
1−
�
1 +

R2

z2

�−1

2

�

Let’s look at just the part

�
1 +

R2

z2

�−1

2

This is of the form (1 + x)n where x is a small number. We can use the binomial
expansion

(1 + x)
n ≈ 1 + nx x≪ 1

to write this as
�
1 +

R2

z2

�−1

2

≈ 1− 1
2

R2

z2
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so in the limit that z is large we have

Ez≫R =
2πη

4πǫo

�
1− 1 + 1

2

R2

z2

�

=
1

4πǫo

π Q
πR2R

2

z2

=
1

4πǫo

Q

z2

Which looks like a point charge as we expected. We have just a small, disk of
charge very far away. That is looks like a point charge with total charge Q.

24.1.1 Spheres, shells, and other geometries.

I won’t do the problem for the field of a charged sphere or spherical shell.
We could, but we will save them for a new technique for finding fields from
configurations of charge that we will learn soon. This new technique will attempt
to make the integration much easier.

24.2 Constant electric fields

Let’s try to use what we know about electric fields to predict the motion of
charged particles that are placed in electric fields. We will start with the simplest
case, a charged particle moving in a constant electric field. Before we take on
such a case, we should think about how we could produce a constant electric
field.

We know that a semi-infinite sheet of charge produces a constant electric
field. But we realize that a semi-infinite object is hard to build and hard to
manage. But if the size of the sheet of charge is very large compared to the
charge size, using our solution for a semi-infinite case might not be too bad if
we are away from the edges of the real sheet.

We want to study just such a device. In fact we will use two finite sheets of
charge.

24.2.1 Capacitors

From what we know about charge and conductors, we can charge a large metal
plate by touching it to something that is charged, like a rubber rod, or a glass
rod that has been rubbed with the right material.
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+Q

-Q

+Q

-Q

If we have two large metal plates and touch one with a rubber rod and one with
a glass rod, we get two oppositely charged sheets of charge.

What would the field look like for this oppositely charged set of plates? Here
is one of our thread-in-oil pictures of just such a situation. We are looking at
the plates edge-on. Near the center, the field is close to constant. Near the

Figure 24.1: http://stargazers.gsfc.nasa.gov/images/geospace_images/electricity/charged_plates.jpg

sides it is not so much so. We are probably justified in saying the field in the
middle is nearly constant. A look at the field lines shows us why
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Note that in between the plates, the electric field from the positive plate is
downward. But so is the electric field from the negative plate. The two fields
will add together. Outside the plates, the field from one plate is in the opposite
direction from that of the other plate. The two fields will nearly cancel. If
our device is made of semi-infinite sheets of charge, they will precisely cancel,
because the field of a semi-infinite sheet of charge is uniform everywhere.

We call this configuration of two charged plates a capacitor and, as you
might guess, this type of device proves to be more useful than just making
nearly constant fields. It is a major component in electronic devices. Before
we can build and iPad or a laptop, we will need to understand several different
types of basic devices. This set of charged plates is our first.

Of course, for real capacitors, the fields outside cancel completely only near
the center of the plates. Near the edges, the direction of the fields will change,
and we get the sort of behavior that we see in figure 24.1 near the edges.

It is probably worth noting that outside the capacitor the field has a mag-
nitude of zero (or nearly zero). It is not really correct to say that there is no
field. In fact, there are two superimposed fields, or alternately, a field from each
of the charges on each plates, all superimposed. The fields are there, but their
magnitude is zero.

In the middle, then, we will have

E = E+ +E−

≈ η

2ǫo
+

η

2ǫo

=
η

ǫo

=
Q

Aǫo

24.3 Particle motion in a uniform field
Question 223.24.1

Now that we have a way to form a uniform electric field, we can study charged
particles moving in this field. Motion of particles in uniform fields is really some-
thing we are familiar with. It is very much like a ball in a uniform gravitational
field. But we have the complication of having two different types of charge. The
force on such a particle is given by

−→
F = qm

−→
E

but we can combine this with Newton’s second law

−→
F = m−→a

to find the particle’s acceleration

−→a = q
−→
mE

m
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Note, this is NOT true in general. It is only true for constant electric fields.CRT Demo

24.3.1 Millikan

Let’s try a problem. Perhaps you have wondered, “how do we know that charge
comes in packets of the size of the electron charge?” This is a good story, and
uses many of the laws we have learned.

Robert Millikan devised a clever device in the early 1900’s. A picture of his
device is given below.

Millikan’s oil-drop apparatus: Diagram taken from orginal Millikan’s paper,
1913, Image taken in 1906 (Both Images in the Public Domain)

Schematically we can draw the experiment like this.
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Millikan made negatively charged oil drops with an atomizer (fine spray
squirt bottle). The drops are introduced between two charged plates into what
we know is essentially a constant electric field. A light shines off the oil drops,
so you can see them through a telescope (not shown). We can determine the
motion of the oil drops just like we did in PH121 or Dynamics. If the upper

plate has the positive charge, then the electric field
−→
E is downward. A free body

diagram for a drop is shown in the figure to the left of the apparatus. We can
write out Newton’s second law for the drop (our mover charge).

ΣFy = mday = −Fg ± FD + Fe

where FD is a drag force because we have air resistance.
If the upper plate has the positive charge, then the electric field Ẽ is down-

ward. So −→
F e = −qm

−→
E

The field points down, the charge is negative, so the force is upward (positive
in our favorite coordinate system). We can write newtons’s second law as

mday = −Fg ± FD + qmE

If Fe is large enough, we can make the oil drop float up! Then the drag force is
downward

mday = −mg − FD + qmE

and if we are very careful, we can balance these forces so we have the drop float
upward at a small constant velocity.

0 = −mg − FD + qmE

The constant speed is really slow, hundredths of a centimeter per second. so
we can watch the drop move with no problem (except for patience). Once he
achieved a constant speed, by knowing the drop size and density Millikan could
calculate the mass, and therefore the charge.

mg + FD = qmE

we see that

qm =
mg + FD

E
Which is where our problem ends. But Millikan went farther. He had actual
data, so he could compare charges on different droplets. He found that no
matter what the value for qm, it was a multiple of a value, qe = 1.602×10−19C.
So

qm = nqe n = 0,±1,±2, . . .
to within about 1%.1 . So the smallest charge the drops could have added to
them was 1×qe and any other larger charge would be a larger multiple of qe. The

1There is actually some controversy about this. Apparently Millikan and his students
threw out much of their data, keeping only data on drops that behaved like they thought
they should. They were lucky that this poor analysis technique did not lead to invalid results!
(William Broad and Nicholas Wade, Betrayers of the truth, Simon and Schuster, 1983)
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conclusion is that charge comes in units of qe. We recognize qe as the electron
charge. You can’t add half of an electron charge. This experiment showed that
charge seems to only comes in whole units!

24.3.2 Free moving particles

We may recall that for an object falling in a gravitational field, say, near the
Earth’s surface, the acceleration, g, is nearly constant. If we have a charge mov-
ing in a constant electric field, we have a constant acceleration. From Newtons’
second law,

ma = qmE

we can see that this acceleration is

a =
qmE

m

From our Dynamics or PH121 experience, we have a set of equations to handle
problems that involve constant acceleration

xf = xi + vix∆t+
1

2
ax∆t2

vxf = vxi + ax∆t

v2xf = v2xi + 2ax∆x

and

yf = yi + viy∆t+
1

2
ay∆t2

vyf = vyi + ay∆t

v2yf = v2yi + 2ay∆y

These are know as the kinematic equations. You derived them if you took
Dynamics (or derived them and then memorized them if you took PH121). Let’s
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try a brief problem. Suppose we have a positive charge in a uniform electric
field as shown.

+  +   +  +  +  +  +  +  +  +  +   +  +   +  +  +  +  +  +  +  +  +  +  +  +  +
+  +   +  +  +  +  +  +  +  +  +   +  +   +  +  +  +  +  +  +  +  +  +  +  +  +

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

+ EF

rr
q

-EF

rr
q

d

Let y = 0 at the positive plate. How fast will the particle be going as it strikes
the negative plate?

We use the acceleration

ay =
qmE

m
ax = 0

For this problem we don’t have any x-motion, So we can limit ourselves to.

yf = yi + viy∆t+
1

2

�
qmE

m

�
∆t2

vyf = vyi +

�
qmE

m

�
∆t

v2yf = v2yi + 2

�
qmE

m

�
∆y

We don’t have the time of flight of the particle, but we can identify

∆y = d

The particle started from rest, so

vyi = 0

Therefore it makes sense to use the last of the three equations, because we know
everything that shows up in this equation but the final speed, and that is what
we want to find.

v2yf = v2yi + 2

�
qmE

m

�
∆y

v2yf = 0 + 2

�
qmE

m

�
d

vyf =

�
2qmEd

m
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There is a complication, however. With gravity, we only have one kind of
mass. But with charge we have two kinds of charge. Suppose we have a negative
particle.

Of course the negative particle would not move if it was started from the
positive side. It would be attracted to the positive plate. But suppose we
start the negative particle from the negative plate. It would travel “up” to the
positive plate. We defined the downward direction as the positive y-direction
without really thinking about it. Now we realize that the upward direction must
be opposite, so upward is the negative y-direction. Our negative particle will
experience a displacement ∆y = −d.

Then

v2yf = v2yi + 2

�−qmE

m

�
∆y

v2yf = 0 + 2

�−qmE

m

�
(−d)

vyf =

�
2qmEd

m

we get the same speed, but this illustrates that we will have to be careful to
watch our signs.

In this last problem we have had only an electric force, no gravitational
force. This is important to notice. If there were also a gravitational force, we
would need to use Newton’s second law to add up the forces like we did with
the Millikan problem.

Let’s take another example. This time let’s send in a negatively charged
particle horizontally through the capacitor. The particle will move up due to
the electric field force. How far up will it go as it travels across the center of
the capacitor?

Let’s define the starting position as

xi = 0

yi = 0
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We can identify that

vix = v0

viy = 0

And that

ay =
qmE

m
ax = 0

We can fill in these values in our kinematic equations

xf = 0 + vxit+
1

2
(0)∆t2

vfx = vix + (0) t

v2xf = v2ix + 2 (0)∆x

and

yf = 0 + (0)∆t+
1

2

�
qmE

m

�
∆t2

vyf = (0) +

�
qmE

m

�
∆t

v2yf = (0) + 2

�
qmE

m

�
(yf − 0)

From the first set we see that vfx = vix, that is, the x-direction velocity does
not change. That makes sense because we have no force component in the
x-direction.

After t seconds we see that the charged particle has traveled a distance

xf = vxit

If we measure xf = L then we can see how long it took for the particle to travel
through the capacitor

t =
L

vix

Now let’s look at the deflection. We can use the first equation of the y-set

yf =
1

2

�
qmE

m

�
t2

=
1

2

�
qmE

m

��
L

vix

�2

Let’s see if this makes sense. If the electric field gets larger, the particle will
deflect more.
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This is right. The field causes the force, so more field gives more effect from
the force. If we increase the charge, the deflection grows since the force depends
on the charge of the moving particle. This also seems reasonable. If the mass
increases, it is harder to move the particle, so it makes sense that a larger mass
makes a smaller deflection. If the particle is in the field longer, the deflection
will increase, so the dependence on L makes sense. Finally, if the initial speed
is larger the particle spends less time in the field, so the deflection will be less.

Of course all of this depends on the field being uniform. For a non uniform
field the force is still −→

F = qm
−→
E (x, y, z)

but now the field is a function of position. This makes for a more difficult
problem. For now we will stick to constant fields. If we had to take on a
non-uniform field, we would likely use a numerical technique.

Basic Equations

It’s time to put the kin ematic equations back on your equation sheet
xf = xi + vix∆t+ 1

2ax∆t2

vxf = vxi + ax∆t
v2xf = v2xi + 2ax (xf − xi)

xf = xi +
vxf+vxi

2 ∆t

yf = yi + viy∆t+ 1
2ay∆t2

vyf = vyi + ay∆t
v2yf = v2yi + 2ay (yf − yi)

yf = yi +
vyf+vyi

2 ∆t
The magnitude of the electric field due to a disk of charge along the disk’s

axis

Ez =
2πη

4πǫo

�
1−
�
1 +

R2

z2

�− 1

2

�
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The magnitude of the electric field due to a semi-infinite sheet of charge

E =
η

2ǫo

The magnitude of the electric field inside an ideal capacitor

E =
Q

Aǫo

Motion of a charged particle in a constant electric field

−→a = qm
−→
E

m

xf = xi + vixt+
1
2axt

2 yf = yi + viyt+
1
2ayt

2

vxf = vxi + axt vyf = vyi + ayt
v2xf = v2xi + 2ax∆x v2yf = v2yi + 2ay∆y



Chapter 25

Dipole motion, Symmetry

Fundamental Concepts

• Force and torque on a dipole in a uniform field

• Force on a dipole in a non-uniform field

• Drawing the shape of a field using symmetry

This lecture combines two topics that might be better separated. The first
relates to forces on charges in uniform fields. This is what we discussed last
lecture. The next is the beginning of the ideas that will allow us to use symmetry
and geometry to avoid integration over charges. But because our lecture times
are only an hour, and we can only do so much at once, they are combined here
together. But they form a nice transition between the two topics this way. We
will first study the motion of dipoles in uniform, and not so uniform fields. We
will find symmetry and geometry plays a part in our solutions. Then we will
study the fields of standard symmetric objects.

25.1 Dipole motion in an electromagnetic field

We remember dipoles, a pair of charges of equal magnitude but opposite in
charge, bound together at set separation distance. Let’s take our environment
to be a constant electric field, and our mover to be a dipole.

Question 223.25.1

Here is a diagram of the situation.

343
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Notice that as usual, just the environmental field is drawn. There is a field from
the dipole, too,

but this is the mover’s self-field and it cannot create a force on the dipole, so
we will not draw it. Of course, if we introduce yet another charge, qnew, the
environmental field this new charge would feel would be a combination of both
the dipole field and the uniform field! We would have to draw the superposition
of the two fields.

But that is a different problem!
Here is our case again. We only draw the environmental field that will cause

the motion of the mover object we are studying.

To understand these figures,we have to remember that the red field arrows are
an external field that is, the dipole is not making this field, so something else



25.1. DIPOLE MOTION IN AN ELECTROMAGNETIC FIELD 345

must be. We did not draw that something else. Since it is a uniform field, it is
probably a capacitor. Here is what it might look like

The positive side must be to the left, because the red external field arrows come
from the left. The negative side must be to the right, because the field arrows
are pointed that direction. We can get away with not drawing the source of the
external field because the force on the dipole charges is just

−→
F = qm

−→
E

If we know
−→
E , then we don’t need any information about it’s source to find the

force. Since the field is the environment that the mover charges feel, the field is
enough. Let’s find the net force on the dipole due to the environmental field.Question 223.25.2

We use Newton’s second law to find that

Fnetx = −F−E + F+E = max

and our definition of the electric field to find

F−E = q−E

F+E = q+E

so, since |q−| = |q+| = q
−qE + qE = max

which tells us that there is no acceleration, no net force. The center of mass of
a dipole does not accelerate in a uniform field. But we remember from PH121
that we can make things rotate.
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If the dipole is not aligned with it’s axis in the field direction, then the forces
will cause a torque (or moment).Question 223.25.3

We remember that torque is given by

−→τ = −→r ×−→F

substituting in our force and defining the distance between the charges to be a
we can write this out

The magnitude of the torque is given by

|τ | = rF sin θrF

where θrF is the angle between r and F. It is easier to find that angle if we
redraw each displacement vector from the pivot and each force with their tails
together

Then for one charge, say, q_

τ =
a

2
qE sin θ

We use the right-hand-rule that you learned in Dynamics or PH121 to find the
direction. We can see that the direction will be out of the page. But we have
two charges, so we have a torque from each charge. A quick check with the
right-hand-rule for torques will convince us that the direction for the torque
due to q+ is also out of the page, and the magnitude is the same, so our total
torque is

τnet = τ+ + τ−

= aqE sin θ

which we can write asQuestion 223.25.4
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τnet = pE sin θ

or the dipole moment, p, multiplied by E sin θ. Recalling the form of a cross
product −→

A ×−→B = AB sin θn̂

where n̂ is perpendicular to both
−→
A and

−→
B , we have a hint that we could write

our torque as a cross product. We would have to make p a vector, though. So
let’s define −→p as a vector with magnitude aq and make its direction along the
line connecting the charge centers, with the direction from negative to positive.

Then we can write the torque as

−→τ = −→p ×−→E (25.1)

which is our form for the torque on a dipole.
Let’s try a problem. Let’s find the maximum angular acceleration for a

dipole.
Recall that Newton’s second law for rotational motion is

Στ = Iα

where I is the moment of inertia and α is the angular acceleration. Then we
can find how the dipole will accelerate

α =
τnet

I

For a dipole, I is simple

I = m−r
2
− +m+r

2
+

= m
�a
2

�2
+m

�a
2

�2

=
1

2
ma2

so our acceleration is

α =
pE sin θ
1
2ma2

=
2pE sin θ

ma2
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Suppose we look at this for a water molecule in a microwave oven. What
is the maximum angular acceleration experienced by the water molecule if the
oven has a field strength of E = 200V/m?

The dipole moment for a water molecule is something like

pw = 6.2× 10−30Cm

and the separation between the charge centers is something like

a = 3.9× 10−12m

and the molecular mass of water is

M = 18
g

mol

which is

M =mNA

so the mass of a water molecule is

m =
M

NA
=

18 g
mol

6.022× 1023 1
mol

= 2. 989× 10−26 kg

then when sin θ = 1 we will have a maximum

α =
2
�
6.2× 10−30Cm

�
(200V/m)

(2. 989× 10−26 kg) (3.9× 10−12m)2

= 5. 455× 1021 rad
s2

Our numbers were kind of rough estimates, but still the result is amazing.
Imagine if this happened inside of you! which is why we really should be careful
with microwave ovens and microwave equipment.

25.1.1 Induced dipoles

Suppose that we place a large insulator in a uniform electric field.
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The atoms tend to polarize and become dipoles. We say we have induced dipoles
within the material. Notice that in the middle of the insulator there is still no
net charge. But because we have made the atoms into dipoles, one side of
the insulator becomes negatively charged and the other side becomes positively
charged. This does not create a net force, but we will find that separating the
charges like this can be useful in building capacitors.

25.1.2 Non-uniform fields and dipoles

Suppose we place our dipole in a non-uniform field. Of course the result will
depend on the field, so let’s take an example. Let’s place a dipole in the field
due to a point charge.

We can see that the field is much weaker at the location of the positive charge
than it is at the negative charge location. If we zoom in on the location near
our dipole we can see that now we will have an acceleration!
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ΣFx = −F−E + F+E = max

so
−qElarge + qEsmall = max

Let’s go back to our charged balloon from many lectures ago. We found that
the charge “leaked off” our balloon. We can see why now. The water molecules
in the air are attracted to the charges, and stick to them. When the water
molecules float off, they will take our charge with them. For this problem, the
dipole is the environment and our balloon electron is the moving charge. We
can calculate the net force easily with our field from a dipole that we found
earlier,

−→
Ey =

2

4πǫo

−→p
L3

then the force on the electron on the balloon is

F = qeE

=
2qe

4πǫo

p

L3

So if the dipole is about a 0.01 cm away

F =
2
�
1.602× 10−19

�

4π
�
8.85× 10−12 C2

Nm2

� 6.2× 10
−30Cm

(0.01 cm)3

= 1. 786 2× 10−26N
But wait! we used the dipole as the environmental object and the single charge
as the mover. So this is the force on the single charge! But by Newton’s third
law, the force on the dipole due to the electron must have the same magnitude
and opposite direction so

Fdipole = −1. 786 2× 10−26N
We could do this problem the other way, thinking of the point charge as the
environment and the dipole as the moving object. We know Coulomb’s law for
a point charge. So we use it to find the force on the individual parts of the
dipole. We have to be careful because the minus charge is at a different r value
than the positive charge.

−qE− + qE+ = max

−q
�

1

4πǫo

Q

r2−

�
+ q

�
1

4πǫo

Q

r2+

�
= max
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or

Qq

4πǫo

�
1

r2+
− 1

r2−

�
= max = Fnet

this is the net force on a dipole due to the point charge.

The effective charge on one side of the water molecule is

q =
p

a
=
6.2× 10−30Cm
3.9× 10−12m

= 1. 589 7× 10−18As

(how can this be true?) so if the dipole is abut a 0.01 cm away then

Fnet =

�
1.0× 10−19

� �
1. 589 7× 10−18As

�

4π
�
8.85× 10−12 C2

Nm2

�

×




1
�
0.01 cm + 3.9×10−12m

2

�2 −
1

�
0.01 cm− 3.9×10−12m

2

�2




= −1. 115 0× 10−26N

We expect the negative sign, both forces should be to the left. The answers
are different, but within one order of magnitude. This is pretty good since for
our dipole field we assumed that the distance from the dipole is very large and
0.01 cm is a somewhat shorter version of very large!

25.2 Symmetry

The symmetry of the uniform field figured strongly in the dipole problem. When
the shape of the field changed, so did the resulting motion. This suggests that
we could solve some problems just knowing the symmetry, or at least that
symmetry might help us do simple predictions to help get a problem started.
We need to be able to predict the field lines of a geometry to draw a picture to
start solving a problem.

We have run into two geometries so far that have been helpful
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The infinite line of charge and the semi-infinite sheet of charge. We have
found for the sheet that the field is constant everywhere. This is strongly sym-
metric. We could envision translating the sheet within the plane right or left.
The field would look the same. We could envision reflecting the sheet so the
left side is now the right side. That would also not change the field. We can
say that the field of the sheet would be symmetric about translation within the
plane of the sheet and symmetric on reflection.

Suppose we look at the sheet side-on. Suppose that we thought the field
came off the sheet at an angle as shown.

Notice that if we shift the sheet right or left, the field would still look the same,
but if we reflected the sheet about the y-axis. Then we would have
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But (and here is the important part) the shape of the charge distribution did
not change on reflection. The sheet really looks just the same. It dose not make
sense that we should change the shape of the field if the shape of the charge
distribution did not change. So we can tell that this can’t be the right field
shape. Question 223.25.5

We can do this with any symmetric distribution of charge. Think of the
infinite line of charge. If we move it left or right the field definitely changes. So
it is not symmetric about translation along, say, the x-axis. But if we move the
wire along it’s own axis, (for my coordinate system, along the y-axis) it should
be symmetric because the charge distribution won’t look different. We can guess
from the last example that the field must come straight out perpendicular to
the line of charge. It must be perpendicular, but what direction? Look at this
end view. The field lines do come straight out, so this meets our criteria for
being perpendicular to the line.

We could rotate the line about the axis of the line. Then the charge distrib-
ution would look just the same. The field would also look just the same on
rotation. But if we reflect the charge distribution across the axis shown, the
charge distribution looks just the same, but the field would change.
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We can tell that this is not the right field. We can tell that the field should
look more like this.

25.2.1 Combinations of symmetric charge distributions
Question 223.25.6

We can combine sheets or lines of charge to build more complex systems. We
did this to form a capacitor

The field lines follow our symmetry guidelines. Because of the symmetry of
the sheet of the field lines must be perpendicular to the sheets.

Again building from the line of charge, we can build more complex geometries
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In the figure we have two positively charged concentric cylinders. The field is
very reminiscent of a line charge field, and we can see that it must be using the
same symmetry rules.

Of course the cylinders don’t have to have the same charge.

If the interior cylinder is positively charged and the exterior cylinder is nega-
tively charged, we have a situation much like the capacitor. Each cylinder has
a field outside the system, but those fields cancel out if there are equal charges
on each cylinder. This situation is similar to a coaxial cable, and we will revisit
it later in the course.1

For the charge configurations we have drawn so far, we must keep in mind
that they are infinite in at least one dimension. Finite configurations of charge
in lines or sheets will have curved fields at the ends. The fields will be symmetric
on reflection about their centers, but not on translation of any sort. Still, we will

1 Indeed, this coaxial cables have a capacitance!



356 CHAPTER 25. DIPOLE MOTION, SYMMETRY

continue to use semi-infinite approximations in this class, and these constructs
are good mental images under many circumstances.

Of course we can have a sphere. Spheres are very symmetrical, so we can
guess using our symmetry ideas that the field from a charged sphere should be
perpendicular to the surface of the sphere everywhere.

We can see that this is true for both the sphere and for concentric spheres
or any configuration of charge that is spherical.

Basic Equations

−→τ = −→p ×−→E
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Electric Flux

Fundamental Concepts

• Electric flux is the amount of electric field that penetrates an area.

• An area vector is a vector normal to the area surface with a magnitude
equal to the area.

• For closed surfaces, flux going in is negative and flux going out is positive
by convention.

26.1 The Idea of Flux
Van de Graaff
Generator Demo
Question 223.26.1

If you took PH123 or have had a class that deals with fluids, I can use an
analogy (if not, you will probably be OK, because you have probably used a
garden hose). Let’s recall some fluid dynamics for a moment. Remember what
we called a flow rate? This was from the equation of continuity

v1A1 = v2A2

A

B

A

B

357
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We wanted to know how much liquid was going by a particular part of the pipe
in a given unit of time. We called vA a flow rate.

26.1.1 The idea of electric flux

I want to introduce an analogous concept. But this time I want to use the
electric field instead of water speed

Φ = EA

This is just like our flow rate in some ways. It is something multiplied by an
area. In fact, it is how much of something goes through an area. We could
guess that it is the amount of electric field that passes through the area, A.
Now the electric fields we have dealt with so far don’t flow. They just stay put
(we will let them change later in the course). So it is only like a flow rate. Our
field doesn’t pass by an area, it more penetrates the area. Like an arrow stuck
through a target. But it is useful to think of this as “how much of something
passes by an area,” and the “something” is the electric field in this case. Let’s
consider a picture

E

Area = A

EE

Area = A

In this picture, we have a rectangular area, A, and the red arrows represent the
field lines of the electric field. We can picture the quantity, Φ, as the number of
field lines that pass through A. Remember that the number of field lines we draw
is greater if the field strength is higher, so this quantity, Φ, tells us something
about the strength of the field over the area.Question 223.26.2

But, what if the area, A, is not perpendicular to the field?
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E

Area = A



EE

Area = A



We define an angle, θ (our favorite greek letter, but we could of course use β or
α, or ζ or whatever) that is the angle between the field direction and the area.
A more mathematical way to do this is to define a vector that is perpendicular
to (normal to) the surface n̂. Then we can use this vector and one of the field
lines to define θ. It will be the angle between n̂ and the field lines.

E

Area = A



n̂

EE

Area = A



n̂n̂

Of course either way gives the same θ.
Now our definition of Φ can be made to work. We want the number of field

lines passing through A, but of course, now there are fewer lines passing through
the area because it is tilted. We can find Φ using θ as

Φ = EA cos θ (26.1)

but let’s consider what

A cos θ

means. We can start with our original area. Tip a flat object
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Original Position

Side View Front view
Original Area

Original Position

Side View Front view
Original Area

If we tip the area, it looks smaller

Original Position

New Position



Original Area

Projected Area

Side View Front view

Original Position

New Position



Original Area

Projected Area

Side View Front view

The smaller area is called the projected area.
We can see that by tipping our area, we get fewer field lines that penetrate

that area.
Really the number of field lines is just proportional to E, so we won’t ever

really count field lines. But this is a good mental picture for what flux means.
Really we will calculate

Φ = EA cos θ

The cos θ with two magnitudes (field strength and area) multiplying it should
remind you of something. It looks like the result of a vector dot product. If E
and A were both vectors. Then we could write the flux as

Φ =
−→
E · −→A (26.2)

Well, we can define a vector that has A as it’s magnitude and is in the rightDomenstrate with
a document with
writing on one
side

direction to make −→
E · −→A = EA cos θ

We define the area vector −→
A = n̂A (26.3)

Notice that for an open surface (one that does not form a closed surface with
a empty space inside) we have to choose which side n̂ will point from. We can
choose either side. But once we have made the choice, we have to stick with it
for the entire problem we are solving.

26.1.2 Flux and Curved Areas
Trifold paper

Suppose the area we have is not flat? Then what? Well let’s recall that if we
take a sphere the surface will be curved. But if we take a bigger sphere, and
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look at the same amount of area on that sphere, it looks less curved.

Region of

Interest

Region of

Interest

This becomes more apparent if we remove the rest of the circle or sphere to take
away the visual cures our eyes and minds use to say something is curved

Suppose we take a curved surface but we just look at a very small part of
that surface. This would be very like magnifying our circle. We would see an
increasingly flat surface piece compared to our increased scale of our image.

This gives us the idea that for an element of area, ∆A we could find an
element of flux ∆Φ for this small part of the whole curved surface. Essentially
∆A is flat (or we would just take a smaller ∆A).

∆Φ =
−→
E ·∆−→A (26.4)

This is just a small piece of the total flux through the curved surface, the total
flux through our whole curved surface is

ΦE ≈



∆Φ (26.5)

Of course, to make this exact, we will take the limit as ∆A→ 0 resulting in
an integral. We find the flux through a curved surface to be

ΦE = lim
∆A→0




i

−→
E ·∆−→Ai =

�

surface

−→
E · d−→A (26.6)
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Notice that this is a surface integral. It may be that you have not done surface
integrals for some time, but we will practice in the upcoming lectures.

26.1.3 Closed surfaces

Suppose we build a box with our areas.

Then we would have some lines going in and some going out. By convention we
will call the flux formed by the ones going in negative and the flux formed by
the ones going out positive. From these questions we see that if there is noQuestion 223.26.3

Required

Question 223.26.4
Required

Question 223.26.5

charge inside of the box, the net flux must be zero. We could take any size or
shape of closed surface and this would be true! But if we do have charge inside
of the box we expect there to be a net flux. If it is a negative net charge, it
will be an negative flux and if it is a positive net charge it will be a positive net
flux. Next lecture we will formalize this as a new law of physics, but for now
we need to remember from M215 or M113 how to write an integration over a
closed surface. We use a special integral sign with a circle

ΦE =

" −→
E · d−→A (26.7)

You will also see this written as

ΦE =

"
EndA (26.8)

where En is the component of the field normal to the surface at the point area
increment dA.

26.1.4 Flux example: a sphere

For each type of surface we choose, we need an area element to perform the
integration. This is a lot like finding dq in our electric field integral. Let’s take
an example, a sphere.

We can start by finding the coordinates of a point, P, on the surface of the
sphere.
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P


z

x

y



P


z

x

y



We define the coordinates in terms of two angles, θ and φ. Let’s look at them
one at a time. First θ

P



z

y

Side View

and now φ
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P



y

x

Top View

P



y

x

Top View

Let’s build an area by defining a sort of box shape on the surface by allowing
a change in θ and φ (∆θ and ∆φ). First ∆θ,



z

xr

Side View

l = r 



z

xr

Side View

l = r 

The angle θ just defines a circle that passes through the “north pole” and
“south pole” of our sphere. By changing θ we get a small bit of arc length. We
remember that the length of an arc is

sθ = rθ (26.9)

where θ is in radians. So we expect that

∆sθ = r∆θ (26.10)

We can check this by integrating
� 2π

0

rdθ = r

� 2π

0

dθ = 2πr (26.11)

Just as we expect, the integral of arc length around the whole circle is the
circumference of the circle. Then ∆sθ is one side of our small box-like area, the
box height.
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Now let’s look at φ

P

z

x

y



rsin

P

z

x

y



rsin

φ also forms a circle on the sphere, but it’s size depends on θ. Near the north
pole, the radius of the φ-circle is very small. At θ = 90 ◦, the φ-circle is in
the xy plane and has radius r. We can write the radius of the φ-circle as a
projection over 90 ◦ − θ which gives us a radius of r sin θ. Then we use the arc
length formula again to find

sφ = (r sin θ)φ (26.12)

a change in arch length will be

∆sφ = (r sin θ)∆φ (26.13)

x

y

Top View



rsin

l = rsin 

x

y

Top View



rsin

l = rsin 

This is the other side of our box, the box width.
Now let’s combine them. We multiply ∆sθ ×∆sφ to obtain a roughly rec-

tangular area.
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z

x

y





A = rsinr

z

x

y





A = rsinr

∆A ≈ ∆sθ ×∆sφ = r∆θr sin θ∆φ (26.14)

which is the area of our small box. We have found an element of area on the
surface of the sphere! Let’s check our element of area by integration. After
changing ∆ to d and rearranging

dA = r2 sin θdθdφ (26.15)

then

A =

� �
r2 sin θdθdφ (26.16)

we have to be careful not to over count area. Let’s view this as first integrating
around the circle of radius r sin θ over the variable φ, then an integration of all
these circles as θ changes from 0 to π

A =

� π

0

� 2π

0

r2 sin θdφdθ (26.17)

= r2
� π

0

sin θdθ

� 2π

0

dφ

= 2πr2
� π

0

sin θdθ

= 4πr2

as we expect.

We are now ready to do a simple problem.
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Let’s calculate the flux through a spherical surface if there is a point charge at
the center of the sphere. The field of the point charge is

−→
E =

1

4πǫo

QE

r2
r̂

then the flux through the surface is

ΦE =

"
Ẽ · dÃ

=

"
1

4πǫo

QE

r2
r̂ · dÃ

but r̂ is always in the same direction as dÃ for this case, so

r̂ · dÃ = (1)dA cos (0) = dA

which gives us just

ΦE =
QE

4πǫo

"
1

r2
dA

=
QE

4πǫo

"
1

r2
r2 sin θdθdφ

=
QE

4πǫo

� π

0

�� 2π

0

dφ

�
sin θdθ

=
QE

4πǫo
4π

=
QE

ǫo

Some comments are in order. Our surfaces that we are using to calculate flux
might be a real object. You might calculate the electric flux leaving a microwave
oven, or a computer case to make sure you are in keeping emissions within FCC
rules. But more likely the surface is purely imaginary—just something we make
up.

Symmetry is going to be very important in doing problems with flux. So we
will often make up very symmetrical surfaces to help us with our problems. In
today’s problem, the fact that r̂ and dA were in the same direction made the
integral much easier.

Until next lecture, it may not seem beneficial to invent some strange sym-
metrical surface and then to calculate the flux through that surface. But it is,
and it will have the effect of turning a long, difficult integral into a simple one,
when we can pull it off.
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26.1.5 Flux example: a long straight wire

Let’s take another example. A long straight wire.

We remember that the field from a long straight wire is approximately

E =
1

4πǫo

2 |λ|
r

The symmetry of the field suggests an imaginary surface for measuring the flux.
A cylinder matches the geometry well. Let’s find the flux through an imaginary
cylinder that is L tall and has a radius r and is concentric with the line of
charge. Note that we are totally making up the cylindrical surface. There is
not really any surface there at all.

The flux will be

ΦE =

"
Ẽ · dÃ

We can view this as three separate integrals

ΦE =

"

top

Ẽ · dÃ+
"

side

Ẽ · dÃ+
"

bottom

Ẽ · dÃ

since our cylinder has end caps (the top and bottom) and a curved side.
Let’s consider the end caps first. For both the top and the bottom ends,

Ẽ · dÃ = 0 everywhere. No field goes thorough the ends. So there is no flux
through the ends of the cylinder.

There is flux through the side of the cylinder. Note that the field is perpen-
dicular to the side surface everywhere. So Ẽ · dÃ = EdA. We can write our
flux as

ΦE =

"

side

EdA

=

"
1

4πǫo

2 |λ|
r

dA
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Integrated over the side surface. But we will need an element of surface area
dA for a cylinder side. Cylindrical coordinates seem logical so let’s try26.6

dA = rdθdz

then

ΦE =

" "
1

4πǫo

2 |λ|
r

rdθdz

=
2 |λ|
4πǫo

� L

0

� 2π

0

dθdz

=
|λ|
2πǫo

(2πL)

=
|λ|
ǫo

L

So far we have, indeed, made integrals that look hard but are really easy to do.
But note that this would be much harder if the wire were not at the center of
the cylinder, or if in the previous example the charge had been off to one side
of the sphere.

We would still like to remove such difficulties if we can. And often we can by
choosing our imaginary surface so that the symmetry is there. But sometimes
that is harder. or worse yet, we don’t know exactly where the charges are in a
complicated configuration of charge. We will take this on next lecture when we
study a technique for finding the electric field invented by Gauss.

Basic Equations

The electric flux is defined as

ΦE =
−→
E · −→A = EA cos θ

where the area vector is given by

−→
A = n̂A

and for a curved area, we integrate

ΦE =

"
Ẽ · dÃ
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Chapter 27

Gauss’ Law and its
Applications

Fundamental Concepts

• Gauss’ Law tells us that the flux through a closed surface is equal to the
charge inside the surface divided by ǫo:

Φ =
Qin

ǫo

• Gauss’ Law combined with our basic flux equation

ΦE =

" −→
E · d−→A =

QE

ǫo

27.1 Gauss’ Law

Last lecture we did two problems. We found the flux from a point charge through
a spherical surface to be

Φsphere,point =
QE

ǫo

371
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and the flux from a line of charge through a cylinder to be

Φcylindar,line =
|λ|
ǫo

L

Let’s rewrite the last one using

λ =
Q

L

then

Φcylindar,line =
|QE/L|

ǫo
L

=
|QE|
ǫo

which is just what we got for the point charge and sphere! That is amazing!
Think about how much work it was to find each flux, and in the end we got the
same result. Wouldn’t it be great if the flux through every closed surface was
this simple? Then we would not have to integrate at all!

To see if we can do this, first let’s think of our answer.

Φsphere,point =
QE

ǫo

It does not depend on the radius of the spherical surface. So any sphericalQuestion 223.27.1

surface centered on the charge will do! This makes sense. No matter how big
the sphere, all the field lines must leave it. Since flux gives the amount of field
that penetrates an area, for our charge at the center of a sphere we see that all
of the field penetrates the spherical surface no matter the size of the sphere. So
the flux is the same no matter r.1

1 If this still seems strange, remember that the area of a sphere is 4πr2 and that the field of
a point charge is 1

4πǫo

Q

r2
. The flux is like the product of these two quantities. The r2 terms

must cancel. So the fact that the flux is the same for any sphere is due to the r2 dependence
of the field.
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The key to making our last lecture problems easy was that the field was always

perpendicular to the surface so
−→
E · d−→A = EdA was easy to find.

Using geometry we can arrange to make nearly all of our flux problems like
this. To demonstrate, let’s take the case of a point charge that is off center in
a spherical surface.

Remember, we made up this surface. So we can place the surface anywhere we
like. And this time we would like the charge to be off center. We will call these
made up surfaces Gaussian surfaces after the mathematician that thought up
this method of avoiding integrals. Having the charge off center would make for a

difficult integration because
−→
E and d

−→
A have different directions as we go around

the sphere. But let’s consider, would there be less flux through the surface than
there was when the charge was centered in the sphere? Every field line that
is generated will still leave the surface. Flux gives us the amount of field that
penetrates the surface.2 Since flux is the amount of field penetrating our surface,
it seems that the flux should be exactly the same as when the charge was in the
center of the sphere. To prove this, let’s take our surface and approximate it
using area segments. But let’s have the area segments be either along a radius
of a sphere centered on the charge, or along the surface of a sphere centered on

2Think of water flow rate again. We could place the end of a garden hose in a wire mesh
container. The water would flow out the hose end and through the wire mesh sides of the
container. The flow rate tells us how much water passes through the container surface. The
flow rate does not depend on the shape of the container. The hose end is like a charge. The
hose is the source of water, the charge is the source of electric field.
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the charge.

No flux goes through the radial pieces. And the rest of the pieces are all parts
of spheres centered on the charge. But for the spherical segments, the field will
be perpendicular to the segment no matter what sphere the segment is a part
of, because we chose only spheres that were concentric with the charge. The r
we have for the little spherical pieces does not matter, so on all of these surfaces−→
E · d−→A = EdA. Then the integration for these pieces will be easy.

Of course this surface made of little segments from other spheres is a poor
approximation to the shape of the offset sphere. But we can make our small
segments smaller and smaller. In the limit that they are infinitely small, our
shape becomes the offset sphere. That means that once again our flux is

Φ =
QE

ǫo

This is fantastic! We don’t have to do the integration at all. We just count up
the charge inside our surface and divide by ǫo.

What happens if the charge is on the outside of the surface?



27.2. EXAMPLES OF GAUSS’ LAW 375

Every field line that enters goes back out. We encountered this last time. The
flux going in is negative, the flux going out is positive, and they must be the
same because every line leaves that enters. So the net flux must be zero. The
means we should still write our flux as

Φ =
Qinside

ǫo

because outside charges won’t contribute to the flux. So in a way, our expression
works for charges outside our closed surface.

We know that fields superimpose, that is, they add up, so we would expect
that if we have two charges inside a surface,

we would add up their contributions to the total flux

Φtotal = Φ1 +Φ2

which means that Qinside is the sum of all the charges inside. We recognize that
if some charges are negative, they will cancel equal amounts of charge that are
positive.

This leaves us with a fantastic time savings law

The electric flux Φ through any closed surface is equal to the net
charge inside the surface multiplied by 4πke. The closed surface is
often called a Gaussian Surface.

ΦE =

� −→
E · d−→A =

Qin

ǫo

This was first expressed by Gauss, and therefore this expression is called
Gauss’ law.
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27.2 Examples of Gauss’ Law
Question 223.27.2

But why do we get so excited about flux? The reason is that we can use the idea
of flux combined with Gauss’ law gives us an easy way to calculate the electric
field from a distribution of charge if we can find a suitable symmetric surface!
If we can find the field, we can find forces, and we can predict motion.

Let’s show how to do this by working some examples.

Charged Spherical Shell

First let’s take a charged spherical shell and find the field inside.We need to be

+ +

+

+

+

++

+

+
+

+

+

+ +

+

+

Spherical Closed Surface

+ +

+

+

+

++

+

+
+

+

+

+ +

+

+

Spherical Closed Surface

Figure 27.1:

able to guess the shape of the field. We use symmetry. We can guess that the
field will be radial both inside and outside of the shell. If it were not so, then
our symmetry tests would fail.

The shell has a total charge of +Q. If we place a spherical surface inside the
shell, then we can use Gauss’s law.

Φ =
Qinside

ǫo

We can tell from the symmetry of the situation that
−→
E is everywhere colinear

with (but in the opposite direction as) d
−→
A so

Φ =

" −→
E · d−→A = −

"
EdA

because the field is everywhere perpendicular to the surface. We can even make
a guess that the field must be constant on this surface, because all along the
spherical Gaussian surface there is extreme symmetry. No change in reflection,
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or rotation etc. will change the shape of the charge, so around the spherical
surface the field must have the same value. Then

Φ = −E
"

dA = −EA

Equating our flux equations gives

−EA =
Qinside

ǫo
or

E = −Qinside

Aǫo

but what is Qinside? It is zero! so

E = − 0

Aǫo
= 0

There is no net field inside!
This may seem surprising, but think of placing a test charge, qo, inside the

sphere. The next figure shows the forces acting on such a test charge. The force
is stronger between the charge and the near surface, but there is more of the
surface tugging the other way.

The forces just balance. Since
F = qE

if the net force is zero, then the field must be zero too. Question 223.27.3

Is there a field outside of the spherical shell? It is still true that

Φ =

" −→
E · d−→A =

"
EdA

but this time we have a positive sign on the last integral because
−→
E and d

−→
A

are in the same direction. Then

EA = +
Qinside

ǫo
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We now choose our surface around the entire shell.

+ +

+

+

+

++

+

+
+

+

+

+ +

+

+

Spherical Closed Surface

+ +

+

+

+

++

+

+
+

+

+

+ +

+

+

Spherical Closed Surface

All of our analysis is the same as in our last problem, except now Qinside is not
zero

E =
Qinside

Aǫo

The area is the area of our imaginary sphere

E =
Qinside

(4πr2) ǫo

and since Qinside = +Q, then

E =
+Q

4πǫor2

and we have found the field.

Note that this field looks very like a point charge at the center of the spherical
shell (at the center of charge), but by now that is not much of a surprise!

Strategy for Gauss’ law problems

Let’s review what we have done before we go on to our last example. For each
Gauss’ law problem, we

1. draw the charge distribution
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2. Draw the field lines using symmetry

3. Choose (make up, invent) a closed surface that makes
−→
E · d−→A either just

EdA or 0.

4. Find Qin.

5. Solve

"
EdA = Qinside

ǫo
for the non, zero parts

The integral should be trivial now due to our use of symmetry.

An infinite sheet of charge.

Spherical cases were easy. Let’s try a harder one. Let’s try our infinite sheet of
charge. It is a little hard to draw. So we will draw it looking at it from the side
from within the sheet of charge (somewhere in it’s middle, if an infinite sheet
can have a middle).
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This completes step 1).
For step 2), let’s think about what the electric field will look like.

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

++ ++ ++

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

In the figure above I have blown up the view on three charge carriers and drawn
some field lines. Notice that in the x−direction the fields will cancel.

+ + +

Cancel Cancel

+ + +

Cancel Cancel

+ + +

Cancel Cancel

The y−components add

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

+ + +

x - components Cancel

Y - components add Y - components add

x - components Cancel

So we have only a field in the y direction

+ + +

Remember that this only works if we have the rest of the sheet

to cancel the components on the end charges shown

+ + +

Remember that this only works if we have the rest of the sheet

to cancel the components on the end charges shown

Now if we had edges of our sheet of charge, not all the x−components would
cancel and the problem would be harder, but we won’t do that problem now.
Also note that there is a field in the −y-direction, I only drew some of the field
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lines in the figures.

This is step 2).

Now we need to choose an imaginary surface over which to integrate

"
FE ·d FA.

We want FE · d FA = EdA or FE · d FA = 0 over all parts of the surface. I suggest a
cylinder.

Note that along the top of the cylinder, E � A so FE · d FA = EdA cos θ = EdA.

Along the side of the cylinder E ⊥ A so FE · d FA = EdA cos θ = 0. We have a
surface that works! This completes step 3).

Now we need to solve the integral. The flux is just

Φ =

"
FE · d FA

Φ =

"

side

FE · d FA+
"

ends

FE · d FA

= 0 +

"

ends

EdA = 2EA

where the factor of 2 comes because we have two caps and field in the +y and
−y directions and where A is the area of one end cap. If we know that the



382 CHAPTER 27. GAUSS’ LAW AND ITS APPLICATIONS

sheet of charge has a surface charge density of η, then we can write the charge
enclosed by the cylinder as

Qinside = ηA

so

ΦE =
ηA

εo

by Gauss’ law. Equating the two expressions for the flux gives

2EA =
ηA

εo

or

E =
η

2εo
(27.1)

which is what we found before for an infinite sheet of charge, but this way was
much easier. If we can find a suitable surface, Gauss’ law is very powerful!

27.2.1 Gauss’s law strategy

In each of our problems today, we found the electric field without a nasty inte-
gration. Usually we want the electric field at a specific point. To make Gauss’
law work we need to do the following for each problem:

1. Draw the charge distribution

2. Draw the field using symmetry

3. Invent a Gaussian surface that takes advantage of the field symmetry and

that includes our point where we want the field. We will want
−→
E · d−→A =

EdA or
−→
E · d−→A = 0 for each part of the surface we invent.

4. Find the flux by finding the enclosed charge, Qin

5. use

" −→
E ·d−→A = Qin

ǫo
integrating over our carefully invented surface to find

the field. If our surface that we imagined was good, then

" −→
E · d−→A will

be very easy.Question 223.27.4

27.3 Derivation of Gauss’ Law

A formal derivation of Gauss’ Law is instructive, and it gives us the opportunity
to introduce the idea of solid angle.
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z

x

y

A



r

z

x

y

A



r

∆Ω =
∆A

r2
(27.2)

This is like a two dimensional angle. And just like an angle, it really does
not have dimensions. Note that ∆A is a length squared, but so is r2. The
(dimensionless) unit for solid angle is the steradian. We can see that for a
sphere we would have a total solid angle of

Ωsphere =
4πr2

r2
= 4π sr (27.3)

Now let’s see why this is useful. Consider a point charge in an arbitrary closed
surface.

If we look at a particular element of surface ∆A we can find the flux through
that surface element. We can use our idea of solid angle to do this
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∆ΦE = Ẽ ·∆Ã

Since the field lines are symmetric about q and the surface is arbitrary, the
element ∆Ã will be at some angle θ from the field direction so

Ẽ ·∆Ã =E∆A cos θ

this is no surprise. But now notice that the projection of ∆A puts it onto a
spherical surface of just about the same distance from q. The projected area is

∆AP = ∆A cos θ

At this point we should remember that we know the field due to a point charge

E =
1

4πεo

q

r2

so our flux through the area element is

∆ΦE =
1

4πεo

q

r2
∆A cos θ

=
q

4πεo

∆A cos θ

r2

but
∆A cos θ

r2
= ∆Ω
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is the solid angle subtended by the projected area. Then

∆ΦE =
q

4πεo
∆Ω

The total flux though the oddly shaped closed surface is then

ΦE =
q

4πεo

"
dΩ

where we integrate over the entire arbitrary surface, S.

ΦE =
q

4πεo

"

S

dΩ

but by definition "

S

dΩ = 4π sr

so

ΦE =
q

4πεo

"

S

dΩ

=
q

4πεo
4π sr

=
q

εo

which is just Gauss’ law.
So far we have used mostly charged insulators to find fields. But we know

we will be interested in conductors and their fields in building electronics. We
will take up the study of charged conductors and their fields next.

Basic Equations

Gauss’ law

Φ =
Qinside

ǫo

Gauss’ law combined with our equation for flu

Φ =

" −→
E · d−→A =

Qinside

ǫo
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Chapter 28

Conductors in Equilibrium,
Electric Potentials

Fundamental Concepts

• Conductors in Equilibrium

• Electric Potential Energy

28.1 Conductors in Equilibrium

Conductors have some special properties because they have movable charge.
Here they are

1. Any excess static charge (charge added to an uncharged conductor) will
stay on the surface of the conductor.

2. The electric field is zero everywhere inside a conductor.

3. The electric field just outside a charged conductor is perpendicular to the
conductor surface.

4. Charge tends to accumulate at sharp points where the radius of curvature
of the surface is smallest.

It is our job to convince ourselves that these are true. Lets take these one
at a time.

387
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28.1.1 In Equilibrium, excess charge is on the Surface
Question 223.28.1

Let’s think about what we know about conductors. Most good conductors are
metals. The reason they are good conductors is that the outer electrons in
metals are in open valence bands where there are many energy states available
to the electrons. These electrons are free to travel around. This means that
if we place a charge near a metal object, the free charges will experience an
acceleration. Of course, the charge does not fly out of the conductor. It will
have to stop when it reaches the end of the metal object. Suppose we go back
to our experiment from the first lecture. We took a charged rod, and placed it
near an uncharged conductor.
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The free electrons moved. We ended up with a bunch of electrons all on the
right hand side. They all repel each other. So at some point the force between
a free electron and the charged rod, and the force between a free electrons and
the rest of the free electrons will balance. At that point, there is zero net force
(think of Newton’s second law). The free electrons stop moving. We have a
word from PH121 or Statics for when all the forces balance. We say the charges
are in equilibrium.

Now suppose we have a conductor just on it’s own and suppose we add
charge to it. Where would the extra charge go? We have considered this be-
fore. In the picture below, I have a spherical conductor with two extra negative
charges shown. The pair of charges will repel each other. Now because of the
r2 in our electric force equation, the closer the extra charges are, the stronger
the repulsive force. The result is that they will try to go as far from each other
as possible. So the extra charge on a spherical conductor will all end up on the
surface.

- -- -

28.1.2 The Electric Field is Zero Inside a Conductor
Question 223.28.2

We can use Gauss’ law to find the field in a conductor. We know that the extra
charge will all be on the surface if there is no electric current.
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We can then draw a Gaussian surface, to match the symmetry of the conductor.
What is the charge inside the Gaussian surface? It is net zero, since the reaming
charge is all bound up in atoms and balances out. Since there is no net charge,
there is no net flux. If there is no flux, there is no net field inside a conductor
that is in static equilibrium.

Note that if we connected this conductor to both ends of a battery, we would
have a field in the conductor generated by the battery and the charge flow it
creates, so we must remember that static equilibrium is a special case.

If we don’t connect the conductor to the ground or a battery, we can say:
The net electric field is zero everywhere inside the conducting material.

Consider if this were not true! If there were an electric field inside the
conductor, the free charge there would accelerate and there would be a flow
of charge. If there were a movement of charge, the conductor would not be in
equilibrium. Suppose we place a brick of conductor in a field. We expect that
the charges will be accelerated. Negative charges will move opposite the field
direction. We end up with the situation shown in the next figure.

Since the negative charges moved, the other side has a net positive charge. This
separation of the charges creates a new field in the opposite direction of the
original field. In equilibrium, just enough charge is moved to create a field that
cancels the original field.
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28.1.3 Return to charge being on the surface
Question 223.28.3

Suppose we have a conductor in equilibrium. We can now ask, what does it
mean that the charge is “on the surface?” Is there a small distance within the
metal where we would find extra charge? or is it all right at the edge of the
metal?

Let’s look at this again now that we know Gauss’ law. Let’s envision a
conducting object with a matching Gaussian surface.

We know the field inside the conductor is zero. So no field lines can leave or
enter the Gaussian surface. So no charge can be inside or we would have a net
flux, and, therefor, a field. We can move the Gaussian surface from the center
of the conductor and grow it until it is just barely smaller than the surface of
the conductor, and there still must be no field, so no charge inside.

We can make this Gaussian surface as close to the actual surface as we like, and
still there must be no field inside. Thus all the excess charge must be on the
surface. It is not distributed at any depth in the material.1

1For our chemists, our quantum picture will modify this reasoning a little, since we will
view electrons as waves that extend out into space a bit.
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28.1.4 Field lines leave normal to the surface

Question 223.28.4

In the following picture, we can see that the field lines seem to leave the surface
of these charged conductors at right angles (remember that sometimes we call
this normal to the surface).

We have charges all along the surface, and neighboring charges cancel all but
the normal components of the field, so the field lines go straight out. Notice that
farther from the conductor the field lines may bend, but they start out leaving
the surface perpendicular to the surface. Let’s draw a conducting object.

Consider what would happen if it were not true that the field lines left perpen-
dicular to a conductor surface when the conductor was in equilibrium.
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There would be a horizontal component of the field in such a case. The com-
ponent of the field along the surface would cause the charge to move. In the
figure there would be a net force to the left. This force would rearrange the
charge until there was no force. But since Fx = qEx, then when Fx is zero, so
is Ex. Suppose we place a conductor in an external field. We would see that the
charges within the conductor will rearrange themselves until the field lines will
leave perpendicular to the surface of the conductors.

Notice the square box in the last figure. There is an opening inside the
conductor, but there is no net field inside. The conductor charges rearrange
themselves so that the external field is canceled out. This is part of what is
known as a Faraday cage which allows us to cancel out an external electric field.
This is used to protect electronic devices that must operate in strong electric
fields. To complete the effect, we will also need to show that magnetic fields are
canceled by such a conducting box.

We should also consider what happens when we place a charge in a conduc-
tive container. Does this charge get screened off? That is, would the conductive
container prevent us from telling if there was a charge inside?
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In this case, the answer is no. The charges in the conductor will move because
of the charge contained inside the conducting container. The negative charge
will move as shown, and it will move to the outside of the container surface.
This leaves positive charges behind on the inner surface. We know that there
will be no field inside the conductor material, itself. But think of placing a
Gaussian surface around all of the container and charge. There will be a net
charge inside the Gaussian surface, so there will be a field. The inner surface
charge does cancel the charge from the charged sphere. But the negative charge
on the conductor surface creates a new field.

28.1.5 Charge tends to accumulate at sharp points

Let’s go back to our charged conductor. Notice that the field lines bunch up
at the corners! Where the field lines are closer together, there must be more
charge and the field strength must be higher.
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Now that we have an idea of how charge and conductors act in equilibrium, we
would like to motivate charge to move. To see how this happens, let’s review
energy.

28.2 Electrical Work and Energy

We remember studying energy back in PH121 or Statics and Dynamics. Re-Question 223.28.5

member the Work-Energy theorem?Put this on the far
board

Wnc = ∆K +∆U (28.1)

We started with gravitational potential energy, and, as we found conservative
forces, we defined new potential energies to describe the work done by those
forces. For example, we added spring potential energy

Wnc = ∆K +∆Ug +∆Us (28.2)

I bet you can guess what we will do with our electrical or Coulomb force!

Wnc = ∆K +∆Ug +∆Us +∆UC (28.3)

When we do this, we mean that the work done by the Coulomb force (WC) is
the negative of the electrical potential energy change

WC = −∆UC (28.4)

and we are saying that the Coulomb force is conservative. But is the Coulomb
force conservative? Remember that the equation for the force due to gravity
and the equation for the Coulomb force are very alike. So we might guess that
the Coulomb force is conservative like gravity—and we would be right!

28.2.1 Energy of a Charge in a uniform field
Question 223.28.6

Question 223.28.7

Question 223.28.8

Let’s use our Coulomb force to calculate work. I would like a simple example,
so let’s assume we have a uniform electric field. We know that we can almost
really make a uniform electric field by building a large capacitor.
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We draw some field lines (from the + charges to the - charges). The field
lines will be mostly straight lines in between the plates. Of course, outside the
plates, they will not be at all straight, but we will ignore this because we want
to calculate work just in the uniform part of the field.

I want to place a charge, q, in this uniform field. The charge will accelerate.
Work will be done. I want to find out how much work is done on the charge.

From our PH121 or Dynamics experience, we know that

W =

� −→
F · d−→x (28.5)

= F∆x cos θ

for constant forces. Because we have a constant field, we will have a constant
force.

I will choose the x direction to be vertical and x = 0 to be near the positive
plate. Then we can write the force due to the electric field as

W = F∆x cos θ

= (qmE)∆x cos (0 ◦)

= qmE∆x

If there are no non-conservative forces, and we ignore gravity, then we can
say Put this on the far

board
Wnc = ∆K +∆Ug +∆Us +∆UC

0 = ∆K + 0 +∆PEC

0 = ∆K + 0− qmE∆x

so
∆K = qmE∆x (28.6)

This is very interesting! This means that for this simple geometry I could
ask you questions like, “after the charge travels ∆x, how fast is it going?”

28.2.2 Electric and Gravitational potential energy com-
pared

We have found that the potential energy for the Coulomb force is given by

∆UC = −qmE∆x

for a uniform electric field (it will change for non-uniform fields). Let’s compare
this to the gravitational potential energy

∆Ug = −mgh

Let’s set up a situation where the electric field and gravitational field are almost
uniform and we have a positively charged particle with charge q and mass m.



396CHAPTER 28. CONDUCTORS IN EQUILIBRIUM, ELECTRIC POTENTIALS

The height, h, we will call d to match our gravitational and electrical cases.

The gravitational potential difference is

∆Ug = −mgd (28.7)

and the electrical potential difference is

∆UC = −qmEd (28.8)

These equations look a lot alike. We should expect that if we push the charge
qm “up,” we will increase both potential energies. We will have to do positive
work to do that (W = −∆U) . This is just like doing work in a gravitational
field, so we are familiar with this behavior.

There is a difference, however. We have assumed that our charge qm was
positive. Suppose it is negative? There is only one kind of mass, but we have
two kinds of charge. We will have to get used to negative charges “falling up”
to make the analogy continue.

This analogy helps us to understand how the electric potential energy will
act, and we will continue to use it. There is a difficulty, however, in that most
engineering classes only study gravitation in nearly uniform gravitational fields.
But if we look at large objects (like whole planets) that are separated from other
objects by some distance, then we have very non-uniform gravitational fields.
Unless you are an aerospace engineer, these cases are less common. So to help
us understand electric potential energy, we will study gravitational potential
energy of large things first, then study the energy associated with individual
charges and their very non-uniform fields. We will take this on next time.

Basic Equations



Chapter 29

Electric potential Energy

Fundamental Concepts

• Gravitational potential energy of point masses and binding energy

• Electrical potential energy of point charges

• Electrical potential energy of dipoles

29.1 Point charge potential energy

As we said last lecture, we want to use gravitation as an analogy for the electric
potential energy. Gravitation is more intuitive. But chances are gravitation of
whole planets was not stressed in Dynamics (If you took PH121 you should be
fine, and this will be a review). So let’s take a few moments out of a PE101
class (introductory planetary engineering) and study non-uniform gravitational
fields.

29.1.1 Gravitational analog
Question 223.29.1

Question 223.29.2Long, long ago you studied the potential energy of objects in what we can now
call the Earth’s gravitational field.

The presentation of the idea of potential energy likely started with

Ug = mgy

where m is the mass of the object, g is the acceleration due to gravity, and y is
how high the object is compared to a y = 0 point. If you recall, we got to pick
that y = 0 point. It could be any height.

397
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This all works fairly well so long as we take fairly small objects near the much
larger Earth. But hopefully you also considered objects farther away from the
Earth’s surface, or larger objects like the moon. For these objects, mgy is not
enough to describe the potential energy. The reason is that if we are far away
from the center of the Earth we will notice that the Earth’s gravitational field1 is
not uniform. It curves and diminishes with distance. So, if an object is large, it
will feel the change in the gravitational field over its (the object’s) large volume.

We have the tools to find the potential energy of this situation. We know
that a change in potential energy is just an amount of work

∆Ug = −Wg = −
� −→
F g · d−→r

The magnitude of the gravitational force is

Fg = G
MEmm

r2Em

where ME is the mass of the Earth, mm is the mass of the mover object, and
rEm is the distance between the two. The constant, G, is the gravitational con-
stant.

The field is radial, so
−→
F g ·d−→r = −Fdr for the configuration we have shown,

and we can perform the integration. Say we move the object a distance ∆r
away were

∆r = R2 −R1

and ∆r is large, comparable to the size of the Earth or larger. Then

∆Ug = −
� R2

R1

�
−GMEmm

r2

�
dr

= GMEmm

� R2

R1

dr

r2

1Of course, the gravitational field is really the warping of space-time. But that is a subject
for another physics class.
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where R is the distance from the center of the Earth to the center of our object.

∆Ug = GMEmm

� R2

R1

dr

r2

= GMEmm

�
−1
r

����
R2

R1

= GMEmm

�
− 1

R2
−
�
− 1

R1

�


= −GMEmm

�
1

R2
− 1

R1




= −GMEmm

R2
+G

MEmm

R1

We recall that we need to set a zero point for the potential energy. Before,
when we used the approximation mmgy we could choose y = 0 anywhere we
wanted. But now we see an obvious choice for the zero point of the potential
energy. If we let R2 →∞ and then the first term in our expression will be zero.
Likewise, of we let R1 → ∞ the second term will be zero. It looks like as we
get infinitely far away from the Earth, the potential energy naturally goes to
zero! Mathematically this makes sense. But we will have to interpret what this
choice of zero point means.

But first, let’s see how much work it would take to move the moon out of obit
and move it farther away. Say, from R1, the present orbit radius, to R2 = 2R1,
or twice the original orbit distance. Then

∆Ug = U2 − U1 = −G
MEmm

2R1
+G

MEmm

R1

= G
MEmm

R1

�
−1
2
+ 1

�

=

�
1

2

�
G
MEmm

R1

The change is positive. We gained potential energy as we went farther from the
Earth’s surface. That makes sense! That is analogous to increasing y in mgy.
The potential energy also gets larger if the mass of our object (like the moon
or a satellite) gets larger. Again that makes sense because in our more familiar
approximation the potential energy increases with mass. So this new form for
our equation for potential energy seems to work.

But what does it mean that the potential energy is zero infinitely far away?
Recall that a change in potential energy is an amount of work

W = −∆U

Usually we will consider the potential energy to be the amount of work it takes
to bring the test mass mm from infinitely far away (our zero point!) to the
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location where we want it. It is how much energy is stored by having the object
in that position. Like how much energy is stored by putting a mass high on a
shelf. For example we could bring the moon in from infinitely far away. Then

∆Ug = U2 − U1 = −G
MEmm

R2
+G

MEmm

∞

U2 = −GMEmm

R2

This is how much potential energy the moon has as it orbits the Earth because
it is high, above the Earth. But notice, this is a negative number! What can it
mean to have a negative potential energy?Question 223.29.3

We use this convention to indicate that the test mass, mm is bound to
the Earth. It would take an input of energy to get the moon free from the
gravitational pull of the Earth. Here is the Moon potential energy plotted as a
function of distance.

1e+7 2e+7 3e+7 4e+7 5e+7 6e+7 7e+7 8e+7 9e+7 1e+8

-4e+30

-3e+30

-2e+30

-1e+30

0

r (m)

U (J)

We can see that you have to go an infinite distance to overcome the Earth’s
gravity completely. That makes sense from our force equation. The force only
goes to zero infinitely far away. When we finally get infinitely far away, there will
be no potential energy due to the gravitational force because the gravitational
force will be zero.

Of course, there are more than just two objects (Earth and Moon) in the
universe, so as we get farther away from the Earth, the gravitational pull of, say,
a galaxy, might dominate. So we might not notice the weak pull of the Earth
as we encounter other objects.

We should show that this form for the potential energy due to gravity be-
comes the more familiar mgh if our distances are small compared to the Earth’s
radius.

Let our distance from the center of the Earth be R2 = RE + y where RE is
the radius of the Earth and y ≪ RE. Then

U = −GMEmm

R2

= −GMEmm

RE + y
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We can rewrite this as

U = −G MEmm

RE

�
1 + y

RE

�

= −GMEmm

RE

�
1 +

y

RE

�−1

Since y is small y/RE is very small and we can approximate the therm in
parenthesis using the binomial expansion

(1± x)
n ≈ 1∓ nx if x≪ 1

then we have
�
1 +

y

RE

�−1
≈ 1− (−1) y

RE
if

y

RE
≪ 1

and our potential energy is

U = −GMEmm

RE

�
1 +

y

RE

�

then

U = −GMEmm

RE
+G

MEmmy

R2E

= Uo +mm

�
G
ME

R2E

�
y

If we realize that Uo is the potential energy of the object at the surface of the
Earth, then the change in potential energy as we lift the object from the surface
to a height y is

∆U =

�
Uo +mm

�
G
ME

R2E

�
y −
�
Uo +mm

�
G
ME

R2E

�
(0)

��

= mm

�
G
ME

R2E

�
y

All that is left is to realize that
�
G
ME

R2E

�

has units if acceleration. This is just g

g =

�
G
ME

R2E

�

so we have
∆U =mmgy
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and there is no contradiction. But we should realize that this is an approxima-
tion. The more accurate version of our potential energy is

U2 = −G
MEmm

R2

Likewise we should expect that for charges

∆UC = −qmEd

is an approximation that is only good when the field, E, can be approximated
as a constant magnitude and direction and that the distribution of charge, qm,
is not spatially too big. With this understanding, we can understand electrical
potential energy of point charges.

29.1.2 Point charges potential

Suppose we now take a positive charge and define it’s position as r = 0 and
place a negative mover charge near the positive charge.

The work it would take to move the charge a distance ∆r = R2 −R1 would be

∆Ue = −We = −
� −→
F e · d−→r

The magnitude of the electrical force is

Fe =
1

4πǫo

QEqm

r2

once again
−→
F e · d−→r = −Fedr and

∆Ue = −
� R2

R1

�
− 1

4πǫo

QEqm

r2

�
dr

=
QEqm

4πǫo

� R2

R1

dr

r2

and we realize that this is exactly the same integral we faced in the gravitational
case. The answer must be

∆Ue = −
1

4πǫo

QEqm

R2
+

1

4πǫo

QEqm

R1
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The similarity is hardly a surprise since the force equation for the Coulomb
force is really just like the force equation for gravity.

It makes sense to choose the zero point of the electric potential energy the
same way we did for the gravitational potential energy since the equations is
the same. We will pick U = 0 at r =∞. Then we expect that

Ue = −
1

4πǫo

QEqm

rEm

is the electrical potential energy stored by having the charges in this configura-
tion. Question 223.29.4

Again the negative sign shows that the two opposite charges will be bound
together by the attractive force. Here is a graph of the electrical potential en-
ergy of an electron and a proton pair, like a Hydrogen atom.

0.0e+0 1.0e-8 2.0e-8 3.0e-8 4.0e-8 5.0e-8 6.0e-8
r (m)

U (J)

Of course we remember that there is a large difference between electrical and
gravitational forces. If the two charges are the same sign, then they will repel
and the potential must be different for that situation. If we redraw our diagram
for this case, we realize that the sign of the force must change.

∆Ue = −We = −
� R2

R1

�
+

1

4πǫo

QEqm

r2

�
dr

this will change all the signs in our solution

∆Ue = +
1

4πǫo

QEqm

R2
− 1

4πǫo

QEqm

R1
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then

Ue = +
1

4πǫo

QEqo

r

0.0e+0 1.0e-8 2.0e-8 3.0e-8 4.0e-8 5.0e-8 6.0e-8
0.0e+0
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Now we can see that the potential energy gets larger as the two like charges get
nearer. It takes energy to make them get closer. This is clearly not a bound
situation.

29.1.3 Three point charges.
Question 223.29.5

Suppose we have three like charges. What will the potential energy of the
three-charge system be?

Let’s consider the charges one at a time. If I move one charge, q1, from
infinitely far away. there is no environmental electric field, so there is no force,
since we need two charges for there to be a force. Then there is no potential en-
ergy. This is like a rock floating in deep space far away from anything else in the
universe. It just sits there, there is no potential for movement, so no potential
energy. But when we bring in another charge, q2, then q1 is an environmental
charge making a field and q2 is our mover charge. Then q2 will take an amount
of work equal to

U12 =
1

4πǫo

q1q2
r12

to move in the charge because the two charges repeal each other. There is a
force, so now there is an amount of potential energy associated with the work
done to move the charges together.

Suppose we had chosen to bring in the other charge, q3, instead. Charge q1
forms an environmental field. It takes an amount of energy

U13 =
1

4πǫo

q1q3
r13

to bring in the third charge charge But if the second charge were already there,
the second charge also creates an environmental field, so it also creates a force
on the third charge. So it will take more work to bring in the third charge.

U3 =
1

4πǫo

q1q3
r13

+
1

4πǫo

q2q3
r23
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So the total amount of work involved in bringing all three charges together

U =
1

4πǫo

q1q2
r12

+
1

4πǫo

q1q3
r13

+
1

4πǫo

q2q3
r23

then the potential energy difference would be

∆U = Uf − Ui = −W
= Uf − 0

=
1

4πǫo

q1q2
r12

+
1

4πǫo

q1q3
r13

+
1

4πǫo

q2q3
r23

which we can generalize as

U =
1

4πǫo




i<j

qiqj

rij

for any number of charges. We simply add up all the potential energies. This
is one reason to use electric potential energy in solving problems. The electric
potential energies just add, and they are not vectors, so the addition is simple.

29.2 Dipole potential energy

Let’s try out our new idea of potential energy for point charges on a dipole.
We will try to keep this easy, so let’s consider the dipole to be in a constant,
uniform electric field. We know there will be no net force. The work done to
move a charge we have stated to be

W =

� −→
F e · d−→r

but in this case, we know the net force on the dipole is zero.
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However, we can also do some work in rotating something

Wrot =

�
τedθ

we know from before that the magnitude of the torque is

τ = pE sin θ

so

Wrot =

� θ2

θ1

pE sin θdθ

= pE (cos θ2 − cos θ1)

this must give

∆U = −Wrot = Uf − Ui

= −pE (cos θ2 − cos θ1)

then we can write as
U = −pE cos θ

This is the rotational potential energy for the dipole. We can write this as an
inner product

U = −−→p · −→E
What does this mean? It tells us that we have to do work to turn the dipole.

Let’s go back to our example of a microwave oven. If the field is E =
200V/m, then how much work does it take to turn the water molecules?

Remember that the dipole moment for a water molecule is something like

pw = 6.2× 10−30Cm

so we have

U = −
�
6.2× 10−30Cm

�
(200V/m) cos θ

= −1. 24× 10−27 J cos θ

This is plotted in the next figure.
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At zero degrees we can see that it takes energy (work) to make the dipole
spin. It will try to stay at zero degrees and a small displacement from zero
degrees will will cause the dipole to oscillate around θ = 0 but it will return to
θ = 0 as the added energy is dissipated. then θ = 0 rad is a stable equilibrium.
Conversely, at θ = π rad we are at a maximum potential energy. We get ro-
tational kinetic energy if we cause any small displacement ∆θ. The dipole will
angularly accelerate. θ = ±π rad is an unstable equilibrium.

29.3 Shooting α-particles

Let’s use electric potentials to think about a famous experiment. Ernest Ruther-
ford shot α-particles, q = +2qe at gold nuclei, q = +79qe. How close will the
α-particles get if the collision is head-on and the initial speed of the α-particles
is 3× 106m/ s?

The easiest way to approach this is to use conservation of energy. The
energies before and after must be the same because we have no frictional or
dissipative forces.

The before and after pictures are as shown. The α-particle, of course, is our
mover.

We can write

Ki + Ui = Kf + Uf

when the α-particles are at their closest distance to the gold nuclei, thenKf = 0.
We can envision starting the α-particles from effectively an infinite distance
away. Then Ui ≈ 0. so

1

2
mαv

2 =
1

4πǫo

QAuqα

r
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Solving for r gives

r =
1

4πǫo

QAuqα
1
2mαv2

=
1

2πǫo

(79qe) (4qe)

mαv2

then

r =
1

2π
�
8.85× 10−12 C2

Nm2

� 158
�
1.602× 10−19C

�2

(6. 642 2× 10−27 kg) (3× 106m/ s)2

= 1. 219 8× 10−12m

This is a very small number! and it sets a bound on how large the nucleus of
the gold atom can be.

Next lecture, we will try to make our use of electrical potential energy more
practical by defining the electrical potential energy per unit charge, and applying
this to problems involving moving charges (like those in electric circuits).

Basic Equations

We found the potential energy associated with the electric force.

∆Ug = −Wg = −
� −→
F g · d−→r

For a point charge this is

Ue = −
1

4πǫo

QEqm

rEm

and remember

K =
1

2
mv2

For a dipole there is a rotational potential energy.

U = −−→p · −→E



Chapter 30

Electric Potentials

Fundamental Concepts

We defined electrical potential energy last time. We used an analogy with
gravitational fields and gravitational potential energy. But there is a missing
piece. The gravitational environment property

g =

�
G
ME

R2E

�

(where here the subscript E is for the environmental object) showed up in our
equation for the gravitational potential

U = −
�
G
ME

RE

�
mo

We found the same form for the electrical potential energy.

U12 =
1

4πǫo

q1q2
r12

or we could write this as

U12 =

�
1

4πǫo

q1
r12

�
q2

where charge q2 would be our mover charge. By analogy, then

1

4πǫo

q1
r12

must represent the environment set up by q1. And sure enough, it has a q1 in it.
But this does not have the units of electric field. So it must be a new quantity.

409



410 CHAPTER 30. ELECTRIC POTENTIALS

We will need a name for this new representation of the environment created by
q1.

Fundamental Concepts

• Electric potential is a representation of the electric field environment.

• Electric potential is defined as the potential energy per unit charge.

• Equipotential lines are drawn to show constant electric potential surfaces

• The volt as a measure of electric potential

• The electron-volt as a measure of energy (and speed).

30.0.1 Electric Potential Difference
Question 223.30.1

Let’s give a symbol and a name to our new environment quantity.

V12 =
1

4πǫo

q1
r12

where we understand that q1 is making the environment and we are measuring
that environment a distance r12 from q1. Thus q1 is the environmental charge.

Then

U12 =

�
1

4πǫo

q1
r12

�
q2

= (V12) q2

It’s traditional to drop the subscripts on the V

V =
1

4πǫo

q

r

where we understand that an environmental charge labeled just q is making the
environment and q2 is a distance r from q. In that case we can write

U12 = (V ) q2

or

V =
U12
q2

This new environment representation appears to be an amount of potential
energy per unit charge. In general any electrical potential energy (U) per unit
charge (q) is is called an electric potential.

V =
U

q
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This is a somewhat unfortunate name, because it sounds like electric poten-
tial energy. But it is not, it is a representation of the environment set up by
the electric field. We don’t get electric potential energy without multiplying by
a charge. U = V qo.

We will give electric potential the symbol V but usually the important quan-
tity is a change in potential energy, then

∆V =
∆U

q
(30.1)

If I know ∆V for a configuration of charge (like our capacitor plates) then I can
find the ∆U of different charges by multiplying by the amount of charge in each
case

∆U1 = q1∆V

∆U2 = q2∆V

...

which is convenient if I am accelerating many different charges. We do this in
linear accelerators or at the Large Hadron Collider at CERN so this is important
to physicists!

CMS detector under repair. This is part of the Large Hadron Collider at CERN.

We can see that the units of ∆V must be

J

C
= V (30.2)

which has been named the Volt and is given the symbol, V.
Now this may seem familiar. Can you think of anything that carries units

of volts? Let’s consider a battery. In our cell phones we have something like
a 3.8V lithium-ion battery. Inside the battery we would expect that a charge
would experience a potential energy difference. We use the battery so we can
convert that potential energy into some other form of energy (e.g. radio wave
energy for our phone’s wifi). The potential energy achieved depends on the
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charge carrier. We would have electrons in metals but we would have ions in a
solution. This is so convenient to express the potential energy per unit charge,
that it is the common form or expressing the energy given by most electrical
sources.Question 223.30.2

Question 223.30.3

30.0.2 Electric Potential

Let’s write out the electric potential difference between points A and B. It is
the change in potential energy per unit charge as the charge travels from point
A to point B

∆V = VB − VA =
∆U

q
(30.3)

This is clearly a measure of how the environment changes along our path from
A to B.

Let’s reconsider gravitational potential energy. We remember that if the field
is uniform (that is, if we are near the Earth’s surface so the field seems uniform)
we can set the zero point of the potential energy anywhere we find convenient
for our problem, with the provision that once it is set for the problem, we have
to stick with our choice.

One logical choice for many electrical appliances is to set the Earth’s poten-
tial equal to zero. Note! this is not true for point mass problems where we have
already set the potential energy U = 0 at r =∞.

In our gravitational analogy, this is a little bit like mean sea level. Think of
river flow. The lowest point on the planet is not mean sea level. But any water
above mean sea level will tend to flow downward to this point. Of course, if we
have land below mean sea level, the water would tend to continue downward
(like water flows to the Dead Sea). The direction of water flow is given by the
potential energy difference, not that actual value of the potential energy. It is
the same way with electric potential. If we have charge at a potential that is
higher than the Earth’s potential, then charge will flow toward the Earth.Question 223.30.4

Consider a 9V battery. If the negative terminal is connected to a grounding
rod or metal water pipe, it will be at the electric potential of the Earth while it’s
positive terminal will be at ∆V = 9V above the Earth’s potential. Likewise,
in your home, you probably have a 110V outlet. One wire is likely set to the
potential of the Earth by connecting it to a ground rod. The others are at
∆V = 110V above it1 .

In our phones, we don’t have a ground wire, so we cannot guarantee that
the negative terminal of the battery is at the same potential as the Earth. If
our appliances in our house are not all grounded to the same potential, there is
a danger that there will be a large enough difference in their potentials (think
potential energy per unit charge) to cause the charges to accelerate from one
appliance to another. It is the difference in potential that counts! This is a
spark or shock that could hurt someone or damage equipment. That is why we
now use grounded outlets. These outlets have a third wire that is tied to all

1House voltages are alternating voltages. We will deal with them later in this course.
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the other outlet’s third wire and also tied physically to the ground near your
house or apartment. This way, all appliances are ensured to have the same low
electric potential point.

30.1 Example, potential of a capacitor

Let’s calculate the potential of our favorite device, the capacitor.

The nice uniform field makes this a useful device for thinking about electric
potentials. We have found that field to be

E =
η

ǫo

with a direction from positive to negative. The work to push a mover charge
from one side to the other is given by

w =

�
Fe · dx

The force is uniform since the field is uniform (near the middle at least)

Fe = qoE
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then our work becomes

w =

�
qoE · dx

=

�
qoE cos (θEx) dx

= −qoE∆x

because the field and the displacement are in opposite directions. And recall
that the amount of potential energy is minus this amount because w = −∆U
as we learned in PH121.

∆U = +qoE∆x

We can set the zero potential energy point any where we want, but it is
tradition to set U = 0 at the negative plate. If we do this we end up with the
potential energy difference going from the negative plate to the positive plate
being

∆U = qoEd

Then if we go from the negative plate to the positive plate we have a positive
∆U.

We have seen all this before when we compared the electric potential energy
of a uniform gravitation field and a uniform electrical field. Now let’s calculate
the electric potential difference

∆V =
∆U

qo
=

qoEd

qo
= Ed

Remember that the field is created by the charges on the capacitor plates, so it
exists whether we put any qo inside of the capacitor or not. Then the potential
difference must exist whether or not there is a charge qo inside the capacitor.

You probably already know that a voltmeter can measure the electric poten-
tial difference between two points, say, the plates of a capacitor. If we use such
a meter we could find the field inside the capacitor (well, almost, remember our
approximation is good for the center of the plates).

E =
∆V

d

30.1.1 Equipotential Lines
Question 223.30.5

We need a way to envision this new environmental quantity that, like a field,
has a value throughout all space. Our analogy with gravity gives us an idea.
Suppose we envision the height potential energy as the top of a hill. Then the low
potential energy would be the bottom of the hill. We know from our Young Men
and Young Women’s Camp experiences how to show a change in gravitational
potential energy. We plot on a map lines of constant potential energy. We
call it constant elevation, but since near the Earth’s surface Ug = mgh the
potential energy is proportional to the height, so we can say these lines are lines
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of constant potential energy. Here is an example for Mt. Shasta.

Map courtesy USGS, Picture is in the Public Domain.

We can think of these lines of constant potential energy as paths over which
the gravitational field does no work. If we walked along one of these lines we
would get neither higher nor lower and though we might do work to move us
to overcome some friction, the gravitational field would do no work. And we
would do no work in changing elevation. Question 223.30.6

Likewise we can draw lines of equal potential for our capacitor. When moving
along these lines the electric field would do no work.

Of course we could draw these lines for a crazier device. Say, for our charged
conductor
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Notice that our equal potential lines are always perpendicular to the field. From

w =

�
qo
−→
E · d−→x

we can see that if the path we travel is perpendicular to the field, no work is
done. This is like us marching along around the mountain neither going up nor
down.

30.2 Electron Volt

Suppose I set up our uniform electric field device again
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We are not including any gravitational field, so the directions involved are all
relative to the placement of the capacitor plate orientation.

This time, suppose I make the potential difference ∆V = 1V. I release a
proton near the high potential side. What is the kinetic energy of the proton as
it hits the low potential side? From the work energy theorem

Wnc = ∆K +∆U

and if we do this in a vacuum so there is no non-conservative work,

∆K = −∆U

Kf −Ki = −∆U

Kf = −∆U

We can find the potential energy loss from what we just studied

∆V =
∆U

q

so we can find the potential energy as

∆U = q∆V

but remember we are going from a high to a low potential

∆V = Vf − Vi

this will be negative, so the potential energy change will be negative too.

Kf = −∆U

= −q∆V

which will be a positive value (which is good, because I don’t know what negative
kinetic energy would mean).

Kf = −q∆V

We can find the amount of energy in Jules

Kf = −
�
1.6× 10−19 C

�
(−1V)

= 1. 6× 10−19 J

since we defined a volt as V = J
C .

You might think this is not very useful, but remember that K = 1
2mv2. The

kinetic energy is related to how fast the proton is going. In a way, the kinetic
energy tells us how fast the particle is going (we know it’s mass). If you read
about the Large Hadron Collider at CERN, in Switzerland the “speeds”of the
particles will be given in energy units that are multiples of 1. 6 × 10−19 J. We
call this unit an electron-volt ( eV).
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Beam magnet and Section of the Beam Pipe of the LHC. This section is actually no

longer used and is in a service area 100m above the operating LHC. The people you

see are part of a BYU-I Physics Department Tour of the facility.

We can finish this problem by finding the speed of the particle

K =
1

2
mv2

so

2K

m
= v2

or

v =

�
2K

m

=

�
2 (1. 6× 10−19 J)

1.00728 u1. 660 5×10
−27 kg

1u

= 13832.
m

s

Which is pretty fast, but the Large Hadron Collider at CERN can provide
energies up to 7× 1014 eV which would give our proton a speed of 99.9999991%
of the speed of light.
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CERN CMS detector during a maintenance event. The bright metal pipe seen in the

middle of the detector is the beam pipe through which the accelerated protons

travel. Note the workers near the scaffolding for scale.

Note that this energy would seem to provide a faster speed—faster than light!

But with energies this high we have to use Einstein’s theory of Special Relativity
to calculate the particle speed. And, sadly, that is not part of this class. If you
are planning to work on the GPS system, or future space craft, you might need
to take yet another physics class so you can do this sort of calculation.

You might guess that we will want to know the electric potential of more
complex configurations of charge. We will take on this job in the next lecture.

Basic Equations

The electric potential is the electrical potential per unit charge

∆V = VB − VA =
∆U

q

V12 =
1

4πǫo

q1
r12

For the special case of a constant electric field in a capacitor the electrical
potential is just

∆V = E∆s

where ∆s is the distance traveled from one side of the capacitor to the other.
The unit

1 eV = 1. 6× 10−19 J
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Chapter 31

Electric potential of charges
and groups of charges

Now that we have a new representation of the environment created by environ-
mental charges, we will need to be able to calculate values for that representation
for different configurations of charge like we did for electrical fields. But there is
a huge benefit in using the electric potential representation, electric potentials
are not vectors! So we don’t have to deal with the vector nature of the field en-
vironment. The vector nature is still there, but we will ignore it. This means we
will give up being able to give up vector directions for movement of our mover
charges in many cases. But we can know much about the movement and the
equations will be much simpler. We will take on the usual cases of environments
from a point charge, a collection of point charges, and a continuous distribution
of charges.

Fundamental Concepts

• Finding the electric potential of a point charge

• Finding the electric potential of two point charges

• Finding the electric potential of many point charges

• Finding the electric potential of continuous distributions of point charges.

31.1 Point charge potential

The capacitor was an easy electric potential to describe. Let’s go back to a
slightly harder one, the potential due to just one point charge. The potential

421
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energy depends on two charges

Ue = −
1

4πǫo

Qq

r

but the potential just depends on one.

V =
U

q

where U is a function of q, so a charge will cancel. But which charge do we
divide by?

We need two charges to make a force,

F =
1

4πǫo

q1q2
r2

but when we defined the electric field we said the field from charge 1 would be
there whether or not charge 2 was present. The situation is the same for electric
potential.

We say we have an electric potential due to the first charge even if the second
charge is not there. This is like saying there is a potential energy per unit rock,
even if there is no rock to fall down the hill. The hill is there whether or not we
are throwing rocks down it.

For electric potential, the potential is due to the field, and the field is there
whether another charge is there or not.

Let’s find this potential due to just one charge, but let’s find it in a way that
demonstrates how to find potentials in any situation. After all, from what we
know about point charges, we can predict that

V =
U

q
=

1
4πǫo

Qq
r

q
=

1

4πǫo

Q

r

But not not all situations come so easily. We only know forms for U for capaci-
tors and point charges so far. So let’s see how to do this in general, and compare
our answer for the point charge with what we have guessed from knowing U .

Symmetry tells us the field will be radial, so the equipotential surfaces must
be concentric spheres. Here is our situation:
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We wish to follow the marked path from A to B finding the potential difference
∆V = VB − VA.

Remember that the field due to a charge q is radially outward from the
charge. To find the potential for this case we start again with a constant field.
Our point charge is really not producing a constant field, but let’s consider the
constant field case as a step in finding the actual potential for a point charge.
So for our constant field case we start again with

w =

�
Fe · ds

but this time let’s say that we have previously moved the charge across the
capacitor (like in last lecture) and now we are ready to let it go. The electric
force will accelerate the particle. It will do work, but this time the force is in
the same direction as the displacement.

w =

�
Fe · ds

=

�
Fe cos (θFs) ds

=

�
Fe (1) ds

= Fe∆s

= qoE∆s

but from PH121 we remember that

w = −∆U

so we can find the electric potential energy difference for allowing the charge to
move in the constant electric field

∆U = −qoE∆s

and we now can find the electric potential difference

∆V =
∆U

qo
=
−qoE∆s

qo
= −E∆s

where s is the path length along our chosen path from A to B. For our capacitor,
this was just the distance from one side to the other, but as we take the next
step in finding the potential for a point charge we need to be more general. We
should really write this as

∆V = −−→E · −→∆s

So far our E field is still constant, but now it doesn’t have to be in exactly the
same direction as the displacement.

And for the point charge our field, E, changes, so technically this value for
∆V is not correct. But if we take vary small paths, ∆−→s , then the field will be
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nearly constant over the small distances. It will change from one∆−→s to another
∆−→s But for each ∆−→s the field is essentially constant. Then we can add up the
contribution of each small distance, ∆−→s i to deal with the entire path from A
to B for our point charge geometry.

That is, we take a small amount of path difference ∆−→s i and add up the con-

tribution,
−→
E · −→∆si from this small path. Then we can repeat this for the next

∆−→s i+1 and the next, until we have the contribution of each pice of the path.
We can call the contribution from one piece.

∆Vi = −
−→
E · −→∆si

The total potential difference would be

∆V = −



i

−→
E · −→∆si

In the limit that the ∆si become very small this becomes an integral

∆V = −
� B

A

−→
E · d−→s (31.1)

and this is what we can use to find the electric potential from a point charge!

Let’s find the electric potential between two ponits A and B where A and
B could be any two points.
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Here is an expansion of the region about A and B.

Let’s divide up our d−→s into components in the radial and azimuthal directions

d−→s =
�
drr̂+ rdθθ̂

�

from trigonometry we can see that

cosφ =
dr

ds

and

sinφ =
dθ

ds
so

dr = ds cosφ

dθ = ds sinφ
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and we can write

d−→s =
�
ds cosφr̂+ rds sinφθ̂

�

The field due to the point charge is

−→
E =

1

4πǫo

q

r2
r̂ (31.2)

if we take

−→
E · d−→s =

1

4πǫo

q

r2
r̂ · d−→s

=
1

4πǫo

q

r2
r̂ ·
�
ds cosφr̂+ ds sinφθ̂

�

we get only a radial contribution since r̂ · θ̂ = 0. Then

−→
E · d−→s =

1

4πǫo

q

r2
r̂ · ds cosφr̂+ 0

=
1

4πǫo

q

r2
ds cosφ

where φ is the angle between d−→s and r̂ and where we recall that r̂ · r̂ = 1.
Recalling that

dr = ds cosφ

we can eliminate φ from our equation

−→
E · d−→s = 1

4πǫo

q

r2
dr

and we can integrate this!

∆V = −
� rB

rA

1

4πǫo

q

r2
dr

= − q

4πǫo

� rB

rA

1

r2
dr

=
q

4πǫo

1

r

����
rB

rA

so

∆V =
q

4πǫo

�
1

rB
− 1

rA

�

=
1

4πǫo

q

rB
− 1

4πǫo

q

rA

= VB − VA
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and we can recognize

VB =
1

4πǫo

q

rB

VA =
1

4πǫo

q

rA

31.1
Note that the potential depends only on the radial distances from the point

charge—not the path. We would expect this for conservative fields (where energy
is conserved).

We know that, like potential energy, we may choose our zero point for the
electric potential. For a point charge, we said we would take the rA =∞ point
as V = 0.1 So you will often see the potential for the point charge written as
just

∆V =
1

4πǫo

q

rB

or simply as

V =
1

4πǫo

q

r
(31.3)

Here is a plot of this with q = 2×10−9C and the charge placed right at x = 10m.
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It is probably a good idea to state that in common engineering practice we
kind of do all this backwards. We usually say we will charge up something until
it has a particular voltage. This is because we have batteries or power supplies
that are charge delivery services. They can provide enough charge to make

1Remember this is because U → 0 when r→∞.
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some object have the desired voltage. By “desired voltage” we always mean the
voltage at a conductor surface in our apparatus.

Early electrodes were spherical, so let’s consider making a spherical conduc-
tor have a particular potential at it’s surface. A sphere of charge with radius R
would have

V =
1

4πǫo

Q

R

at it’s surface. We can guess this because Gauss’ law tells us that the field of a
charged sphere is the same as that of a point charge with the same Q. Then it
takes

Q = 4πǫoRV

to get the voltage we want. The battery or power supply must provide this.
If the power supply or battery has a large amperage (ability to supply charge)
this happens quickly. But away from the electrode the potential falls off. We
can find how it falls off by again using

V =
1

4πǫo

Q

r

but with charge
Q = 4πǫoRVo

so that

V =
1

4πǫo

4πǫoRVo

r

or

V =
R

r
Vo

where Vo is the voltage at the surface. We can see that as r increases, V
decreases.

We will come back to using ∆V = −
� −→
E · d−→s later in our course, but for

now let’s do a little more work with point charges.

31.1.1 Two point charges
Question 223.31.2

Question 223.31.3 We can guess from our treatment of the potential energy of two point charges
that the electric potential of two point charges is just the sum of the individual
point charge potentials.

V = V1 + V2

=
1

4πǫo

q1
r1
+

1

4πǫo

q2
r2

=
1

4πǫo

�
q1
r1
+

q2
r2

�

It is instructive to look at the special case of two opposite charges (our dipole).
We can plot the electric potential in a plane through the two charges.
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It would look like this

-40 -30 -20 -10 10 20 30 40

-2.0e-7

-1.0e-7

1.0e-7

2.0e-7

x (m)

V (V)

The charges
�
q = 2× 10−9C

�
were placed right at x = ±10m. The potential

V =
1

4πǫo

�
q1
r1
+

q2
r2

�

becomes large near r1 = Ro or r2 = Ro where Ro is the charge radius (which
is very small, since these are point charges). Plotting the potential in two
dimensions is also interesting. We see that near the positive charge we have
a tall mountain-like potential and near the negative charge we have a deep
well-like potential.
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-1.0e-8

-2.0e-8

x (m)
-40

-20
y (m)

V (V)

-40
-20

0 0

20

0.0e+0 20
40

40

1.0e-8

2.0e-8

Notice the equipotential lines. The more red peak is the positive charge (hill),
the more blue the negative charge (valley).A view from farther away looks like
this
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Of course the hill and the valley both approach an infinity at the point charge
because of the 1/r dependence.

31.1.2 Lots of point charges
Question 223.31.4

Suppose we have many point charges. What is the potential of the group? We
just use superposition and add up the contribution of each point charge

V =
1

4πǫo




i

qi

ri
(31.4)
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where ri is the distance from the point charge qi to the point of interest (where
we wish to know the potential). Note that this is easier than adding up the
electric field contributions. Electric potentials are not vectors! They just add
as scalars.

31.2 Potential of groups of charges

Suppose we have a continuous distribution of charge. Of course, this would be
made of many, many point charges, but if we have so many point charges that
the distance between the individual charges is negligible, we can treat them as
one continuous thing. If we know the charge distribution we can just interpret
the distribution as a set of small amounts of charge dq acting like point charges
all arranged into some shape.

Then for each charge dq we will have a small amount of potential

dV =
1

4πǫo

dq

r
(31.5)

and the total potential at some point will be the summation of all these small
amounts of charge

V =
1

4πǫo

�
dq

r
(31.6)

This looks a little like our integral for finding the electric field from a configu-
ration of charge, but there is one large difference. There is no vector nature to
this integral. So our procedure will have one less step

• Start with V = 1
4πǫo

�
dq
r

• find an expression for dq

• Use geometry to find an expression for r, the distance from the group of
charges, dq, and the point P

• Solve the integral

Let’s try one together
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31.2.1 Electric potential due to a uniformly charged disk

We have found the field due to a charged disk. We can use our summation of
the potential due to small packets of charge to find the electric potential of an
entire charged disk.

Suppose we have a uniform charge density η on the disk, and a total charge
Q, with a disk radius a. We wish to find the potential at some point P along
the central axis.

To do this problem let’s divide up the disk into small areas, dA each with a
small amount of charge, dq. The area element isQuestion 223.31.5

dA = RdφdR

so the charge element, dq, is

dq = ηRdφdR

For each dq we have a small part of the total potential. The variable r is
the distance from our small group of charges that we called dq to the point P.
Then r =

√
R2 + z2 and our integral becomes

V =
1

4πǫo

�
dq

r

=
1

4πǫo

� �
ηRdφdR√
R2 + z2

We will integrate this. We will integrate over r from 0 to a and φ from 0
to 2π which will account for all the charge on the disk, and therefore all the
potential.
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V =
1

4πǫo

� 2π

0

� a

0

ηRdφdR√
R2 + z2

(31.7)

=
η2π

4πǫo

� a

0

RdR√
R2 + z2

=
η2π

4πǫo

�
R2 + z2

���
a

0

=
η2π

4πǫo

�
a2 + z2 − η2π

4πǫo
z

so
V =

η

2ǫo

��
a2 + z2 − z

�
(31.8)

This is the potential at point P.
We compared our electric field solutions with the solution for a point charge.

We can do the same for electric potentials. We can compare our solution to a
point charge potential for an equal amount of charge. Far away from the disk,
we expect the two potentials to look the same. The point charge equation is

V =
Q

4πǫo

1

z

Our disk gives

V =
Q

4ǫoπ

2

a2

��
a2 + z2 − z

�
(31.9)

They don’t look much alike! But plotting both yields

0.00 0.01 0.02 0.03 0.04 0.05
0.0e+0

2.0e-12

4.0e-12

6.0e-12

8.0e-12

z(m)

V(V)

The dashed line is the point charge, the solid line is our disk with a radius of
0.05m and a total charge of 2C. This shows that far from the disk the potential
is like a point charge, but close the two are quite different as we would expect.
This is a reasonable result.

We will calculate the potential due to several continuous charge configura-
tions.
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But, you may ask, since we knew the field for the disk of charge, couldn’t we
have found the electric potential from our equation of the field? We will take
up this question in the next two lectures.

Basic Equations

The electric potential of a point charge is given by

V =
1

4πǫo

Q

r

where the zero potential point is set at r =∞.
Electric potentials simply add, so the potential for a collection of point

charges is just

V =
1

4πǫo




i

qi

ri

To find the potential due to a continuous distribution of charge we use the
following procedure:

• Start with V = 1
4πǫo

�
dq
r

• find an expression for dq

• Use geometry to find an expression for r

• Solve the integral

Since electric fields and electric potentials are both representations of the
environment created by the environmental charge, there must be a way to cal-
culate the potential from the field and vice versa. It will take us two lectures to
do both.

Basic Equations

V =
1

4πǫo

�
dq

r



Chapter 32

Connecting potential and
field

Fundamental Concepts

• The potential and the field are manifestations of the same physical thing

• We find the potential from the field using ∆V = −
� −→
E · d−→s

• Fields and potentials come from separated charge

32.1 Finding the potential knowing the field

It is time to pause and think about the meaning of this electric potential. Let’s
trace our steps backwards. We defined the electric potential as the potential
energy per unit charge: Question 223.32.1

∆V =
∆U

q

where q is our mover and ∆V is a measure of the change in the environment

between two points r1 and r2 measured from the environmental charge. ∆U is
the change in potential energy as q moves. But the potential energy change isQuestion 223.32.2

equal to the negative of the amount of work we have done in moving q

∆V =
−W
q

which is equal to

∆V =
−1
q

� −→
F · d−→s

435
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where again d−→s is a general path length. But this force was a Coulomb force.
which we know is related to the electric field

−→
E =

−→
F

q

so we may rewrite the potential as

∆V = −
� −→
F

q
· d−→s

= −
� −→
E · d−→s

which we found last lecture by analogy with our capacitor potential. Our line
of reasoning in this lecture has been more formal, but we arrive at the same
conclusion—and it is an important one! If we add up the component of fieldQuestion 223.32.3

magnitude times the displacement along the path take from r1 to r2 we get the
electric potential (well, minus the electric potential).

The electric field and the electric potential are not two distinct things. They
are really different ways to look at the same thing—and that thing is the envi-
ronment set up by the environmental charge. It is tradition to say the electric
field is the principal quantity. This is because we have good evidence that the
electric field is something. That evidence we will study at the end of these
lectures, but in a nutshell it is that we can make waves in the electric field. If
we can make waves in it, it must be something!1

in our gravitational analogy, the gravitational field is the real thing. Grav-
itational potential energy is a result of the gravitational field being there. The
change in potential energy is an amount of work, and the gravitational force
is what does the work. No force, no potential energy. The gravitational field
makes that force happen.

It is the same for our electrical force. The electrical potential is due to the
Coulomb force, and the Coulomb force exists because the electric field is there.

If the field and the potential are really different manifestations of the same
thing, we should be able to find one from the other. We have one way to do
this. We can find the potential from the field, but we should be able to find the
field from the potential. We will practice the first

∆V = −
� −→
E · d−→s

today, and then introduce how to find the field from the potential next lecture.

32.1.1 Finding the potential from the field.

Actually we did an example last lecture. We found the field of a point charge.
But let’s take on some harder examples in this lecture.

1By the end of these lectures, we will try to make this a more convincing (and more
mathmatical) statement!
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Let’s calculate the electric potential do to an infinite line of charge. This is
like the potential due to a charged wire. We already found the field due to an
infinite line of charge

E =
1

4πǫo

2λ

r
r̂

so we can use this to find the potential difference.

∆V = −
� B

A

−→
E · d−→s

We need d−→s . Of course d−→s could be in any direction. We can take components
in cylindrical coordinates

d−→s = drr̂+ rdθθ̂ + dzẑ

Putting in our field gives

∆V = −
� B

A

1

4πǫo

2λ

r
r̂ ·
�
drr̂+ rdθθ̂ + dzẑ

�

= − 2λ

4πǫo

� B

A

dr

r

which we can integrate

∆V =

�
− 1

2π

λ

ǫo
ln rB −

�
− 1

2π

λ

ǫo
ln rA

��

= − 1

2π

λ

ǫo
(ln rB − ln rA)

This example gives us a chance to think about our simple geometries and to
consider when they are reasonable approximations to real charged objects. So
long as neither rA nor rB are infinite, this result is reasonable. But remember
what it looks like to move away from an infinite line of charge. No matter how
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far away we go, the line is still infinite. So we never get very far away. The
terms

VA =
1

2π

λ

ǫo
(ln rA)

or

VB =
1

2π

λ

ǫo
(ln rB)

would look something like this

1 2 3 4 5

-1.5

-1.0

-0.5

0.0

0.5

r(m)

V(lambda/(2*pi*eps))

The curve is definitely not approaching zero as r gets large. No matter how
far we get from an infinite line of charge, we really never get very far compared
with it’s infinite length. So the potential is not going to zero!

Our solution is good only when rA and rB are much smaller than the length
of the line. that is, when our simple geometry is a good representation for
something that is real, in this case, a finite length wire. But for rA,rB ≪ L this
works.

We should also pause to think of the implications of this result for electronic
equipment design. Our result means that adjacent wires in a cable or on a
circuit board will feel a potential due to their neighbors—something we have to
take into consideration in the design to ensure your equipment will work! This
is one reason why we use shielded cables for delicate instruments, and for data
lines, etc.

As a second example, let’s tackle our friendly capacitor problem again. What
is the potential difference as we cross the capacitor from point A to point B?
We already know the answer

∆V = Ed

But when we found this before, we assumed we knew the potential energy. This
time let’s practice using

∆V = −
� B

A

−→
E · d−→s
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We know the field is
E =

η

ǫo
so

∆V = −
� B

A

−→
E · d−→s

= −
� B

A

η

ǫo
ds cos θ

where θ is the angle between the field direction and our d−→s direction. We could
write

dx = ds cos θ

Then

∆V = − η

ǫo

� B

A

dx

= − η

ǫo
(xB − xA)

= − η

ǫo
∆x

This is just
∆V = −E∆x

if we consider the negative side to be the zero potential, and we cross the entire
capacitor, then

∆V = −E (xB − xA)

= −E (0− d)

= Ed
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as we expect. Note that we can now see how the positive result comes from our
choice of the zero voltage point.

32.2 Sources of electric potential
Question 223.32.4

We know that the electric potential comes from the electric field. And if we
think about it, we know where the electric field comes from, charge. But we
have found that equal amounts of positive and negative charge produce no net
field. So normal matter does not seem to have any net electric field because the
protons and electrons create oppositely directed fields, with no net result.

But if we separate the positive and negative charges, we do get a field. This
is the source of all electric fields that we see, and therefore all electric potentials
are due to separated charge.

We have used charge separation devices already in our lectures. Rubbing
a rubber rod with rabbit fur transfers the electrons from the fur to the rod.
Some of the charges that were balanced in the fur are now separated. So there
is an electric field that creates an electric force. Then there must be an electric
potential, since the potential is just a manifestation of the field.

We have also used a van de Graaff generator. It is time to see how this
works.

In the base of the van de Graaff, there is a small electrode. It is charged to a
large voltage, and charge leaks off through the air to a rubber belt that is very
close. The rubber belt is connected to a motor. The motor turns the belt. The
extra charge is stuck on the belt, since the belt is not a conductor. The charge
is carried up to the top where there is a large round electrode. A conducting
brush touches the rubber belt, and the charge is able to escape the belt through
the conductor. The charge spreads over the whole spherical electrode surface.
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The belt keeps providing charge. Of course the new charge is repelled by the
charge all ready accumulated on the spherical electrode, so we must do work to
keep the belt turning and the charge ascending to the ball at the top. This is
a mechanical charge separation device. It can easily build potential differences
between the spherical top and the surrounding environment (including you) of
30000V.

Much larger versions of this device are used to accelerate sub atomic particles
to very high speeds.

32.3 Electrochemical separation of charge

Question 223.32.5

When you eat table salt, the NaCl ionic bond splits when exposed to polar
water molecules, leaving a positively charged Na ion and a negatively charged
Cl ion. This is very like the “bleeding” of charge from our charged balloons that
we talked about earlier. We already know that the water molecules are polar,
and the mostly positive hydrogens are attracted to the negatively charged Cl
ions. This causes a sort of tug-o-war for the Cl ions. The positively charged Na
ions pull with their coulomb force, and so do the positively charged hydrogens
of the water molecules. If we have lots of water molecules, they win and the
NaCl is broken apart. Water molecules are polar, but overall neutral. But now,
with the Na and Cl ions, we have separated charge. We can make this charge
flow, so we can get electric currents in our bodies. Our nervous system uses the
positively charged Na ions to form tiny currents into and out of neurons as part
of how nerve signaling works. Of course, NaCl is a pretty simple molecule. We
could use more complex chemical reactions to separate charge.

32.4 batteries and emf

Most of us don’t have a van de Graaff generator in our pockets. But most of us
do have a charge separation device that we carry around with us. We call it a
battery. But what does this battery do?

Somehow the battery supples positive charge on one side and negative charge
on the other side. This is accomplished by doing work on the charges. A lead
acid battery is often used in automobiles. The battery is made by suspending
two lead plates in a solution of sulfuric acid and water.
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One plate is coated with lead dioxide. There is a chemical reaction at each
plate. The sulfuric acid (H2SO4) splits into two H+ ions and an SO−24 ion.

The plain lead plate reacts with the SO−24 ions.

The overall reaction is

Pb (solid)+H2SO
−
4 (aqueous)→ PbSO4 (solid)+2H

+ (aqueous)+2e− (in conductor)
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producing lead sulfate on the electrode, some hydrogen ions in solution and
some extra electrons that are left in the metal plate.

The coated plate’s lead dioxide also reacts with the SO−24 ions and uses the
hydrogen ions and the oxygen from the PbO2 coating.

It also uses some some electrons from the lead plate. The PbO2 splits apart
and the Pb+4 combines with the SO−24 and the two electrons. The left over O2
combines with the hydrogens to form water. The reaction equation is

PbO (solid)+H2SO
−
4 (aqueous)+2H

+ (solid)+2e− (in conductor)→ PbSO4 (solid)+2H2O (liquid)
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So one lead plate has two extra electrons, and one lacks two electrons. We have
separated charge!

If we connect a wire between the plates, the extra electrons from one plate
will move to the other plate, and we have formed a current (something we will
discuss in detail later). Lead acid batteries are rechargeable. The recharging
process places an electric potential across the two lead plates, and this drives
the two chemical reactions backwards.
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Now that we see that we can use chemistry to separate charge, let’s think
about what this means for an electric circuit.

Wchem = ∆U

That work is equivalent to an amount of potential energy, so we have a voltage.
That voltage due to the separated charge is

∆V =
Wchem

q

This is not a chemistry class, so we won’t memorize the chemical process that
does this. Instead, I would like to give a mechanical analogy.

If we have water in a tank and we attach a pump to the tank, we can pump
the water to a higher tank. The water would gain potential energy. This is
essentially what a battery does for charge. A battery is sort of a “charge pump”
that takes charge from a low potential to a high potential.

The water in the upper tank can now be put to work. It could, say, run a
turbine.
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A battery can do the same. The battery “pumps” charge to the higher po-
tential. That charge can be put to work, say, lighting a light bulb.

Of course, we could string plumps together to gain even more potential en-
ergy difference.

likewise we can string two batteries to get a larger electrical potential difference.
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If we had more batteries, we would have more potential difference. Each
battery “pumping” the charge up to a higher potential. Our analogy is not per-
fect, but it gives some insight into why stringing batteries together increases the
voltage. A television remote likely uses two 1.5V batteries for a total potential
difference from the bottom of the first to the top of the last of

∆V = 2× 1.5V = 3V

If you have been introduced to Kirchhoff’s loop law, you may see this as
familiar. Kirchhoff said that

∆Vloop =



i

∆Vi = 0

That is, if we go around a loop, we should end up at the same potential where
we started. This would be true for our plumbing example. If we start at the
lower tank, then travel through the pump to the upper tank, then through the
turbine to the lower tank we have

∆Utotal = ∆Upump +∆Uturbine = 0

we are at the same elevation, we lost all the potential energy we gained by being
pumped up when we fell back down through the turbine.

Similarly, the battery pumps the charge up an amount ∆Vbat and it “falls”
down an amount ∆Vlight returning to where it started

∆Vtotal = ∆Vbat +∆Vlight

This is just conservation of energy. As we go around the loop we must neither
create nor destroy energy. We can convert work into potential through the
pump or battery, then we can create movement of water or charge and even
useful work by letting the charge or water “fall” back down to the initial state.
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The change in energy must be zero if there is no loss mechanism. Eventually
we must allow some loss to occur, but for now we have ideal batteries and wires
and lights, so energy is conserved.

We have a historic name for a charge pump like a battery. We call it an
emf. This is pronounced “ee em eff,” that is, we say the letters. Emf used to
stand for something, but that something has turned out to be a poor model for
electric current, but the letters describing a charge pump persist. This is a little
like Kentucky Fried Chicken changing it’s name to KFC because now they bake
chicken (and no one wants to think about eating fried foods now days). The
letters are the name.

Next lecture we will complete our task. In this lecture we discussed finding
the potential if we know the field. Next lecture we will find out how to calculate
the field if we know the potential.

Basic Equations

∆V = −
� B

A

−→
E · d−→s

∆V =
∆U

q
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Calculating fields from
potentials

Fundamental Concepts

• To find the field knowing the potential, we use
−→
E = −

�
d
dx ı̂+

d
dy ̂+

d
dz k̂
�
V

• The gradient shows the direction of steepest change

• The potential of conductors in equilibrium

33.1 Finding electric field from the potential

We did part-one of relating fields to potentials in the last lecture. Now it is time
for part two, obtaining the electric field from a known potential. Starting with

∆V = −
� B

A

−→
E · d−→s

we realize that we should be able to write the integrand as a small bit of potential

dV = −−→E · d−→s
= −Esds

where Es is the component of the electric field in the ŝ direction. We can
rearrange this

Es = −
dV

ds

449
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This tells us that the magnitude of our field is the change in electric potential.

Of course,
−→
E is a vector and V is not. So the best we can do is to get the

magnitude of the component in the −→s direction.
We can try this out on a geometry we know, say, a point charge along the

x-axis

We know the potential will be

V =
1

4πǫo

q

x

then we can try

Es = −dV

dx
= − d

dx

1

4πǫo

q

x

=
1

4πǫo

q

x2

which gives us just what we expected!

Let’s try another. Let’s find the electric field due to a disk of charge along
the axis. We have done this problem before. We know the field should be

Ez =
2πη

4πǫo

�
1− z√

a2 + z2

�
(33.1)
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and in the previous lectures we found the potential to be

V =
η

2ǫo

��
a2 + z2 − z

�
(33.2)

Now can we find the electric field at P from V ? Let’s start by finding the
z−component of the field, Ez

Ez = −dV

dz
(33.3)

= − d

dz

�
η

2ǫo

��
a2 + z2 − z

��
(33.4)

= − d

dz

η

2ǫo

�
a2 + z2 +

d

dz

η

2ǫo
z (33.5)

= − η

2ǫo

d

dz

�
a2 + z2 +

η

2ǫo
(33.6)

= − η

2ǫo

z√
a2 + z2

+
η

2ǫo
(33.7)

Ez =
η

2ǫo

�
1− z√

a2 + z2

�
(33.8)

or

Ez =
2πη

4πǫo

�
1− z√

a2 + z2

�
(33.9)

But remember that this situation is highly symmetric. We can see by inspection
that all the x and y components will all cancel out. So this is our field! And it
is just what we found before.

We can graph these functions to compare them (what would you expect?).
To do this we really need values, but instead, let’s play a clever trick that some
of you will see in advanced or older books. I am going to substitute in place of
z the variable u = z

a . Then

V =
η

2ǫo e

��
a2 + z2 − z

�

=
ηa

2ǫo

��
1 +

z2

a2
− z

a

�

=
ηa

2ǫo

��
1 + u2 − u

�
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and

Ez =
2πη

4πǫo

�
1− z√

a2 + z2

�
(33.10)

=
2πη

4πǫo


1− z

a
	
1 + z2

a2




=
2πη

4πǫo


1− z

a
	
1 + z2

a2




=
2πη

4πǫo


1−

z
a	
1 + z2

a2




=
2πη

4πǫo

�
1− u√

1 + u2

�

Both my equation for V and for Ez now are in the form of a set of constants
times a function of u.

V =
ηa

2ǫo

��
1 + u2 − u

�

=
ηa

2ǫo
f (u)

Ez =
2πη

4πǫo

�
1− u√

1 + u2

�

=
2πη

4πǫo
g (u) (33.11)

If I plot V in units of ηa
2ǫo

(the constants out in front) I can see the shape of the

curve. It is the function of f(u). I can compare this to Ez in units of 2πη
4πǫo

. The
shape of Ez will be g (u) . Of course we are plotting terms of u.

0 2 4 6
0.0

0.5

1.0

u

Strange Units

Now we can ask, is this reasonable? Does it look like the E−field (red dashed
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line) is the right shape for the derivative of the potential (solid green line)? It is
also comforting to see that as u (a function of z) gets larger the field falls off to
zero and so does the potential as we would expect. When V (green solid curve)
has a large slope, Ez is a large number (positive because of the negative sign in
the equation

Es = −
dV

ds

and when V is fairly flat, Ez is nearly zero. Our strategy for finding E from V
seems to work.

33.2 Geometry of field and potential

You should probably worry that so far our equation

Es = −
dV

ds

is only one dimensional. We know the electric field is a three dimensional vector
field. We may find situations where we need two or three dimensions. But this
is easy to fix. Our equation

Es = −
dV

ds

gives us the field magnitude along the ŝ direction. Let’s choose this to be the x̂
direction. Then

Ex = −
dV

dx

is the x-component of the electric field. Likewise

Ey = −dV

dy

Ez = −dV

dz

The total field will be the vector sum of it’s components

−→
E = Exı̂+Ey ̂+Ezk̂

= −dV

dx
ı̂−dV

dy
̂−dV

dz
k̂

which we can cryptically write as Question 223.33.1

Question 223.33.2−→
E = −

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
V

The odd group of operations in the parenthesis is call a gradient and is written
as

−→
∇ =

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
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using this we have

−→
E = −−→∇V

which is how the relationship is stated in higher level electrodynamics books.
But what does it mean?

The gradient is really kind of what it sounds like. If you go down a steep
grade, you will notice you are going down hill and will notice if you are going
down the steepest part of the hill. The gradient finds the direction of steepest
decent. That is, the direction where the potential changes fastest. This is
like looking from the top of the hill and taking the steepest way down! Our
relationship tells us that the electric field points in this steepest direction, and
the minus sign tells us that the electric field points down hill away from a positive
charge, never up hill (think of the acceleration due to gravity being negative).
Let’s see if this makes sense for our geometries that we know.Stamp in a circle:

mimic a blind-
olded person
swiveling on one
oot and testing
the slope with the
other

Here is our capacitor. We see that indeed the field points from the high po-
tential to the low potential. The steepest way “down the hill” is perpendicular
to the equipotential lines.

We also know the shape of the field for a dipole. The equipotential lines we
have seen before.
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But now we can see that the field lines and equipotential lines are always per-
pendicular and the field points “down hill.” The meeting of the field and equipo-
tential lines at right angles is not a surprise. Think again about our mountain

Map courtesy USGS, Picture is in the Public Domain.

The steepest path is always perpendicular to lines of equal potential energy.
We should try another example of finding the field from the gradient. Sup-

pose we have a potential that varies as

V = 3x2 + 2xy

I don’t know what is making this potential, but let’s suppose we have such a
potential. It would look like this.

2 04

V 50

100

0
4

x

2 0 -2
-2

-4

y
-4
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what is the electric field?

−→
E = −−→∇V

or

−→
E = −

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
V

so

−→
E = −

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

��
3x2 + 2xy

�

−→
E = −

�
ı̂
d

dx

�
3x2 + 2xy

�
+ ̂

d

dy

�
3x2 + 2xy

�
+k̂

d

dz

�
3x2 + 2xy

��

= −
�
ı̂ (6x+ 2y) + ̂

d

dy
(2xy)+0

�

This example shows how to perform the operation, but it does not give much
insight. We have learned to work with our standard charge configurations, and
this is really not one of them. So we don’t have much intuitive feel for this
electric field that we found.

To gain more insight, let’s return to finding the point charge field from the
point charge potential. The potential for a point charge is

V =
1

4πǫo

Q

r

And of course we know that the field is

E =
1

4πǫo

Q

r2
r̂

but we want to show this using

−→
E = −−→∇V
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So

−→
E = −

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
V

= −
�

d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
1

4πǫo

Q

r

= −
�

d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
1

4πǫo

Q�
x2 + y2 + z2

= − Q

4πǫo

�
d

dx
ı̂+

d

dy
̂+

d

dz
k̂

�
1�

x2 + y2 + z2

= − Q

4πǫo

�
− x

(x2 + y2 + z2)
3

2

ı̂− y

(x2 + y2 + z2)
3

2

̂− k

(x2 + y2 + z2)
3

2

k̂

�

=
Q

4πǫo

�
x̂ı+ y̂+ kk̂

�

(x2 + y2 + z2)
3

2

=
Q

4πǫo

�
x̂ı+ y̂+ kk̂

�

(x2 + y2 + z2)
�
(x2 + y2 + z2)

=
1

4πǫo

Q

r2

�
x̂ı+ y̂+ kk̂

�

�
(x2 + y2 + z2)

=
1

4πǫo

Q

r2
r̂

but really, this is a bit of a mess, we don’t want to do such a problem in
rectangular coordinates. We could write ∇ in spherical coordinates (something
we won’t derive here, but you should have seen in M215 or M316).

−→
∇ = r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

Let’s try this out on our point charge potential. We have

−→
E = −

�
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

�
V

= −
�
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

�
1

4πǫo

Q

r

= − Q

4πǫo

�
− 1
r2
r̂+ 0 + 0

�

=
1

4πǫo

Q

r2
r̂

just as we expected. But this time the math was much easier. If we can, it is

a good idea to match our expression for
−→
∇ to the geometry of the system. A

good vector calculus book or a compendium of math functions will have various

versions of
−→
∇ listed.
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33.3 Conductors in equilibrium again

Question 223.33.3

We know that there is no field inside a conductor in electrostatic equilibrium,
but we should ask what that means for the electric potential. To build circuits
or electronic actuators, we will need to know this. Let’s start again with

∆V = −
� B

A

E · ds (33.12)

and since the field E = 0 inside the conductor, then inside

∆Vinside = 0 (33.13)

On the surface we see that there is a potential, since there is a field. If we take
our spherical case,

and observe the potential as we go away from the center, we expect the potential
to be constant up to the surface. Then as we reach the surface, we know from
Gauss’ law that the field will be

E =
1

4πǫo

Q

r2

like a point charge, so the potential at the surface must be

V =
1

4πǫo

Q

R
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where r = R, the radius of our sphere. As we move into the sphere from the
surface, the potential must not change. The interior will have the potential

Vinside =
1

4πǫo

Q

R
(33.14)

Outside, of course, the potential will drop like the potential due to a point
charge. We expect

V =
1

4πǫo

Q

r
(33.15)

For a sphere of radius R = 0.5m carrying a charge of 0.000002C (about what
our van de Graaff holds) we would have the situation graphed in the following
figure:

This is an important point. For a conductor, the electric potential everywhere
inside the conductive material is exactly the same once we reach equilibrium.
This is just what we want for capacitors or electrodes or electrical contacts in
circuits.

33.3.1 Non spherical conductors

The field is stronger where the field lines are closer together. One way to describe
this is to use a radii of curvature. That is, suppose we try to fit a small circle
into a bump on the surface of a conductor.
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RR

In the figure there are two bumps shown with circles fit into them. The bump on
the right has a much smaller radius circle than the one on the left. The radius
of the circle that fits into the bump is the radius of curvature of the bump.
From what we have said, the bump on the right will have a much stronger field
strength near it than the bump on the left.

Where there is a lot of charge on a conductor, and the field is very high,
electrons from random ionizations of air molecules near the conductor are ac-
celerated away from the conductor. These electrons hit other atoms, ionizing
them as well. We get a small avalanche of electrons. Eventually the electrons
recombine with ionized atoms, producing an eerie glow. This is called corona
discharge. It can be used to find faults in high tension wires and other high
voltage situations.Coronal Dis-

charge Clips

33.3.2 Cavities in conductors

Suppose we have a hollow conductor with no charges in the cavity. What is the
field? We know from using Gauss’ law what the answer should be, but let’s do
this using potentials.

All the parts of the conductor will be at the same potential. So let’s take two
points, A and B, and compute

VA − VB = −
� B

A

E · ds

We know that VA − VB = 0 because VA must be the same as VB. So for every
path, s, we must have

−
� B

A

E · ds = 0
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We can easily conclude that E must equal zero.
So as long as there are no charges inside the cavity, the cavity is a net field

free zone.
It is often much easier to find the potential, and from the potential, find the

field. Much of the study of electrodynamics uses this approach. This is because
it is more straight-forward to differentiate than it is to integrate. Some of you
may use massive computational programs to predict electric fields. They often
use differential equations in the potential to find the field rather than integral
equations to find the field directly.

Basic Equations
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Chapter 34

Capacitance

Fundamental Concepts

• The charge on a capacitor is proportional to the potential difference Q =
C∆V

• The constant of proportionality is called the capacitance and for a parallel
plate capacitor, it is given by C = A

d ǫo

• In parallel capacitors capacitances add Ceq = C1 +C2

• In series capacitors capacitances combine as 1
Ctot

= 1
C1

+ 1
C2

34.1 Capacitance and capacitors

Consider the following design for a pump-tank system.

463
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This is may not be an optimal design. At first there is no problem, water flows
into the upper tank just fine. But once the upper tank begins to fill, the water
already in the upper tank will make it harder to pump in more water. As the
tank fills, the pressure at the bottom increases, and it takes more work for the
pump to overcome the increasing pressure.

Something analogous happens when a capacitor is connected to a battery.

At first the charge is free to flow to the plates, but as the charge builds, it takes
more work to bring on successive charges.
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The charges repel each other, so the charge already on a capacitor plate repels
the new charge arriving from the battery. The repelling force gets larger until
finally the force repelling the charge balances the force driving the charge from
the battery and the charge stops flowing onto the capacitor.

A capacitor is made from two plates. For us, let’s assume they are semi-
infinte sheets of charge. Of course this is not exactly true, but it is not too wrong
near the center of the plates. And we know quite a lot about semi-infinite sheets
of charge because they are one of our standard change configurations. We know
the field for each sheet is

E =
η

2ǫo

and that for two sheets, one with +η and one with −η the field in between will
be

E =
η

ǫo

We also know the potential difference between the two plates is just

∆V = Ed

where E is our electric field and d is the capacitor spacing.
We can guess that we will build up charge until the potential energy differ-

ence of the capacitor is equal to the potential energy difference of the battery

∆Vcapacitor = ∆Vbattery

because at that point the forces causing the potential energy will be equal.
We can write our electric field between the two plates as

E =
η

ǫo
=

Q

Aǫo

so

∆V =
d

Aǫo
Q
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Then the potential difference is directly proportional to the charge. I want to
switch this around, and solve for the amount of charge.

Q =

�
Aǫo
d

�
∆V

Since all the terms in the parenthesis are constants, we could replace them with
a constant, C.

Q = C∆V (34.1)

where

C =
A

d
ǫo (34.2)

is a constant that depends on the geometry and construction of the plates.
This equation tells us that if we build two different sets of plates, say, one
circular and one triangular, and we give them the same potential difference (say,
connect them both to 12V batteries) then, if both have the same construction
constant C, they will carry the same charge even though their size and shape
are different. We can reduce the burden of calculation of how much charge
a capacitor can hold but asking the person who manufactured it to calculate
the construction constant and mark the value on the outside of the capacitor.
Different capacitors may be constructed differently (different A or d values) but
so long as the construction constant, C, is the same, the charge amount for a
given voltage will be the same.Question 223.34.1

The electronics field gives this construction constant a name, capacitance.

C =
Q

∆V
(34.3)

The capacitance will have units of C/V but we give this a name all it’s own, the
Farad ( F) . A Farad is a very large capacitance. Many capacitors in electronic
devices are measured in microfarads.Question 223.34.2

Question 223.34.3

Question 223.34.4 34.1.1 Capacitors and sources of potential

Consider what happens when we connect our two parallel plates to the terminals
of a battery. Assuming the plates are initially uncharged, charge flows from
the battery through the conducting wires and onto the plates. Recall that for
a metal, the entire surface will be at the same potential under electrostatic
conditions. The charge carriers supplied by the battery will try to achieve
electrostatic equilibrium, so we expect the plate that is connected to the positive
terminal of the battery to eventually be at the same potential as the positive
battery terminal. Likewise for the negative terminal and the plate connected to
it.

We can even use our capacitor as a source of electrical power. A camera
flash uses capacitors to make the burst of light that illuminates the subject of
your photo.



34.1. CAPACITANCE AND CAPACITORS 467

Camera flash unit (Public Domain image by Julo)

34.1.2 Single conductor capacitance

Physicists can’t leave a good thing alone. We often calculate the capacitance
of a single conductor! If the geometry is simple we can easily do this. It is not
immediately obvious that a single conductor should even have a capacitance,
so it might be a problem if you forget this in a design problem for an unusual
device.

As an example, let’s take a sphere. We will assume there is a spherical
conduction shell that is infinitely far away. This configuration gives exactly
the same field lines that the charged sphere gives on it’s own, but the mental
picture is helpful. The imaginary shell will give V = 0 (we set our zero potential
at r = ∞). The potential of the little sphere we know must be just like the
potential of a point charge if we are outside of the sphere

V = ke
Q

r

for r = R, the radius of our little sphere. Then

∆V = ke
Q

R
− 0 = ke

Q

R
so

C =
Q

∆V
=

Q

ke
Q
R

=
R

ke
= 4πεoR (34.4)

This is the capacitance of a single sphere. Note that C only depends on geom-
etry! not on Q, just as we would expect.

But why would we care? This says that even if we just connect a ball to,
say, the positive terminal of a battery, that there will be some capacitance. This
capacitance will limit the flow of charge to the ball. So it will take time to charge
even a single conductor. This is always true when a device is initially connected
to a power source. Often we can ignore such “transient” effects because the
charging times are still small. But in special cases, this may not be possible
because the changing voltage or charge could damage sensitive equipment. So
although this is rarely a problem, it is good to keep in the back of our minds.
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34.1.3 Capacitance of two parallel plates

The capacitance of single conductors is profound, but more useful to us in
understanding common electronic components is the parallel plate capacitor.
We found that for parallel plates we also had only geometry factors in the
capacitance. Of course, there are other shapes possible. Let’s see if we can
reason out how the capacitance depends on the geometry.

Since the charge will tend to separate to the surface of a conductor, we
might expect that if the surface area increases, the amount of charge that the
capacitor can hold might increase as well. We see this in our equation for the
parallel plate capacitor.

C =
A

d
ǫo

We also see that it matters how far apart the plates are placed. The greater
the distance, the less the capacitance. This makes some sense. If the plates
are farther apart, the Coulomb force is weaker, and less charge can be held in
the capacitor, because the force attracting the charges (the force between the
charges on the opposite plates) is weaker.

34.1.4 Capacitance of a cylindrical capacitor

We should try some harder geometries. A cylindrical capacitor is a good case
to start with

(you will do a sphere in the homework problems). We want to find the
capacitance of the cylindrical capacitor. Our strategy will be to find the voltage
difference for the capacitor and the amount of charge on the capacitor, and then
divide to find C.

C =
Q

∆V
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Let’s begin with our equation relating potential change to field.

Vb − Va = −
� b

a

Ẽ · ds̃ (34.5)

Let’s assume that there is a linear charge density, λ, along the cylinder with the
center positive and the outside negative. Then

ΦE =

"
Ẽ · dÃ (34.6)

where I will choose a Gaussian surface that is cylindrical around the central
conductor.

This is nice, since the field will be radially out from the conductor (ignoring
the end effects) and so no field will pass through the end caps of the Gaussian
surface (Ẽ · dÃ = 0 on the end caps). Moreover, the field strikes the surface at
right angles (Ẽ · dÃ = EdA on the side of the cylinder), and will have the same
magnitude all the way around so

ΦE = E

"
dA

= EA

Now we know from Gauss’ law that

ΦE =
Qin

εo

where
Qin = λh

and where h is the height of our Gaussian surface, so

ΦE =
λh

εo
= E2πrh



470 CHAPTER 34. CAPACITANCE

λ

2πrεo
= E

Now, knowing our field, and taking a radial path from a to b, we can take

Vb − Va = −
� rb

ra

λ

2πrεo
dr

= − λ

2πεo

� rb

ra

1

r
dr

= − λ

2πεo
ln

�
rb

ra

�

Using this, we can find the capacitance, We have a negative value for ∆V, but
this is just due to our choice of making the center of the concentric cylinders
positive and the outside negative. We chose the zero point on the positive
center. The amount of potential change going from ra to rb is just |∆V | . Then
in finding the capacitance using

Q = C∆V

We want just the value of ∆V so we will plug in the absolute value of our result.

|∆V | = λ

2πεo
ln

�
b

a

�

Then, solving for C gives

C =
Q

∆V

=
Q

λ
2πεo

ln
�

b
a

�

=
Q

Q
2πhεo

ln
�

b
a

�

=
2πhεo

ln
�

b
a

�

Wow! That was fun! But more importantly, this is a coaxial cable geometry,
and we can see that coaxial cable will have some capacitance and that that
capacitance will depend on the geometry of the cable including its length and
width. This capacitance can affect signals sent through the cable. Later in our
course we will see why. But for now just know that if I combine a resistor and
a capacitor together it takes more time for the charge to move. So in our signal
cable the signal will get distorted.
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+
-

Capacitor

Battery

+
-

+
-

Capacitor

Battery

Figure 34.1:

Increasing amounts of distortion in a signal due to increasing cable
capacitance.

The nice square pulses that represent digital data will be distorted, and in
extreme cases, undetectable. When designing data lines, this capacitance of the
cable must be taken into account.

34.2 Combinations of Capacitors
Question 223.34.5

We don’t want to have to do long calculations to combine capacitors that we
buy from an electronics store. It would be convenient to come up with a way
to combine capacitors using a simple rule.

We need a simple way to write capacitors in our homework problem drawings,
here are the usual symbols for capacitor and battery. Using these symbols, let’s
consider two capacitors as shown below.
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Remember that a conductor will be at the same potential over all of its surface.
If we connect the capacitors as shown then all of the left half of this diagram
will be at the positive potential of the battery terminal. Likewise, the right side
will all be at the same potential. It is like we increased the area of the capacitor
C1 buy adding in the area of capacitor C2.

C =
A1 +A2

d
ǫo =

A1
d

ǫo +
A2
d

ǫo

So we may write a combined capacitance for this set up of

Ceq = C1 +C2 (34.7)

We call this set up a parallel circuit. This means that each of the capacitors are
hooked directly to the terminals of the battery.

But suppose we hook up the capacitors as in the next drawingNow we expect
the left hand side of C1 to be at the positive potential of the positive terminal
of the battery. We expect the right side of C2 to be at the same potential as
the negative side of the battery. What happens in the middle?

We can see that we will have negative charge on the right hand plate of
C2 and positive charge on the left plate of C1. This must cause there to be a
positive charge on the right plate of C1 and a negative charge on the left plate
of C2. Moreover, all the charges will have the same magnitude. That means
each of the plates will have a potential difference

∆V1 =
Q

C1

and

∆V2 =
Q

C1
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+
-

C1 C2

+
-

+
-

+
-

C1 C2

Figure 34.2:

Now think of conservation of energy. As we go around the circuit the battery
gives ∆Vbat of potential energy to the circuit. We will loose this same amount
of potential energy as we go from the positive side of the battery back to the
negative side of the battery. Then as we go around the loop

∆Vbat −∆V1 −∆V2 = 0

or
∆Vbat = ∆V1 +∆V2

We can again define an equivalent capacitance.

∆V =
Q

Ctot

then

∆Vbat = ∆V1 +∆V2
Q

Ctot
=

Q

C1
+

Q

C2

The Qs are all the same. So

1

Ctot
=
1

C1
+
1

C2
(34.8)

We call this type of set up a series circuit because the capacitors came one
after the other as you go from one side of the battery to the other.

Now after all this you might ask yourself how to know the capacitance of the
parts you buy to build things. They are designed by engineers and tested at the
factory, and the capacitance is usually printed on the side of the device. You
can, of course, devise a test circuit based on what we have learned that could
test the capacitance. Many multimeters have such a circuit in them for testing
capacitors.
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Basic Equations

The charge on a capacitor is proportional to the potential difference

Q = C∆V

The constant of proportionality is called the capacitance and for a parallel
plate capacitor, it is given by

C =
A

d
ǫo

In parallel capacitors capacitances add

Ceq = C1 +C2

In series capacitors capacitances combine as

1

Ceq
=
1

C1
+
1

C2
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Dielectrics and Current

Fundamental Concepts

• Dielectrics and capacitors

• Microscopic nature of electric current

• Current direction is defined as the direction positive charges would go,
regardless of the actual sign of the charge.

• In a capacitor, the stored energy is w = 1
2C∆V 2

• The energy density in the electric field is u = 1
2ǫoE

2

35.1 Energy stored in a capacitor

We have convinced ourselves that ∆V is the change in potential energy per unit
charge, so when a capacitor is charged, and the wires connecting it to the battery
are removed, is there potential energy “stored” in the capacitor? The answer is
yes, and we can see it by considering what would happen if we connected a wire
(no battery) between the two plates. Charge would rush from one plate to the
other. This is like storing a tank of water on a hill. If we connect a pipe from
the tank at the top of the hill to a tank at the bottom of the hill, the water will
rush through the pipe to the lower tank.

BE CAREFUL, you are enough of a conductor that by touching different
ends of a capacitor you could create a serious current through your body. The
capacitors in old computer monitors or old TV sets can store enough charge to
kill you!

But how much energy would there be stored in the capacitor? Clearly it must
be related to the amount of energy it takes to move the charge onto the plates.

475
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By analogy, the energy stored in the water was the minimum amount of energy
it took to pump the water to the upper tank (mgh). It is the minimum, because
our pipes might have some resistance, and then we would have to include more
work to overcome the resistance.

But for a capacitor it is a little bit more tricky. When the capacitor is not
charged, it takes no work (or very little) to move charge from one plate to the
other. But once there is a charge there is an electric field between the plates
(think of my poorly designed water storage system from the beginning of last
lecture). This creates a potential difference. And we must fight against this
potential difference to add more charge. This is sort of like transferring rocks
up a hill. The more rocks that we carry, the higher the hill gets, and the more
work it takes to bring up more rocks.

From our formula
w = q (VB − VA)

we can see that if we have just a small amount of charge, ∆Q, we will have a
small amount of work

∆w = ∆Q∆V

to move it onto the capacitor.1 If we start with no charge, then go in small ∆Q
steps, we would see a potential rise as shown in the graph below.

The quantity ∆Q∆V is the area of the shaded (green) rectangle. So ∆W is
given by the area of a rectangle under a stair-step on our graph. The shaded
rectangle is just one of many rectangles in the graph. we can write

C =
∆Q

∆V
(35.1)

or

∆V =
∆Q

C
1Agh! here ∆Q is a small amount of charge, and ∆V is Vf − Vi. We have used ∆ in two

different ways in the same equation.
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As ∆Q gets small we can go to a continuous charge model

∆w = ∆Q∆V

We can replaced the small unit of charge ∆Q with a continuous variable q to
obtain

dw = dq (∆V )

Recall that

∆V =
q

C

so we can write dW as

dw = dq
� q

C

�

dw =
1

C
qdq

Of course, we will integrate this

w =

� Q

0

1

C
qdq

w =
1

C

� Q

0

qdq

=
Q2

2C
(35.2)

or sometimes using

Q = C∆V

this is written as

w =
1

2
C∆V 2 (35.3)

There is a limit to how much energy we can store. That is because even air
can conduct charge if the potential difference is high enough. We called this
air conduction a spark or coronal discharge. At some point charge jumps from
one plate to another through the air in between. If the potential difference is
very high, the Coulomb force between the charges on opposite plates will force
charge to leave one plate and jump to the other even if there is no air! Question 223.34.6

Question 223.34.7

35.1.1 Field storage

We usually consider the energy stored in the capacitor to be stored in the electric
field. The field is proportional to the amount of charge and related to the
potential energy, so this seems reasonable. Let’s find the potential energy stored
in the field in the capacitor. Recall for an ideal parallel plate capacitor

∆V = Ed
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and

C = ǫo
A

d

We assume that energy provided by the work to move the charges on the ca-
pacitor is all stored as potential energy. We just found that work to be

w =
1

2
C∆V 2 (35.4)

and we know that
w = −∆U

tells us how much energy we can store. In the previous example we had to
provide a battery or something to force the charge onto the capacitor. This
outside force did the work to move the charge, ω. This mans that work done by
the electric field would be the negative of the work we calculated (−ω), so the
potential energy stored would be positive.

∆Ustored =
1

2
C∆V 2 (35.5)

and since we started with Ui = 0 then

Ustored =
1

2

�
ǫo

A

d

�
(Ed)2

=
1

2
ǫoAdE2

It might seem strange but is can be useful to think of how much energy we have
in the volume of space inside the capacitor.

u =
Ustored

V

In this case the volume V is just Ad so

u =
1

2
ǫoE

2 (35.6)

This is the density of energy in the electric field. It turns out that this is a
general formula (not just true for ideal parallel plate capacitors).

This is a step toward our goal of showing that electric fields are a physically
real thing. They can store energy, so they must be a real thing.

35.2 Dielectrics and capacitors
Question 223.35.1

We should ask ourselves a question about our capacitors, does it matter that
there is air in between the plates? For making capacitors, it might be convenient
to coat two sides of a plastic block with metal and solder wires to the coated
sides. Does the plastic have an effect?
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Plastic is an insulator, and another name for “insulator” is dielectric. If
we perform the experiment, we will find that when a dielectric is placed in the
plates, the potential difference decreases!

We are lucky, though, from experimentation we have found that it seems to
decrease in a nice, linear way. We can write this as

∆V =
∆Vwo

κ
(35.7)

where κ is a constant that depends on what material we choose as our dielectric2

and ∆Vwo is the potential difference without the dielectric (the subscripts wo
will stand for “without the dielectric.” But what is happening?

The plates of the capacitor are becoming charged. These charges will polarize
the material in the middle.

2This symbol κ, is the greek letter “kappa.”
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Notice how the polarized molecules or atoms sill have a net zero charge in theQuestion 223.35.2

middle, but on the ends, there is a net charge. It is like we have oppositelyUbalanced Hand-
edness Demo,
Stick out your
hands, one side
of room has extra
eft hands, one
side extra right
hands

charged plates next to our capacitor plates. That reduces the net charge seen
by the capacitor, and so the potential difference is less. There is effectively less
separated charge.

Question 223.35.3

But since our capacitor is not connected to a battery or any other electrical
device, the amount of actual charge on the capacitor plates can’t have changed.
So if ∆V changed, but Q did not , then since

Q = C∆V

we suspect the material properties part—the capacitance—must have changed.

C =
Qwo

∆V
=

Qwo

∆Vwo
κ

=
κQwo

∆Vo

but this is just
C = κCwo (35.8)

For a parallel plate capacitor, we have

C = κεo
A

d
(35.9)

So where do you find values for κ? For this class, we will look them up in
the tables in books or on the internet. Here are a few values for our use.

Material κ Material κ
Vacuum 1.00000 Paper 3.7
Dry Air 1.0006 Waxed Paper 3.5

Fused quartz 3.78 Polystyrene 2.56
Pyrex glass 4.7− 5.6 PVC 3.4

Mylar 3.15 Teflon 2.1
Nylon 3.4 Water 80
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35.3 Induced Charge

In the last discussion we discovered that if we put a dielectric inside a capacitor,
we end up with polarized charges with the net result that there will be excess
negative charge near the positive plate of the capacitor, and excess negative
charge near the positive plates of the capacitor. In the middle of the dielectric,
the charges are polarized in each atom, but still for any volume inside, the net
charge is zero. The excess charge near each plate we will call the induced charge.

Since we have an induced positive charge on one side and an induced nega-
tive charge on the other side, we expect there will be an electric field directed
from the positive to negative charge inside the dielectric.

The total field inside the dielectric is

E = Ewo −Eind (35.10)

where Ewo is the field due to the capacitor plates without the dielectric. From
our previous discussion, we recall that

∆V =
∆Vwo

κ

and we recall that we found magnitude of the potential difference for an empty
capacitor as

∆Vwo = Ed

Then our new net field can be found

Ed =
Ewod

κ

or

E =
Ewo

κ
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and, recalling for a parallel plate capacitor (near the center) the field is approx-
imately

E =
η

εo

then

E = Eo −Eind

gives
η

κǫo
=

η

ǫo
− ηind

ǫo

and we can find the induced surface charge density as

ηind = η

�
1− 1

κ

�

You might guess that the induced charge is attracted to the charge on the
plates, so a force is required (and work is required) to remove the dielectric once
it is in place. If we draw out the dielectric, we can see that the weaker field
outside the capacitor causes little induced charge, but the stronger field inside
the capacitor causes a large induced charge. A net inward force will result.

35.4 Electric current
Question 223.35.4

Question 223.35.5 For some time now, we have been talking about charge moving. We have had
charge move from a battery to the plates of a conductor. We have had charge
flow from one side to another of a conductor, etc. It is time to become more
exact in describing the flow of charge. We should take some time to figure out
why charge will move.

Let’s consider a conductor again.
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We remember that in the conductor, the valance electrons are free to move. In
fact, they do move all the time. The electrons will have some thermal energy
just because the conductor is not at absolute zero temperature. This thermal
energy causes them to move in random directions. (think of air molecules in a
room).

Let’s take a piece of a wire ∆x long. The speed of the electrons along the
wire (in the x-direction in this case) is called the drift speed, vd, because the
electrons just drift from place to place with a fairly small speed. This drift
speed could be due mostly to thermal energy, so it can be very small or even
zero (if no electric potential is applied). Of course, vd, must be an average, each
charge carrier will be moving random directions with slightly different speeds,
so the x-component of the velocity will be different for each charge carrier, but
on average they will move at a speed vd.

So we will suppose that there are charge carriers of charge qc that are moving
through the wire with velocity vd. Then we can write some length of wire, ∆x,
as

∆x = vd∆t

The volume of the shaded piece of wire is

= A∆x

if there are Question 223.35.6

n =
#

V
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charge carriers per unit volume, a volume charge carrier number density, then
the total charge in our volume is

∆Q = nA∆xqc

If we have electrons as our charge carrier, then qc is just qe.
We can substitute for ∆x

∆Q = nAvd∆tqe

This gives the charge within our small volume. But it would be nice to know
how much charge is going by, because we want moving charge. We can divide
by ∆t

∆Q

∆t
= nAvdqe (35.11)

to get a charge flow rate. This is very like our volume or mass flow rate in fluid
flow. We have an amount of charge going by in a time ∆t.

I gave the flow velocity a special name, vd. But I did not give all the reasons
for using an average x-component of the velocity. If we think about it, we will
realize that the electrons don’t really flow in a straight line. They continually
bump into atoms3 . So the actual path the electrons take looks more like this.

vdvd

We only care about the forward part of this motion. It is that forward com-
ponent that we call the drift speed of the electrons. It is much slower than the
actual speed the electrons travel, and it depends on the type of conductor we
are using.

We already know the name for the flow rate of charge, it is the electric
current.

∆Q

∆t
= I (35.12)

We should take a minute to think about what to expect when we allow charge
to flow. Think of a garden hose. If the hose is full of water, then when we open
the faucet, water immediately comes out. The water that leaves the faucet is
far from the open end of the hose, though. We have to wait for it to travel

3We will refine this picture in the next lecture.
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the entire length of the hose. But we get water out of the hose immediately!
Why? Well, from Pascal’s principle we know that a change in pressure will be
transmitted uniformly throughout the fluid. This is like your hydraulic breaks.
The new water coming in causes a pressure change that is transmitted through
the hose. The water at the open end is pushed out.

Current is a little bit like this. When we flip a light switch, the electrons
near the near the switch start to flow at vd. But there are already free electrons
in all the wire. These experience a Pascal’s-principle-like-push that makes the
light turn on almost instantly. Question 223.35.7

There is a historical oddity with current flow. It is that the current direction
is the direction positive charges would flow. This may seem strange, since in
good conductors, we have said that electrons are doing the flowing! The truth
is that it is very hard to tell the difference between positive charge flow and
negative charge flow. In fact, only one experiment that I know of shows that
the charge carriers in metals are electrons.

That experiment accelerates a conductor. The experiment is easier to perform
using a centrifuge, but it is easier to visualize with linear motion. If we accelerate
a bar of metal as shown in the preceding figure, the electrons are free to move
about in the metal but the nuclei are all bound together. If the nuclei are
accelerated they must go as a group. But the electrons will tend to stay with
their initial motion (Newton’s first law) until the end of the bar reaches them.
At this point they must move because the electrical force of the mass of nuclei
will keep them bound to the whole mass of metal. But the electrons will pile up
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at the tail end of the bar—that is—if it is the electrons that are free. When this
experiment is performed, it is indeed the electrons that pile up at the tail end,
and the forward end is left positive. This can be measured with a voltmeter.

Ben Franklin chose the direction we now use. He had a 50% chance if getting
the charge carrier right. All this shows just how hard it is to deal with all these
things we can’t see or touch. And even more importantly, in semiconductors
and in biological systems, it is positive charge that flows. In many electro-
chemical reactions both positive and negative charges flow. We will stick with
the convention that the current direction is the direction that positive charges
would flow regardless of the actual charge carrier sign.

Flow of positive charge through a gate into a neural cell.

Basic Equations

Voltage if a dielectric is placed between the plates of the capacitor(equation
35.7)

∆V =
∆Vo

κ

Capacitance increases (equation 35.7)

C = κCo

For parallel plate capacitors we get

C = κεo
A

d

The induced field in a dielectric is (equation 35.10)

E = Eo −Eind
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Current is the rate of charge flow (equation 35.12)

∆Q

∆t
= I

Definition of current (equation 35.11)

I = nAvdqc
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Chapter 36

Current, Resistance, and
Electric Fields

Fundamental Concepts

• There is a nonconservative (friction-like) force involved in current flow
called resistance.

• A nonuniform charge distribution creates an electric field, which provides
the force that makes current flow

• Current flow direction is defined to be the direction positive charge carriers
would go

• The current density is defined as J = nqevd

• Charge is conserved, so in a circuit, current is conserved.

36.1 Current and resistance
Question 223.36.1

We now have flowing charges, but our PH121 or Dynamics experience tells us
that there is more. If we push or pull an object, we expect that most of the
time there will be dissipative forces. There will be friction.

489
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We should ask, is there a friction involved in charge movement? We alreadyQuestion 223.36.2

know how to push a charge, we use an electric field

EF
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q

High Potential Low Potential

+
  +
  
 +
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
 +
  
+
  
 +
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+

+
  +
  
 +
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
 +
  
+
  
 +
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+
  
+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

+

A B

x
r



E

d

The force is

F = qE

If we push or pull a box, it will eventually come to rest. In our capacitor there
are no resistive forces for our charge to encounter. But suppose we place a
conductor inside our capacitor, hooked to both plates
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Of course, in conductors we now know the charge carrier is an electron and it is
negative, so let’s try to redraw this picture to show the actual charge motion.Question 223.36.3

Now the charge is free to move inside of the conductor, but it is not totally
unencumbered. The free charges will run into the nuclei of the atoms. The
charges will bounce off. So as they travel through the material we will expect to
see some randomness to their motion. This is compounded by the fact that the
electrons already have random thermal motion. So the path the charge takes
looks somewhat like this

We can recognize that each path segment after a collision must be parabolic
because the acceleration will be constant

Fnetx = max = qE

Fnety = may = 0
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so
−→a = qE

m
ı̂

we can describe the electron motion using the kinematic equations.

xf = xi + vix∆t+ 1
2

�
qE
m

�
∆t2

vfx = vix +
�

qE
m

�
∆t

v2fx = v2ix + 2
�

qE
m

�
(xf − xi)

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t+ 1
2 (0)∆t2

vfy = viy + (0)∆t
v2fy = v2iy + 2 (0) (yf − yi)

yf = yi +
vfy+viy

2 ∆t

or
xf = xi + vix∆t+ qE

2m∆t2

vfx = vix +
qE
m ∆t

v2fx = v2ix +
2qE
m (xf − xi)

xf = xi +
vfx+vix

2 ∆t

yf = yi + viy∆t
vfy = viy

v2fy = v2iy
yf = yi +

vfy+viy
2 ∆t

and the path will be

xf = xi + vix∆t+
qE

2m
∆t2

yf = yi + viy∆t

which is parabolic.
Of course, this is just for one electron, and only for a segment between

collisions. We will have millions of electrons, and therefore, many millions of
bounces. But for each electron, between bounces we expect a parabolic path.
For considering current flow, we don’t care about motion perpendicular to the
current direction. So we can look only at the component of the motion in the
flow direction. The net flow in the current direction is toward the positive plate.
Let’s see how this works.Question 223.36.4

If we average the velocities of all the electrons we find

vd = v̄x

= v̄ix + ax∆t̄

the first term v̄ix = 0 because the initial velocities are random from the thermal
and scattering processes. That is, on average, the electrons have no preferred
direction after a bounce. This leaves

vd =

�
qE

m

�
∆t̄

The average time between collisions, ∆t̄, is sometimes given the symbol τ . Let’s
use this. Then

vd =
�qτ
m

�
E
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Recall that current is

I = nAvdqc

And we can write our current equation using our new equation for vd

I = nqA
�qτ
m

�
E

We have shown that the current is directly proportional to the field inside the
conductor. It is this field that causes the charges to flow. Question 223.36.5

But let’s look even closer. Suppose we connect our two plates with a wire
instead of filling their gap with a conductor. If current flows through the wire,
there must be a field in the wire. But how does it get started?

This figure is supposed to show our copper wire connected to the capacitor.
The capacitor is in the background, and the wire loops close to us. The end
of the wire that is connected to the positive side of the capacitor will become
positively charged, and the end connected to the negative side of the capacitor
will become negatively charged. If we look at the wire an infinitesimal time
after the connection has happened, the wire will not be uniformly charged—it
won’t even be in equilibrium. It will take some time for the charges to reach
equilibrium. In the mean time, the charge is stronger near the plates, and
diminishes toward the middle.

We can’t find the exact field in the conductor without resorting to a compu-
tational solution, but we can mentally model the situation by viewing the wire
as consisting of rings of charge that vary in linear charge density. The extra
charge will want to go to the outside of the wire, so this isn’t a crazy model.

We know the field along the axis due to a ring of charge because we have
done this problem in the past.
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−→
E =

1

4πǫo

zQ

(R2 + z2)
3

2

k̂

We know the field is along the axis and that it diminishes with distance from
the ring. Now consider the field due to ring 1. As we move to the right, away
from ring 1 that field will diminish with distance. Also consider the field due
to ring 2. As we move to the right toward ring 2 the field due to ring two will
grow. The field due to ring two grows at the same rate that the field from ring
1 diminishes. The fields 1, and 2 add up to a constant value along the axis for
every point in between the two rings. Now consider the field on the right side
of ring 2 and the field on the left side of ring 3. A little thought shows that the
situation is the same as that for rings 1 and 2. We will have a constant net field
between the two rings.

Likewise for the region between rings 3 and 4. There is a constant net electric
field at all points along the wire. This field points from positive to negative. It
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will exert a force

F = qEnet

on the free charges inside the wire. These free charges are not the extra charge
from the capacitor. They are the free electrons that are loosely attached to
the metal atoms that make up the wire. So these free charges are distributed
throughout the volume of the wire. These free charges will accelerate, forming
a current inside the wire.

Note that these free charges are not just on the surface, they are inside the
wire, even on the axis of the wire in the center. We no longer have a static
equilibrium, so we no longer have excess charge only on the surface.

All this usually happens very fast, so when we switch on a light, we don’t
notice the time it takes for the current to start. But this uneven distribution of
charge is the reason we get a current.

36.2 Current density
Question 223.36.6

We now realize that when there is an electric field inside a wire, there will be
current flow inside the wire. The flow goes through the volume of the wire. The
rate of flow is given by

I =
∆Q

∆t
= nqeA

�
qeτ

me

�
E

for steady current flow. Here we are writing q = qe for the electron charge and
m =me for the electron mass, since our charge carrier is an electron..

The unit for current flow is

C

s
= A

where A is the symbol for an Ampere or, for short, an amp. Question 223.36.7

Historically there was no way to tell whether negative charges were flowing
or whether positive charges were flowing. It really did not matter so much in
the early days, since a flow of positive charges one way is equivalent to a flow
of negative charges the other way.
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Worse, we know that for some systems there are positive charge carriers and
for others negative charge carriers.

By convention, we assign the direction of current flow as though
the charge carrier were positive.

This is great for biologists, where the charge carriers are positive ions. But
for electronics this gives us the uncomfortable situation that the actual charge
carriers, electrons, move in the direction opposite to that of the current.

Let’s look again at our definition of current

I =
∆Q

∆t
= nqeA

�
qeτ

me

�
E

If we, once again, write this in terms of vd

vd =
�qτ
m

�
E
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then after rearranging, we have

I = (nqevd)A

the part in parentheses contains only bulk properties of the conductor material,Question 223.36.8

the number of free charges, the charge of the charge carrier, and the drift speed
which depends on the material structure of the conductor. The final factor is
just the cross sectional area of the wire. It gives the geometry of the wire we
have made out of the bulk material (say, copper). It is convenient to group all
the factors that are due to bulk material properties

J = nqevd

then the current would be
I = JA

Note how similar this is to a surface charge density

Q = ηA

For a static charged surface, Q is the surface charge density multiplied by the
particular area. For our case we have a total current, I that is the material
properties multiplied by an area. By analogy we could call this new quantity,
J, a kind of density, but now our charges are moving. So let’s call it the current
density.

Notice that it is the cross sectional area of the wire that shows up in our
current equation. This is another indication that the charge is not flowing along
the surface, but that it is deep within the wire as it flows.

36.3 Conservation of current
Question 223.36.9

Let’s go back to our pumps and turbines.
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How much of the water is “used up” in turning the turbine? Another way
to say this is to ask if there are 20 l of water entering the turbine, how much
water leaves the turbine through the lower pipe?

If the turbine leaks, then we might lose some water, but if all is going well,
then you can guess that 20 l of water must also leave the turbine We can’t lose or
gain water as the turbine is turned. But we must be losing something! We mustQuestion

223.36.10 be giving up something to get useful work out of the system. That something
that we lose is potential energy.

Now consider a battery. How much of the current is “used up” in making
the light bulb light up?

This case is really the same as the water case. The electric current is a flow
of electrons. The flow loses potential energy, but we don’t create or destroy
electrons as we convert the potential energy of the battery to useful work (like
making light) just like we did not create or destroy water in making the turbine
turn.

But surely the water slowed down as it traveled through the turbine—didn’t
it? Well, no, if the water slows down as it goes through the turbine, then the
pipe below the turbine would run dry. This does not happen. The flow rate
through a pipe does not change under normal conditions, and under abnormal
conditions, we would destroy the pump or the turbine! If we throw rocks off a
hill, they actually gain speed when the water loses potential energy. Now the
flow rate is slower with a turbine in the pipe than it would be with no turbine in
the pipe! But with the turbine in the pipe, the flow rate is the same throughout
the whole pipe system.

Like the water case, the flow rate of charge does not change from point to
point in the wire. The same amount of charge per unit time leaves the wire as
went in.

This explains the reasoning behind one of the great laws of electronics

The current is the same at all points in a current-carrying wire.

Like in the water case, the electrons would flow faster if there were no light
bulb and just a continuous wire. We can have different flow rates in our wire
depending on how much resistance there is to the flow. But the flow rate will
be the same in all parts of the wire system.
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This leads to the second of the pair of rules called Kirchhoff’s laws:



Iin =



Iout

If the wire branches into two or more pieces, the current will divide. This is not
too surprising. The same is true for water in a pipe Question

223.36.11

In the figure the flow through pipe segment A is split into two smaller cur-
rents that flow through pipe segments B and C. We would expect that the flow
through B and C combined must be equal to the flow through A. Question

223.36.12The same must be true for electrical current. The situation is shown in the
next figure.

The current that flows through wires B and C combined must be equal to
the current that came through wire A. Question

223.36.13Basic Equations
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Chapter 37

Ohm’s law

Fundamental Concepts

• The material property of a conductor that tells us how well the conductor
material will allow current to flow through it is called the conductivity

• The inverse of conductivity is the resistivity

• Resistivity may be temperature dependent

• Resistance depends on the resistivity of the material and the geometry of
the conductor piece. For a wire it is given by R = ρA/L

• For many conductors, the change in voltage across the conductor is pro-
portional to the current and the resistance. This is called Ohm’s law

• The ideal voltage delivered by a battery is called the “emf” and is given
the symbol E

• Some materials do not follow Ohm’s law. They are called nonohmic

• The Earth has a magnetic field

• Magnets have “magnetic charge centers” called poles and there is a mag-
netic field.

• Magnetic poles don’t seem to exist independently

37.1 Conductivity and resistivity
Question 223.37.1

We defined the current density last lecture

J = nqevd

501
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but we know that the drift speed is

vd =

�
qeτ

me

�
E

so we can write the current density as

J = nqe

�
qeτ

me

�
E

=

�
nq2eτ

me

�
E

The factor in parentheses depends only on the properties of the conducting ma-
terial. For example, if the material is copper, then we would have the ncopper =
8.5×1028 1

m3 as the number of valence electrons per unit meter cubed for copper.
The mean time between collisions is something like τ copper = 2.5× 10−14 s. So
our quantity in parentheses is

�
nq2eτ

me

�
=

�
8.5× 1028 1

m3

� �
1.6× 10−19C

�2 �
2.5× 10−14 s

�

9.11× 10−31 kg

= 5. 971 5× 107 A
2

m3
s3

kg

= 5. 971 5× 107 1

Ωm

The field is due to something outside of the conducting material (e.g. the
battery). Notice that again we have grouped all the properties of the material
together. Lets give a name to the quantity in parentheses that contains all
the material properties. Since this quantity tells us how easily the charges will
go through the conductive material, we can call this the conductivity of the
material.

σ =
nq2eτ

me

Then
J = σE

The current density depends on two things, how well the material can allow the
current to flow (bulk material properties related to conduction), σ, and and the
field that motivates the current to flow, E.

The current, then, depends on these two items, as well as the cross sectional
area of the wire

I = JA

= σEA

Really, the conductivity is more complicated than it appears. The mean
time between collisions, τ , depends on the structure of the conductor. Different
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crystalline structures for the same element will give different values. Think
of trying to walk quickly through the Manwering Center crowds during a class
break. This takes some maneuvering. But if all the people were placed at equally
spaced, regular intervals, it might be easier to make it through quickly. It would
also be easier if the crowd stood still. Likewise, the position of the atoms in
the conductor make a big difference in the conductivity, and thermal motion of
those atoms also makes a large difference. We would expect the conductivity to
depend on the temperature of the material.

37.1.1 Resistivity
Question 223.37.2

It is common to speak of the opposite of the concept of conductance. In other
words, how hard it is to get the electrons to travel through the conductive
material. For example, we might want to build a heating device, like a toaster
or space heater. In this case, we want friction in the wires, because that friction
will produce thermal energy. So specifying a conductive material by how much
friction it has is useful. How much the material impedes the flow of current is
the opposite of how much the material allows the current flow, so we expect this
new quantity to be the inverse of our conductivity

ρ =
1

σ
=

me

nq2eτ

Special conductors are often made that use “impurities,” that is, trace amounts
of other atoms, to increase or decrease the resistivity of those conducive mate-
rials. The thermal dependence can be modeled using the equation

ρ = ρo (1 + α (T − To))

where ρo is the resistivity at some reference temperature (usually 20 ◦C) and α
is a constant that tells us how our particular material changes resistance with
temperature. It is kind of like the specific heat in thermodynamics Q = C∆T .
This is an approximation. It is a curve fit that works over normal temperatures.
But we would not expect the same resistive properties, say, if we melt the
material. The position of the atoms would change if the material goes from
solid to liquid. So we will need to be careful in how we use this formula.

Here are some values of the conductivity, resistivity, and temperature coef-
ficients for a few common conductive materials. Question 223.37.3
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Material
Conductivity�
Ω−1m−1

� Resistivity

(Ωm)
Temp. Coeff.�

K−1
�

Aluminum 3.5× 107 2.8× 10−8 3.9× 10−3
Copper 6.0× 107 1.7× 10−8 3.9× 10−3
Gold 4.1× 107 2.4× 10−8 3.4× 10−3
Iron 1.0× 107 9.7× 10−8 5.0× 10−3
Silver 6.2× 107 1.6× 10−8 3.8× 10−3

Tungsten 1.8× 107 5.6× 10−8 4.5× 10−3
Nichrome 6.7× 105 1.5× 10−6 0.4× 10−3
Carbon 2.9× 104 3.5× 10−5 −0.5× 10−3

37.1.2 Superconductivity

The relationship

ρ = ρo (1 + α (T − To))

also breaks down at low temperatures. The low end is very important these
days. For some special materials, the resistivity goes to zero when the material
is cold enough. We call these materials superconductors. A superconductor
can carry huge currents, because there is no loss of energy, and no heat gener-
ated without any friction. Unfortunately most superconducting materials only
operate at temperatures near absolute zero. But a few “high temperature”
superconductors operate at temperatures at high as 125K. This is still very
cold (−150 ◦C), but these temperatures are achievable, so some superconduct-
ing products are possible. As you can guess, there is very active research in
making superconductors that operate at even higher temperatures.

Superconducting fiber material and superconducting magnet at CERN. These

superconductors operate at 1.9K.
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37.1.3 Ohm’s law

Let’s pause to review, Current density id given by

J = σE

or now by

J =
1

ρ
E

Then the current is given by

I = JA

=
A

ρ
E

If the field is similar to our capacitor field, nearly uniform in our conducting
wire, then the potential would be just

∆V = Ed

= E∆s

and then the electric field is approximately given by

E =
∆V

∆s

For our wire of length L this is

E =
∆V

L

Then we can use this field to write our current

I =
A

ρ

∆V

L

Once again, let’s group together all the structural and material properties of
the wire. We have

I =

�
A

Lρ

�
∆V

or with a little algebra,

∆V = I

�
ρ
L

A

�

The part in parenthesis contains all the friction terms. It says that the longer
the wire, the more friction we will experience. This makes sense. If you are
familiar with fluid flow. The longer the hose, the more resistance. It also says
that the larger the area, the lower the friction. That is also reasonable, since
the electrons will have more places to go unrestricted if the area is bigger. In
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water flow, the larger the pipe, the less the water interacts with the sides of the
pipe and therefore the lower the friction. This situation is analogous. Question 223.37.4

We should give a name to this quantity that describes the frictional proper-
ties of the wire. We will call it the resistance of the wire.

R = ρ
L

A

so that we can write

I =
∆V

R

The resistance has units of
V

A
= Ω

where Ω is given the name of ohm after the scientist that did pioneering work
on resistance.

The relationship

I =
∆V

R

is called Ohm’s law.

37.1.4 Life History of an electric current

Let’s go back and think about our pump model for a battery.

The pump is a source of potential energy difference. This is what a battery
does as well. The battery is a charge pump. It moves the charges from a low to
a high potential. So it is a source of electric potential. The battery’s job is to
provide the charge separation that creates the electric field that drives the free
charges, making the current.

A positive charge in the wire on the negative side of the battery is pumped
up to the positive side through a chemical process. We can mentally envision a
small charge pump inside of the battery
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The battery is the source of the potential. A positive charge near the negative
side of the battery would be pumped up to the positive side of the battery, It
would gain potential energy

∆Ubattery = q∆Vbattery

Then it would “fall” down the wire. It must lose all of the potential energy it
gained. So it will loose

|∆Uwire| = |∆Ubattery|
But if the battery potential energy change is positive, the wire change must be
negative. We can see that

∆Vwire = −∆Vbattery

so the potential change in the wire is negative. We sometimes call this a potential
“drop.”

The field forces our charge to move through this wire much like the gravita-
tional field forces rocks to fall. The positive charge ends up at the negative end
of the battery again, ready to be pumped up to make another round.

Of course, really this process goes backwards in electrical circuits, since our
charge carriers are negative, but we recall that mathematically negative charges
going the opposite way is the same. So we will make this picture our mental
model of a current.

37.1.5 Emf

We have ignored something in our pump model of a battery. In real water flow,
there would be resistance to the flow even inside the pump. This resistance
would be small, but not zero. So the actual potential energy gain would be

∆U = ∆Uideal − Uloss due to friction in the pump
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The same is true for an actual battery. There is some resistance in the battery,
itself.

∆V = ∆Videal −∆Vloss due to resistance in the battery

Now that we have Ohm’s law, we can see what ∆Vloss due to resistance in the battery

would be in terms of the internal resistance of the battery and the current that
flows. Referring to the last figure, there is only one way for the current to go.
So for this circuit, the current must be the same throughout the entire circuit,
even in the battery! If we call the small resistance in the battery r, then

∆Vloss due to resistance in the battery = Ir

then the actual potential energy provided by the battery is

∆V = ∆Videal − Ir

It is traditional to give the ideal voltage a name and a symbol. And we have
already encountered this name. It is “emf.” Recall that at one time, the letters
‘e’, ‘m’, and ‘f’ stood for something. But not any more. It is just a name. It is
pronounced “ē-em-ef,” and the symbol is a script capital E. So we can write

∆V = E − Ir

Sometimes you will hear E referred to as the voltage you would get if the battery
is not connected (the “open circuit” voltage). This is the voltage marked on
the battery. Notice that the actual voltage provided at the battery terminals
depends on how much current is being drawn from the battery. So if you are
draining your battery quickly (say, using your electric starter motor to start your
car engine) the voltage supplied by your battery might drop (your lights might
dim while the starer motor runs). You are not getting 12V because the current
I is large while the starter motor runs. We will change to this new symbol for
ideal voltage. But we should keep in mind that actual voltages delivered may
be significantly less than this ideal emf unless we plan our designs carefully.

37.1.6 Ohmic or nonohmic
Question 223.37.5

This simple model of resistance is great for understanding simple things. Wires,
and resistors do work like this. If we were to take a set of measurements of ∆V
and I, we expect a straight line

y = mx+ b

E = ∆V = RI + 0

where R is the slope.



37.1. CONDUCTIVITY AND RESISTIVITY 509
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But there are times when the model fails terribly. An incandescent light
bulb is an example that we can quickly understand. The resistance at any one
moment fulfils Ohm’s law

I =
E
R

but light bulbs get hot. The resistance will change in time. So our relationship
is now time dependent. Starting with the resistivity,

ρ = ρo (1 + α (T − To))

let’s multiply both sides by A/L.

A

L
ρ =

A

L
ρo (1 + α (T − To))

this gives

R = Ro (1 + α (T − To))

So if the resistance is temperature dependent, the slope of the line will change
as we go along making measurements. We might get something like this

0.01 0.02 0.03 0.04 0.05
0.2

0.4

0.6

0.8

1.0

I

V

The dashed line is what we expect from Ohm’s law. The solid line is what
data from a light bulb would actually look like. We could use our temperature
dependent resistance, and realize that the temperature is a function of time, to
obtain

I =
E

Ro (1 + α (T (t)− To))
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Since this set of measurements is not strictly following Ohm’s law, we will say
that the light bulb is nonohmic.

Many common circuit elements are vary nonohmic. A diode, for example,
has a ∆V vs. I relationship that looks like this.

0 2 4
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0.12

0.14

I (mA)

Delta V (V)

37.2 Power in resisters

We learned that the resistance in a resister depends on the temperature of the
resister, and even have an approximate relationship that shows how this works

R = Ro(1 + α (T − To))

so we know that temperature and resistance are related. But most of us have
used a toaster, or an electric stove, or an electric space heater, etc. How does
an electric circuit produce heat? or even light from a light bulb?

To answer this let’s think of the energy expended as an electron travels a
circuit. The potential energy expended is

∆U = q∆V

where the ∆V comes from the battery, so we could write this as

∆U = qE

This is the energy lost as the electron travels from one side of the battery to the
other. We could describe how fast the energy is lost by dividing by the time it
takes the electron to make the trip

∆U

∆T
=

q

∆t
E

but of course we want to do this for more than one electron. Let’s take a small
amount of charge, ∆Q, then

∆U

∆T
=
∆Q

∆t
E
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∆U

∆T
=
∆Q

∆t
E

and if we make the small group of charge very small we have

dU

dT
=

dQ

dt
E

and we recognize dU/dt as the power and dQ/dt as current, then

P = IE

This is the power supplied by the battery in moving the group of electrons
through the circuit. But from conservation of energy, the charge packet must
lose all the energy that the battery provides, so

Pbattery = PR = I∆VR

is the energy that leaves the circuit as the packet of charge moves.
This works for any resistance

PR = I∆VR

Then we can use Ohm’s law
∆VR = IR

to find

PR = I (IR)

= I2R

But where does this energy go? This is the energy that makes the heat in
the space heater, or the light in the light bulb.

We can now understand how an electric current is formed. Hopefully you
have taken, are taking, or will take ME210 so you will know how to build
simple circuits with resistances and capacitances. But for this class, we will
now investigate a new force, the magnetic force.

37.3 Magnetism

Most people have used a magnet. at some time. They come as ads that stick to
a refrigerator. They are the working part of a compass. They hold the pieces
of travel games to their boards, etc. So I think we all know that magnets stick
to metal things. But do they stick to all metal things?

The answer is no, only a few metals work. Iron and Nickel and Cobalt are
some that do. Aluminum and Copper do not. By the time we are done studying
magnetism, we should be able to explain this.

Magnets are very like charged objects in some ways. They can attract or
repel each other They attract “unmagnetized” materials. But there are some
important differences. Bar Magnet

Demo — Make
this like the first
charge demo

Bar Magnet
Demo — Alter-
nate, use the
array of iron
arrows and an
overhead projec-
tor with the bar
magnet
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Notice that a “magnetic charge” seems to be induced in some metal objects,
but not in other common objects. This is very different than electric charge and
electric polarization! And we should state explicitly that for magnets, there
seem to be both “charges” in the same object! We call the “charge centers” the
poles of the magnet. We find that one pole attracts one of the poles of a second
magnet and repels the other. If we turn around the first magnet, we find that
our pattern of attraction and repulsion reverses. Because magnets were usedMore Bar Mag-

net Demo — Like
Poles

for centuries in navigational compasses, we call one pole the north pole of the
compass and the other the south pole of the magnet. The north pole is the pole
that would orient toward the north. Why does this happen?

I hope your high school science class taught you that the Earth has a mag-
netic field.

So we constantly live under the influence of a large magnet! Now lets hang both
of our magnets from a string, and see which way they like to hang. The north
facing end we will label N and the south facing end we will label S. Now we can
see that the two N ends repel each other and the two S ends repel each other.
But a N end and a S end will attract.
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Once again we have a situation where we can define a mover object and an
environmental object. We can picture one of the magnets making a magnetic
field and the other magnet moving through this field. Of course both magnets
make magnetic fields, but since a magnet can’t make a magnetic field that moves
itself, we won’t draw this self-field for the mover magnet. We just draw the field
for the environmental magnet. We did this in our Earth-compass picture. The
Earth was the environmental magnet and the compass was the mover magnet.

One quirk of history is that since a N end of a magnet is attracted to the
North part of the Earth. But north end of magnets are attracted to south poles
of magnets, the Earth’s geographic north pole must be a magnetic south pole!

One common misconception is that there is one specific place that is the
magnetic north pole. Really it is a region near Newfoundland where the field
strength actually varies quite a bit. You may have heard people discuss how
the poles switch every so often. This is true, and we don’t fully understand the
mechanism for this.

There is a large difference between the magnetic force and the electric force.
Electric charges are easy to separate. But magnetic poles are not at all easy to
separate. If we break a magnet

we end up with each piece being a magnet complete with both north and south
ends. This is very mysterious! something about the source of the magnetic
field must be very different than for the source of the electric field. We will
investigate the source of a magnetic field as we go.

The Earth’s magnetic fields affects many biological systems. One of these is
a bacteria that contain small permanent magnets inside of them to help them
find the mud they live in.

In the 1990’s there was a health fad involving magnets. Many people bought
magnets to strap on their bodies. They were supposed to reduce aging and give
energy. Mostly they stimulated the economy. But we will find that magnetic
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fields can alter the flow of blood (but these magnets did not do so, the FDA
would not allow strong enough magnets to be sold as apparel to have this ef-
fect). Another common place to find magnetic fields is the MRI devices used in
hospitals to make images of the interior of bodies.Question 223.37.6

Basic Equations

σ =
nq2eτ

me

J = σE

I = JA

= σEA

ρ =
1

σ
=

me

nq2eτ

ρ = ρo (1 + α (T − To))

R = ρ
L

A

I =
∆V

R

∆V = E − Ir

R = Ro (1 + α (T − To))

P = IE
PR = I∆VR

PR = I2R



Chapter 38

Magnetic Field

Fundamental Concepts

We have now experience with two non-contact forces, the gravitational force
and the electric or Coulomb force. In both cases, we have found that there is a
field involved with the production of this force. We can guess that this is true
for the magnetic force as well.

The discovery of this field involved an accidental experiment, and under-
standing this experiment gives us great insight into the nature of this field and
where it comes from. So we will spend a little time describing it.

38.1 Fundamental Concepts in the Lecture

• A long wire that carries a current produces a magnetic field

• The magnetic field due to a long wire with current becomes weaker with
distance and forms concentric cylinders of constant magnetic field strength

• The direction of the long-wire-with-current field is given by a right-hand-
rule.

• The field due to a moving charge is given by the Biot-Savart law

B =
µo

4π

qv sin θ

r2

38.2 Discovery of Magnetic Field

In 1819 a Dutch scientist named Oersted was lecturing on electricity. He was
actually making the point that there was no connection between electricity and

515
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magnetism. He had a large battery connected to a wire. A large current flowed
through the wire. By chance, Oersted placed a compass near the wire. He had
done this before, but this time the wire was in a different orientation than in
previous demonstrations. To his great surprise, the compass needle changed
direction when it was placed near the wire!

A similar experiment, but this time with several compasses, is shown in the
next figure.

When the current is turned on, the compasses change direction.

This is a very good clue that there really is a connection between electricity
and magnetism.Oersted’s Experi-

ment Demo: Use
the 106 boards
and compasses

We know that a compass orients itself in the Earth’s magnetic field. We
can infer that the compass needle will orient in any magnetic field. In the next
figure you can see that there is a force on each end of the needle due to the
magnetic field.
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Notice that we have marked the environmental magnetic field with the letter B.
This is traditional. Magnetic fields are often called B-fields for this reason. But
more importantly, this looks very like an electric dipole in a constant electric
field. We know enough about the dipole situation to predict that there will be
a torque, and that there will be a stable equilibrium when the compass needle
is aligned with the magnetic field.

Since our compasses oriented themselves near the current carrying wire, there
must be a magnetic field caused by the current in the wire. The field shown
in the last figure is uniform, but the field of our wire cannot be uniform. The
compasses pointed different directions. A common way to describe this field is
with a right-hand-rule. We imagine grabbing the wire with our right hand with
our thumb pointing in the current direction. The field direction is given by our
fingers.

Question 223.38.2

Although this is true, it takes some interpretation Let’s take some time to
see what it means. Let’s redraw the figure.
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Now that we have a new figure, let’s reconsider what our right hand rule means.
What we mean is that the magnetic field is constant in magnitude around a
circle, and that the direction of the field is tangent to the circle, with the arrow
pointing in the direction your fingers go with the right-hand-rule.

This is easier to see in a top-down view.
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But in the first figure we only drew the field around one circle. By using symme-
try, we can guess that the field magnitude must be constant around any circle.
It must depend only on r,if the current is constant. So we could draw constant
field lines at any distance, r, away from the wire.

But again, this figure is not so good, because the entire wire makes a field thatQuestion 223.38.3

has a constant value for B at a distance r away. So we could also draw the field
above our hand.
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Maybe a better way to draw this field would be a set of concentric cylinders.
Along the surface of the cylinder (but not the end caps) the field will be con-
stant.

Of course, if our wire is infinitely long, the cylinders will be infinitely long too...
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And the field does not stop after a few cylinders, it reaches B = 0 only whenQuestion 223.38.4

r =∞. So the field fills all of space.

This is a more accurate way to draw the magnetic field due to a long straight
wire, but it takes a long time to draw such a diagram, so usually we will just
draw one circle, and you will have to mentally fill in the other circles and the
concentric cylinders that they represent.

To use the right hand rule, remember to place your thumb in the current
direction. Then the field direction is given tangent to the circle and pointing in
our finger direction.

38.2.1 Making the field—moving charges

But how does a current in a wire make a magnetic field?

The secret is to look at the individual charges that are moving. When early
scientists caused individual charges to move, they found they created magnetic
fields. The experimental results gave a relationship for the strength of this field

B =
µo

4π

qv sin θ

r2

and the direction is given by the right hand rule by pointing the thumb in
the direction the charges are going and using the figures to indicate the field
direction as we have described above. In a sense, this is a very small current
(one moving charge!). So the field should look very similar.

This relationship was found by two scientists, Biot and Savart, and it carries
their name, the Biot-Savart law. The factor µo is a constant very like ǫo. It has
a value

µo = 4π × 10−7
Tm

A

and is called the permeability of free space, The unit T is called a tesla and is

T =
N

Am
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The charges already had an electric field before they were accelerated, but
now they have two fields, an electric and a magnetic field. We used unit vectors
to write our E-field.

−→
E =

1

4πǫo

q

r2
r̂

It is convenient to do the same for the magnetic case. We can remember that a
vector cross product is given by

−→a ×−→b = ab sin θ ⊥ −→a ,⊥ −→b

where the resulting vector is perpendicular to both −→a and
−→
b . Thinking about

this for a while allows us to realize this is just what we want for the magnetic
field. If the velocity of the charges is up (say, in the ẑ direction) then we can
use our right hand rule to realize we need a vector perpendicular to both ẑ and
r̂. This is given by

ẑ× r̂

which is always tangent to the circle indicated by our fingers. Since v is in the
z direction we can use

−→v × r̂ = v sin θ ⊥ −→v ,⊥ r̂

to write the Biot-Savart law as

−→
B =

µo

4π

q−→v × r̂
r2

We should do a problem to see how this works.
Suppose we accelerate a proton and send it in the z-direction to a speed of

1.0 × 107m/ s. Let’s further suppose we have a magnetic field detector placed
1mm from the path of the proton. What field would it measure?

We know
−→
B =

µo

4π

q−→v × r̂
r2

and by symmetry we know that v is perpendicular to r̂ just as the proton passes
the detector. So, using the right hand rule for cross products, we put our hand
in the v-direction and bend our fingers into the r-direction. Then our thumb
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shows the resulting direction. In this case it is in the positive y-direction, or out
of the page. The magnitude would be

−→
B =

4π × 10−7 TmA
4π

�
1.6× 10−19 C

� �
1.0× 107m/ s

�

(0.001m)2
ŷ

= 1. 6× 10−13Tŷ
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Chapter 39

Current loops

Fundamental Concepts

• The magnetic field due to a current in a wire is given by the integral form

of the Biot-Savart law
−→
B = µoI

4π

�
d−→s ×r̂

r2

• The magnetic field magnitude of a long straight wire with a current is
given by B = µoI

2πa with the direction given by the right hand rule we
learned last time.

• The field due to a magnetic dipole is
−→
B ≈ µo

4π
2−→µ
r3 ı̂ where −→µ is the magnetic

dipole moment µ = IA with the direction from south to north pole.

39.1 Magnetic field of a current

Last lecture, we learned the Biot-Savart law

−→
B =

µo

4π

q−→v × r̂
r2

now let’s consider our q to be part of a current in a wire. A small amount of
current moves along the wire. Let’s call this small amount of charge ∆Q.

525
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This small amount of charge will make a magnetic field, but it will be only a
small part of the total field, because ∆Q is only a small part of the total amount
of charge flowing in the wire. That part of the field made by ∆Q is

∆
−→
B =

µo

4π

∆Q−→v × r̂
r2

Let’s look at ∆Q−→v . We can rewrite this as

∆Q−→v = ∆Q
∆−→s
∆t

=
∆Q

∆t
∆−→s

= I∆−→s

then our small amount of field is given by

∆
−→
B =

µo

4π

I∆−→s × r̂
r2

as usual, where there is a ∆, we can predict that we can take a limit and end
up with a d

d
−→
B =

µo

4π

Id−→s × r̂
r2

Some things to note about this result
Question 223.39.1

1. The vector d
−→
B is perpendicular to d−→s and to the unit vector r̂ directed

from d−→s to some point P.
Question 223.39.2

2. The magnitude of d
−→
B is inversely proportional to r2

Question 223.39.3

3. The magnitude of d
−→
B is proportional to the current

Question 223.39.4

4. The magnitude of d
−→
B is proportional to the length of d−→s
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39.5

5. The magnitude of d
−→
B is proportional to sin θ where θ is the angle between

d−→s and r̂

Where there is d
−→
B we will surely integrate. The field d

−→
B is due to just a

small part of the wire d−→s . We would like the field due to all of the wire. So we
take

−→
B =

µoI

4π

�
d−→s × r̂

r2

This is a case where the equation actually is as hard to deal with as it looks.
The integration over a cross product is tricky. Let’s do an example.

39.1.1 The field due to a square current loop

Suppose we have a square current loop. Of course there would have to be a
battery or some potential source in the loop to make the current, but we will
just draw the loop with a current as shown. The current must be the same in
all parts of the loop.

Let’s find the field in the center of the loop at point P .
I will break up the integration into four parts, one for each side of the loop.

For each part, we will need to find d−→s × r̂ and r to find the field using

−→
B =

µoI

4π

�
d−→s × r̂

r2

This is very like what we did to find electric fields. For electric fields we had
to find dq, r̂, and r and we integrated using

−→
E =

1

4πǫo

�
dq

r2
r̂

Now we need d−→s × r̂ and r. For electric fields, we needed to deal with the
vector r̂. Now we need to deal with a cross product, d−→s × r̂, involving r̂. For
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the bottom part of our loop d−→s × r̂ is just

d−→s × r̂ = −ds sin θk̂
= −dx sin θk̂

where +k̂ is out of the page. We can see this in the figure

So our field from the bottom wire is

−→
Bb =

µoI

4π

�
d−→s × r̂

r2

=
µoI

4π

� −dx sin θk̂
r2

Next we need to find r. We would like to not have more than one variable. So
it would be good to try to pick x or θ and to put everything in terms of that
one variable. Let’s try θ. From trigonometry we realize

sin θ =
a

r

on the right side of the wire, and

sin (π − θ) = sin θ =
a

r

on the left side, So all along the bottom wire r is given by

r =
a

sin θ

Then our field equation for the bottom wire becomes

−→
Bb =

µoI

4π

� − (dx) sin θk̂
�

a
sin θ

�2

but now we have an integration over dx and our function is in terms of θ which
depends on x. We should try to fix this. Let’s find dx in terms of dθ. We can
pick x = 0 to be the middle of the wire. Then

tan θ =
a

x
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on the right and

tan (π − θ) = − tan θ = a

x

on the left. Since on the left x is negative, this makes sense. So we have either

x =
a

tan θ

or
x = − a

tan θ

depending on which size of the dotted line we are on. We could write these as

x = ± a

tan θ
= ±a cos θ

sin θ

for both cases. We really want dx and moreover we want it as a magnitude (we
deal with the direction in the cross product). So we can take a derivative and
then take the magnitude (absolute value).

dx

dθ
=
sin θ (−a sin θ)− a cos θ cos θ

sin2 θ
=

−a
sin2 θ

This derivative was not obvious! We had to use the quotient rule. But once we
have found it we can rewrite dx as

dx =

����
−a
sin2 θ

dθ

����

(now with the absolute value inserted) and since neither a nor sin2 θ can be

negative we can just write this asdx = a
sin2 θ

dθWhen we put this in our integral
equation for the bottom wire we have

−→
Bb =

µoI

4π

� −
�

a
sin2 θ

�
dθ sin θk̂

�
a
sin θ

�2
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which we should simplify before we try to integrate.

−→
Bb =

µoI

4π

� − sin θdθk̂
a

= −µoI

4πa
k̂

�
sin θdθ

which is really not too bad considering the integral we had at the start of this
problem. When we get to the corner of the left hand side θ = 3π

4 and when
we start on the right hand side θ = π

4 and along the bottom wire θ will be
somewhere in between π

4 and 3π
4 . Then π

4 and 3π
4 are our limits of integration.

We can perform this integral

−→
Bb = −µoI

4πa
k̂

� 3π
4

π
4

sin θdθ

= −µoI

4πa
k̂ [− cos θ|

3π
4
π
4

= −µoI

4πa
k̂

�√
2

2
−
�
−
√
2

2

��

= −µoI
√
2

4πa
k̂

This was just for the bottom of the loop. Now let’s look at the top of the
loop. There is finally some good news. The math will all be the same except
for the directions. We had better work out d−→s × r̂ to see how different it is.

Now the d−→s is to the right and r̂ is downward so

d−→s × r̂ = −dx sin θk̂
But this is just as before. So even this is the same! The integral across the top
wire will have exactly the same result as the integral across the bottom wire.
We can just multiply our previous result by two.

How about the sides? Again we get the same d−→s × r̂ direction and all the
rest is the same, so our total field is

−→
B = 4

−→
Bb = −

µoI
√
2

πa
k̂

This was a long hard, messy problem. But current loops are important!
Every electric circuit is a current loop. Does this mean that every circuit is
making a magnetic field? The answer is yes! As you might guess, this canQuestion 223.39.6

have a profound effect on circuit design. If your circuit is very sensitive, adding
extra fields (and therefore extra forces on the charges) can be disastrous causing
the design to fail. There is some concern about “electronic noise” and possible
effects on the body (cataracts are one side effect that is well known). And of
course, as the circuit changes its current, the field it creates changes. this can
create the opportunity for espionage. The field exists far away from the circuit.
A savvy spy can determine what your circuit is doing by watching the field
change!
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39.1.2 Long Straight wires

In our last example, we found that the magnitude of the field due to a wire is

B =

����−
µoI

4πa

�
sin θdθ

����

Of course, we would like to relate this to our standard charge configuration, in
this case an infinite line of (now moving) charge. If the wire is infinitely long,
then the limits of integration are just from θ = 0 to θ = π

B =

����−
µoI

4πa

� π

0

sin θdθ

����

=

����−
µoI

4πa
(− cos θ)

����
π

0

����

=
µoI

2πa

This is an important result. We can add a new geometry to our list of special
cases, a long straight wire that is carrying a current I. The direction of the
magnetic field, we already know, is given by our right-hand-rule. Of course, if
our wire is not infinitely long, we now know how to find the actual field. It is
all a matter of finding the right limits of integration. Question 223.39.7

39.2 Magnetic dipoles
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As a second example, let’s find the magnetic field due to a round loop at the
center of the loop. We start again with

−→
B =

µoI

4π

�
d−→s × r̂

r2

We need to find d−→s × r̂ and r, to do the integration. Our steps are:

1. Find an expression for d−→s × r̂

2. Find an expression for r

3. Assemble the integral, including limits of integration

4. Solve the integral.

Let’s start with the first step. As we go around the loop d−→s and r̂ will be
perpendicular to each other, so

ds× r̂ = dsk̂

For the second step, we realize that r is just the radius of the loop, R. Then
the integration is quite easy (much easier to set up than the last case!)

B =
µoI

4π

�
ds

R2
k̂

The limits of integration will be 0 to 2πR. We can perform this integral

B =
µoI

4π

� 2πR

0

ds

R2
k̂

=
µoI

4π

2πR

R2
k̂

so

B =
µoI

2R
k̂ loop

The field is perpendicular to the plane of the loop, which agrees with our square
loop problem.

Let’s extend this problem to a point along the axis a distance z away from
the loop.
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We need to go back to our basic equation again.

−→
B =

µoI

4π

�
d−→s × r̂

r2

Starting with step 1, we realize that, in general, our value of d−→s × r̂ is
d−→s × r̂ = ds sinφ

where φ is the angle between d−→s and r̂. We can see that for this case φ will still
be 90 ◦.
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We have tipped r̂ toward our point P, but tipping r̂ from pointing to the center
of the hoop to pointing to a point on the axis just rotated r̂ about part of the
hoop. We still have φ = 90 ◦. So

��d−→s × r̂
�� = ds

with a direction shown in the figure. We have used symmetry to argue that
we can take just x or y-components in the past because all the others clearly
canceled out. We can also do that again here. Using symmetry we see thatMIT Visualiza-

tion only the z-component of the magnetic field will survive. So we can take the
projection onto the z-axis.

−→
B =

µoI

4π

�
ds

r2
cos θk̂

We know how to deal with such a situation, since we have done this before.
From the diagram we can see that

cos θ =
R√

R2 + z2

And our value of r we recognize as just

r =
�

R2 + z2

so our field becomes
−→
B =

µoI

4π
k̂

�
Rds

(R2 + z2)
3

2

Fortunately this integral is also not too hard to do. Let’s take out all the terms
that don’t change with ds

−→
B =

µoIR

4π (R2 + z2)
3

2

k̂

� 2πR

0

ds

The limits of integration are 0 to 2πR, the circumference of the circle

−→
B =

µoIR2πR

4π (R2 + z2)
3

2

k̂

=
µoIR

2

2 (R2 + z2)
3

2

k̂

Let’s take some limiting cases to see if this makes sense. Suppose z = 0,
then

−→
B =

µoIR
2

2 (R2 + 0)
3

2

k̂

=
µoIR

2

2R3
k̂

=
µoI

2R
k̂
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which is what we got before for the field at the center of the loop. That is
comforting.

Now suppose that z ≫ R. In that case, we can ignore the R2 in the denom-
inator.

−→
B ≈ µoIR

2

2 (z2)
3

2

k̂

=
µoIR

2

2z3
k̂

We have just done this for on-axis positions because the math is easy there. But
we could find the field at other locations. The result looks something like this.

The figure on the left was taken from the pattern in iron filings that was created
by an actual current loop field. The figure to the right is a top down look. We

will use the symbol to mean “coming out of the page at you” and the

symbol “going into the page away from you.” Imagine these as parts of an
arrow. The dot in the circle is the arrow tip coming at you, and the cross is the
fletching going away from you. Notice that the field is up through the loop, and
down on the outside.

As we generalize our solution for the magnetic field far from the loop we
have

−→
B ≈ µoIR

2

2r3
k̂

This looks a lot like the electric field from a dipole

−→
E =

2

4πǫo

−→p
r3

which gives us an idea. We have a dipole moment for the electric dipole. This
magnetic field has the same basic form as the electric dipole. We can rewrite
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our field as

−→
B ≈ µoI

�
πR2

�

2 (π) r3
ı̂

=
µo (2) I (A)

(2) 2 (π) r3
ı̂

=
µo

4π

2IA

r3
ı̂

where A = πR2 is the area of the loop.

The electric dipole moment is the charge multiplied by the charge separation

p = qa

we have something like that in our magnetic field, The terms IA describe the
amount of charge and the geometry of the charges. We will call these terms
together the magnetic dipole moment

µ = IA

and give them a direction so that µ is a vector. The direction will be from south
to north pole

where we can find the south and north poles by comparison to the field of a bar
magnet.

−→µ = IA from South to North
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This is a way to characterize an entire current loop.
As we get farther from a loop, the exact shape of the loop becomes less

important. So as long as r is much larger than R, we can write

−→
B ≈ µo

4π

2−→µ
r3
k̂

for any shaped current loop.
The integral for of the Biot-Savart law is very powerful. We can use comput-

ers to calculate the field do to any type of current configuration. But by hand
there are only a few cases we can do because the integration becomes difficult.
With electrostatics, we found ways to use geometry to eliminate or at least
make the integration simpler. We will do the same thing for magnetostatics
starting with the next lecture. Our goal will be to use geometry to avoid using
Biot-Savart when we can.

Basic Equations

−→
B =

µoI

4π

�
d−→s × r̂

r2

−→µ = IA from South to North

−→
B ≈ µo

4π

2−→µ
r3
k̂
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Chapter 40

Ampere’s law, and Forces
on Charges

Fundamental Concepts

• The magnetic field can be found more simply for symmetric currents using

Ampere’s law
# −→
B · d−→s = µoIthrough

• The force due to the magnetic field on a charge, q,is given by
−→
F = q−→v ×−→B

40.1 Ampere’s Law

The Biot-Savart law is a powerful technique for finding a magnetic field, but it
is more powerful numerically than in closed-form problems. We can only find
exact solutions to a few problems with special symmetry. Since problems we can
do by hand require special symmetry anyway, we would like to use symmetry
as much as possible to remove the need for difficult integration.

We saw this situation before with electrostatics. We did some integration to
find fields from charge distributions, but then we learned Gauss’ law, and that
was easier because it turned hard integration problems into relatively easy ones.
This still required special symmetry, but when it worked, it was a fantastic time
saver. For non-symmetric problems, there is always the integration method,
and a computer.

Likewise, for magnetostatics there is an easier method. To see how it works,
let’s review some math.

In the figure there is a line, divided up into many little segments.

539
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We can find the length of the line by adding up all the little segment lengths

L =



i

∆si

Integration would make this task less tedious

L =

�
ds

This is called a line integral. Our new method of finding magnetic fields will
involve line integrals. The calculation of the length is too simple, however.
We will have to integrate some quantity along the line. For example, we could
envision integrating the amount of energy lost when pushing a box along a path.
The integral would give the total energy loss. The amount of energy lost would
depend on the specific path. Thus a line integral

w =

� −→
F · d−→s

would be useful to find the total amount of work. Each small line segment would
give a differential amount of work

dw =
−→
F · d−→s

and we use the integral to add up the contribution to the work for each segment
of size ds along the path. Notice the dot product. We need the dot product
because only the component of the force in the direction the box is going adds
to the total work done.
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We wish to do a similar thing for our magnetic field. In order to avoid the kind
of integral we got for the Biot-Savart law, we wish to integrate the magnetic
field along a path. It’s not obvious that this will help. But like with Gauss’ law
we are going to try to turn a difficult integral into an easy one.

The integral would look like this

� b

a

−→
B · d−→s

This may not look like an improvement over integrating using the Biot-Savart
law, but our goal will be to use symmetry to make this integral very easy. The
key is in the dot product. We want only the component of the magnetic field
that is in the d−→si direction. There are two special cases.

If the field is perpendicular to the d−→si direction, then

� b

a

−→
B · d−→s = 0

because
−→
B · d−→si = 0 for this case

If the field is in the same direction as d−→si , then
−→
B · d−→si = Bds and

� b

a

−→
B · d−→s =

� b

a

Bds

Further if we can make is so that B is constant and everywhere tangent to the
path, then

� b

a

−→
B · d−→s =

� b

a

Bds

= B

� b

a

ds

= BL
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This process should look familiar. We used similar arguments to make the

integral
� −→
E · d−→A easy for Gauss’ law.

With Gaussian surfaces, we found we could imagine any surface we wanted.
In a similar way, for our line integral we can pick any path we want. if we can
make B constant and everywhere tangent to the path, then, the integral will be
easy. It is important to realize that we get to make up our path. There may be
some physical thing along the path, but there is no need for there to be. The
paths we will use are imaginary.

Usually we will want our path to be around a closed loop. Let’s take the
case of a long straight current-carrying wire. We know the field shape for this.

We can see that if we take a crazy path around the wire, that
−→
B ·∆−→si will give

us the projection of
−→
B onto the ∆−→si direction for each part of the path.

We get 


i

B
∆s

where B
 is the component of B that is parallel to the ∆s direction. In integral
form this is �

B
ds

The strange shape I drew is not very convenient. This is neither the case where−→
B · d−→si = 0 nor where

−→
B · d−→si = Bds. But if we think for a moment, I do know

a shape where
−→
B · d−→si = Bds. If we choose a circle, then from symmetry B will

be constant, and it will be in the same direction as ds so
−→
B · d−→si = Bds. From

our last lecture we even know what the field should be for a long straight wire.

B =
µoI

2πr
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Let’s see if we can use this to form a new general approach. Since B is constant
around the loop (because r is constant around the loop), we can write our line
integral as

� −→
B · d−→s = B2πr

=
µoI

2πr
2πr

= µoI

This is an amazingly simple result. We integrated the magnetic field around an
imaginary loop path, and got that the result is proportional to the current in
the wire. This reminds us of Gauss’ law where we integrated the electric field
around a surface and got that the result is proportional to the amount of charge
inside the surface.

� −→
E · d−→A =

Qin

ǫo

Let’s review. Why did I pick a circle as my imaginary path? Because it
made my math easy! I don’t want to do hard math to compute the field, so
I tried to find a path over which the math was as easy as possible. Since the
path is imaginary, I can choose any path I want, so I chose a simple one. I want

a path where
−→
B · d−→si = 0 or where

−→
B · d−→si = Bds. This is very like picking

Gaussian surfaces for Gauss’ law. If I chose a harder path I would get the same

answer, but it would take more effort. I found the result of my integral
� −→
B ·d−→s

to be just µoI.

We had to integrate around a closed path, so I will change the integral sign
to indicate that we integrated over a closed path.

" −→
B · d−→s = µoIthrough (40.1)

and only the current that went through the imaginary surface contributed to
the field, so we can mark the current as being the current that goes through our
imaginary closed path.

This process was first discovered by Ampere, so it is known as Ampere’s law.

Let’s use Ampere’s law to do another problem. Suppose I have a coil of wire.
This coil is effectively a stack of current rings. We know the field from a single
ring.
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B =
µoI

2R
But what would the field be that is generated by having a current flow through
the coil?

Well, looking at the single loop picture, we see that the direction of the field
due to a loop is right through the middle of the loop. I think it is reasonable
to believe that if I place another loop on top of the one pictured, that the fields
would add, making a stronger field down the middle. This is just what happens.
So I could write our loop field equation as

B = N
µoI

2r

where N is the number of loops I make. It is customary in electronics to define
n as the number of loops per unit length (sort of like the linear mass density we
defined in waves on strings, only now it is linear loop density). Suppose I take
a lot of loops! In the picture I have drawn the loops like a cross section of a
spring. But now the loops are not all at the same location. So we would guess
that our field will be different than just N times the field due to one loop. Can
we use Ampere’s law to find this field?

1

2

3

4

l

w

1

2

3

4

l

w

Consider current is coming out at us on the LHS and is going back into the
wires on the RHS. Remember our goal is to use Ampere’s law

" −→
B · d−→s = µoIthrough
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to find the field. Let’s imagine a rectangular shaped Amperian loop shown as a
dotted black line. Note that like Gaussian surfaces, this is an imaginary loop.
Nothing is really there along the loop. Let’s look at the integral by breaking it
into four pieces,

�

1

−→
B · d−→s +

�

2

−→
B · d−→s +

�

3

−→
B · d−→s +

�

4

−→
B · d−→s = µoIthrough

one for each side of the loop. If I have chosen my loop carefully, then
−→
B · d−→si

will either be
−→
B · d−→si = 0 or

−→
B · d−→si = Bds. Let’s start with side 2. We want

to consider −→
B · d−→s2

We see that for our side 2 the field is perpendicular to d−→s2 So

B · dℓ2 = 0

This is great! I can integrate 0 �
0 = 0

The same reasoning applies to

−→
B · d−→s4 = 0

From our picture we can see that there is very little field outside of our coil of

loops. So B3 is very small, so
−→
B · d−→s3 ≈ 0. It is not exactly zero, but it is small

enough that I will call it negligible for this problem. For an infinite coil, this
would be exactly true (but infinite coils are hard to build).

That leaves path 1. There the B-field is in the same direction as d−→s1 so

−→
B · d−→s1 = Bds1

Again this is great! B is fairly uniform along the coil. Let’s say it is close enough
to be considered constant. Then the integral is easy over side 1

�
Bds1 = Bℓ

We have performed the integral!

" −→
B · d−→s =

�

1

−→
B · d−→s +

�

2

−→
B · d−→s +

�

3

−→
B · d−→s +

�

4

−→
B · d−→s

= Bℓ+ 0 + 0 + 0

= Bℓ

Now we need to find the current in the loop. This is more tricky than it
might appear. It is not just I because we have several loops that go through
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our loop, each on it’s own carrying current I and each contributing to the field.
We can use a linear loop density1 n to find the number of loops.

N = nℓ

and the current inside the loop will be

Iinside = NI

Then, putting the integration all together, we have
" −→

B · d−→s = Bℓ+ 0 + 0 + 0 = µoNI

or
Bℓ = µoNI

which gives a field of

B = µo

N

ℓ
I

or
B = µonI

This device is so useful it has a name. It is called a solenoid. You may have
made a coil as a kid and turned it into an electromagnet by hooking it to a
battery (a source of potential difference) so that a current ran through it. In
engineering solenoids are used as current controlled magnetic switches.

Solenoid operated valve system. (figure courtesy Alfonzo Gonzalez, wilipedia

commons)

There is another great thing about a solenoid. In the middle of the solenoid,
the field is really nearly constant. Near the ends, there are edge effects, but in

1Physicists like densities!
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the middle we have a very uniform field. This is analogous to the nearly uniform
electric field inside a capacitor. We can therefore see how to generate uniform
magnetic fields and consider uniform B-fields in problems. Such a large nearly
uniform magnetic field is part of the Compact Muon Solenoid (CMS) experiment
at CERN.

CMS Detector at CERN. The detector is constructed of a very large solenoid to bend

the path of the charge particles.

40.2 Magnetic Force on a moving charge

Now that we know how to generate a magnetic field, we can return to thinking
about magnetic forces on mover charges. Our magnetic field is slightly more
complicated than the electric field. We can still use a charge and the force, but
now the charge is moving so we expect to have to include the velocity of the
charge. We want an expression that relates B and Fmag in both magnitude and
direction.

Our expression for the relationship between charge, velocity, field and the
force comes from experiment (although now we can derive it). The experiments
show that when a charged particle moves parallel to the magnetic field, there is
no force! This is radically different from our E-field! Worse yet, the force seems
to be perpendicular to both v and B when the angle between them is not zero!
Here is our expression.

FB = qv×B (40.2)

where q is the mover charge and B is the magnetic field environment.
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We have a device that can shoot out electrons. The electrons show up
because they hit a phosphorescent screen. When we bring a magnet close to
our beam of electrons, we find it moves!Magnetic Deflec-

tion Demo But we did this with moving electrons, what happens if they are not moving?
We might expect the electrons to accelerate just the same—and we would be
wrong! Static charges seem to not notice the presence of the magnet at all!

We expect that, like gravity and electric charge, the force on the moving
electrons must be due to a field, but this magnetic field does not accelerate
stationary electrons. We learned before that the reason we know that there is
some force on the electrons came when Oersted, a Dutch scientist experimenting
with electric current, found that his compass acted strangely when it was near
a wire carrying electric current. This discovery is backwards of our experiment.
It implies that moving charges must effect magnets, but given Newton’s third
law, If moving electrons make a field that makes a force on a magnet, then we
would expect a magnet will make a field that makes a force on moving charges
as well!

The derivation of the magnitude of the force from the experimental data
is tedious. We will just learn the results, but they are exciting enough! The
magnitude of the force on a moving charge due to a constant magnetic field is

−→
FB = q−→v ×−→B (40.3)

The magnitude is given by

F = qvB sin θ

where q is charge, v is speed, and B is the magnitude of the magnetic field. We
need to carefully define θ. Since we have a cross product, θ is the angle between
the field direction and the velocity direction.

We can solve the equation for the magnetic field force (equation 40.3) to find
the magnitude of the field

F

qv sin θ
= B

But the strangeness has not ended. we need a direction of the force. And

it turns out that it is perpendicular to both −→v and
−→
B as the cross product

implies! We use our favorite right hand rule to help us remember.

We start with our hand pointing in the direction of ṽ. Curl your fingers in the
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direction of B̃. And your fingers will point in the direction of the force. We saw
this type of right hand rule before with torque, but there is one big difference.
This really is the direction the charge will accelerate! Note that this works for
a positive charge. If the charge is negative, then the q in

−→
FB = q−→v ×−→B

will be negative, and so the force will go in the other way. To keep this straight
in my own mind, I still use our right hand rule, and just remember that if F is
negative, it goes the opposite way of my thumb.

Right hand rule #2: We start with our hand pointing in the

direction of −→v . Curl your fingers in the direction of
−→
B And your

thumb will point in the direction of the force. The magnitude of the
force is given by

F = qvB sin θ

40.3 Motion of a charged particle in a B-Field
Question 223.40.1

Question 223.40.2

Question 223.40.3

Question 223.40.5

We refer to the magnetic field as a B-field for short.

Let’s set up a constant B-field as shown in the figure. We draw a B-field as
a set of vectors just like we did for electric fields. In the figure, the vectors are
all pointing “into the paper” so all we can see is their tails.

+

v

+

v

If I have a charged particle, with velocity ṽ, what will be the motion of theQuestion 223.40.6

particle in the field? First off, we should recall that F̃ is in a direction perpen-

dicular to ṽ and
−→
B .. Using our right hand rule we see that it will go to the left.
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+

v
F

+

v

+

v
F

Remember that F = ma, so the charge will accelerate in the −x direction.

Now, if we allow the charged particle to move, we see that the v direction
changes. This makes the direction of F change. Since v and a are always at
90 ◦, the motion reminds us of circular motion! Let’s see if we can find the
radius of the circular path of the charge.

F = qvB sin θ

will be just
F = qvB

because θ is always 90 ◦. Then, using Newton’s second law

F = ma = qvB

and noting that the acceleration is center-seeking, and our velocity is always
tangential, we can write it as a centripetal acceleration

aC =
v2t
r

Then

m
v2t
r
= qvtB
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m
vt

r
= qB

We can find the radius of the circle

mvt

qB
= r

Could we find the angular speed?

ω =
vt

r
=

qB

m

How about the period? We can take the total distance divided by the total
time for a revolution

vt =
2πr

T

to find

T =
2πr

vt

and we recognize
1

ω
=

r

vt

so

T =
2π

ω

so, using our angular speed we can say

T =
2πm

qB

The angular frequency ω that we found is the frequency of a type of particle
accelerator called a cyclotron. This type of accelerator is used by places like
CERN to start the acceleration of charged particles. The same concept is used
to make the charged particles go in a circular path in the large accelerators like
the LHC at CERN.

Turning magnets at CERN. This is an actual magnet, but this magnet is at ground

level in the testing facility. The tunnel is a mock-up of what the actual beam tunnel

looks like.
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Within the detector systems, like the CMS, charged product particles can be

tracked along curved paths for identification. Question 223.40.7

Question 223.40.8

Question 223.40.9Charged particles that enter a magnetic field with some initial speed will
gain a circular motion as well. The combined motion is a helix.

An example is the charged particles from the Sun entering the Earth’s magnetic
field. the particles will spiral around the magnetic field lines.

As the helical motion tightens near the poles, the particles will sometimes give
off patterns of light as they hit atmospheric atoms.
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Aurora Borealis: Sand Creek Ponds Idaho 2013

The light is what we call the aurora borealis. A more high-tech use for this

helical motion is the confinement of charged particles in a magnetic field for
fusion reaction.

40.3.1 The velocity selector
Question
223.40.10

This device shows up on tests, especially finals, because it has both an electric
field and a magnetic field—you test two sets of knowledge at once! So let’s see
how it works. Our question should be, what is the velocity of a charged particle
that travels through the field without being deflected?

E-field
We remember that the force on a positively charged particle will be

FE = qE

directed in the field direction so it is downward.
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B-Field
Now we know that

FB = qv ×B
and we use our right hand rule to find that the direction will be upward with a
magnitude of

FB = qvB sin θ

= qvB

So there will be no deflection (no acceleration) when the forces in the y-
direction balance.

ΣFy = 0 = −FE + FB

or
qE = qvB

which gives

v =
E

B

as the speed that will be “selected.”

40.3.2 Bainbridge Mass Spectrometer

A mass spectrometer is the second most likely place to find a velocity selector
(the first was a test). You may use a mass-spec some time in your careers. I
have had samples identified by mass-spectrometers several times in my industrial
career. They are very useful devices—especially when chemical identification is
hard or impossible.

The Bainbridge device is one type that we can easily understand. It starts
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with a velocity selector which sends charged particles at a particular speed into
a region of uniform magnetic field. The charged particles then follow curved
paths on their way to an array of detectors. When they hit the array, their
spatial location is recorded. Where they hit depends on their ration of charge
to mass. From our study of the rotational motion we found

r =
mv

qBo

so the charge to mass ratio is

q

m
=

v

rBo

Since we know the initial velocity will be

v =
E

B

from the velocity selector, then

q

m
=

E

rBBo

One way this is often used is to separate a sample of substance, say, carbon
to find the relative amount of each isotope. The carbon atoms will all ionize to
the same charge. Then the position at which they are detected depends on the
mass.

I used a mass-spec in my last industry project to identify large carbon com-
pounds and their relative concentration in complex oil leaks. This data helped
us look for possible leak detection targets so pipeline leaks could be detected
before the oil was visible to the naked eye.

40.3.3 Classical Cyclotron

We already found the period of rotation of a charged particle in a uniform
magnetic field.

T =
2πm

qB

Note that this does not depend on the speed of the particle! So it will have the

same travel time regardless of how fast it goes. We can use this to accelerate
particles. But we add in an electric field to do the acceleration. The device is
shown in the figure below
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Basic Geometry of the Cyclotron. (Public Domain image courtesy KlausFoehl)

The particle starts in the center circling around in the magnetic field. but the

device is divided into halves (called “Ds”). There is a gap between the Ds, and
the electric field is created in the gap. One side at high potential and the other
at low potential. When the particle is in the gap, it accelerates. It will gain a
kinetic energy equal to the potential energy difference across the gap

∆K = q∆V

As the particle travels around the D to the other side of the, the cyclotron, the
cyclotron switches the polarity of the potential difference. So as the particle
passes the gap on the other side of the cyclotron, it is again accelerated with an
additional ∆K = q∆V. Since r does depend on the speed,

r =
mv

qB

the radius increases with each “kick.” Finally the particle leaves the cyclotron
with a velocity of

qBrmax
m

= v

Since we often describe the velocity of particles in energy terms, the kinetic
energy of the particle

K =
1

2
mv2

=
1

2
m

�
qBrmax

m

�2

=
q2B2r2max
2m

40.4 Hall Effect
Hall Effect Demo

The Hall probe is a cool little device that measures the magnitude of the mag-
netic field. It is used in rotation and angle detection in engineering. We should
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find out how it works.

Let’s take a piece of material that has a current going through it. If we place
it in a magnetic field, then the charge carriers will feel a force. Suppose it is
a metal, and that the charge carriers are electrons. The force is perpendicular
to the current direction. So the electrons are accelerated toward the top of the
piece of metal as shown in the drawing. This creates a negative charge on the
top side of the metal piece. Then the bottom side will be positively charged
relative to the top. With separated charge like this, we think of a capacitor and
the electric field created by such a separation of charges. There will be a field
in the conductor with a potential difference between the top and bottom of the
conductor. We call this potential difference

∆VH

the Hall potential after the man who first observed it.
Now if the charge carriers were positive, we would still build up a potential,

but it would be in the opposite polarity. We wish to find this hall potential.
The electric field of the charges will try to push them back down as more charge
builds up. So at some point the upward force due to the magnetic field on the
electrons will be balanced by the built up electric field. At that point

ΣFy = 0 = FB − FE

so

qvdB = qEH

where EH is the field due to the separation of charges.
So

EH = vdB

The potential is nearly equal to

∆V ≈ EHd
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where d is the top-to-bottom distance of the conductor , so

∆V ≈ vdBd

Since we know
I = nqAvd

then

vd =
I

nqA

and the area A is
A = td

where t is the thickness of the conductor, then

vd =
I

nqtd

and

∆V ≈ IB

nqt

You may find this expressed in terms of the Hall coefficient

RH =
1

nq

so

∆V ≈ RH
IB

t

To do a good job of finding RH for metals and semiconductors, you have to
go beyond classical theory. But if we know B, I, t, and ∆V, which can all be
measured, then we can find RH . Once this is done, we can place the Hall probe
in different magnetic fields to find their strength. One way to do this is to
control I and measure ∆V, so

B ≈ t

RHI
∆V

Basic Equations

" −→
B · d−→s = µoIthrough

−→
FB = q−→v ×−→B

mvt

qB
= r

ω =
qB

m
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vt =
2πr

T

T =
2πm

qB
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Chapter 41

Magnetic forces on wires

Fundamental Concepts

• The magnetic force on moving charges extends to wires with currents

• The force on a wire with current is given by FI = IL×B

• The torque on a current loop is τ = µ×B where µ = IA

41.1 Magnetic forces on Current-Carrying wires
Question 223.41.1

Question 223.41.2If there is a force on a single moving charge due to a magnetic field, then there
must be a force on lots of moving charges! We call lots of moving charges an
electric current

I =
∆Q

∆t

For charges in a wire, we know that the charges move along the wire with a
velocity vd. We would expect the total force on all the charges to be the sum of
all the forces on the individual charges.

FI =



i

Fqi =



i

qivB sin θ

but, since in our wire all the charge carriers are the same, this is just

FI = NqivdB sin θ

where here N is the number of charge carriers in the part of the wire that is
experiencing the field. We used a charge density n before. Let’s use it again to
make an expression for N

N = nV = nAL

561
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where A is the cross sectional area of the wire and L is the length of the wire.
So

FI = nALqivdB sin θ

Now let’s think back to our definition of current. We know that

I = nqivdA

so our force on the current carrying wire is

FI = (nqivdA)LB sin θ

= ILB sin θ

Remember that θ is the angle between the field direction and the velocity. In
this case I is in the direction of the velocity (we still assume positive charge
carriers, even though we know they are electrons going the other way). So θ is
the angle between the field direction and the direction of the current. We can
write this as a cross product

−→
F I = I

−→
L×−→B (41.1)

where
−→
L is in the current direction.

41.1.1 Force between two wires
Question
223.41.2.3 We can use what we have learned to find the force between two wires.

If I have two wires with current, I will have a field created by each wire.
Let’s suppose that I1 and I2 are in the same direction

and let’s calculate the force on wire 1 due to the field of wire 2. The field due
to wire 2 at the location of wire 1 will be

B12 =
µoI2
2πd
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where d is how far away wire 1 is from wire 2. We know

F12 = I1LB2 sin θ

We can see that sin θ = 1 since I1 will be perpendicular to B12.

F12 = I1LB12

and using our expression for B12

F12 = I1L
µoI2
2πd

= L
µoI2I1
2πd

(41.2)

Would you expect F21 to be very different?

41.2 Torque on a Current Loop
Question 223.41.4

Question 223.41.5Remember that in PH121 or Statics and Dynamics we defined angular displace-
ment

∆θ = θf − θi (41.3)

and this told us how far in angle we had traveled from a starting point θi.
We also defined the angular velocity

ω =
∆θ

∆t
(41.4)

which told us how fast an object was spinning in radians per second. The
direction of this angular velocity we found using a right hand rule.

We also defined an angular acceleration

α =
∆ω

∆t
(41.5)

and we used angular acceleration in combination with a moment of inertia to
express a rotational form of Newton’s second law



τ = Iα (41.6)

where τ is a torque. We found torque with the expression

−→τ = −→r ×−→F (41.7)

We wish to apply these ideas to our new force on wires due to magnetism.
Let’s take a specific example. I want to use a current loop. This is just the

simple loop of current we have seen before.
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I

a

b

I

a

b

I want to place this into a magnetic field.

I

a

b
B

I

a

b

I

a

b
B

I drew the current loop as a rectangle on purpose, I want to look at the force
on the current for each part of the loop. Each side of our loop is a straight wire
segment. Remember that the magnitude of the force on a wire is given by

FI = ILB sin θ

where θ is the angle between I and B so if θ = 0 or if θ = π rad, then sin θ will
be zero. The magnitude of the force will then be zero. So the top and bottom
parts of the loop will not experience a force. The sides will, though, and since
for θ = π

2 or θ = −π
2 (θ = −π

2 is the same as θ = 3π
2 ) then sin θ = 1 and the

force will be a maximum.
FI = IbB

on each side wire segment. But we need to consider direction. The force will
be perpendicular to both I and B. We use our right hand rule. Fingers in the
direction of I, curl to the direction of B. We see the force is out of the figure for
the left hand side and into the figure for the right hand side. The next figure is
a bottom-up view.
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Clearly the loop will want to turn! This looks like a nice problem for us to
describe with a torque. We have a force acting at a distance from a pivot. We
have a torque

τ = rF sinψ

We have already used θ, and our torque angle is the angle between r and F , so
we needed a new greek letter. I have used ψ1 . Then ψ is the angle between r
and F.

Let’s fill in the details of our total torque. Remember we have two torques,
one for the left hand side, and one for the right and side. Their magnitudes are
the same, and the directions we need to get from yet another right hand rule.
Both are in the same direction so

τ =
a

2
FI sin (ψ) +

a

2
(FI) sin (ψ)

= aFI sin (ψ)

Putting in the force magnitude gives

τ = a (IbB) sinψ

and rearranging lets us see

τ = (ab) IB sinψ

= (A) IB sinψ

where A = ab is the area of our loop. Of course we can write this as

−→τ =I−→A ×−→B (41.8)

The torque is the cross product of the area vector and the magnetic field mul-
tiplied by the current.

We did this for a square loop. It turns out that it works for any loop shape.

1which is a psi
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When things rotate, we expect to use moments. We defined a magnetic
dipole moment for a current loop. Now we can see why it is useful. The
magnetic moment tells us about how much torque we will get for a particular
current loop.

−→µ d = I
−→
A

using this we have
−→τ =−→µ d ×

−→
B

We could envision our loop as a single circle of wire connected to a battery.
But we could just as easily double up the wire. If we do this, what is our torque?
Well we would have twice the force, because we now have twice the current (the
current goes trough both turns of the wire). So now we have

τ = 2 (A) IB sinψ

But why stop there? We could make three loops all together.

τ = 3 (A) IB sinψ

or many more, say N loops,

τ = NAIB sinψ

Thinking of our magnetic dipole moment, we see that

τ = NµdB sinψ

for a coil. We could combine the effects of all the loops into one magnetic
moment that represents the coil.

−→µ = N
−→
AI (41.9)

then

τ = µB sinψ

or in cross product form
−→τ =−→µ ×−→B (41.10)

Using this total magnetic moment, we can more easily do problems with coils
in magnetic fields.

For example, we found that there was a potential energy associated with
spinning dipoles, for a spinning current loop we also expect a potential energy.
We have a simple formula for this potential energy in terms of the magnetic
moment.

U = −−→µ · −→B (41.11)
Question 223.41.5
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41.2.1 Galvanometer

We finally know enough to understand how to measure a current. The device
is called a galvanometer.

In the picture, we see the typical design of a galvanometer. It has a coil of wire
(shown looking at the side of the coil) and a spring. The coil is placed between
the ends of a magnet. When there is a current in the wire, there will be a torque
on the coil that will compress the spring. The amount of torque depends on
the current. As the current increases, the spring is more compressed. A marker
(large needle) is attached to the apparatus. As the spring is compressed, the
indicator moves across the scale. Since this movement is proportional to the
current, a galvanometer can easily measure current.

41.2.2 Electric Motors

Question 223.41.6

With our new understanding of torque on a current loop, we should be able
to see how an electric motor works. A current loop is placed in between two
magnets to form a magnetic field. The loop will turn because of the torque due
to the B-field. But we have to get clever. What happens when the loop turns
half way around so the current is now going the opposite way?
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I

a

bB

I

a

bB

Now the torque switches direction and the loop will come to rest. We don’t
want that if we are building a motor, so we have to switch the current direction
every time the loop turns half way.

N S

Commutator
Brushes

The way we do this is to have electrical contacts that are flexible, called brushes.
The brushes contact a metal ring. The metal ring is connected to the loop. But
the ring has two slits cut out of it.

The ring with slits is called a commutator As the loop turns, the commutator
turns, and when it has turned a half turn, the brushes switch sides. This changes
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the current direction, which puts us back at maximum torque.

This keeps the motor going the same direction.

Basic Equations
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Chapter 42

Permanent Magnets,
Induction

Fundamental Concepts

• Using classical physics, we can’t quite explain a permanent magnet.

• Using a semiclassical model, the permanent magnet’s field is due to spin-
ning electrons.

• Alignment of the spinning electrons creates what we call magnetism.

• Temporary alignment results in paramagnetism and diamagnetism.

• More permanent alignment yields ferromagnetism.

• A changing magnetic field can create an emf.

42.1 Finally, why magnets work

We started our study of magnetism by looking at bar magnets and considering
that if we break one, we end up with two magnets. We don’t end up with a
north end and a south end as separate pieces. This is different than charge
and electric fields. Then we studied how moving charge makes a magnetic field.
But we didn’t say how bar magnets work yet. Can a permanent magnet haveQuestion 223.42.1

something to do with current loops?

571
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Well, lets look at the field due to a current loop. It looks a lot like the field due
to a magnet. Could there be current loops inside a bar magnet? The answer is
well, sort of... We have electrons that sort of travel around the atom. Suppose
the electrons orbit like planets. (Chemists, just restrain your dismay at this idea
for a moment). Then there would be a current as they travel. For one electron
the current would be

I =
qe

T

where T is the period of rotation. And we recall from PH121 or Statics and
Dynamics that the period of rotation can be found from

ω =
2π

T

so that

T =
2π

ω

Then the current is

I =
qeω

2π

It is an amount of charge per unit time. We can write this as

I = qe
ω

2π

and recalling

vt = ωr

then

I = qe
vt

2πr

We can find a magnetic moment (a good review of what we have learned!)

µ = NIA = (1) IA

= qe
vt

2πr

�
πr2
�

=
qevtr

2
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Physicists often write this in terms of angular momentum. Just to review,
angular momentum is given by

L = Imω

where Im is the moment of inertia. Then

L = Imω

=
�
mr2

� �vt

r

�

= mrvt

so the magnetic moment of the orbiting electron would be

µ =
qeL

2m
(42.1)

which gives us a magnetic moment related to the angular momentum of the
electron. And if we have a magnetic moment this not only means the atoms
would orient in an external field but it also means that the atoms work as little
magnets. We will have a magnetic field

42.1.1 Quantum effects
Question 223.42.2

All of this kind of works for Hydrogen. We find that individual hydrogen atoms
do act like small magnets. But if the hydrogen is in a compound, it is more
complicated because we then have many electrons and they are “orbiting” in
different directions. It is even true that most atoms have many electrons, and
within the atom these electrons fly around in all different directions. The mag-
netic field due to one electron in the atom cancels out the magnetic field due to
another, so there is no net magnetic field do to the “motion” of the electrons
in their orbitals. So in general there is no net magnetic field from orbital mo-
tion. Even for Hydrogen in a compound the overall magnetic moment of the
compound tends to cancel out.

Further, we know that electrons do not travel like planets in circular orbits.
So our model for magnetism is not really correct yet.1 To understand the current
model of electron orbitals takes some quantum mechanics (and a few more years
of physics). But we can understand a little, because quantum mechanics does
tell us that the electrons have angular momentum. The big difference is that the
angular momentum is quantized meaning it can have only certain values (think
of the quantized modes of an oscillating string). This means that the magnetic
moment has a smallest value and that the other values will be (complicated)

1Strictly speaking, the electrons don’t move like little planets around the nucleus. So it
is not clear that orbital “motion” makes much sense. The electrons form standing waves
around the nucleus that oscillate in time. But they do have angular momentum, and that
orbital angular momentum cancels out for most atoms. For more on this, take PH279, Modern
Physics.
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multiples of this value. The smallest magnetic moment for an electron turns
out to be

µ =
√
2

qe

2me
ℏ (42.2)

where

ℏ =
h

2π
= 1.05× 10−34 J s

is pronounced “h-bar” and is a constant.
It would seem that with only certain values being available the magnetic

moments might be more likely to line up. But it turns out that even in quantum
mechanics, the magnetic moments of the electrons due to their orbits cancel each
other out most of the time.

But there is another contribution to the magnetic moment, this time from
the electron, itself. The electron has an amount of angular momentum. It is as
though it spins on an axis. This spin angular momentum is also quantized. It
can take values of

S = ±
√
3

2
ℏ (42.3)

My mental picture of this is a charged ball spinning on an axis.2

The magnetic moment due to spin is

µs =
qeℏ

2me
(42.4)

This means that electrons, themselves are little magnets. Where does this
magnetic moment come from? Well it is as though the electron is constantly
spinning. It is not really so far as we can tell, but this is a semi-classical mental
model that we can use to envision the source of the electron’s magnetic field.
The “spinning” electron is charged, so the electron acts like a miniscule current
loop. The electron, itself is a source of the magnetic field for permanent magnets.

The spin magnetic moment was given the strange name Bohr magneton
in honor of Niels Bohr. If there are many electrons in the atom, there will
be many contributions to the total atomic magnetic moment. The nucleus
also has a magnetic moment (a detail we will not discuss at any length in our
class) and there are other details like electron spin states pairing up. But those
are topics for PH279 and our senior quantum mechanics class. It turns out

2But this is just a mental model. Electrons don’t spin. They do have angular momentum.
But how electrons generate their angular momentum is still hard to tell. Physicists are working
on this.
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that this spin magnetic moment is the major cause that produces permanent
magnetism in some metals because this spin contribution does not all cancel out
for those metals. We don’t want to wade though a senior level physics class now
(well, you probably don’t anyway) so we need a more macroscopic description
of magnetism. But fundamentally, if we can get the electrons spins in a material
to line up, we will have a magnet.

42.1.2 Ferromagnetism
Question 223.42.3

Because of the spin magnetic moment, we can see some hope for how a perma-
nent might work. But these spin magnetic moments are also mostly randomly
arranged. So again, most atoms won’t have an overall magnetic moment. But
some atoms do have a slight net field. They have an odd number of electrons. So
the last electron can have an unbalanced magnetic moment. That atom would
act as a magnet

Still, this does not produce much of an effect, because neighboring atoms
all are oriented differently. So neighboring atoms cancel each other out. In a
few materials, though, the atoms within small volumes will align their magnetic
moments. These little domains form small magnets. But still the overall effect
is very small because the domains are all oriented in different directions.

If we place these materials in a magnetic field, we can make the domains align,
and then we have something!

Few materials can do this. The ones that can are called ferromagnetic. Iron is
one such material. We can make the domains align, but the alignment decays
quickly. That is why iron objects stick to a magnet, but don’t stick to each other
when they are taken away from the magnet. But if we can force the domains
to stay in one direction, say, by heating the ferromagnetic metal in a magnetic
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field and letting it cool and form crystals, then we can make a magnet that will
last longer. The magnetic moments will get stuck all pointing about the same
direction as the ferromagnetic metal cools. Some materials like Cobalt form
very long lasting permanent magnets.

42.1.3 Magnetization vector

We now know that each atom of a substance may have a magnetic moment. For
a block of the material, it is useful to think of the magnetic moment per unit

volume. We will call this
−→
M. It must be a vector, so that if there is an overall

magnetic moment, we have a magnet! Let’s see how to use this new quantity.

Suppose I have a current carrying wire that produces a field
−→
Bo. But I also

have a material where
−→
M is not zero. Then there must be a a field due to the

magnetic material
−→
Bm. So the total field will be

−→
B =

−→
Bo +

−→
Bm (42.5)

and all we have to do is determine the relationship between
−→
Bm and

−→
M.

42.1.4 Solenoid approximation

Lets look at two atoms, We will model them as little current loops, since they
have magnetic moments.

I

I

II

notice that in between the loops, the currents go opposite directions. We could
think of them as canceling. We get a net current that is to the outside of the
loops

II

Now let’s take many current loops.
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I

I

II

I

I

II

I

I

II

again, the inside currents cancel, leaving an overall current along the outside.
Now if we view a material as a stack of such current loops

I
I

I
I

I
I

I
I

we can model a magnetic material like a solenoid! That is great, because we
know how to find the field of a solenoid.

Bm = µonI

= µo

NIA

ℓA

I didn’t cancel theA’s because I want to recognize the numerator as the magnetic
moment

µ = NIA

so
Bm = µo

µ

ℓA

But note that ℓA is just the volume of the piece of magnetic material, so

Bm = µo

µ

V

which is gives us our new quantity, the magnetization vector

M =
µ

V
(42.6)

Well, this is the magnitude, anyway, so

Bm = µoM (42.7)
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and of course the directions must be the same, since µo is just a scalar constant

−→
Bm = µo

−→
M (42.8)

So the total field is given by

−→
B =

−→
Bo + µo

−→
M (42.9)

42.1.5 Magnetic Field Strength (another confusing name)
Only do this if
you have extra
time

Sometimes we physicists just can’t let things alone. So when we arrived at the
equation −→

B =
−→
Bo + µo

−→
M (42.10)

someone wanted to define a new term

−→
Bo

µo

(42.11)

so we could write the equation

−→
B = µo

�−→
Bo

µo

+
−→
M

�
(42.12)

This new term is given an unfortunate name. The magnetic field strength. It
is not the magnitude of the magnetic field, but is the magnitude divided

by the constant µo. It has it’s own symbol,
−→
H. So you may write our total field

equation as −→
B = µo

�−→
H +

−→
M
�

(42.13)

You might find this change unnecessary and confusing (I do) but it is tradi-
tion to use this notation, and is not bad once you get used to it.

42.1.6 Macroscopic properties of magnetic materials

We want a way to describe how “magnetic” different substances are without
doing quantum mechanics. This will allow us to classify materials, and choose
the proper material for whatever experiment or device we are designing.

For many substances we find that the magnetization vector is proportional
to the field strength (which is why field strength hangs around in usage)

−→
M = χ

−→
H (42.14)

For many materials, this nice linear relationship applies, and we can look up
the constant of proportionality in a table. The name of the constant χ is the
magnetic susceptibility.

If χ is positive (M is in the same direction as H), we call the material
paramagnetic.
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If χ is negative (M is in the opposite direction as H), we call the material
diamagnetic.

Using this new notation, our total field becomes

−→
B = µo

�−→
H +

−→
M
�

−→
B = µo

�−→
H + χ

−→
H
�

−→
B = µo (1 + χ)

−→
H (42.15)

The quantity µo (1 + χ) is also given a name,

µm = µo (1 + χ) (42.16)

it is called the magnetic permeability. Now you see why µo is called the per-
meability of free space! (the name was not so random after all!). If χ = 0
then

µm = µo (42.17)

and this is the case for free space. We can write definitions of paramagnetism
and diamagnetism in terms of the permeability.

Paramagnetic µm > µo

Diamagnetic µm < µo

Free Space µm = µo

For paramagnetic and diamagnetic materials, µm is usually not too different
from µo but for ferromagnetic materials µm is much larger than µo. Note that we
have not included ferromagnetic substances in this discussion. That is because

−→
M = χ

−→
H

is not true for ferromagnetic materials.

42.1.7 Ferromagnetism revisited
Question 223.42.4

But why is ferromagnetism different? To try to understand, let’s take a iron
toroid (doughnut shape) and wrap it with a coil as shown.
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Field Meter

Iron

Toroid

Field Meter

Iron

Toroid

We have a magnetic field meter that measures the field inside the windings of
the coil. When we throw the switch, the coil produces a magnetic field. The
field will produce a magnetization vector in the iron toroid and, therefore, a
field strength. We can plot the applied magnetic field vs. the field strength to
see how much effect the applied field has on the magnetic properties of the iron
toroid. We won’t do this mathematically, but the result is shown in the figure.

As we throw the switch, we go from no alignment of the domains so zero M
and therefore zero induced field in the iron toroid to a value that represents the
almost complete alignment of the magnetic moments of each atom of the iron.
This is point a. It may take a bit of current, but in theory we can always do
this. All the domains are aligned and M is maximum.

Now we reduce the current from our battery, and we find that the field due
to the aligned domains drops as expected, but not along the same path that we
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started on! We go from a to b as the current decreases. At point b there is no
current, but we still have a magnetic field in the toroid!

We can even keep going and reverse the field by changing the polarity of our
power supply contacts. Since we still have some field in the toroid, it actually
takes some reverse current to overcome the residual field. But if we apply enough
reverse current, then we get alignment in the other direction. Almost complete
alignment is at point d. If we again reduce the current and find that—once again—
it does not retrace the same path!

Each time we align the domains with our applied external field from the
coil, the domains in the iron toroid seem to want to stay aligned. Most do lose
alignment, but some stay put. We have created a weak permanent magnet by
placing our ferromagnetic material in a strong external magnetic field.

This strangely shaped curve is the magnetization curve for the material. The
fact that the path is a strange loop instead of always following the same path is
called magnetic hysteresis. We can see now that the external field (represented
by the current I, since Bextrnal ∝ I) and magnetization don’t behave in a simple
relationship like they did for diamagnetic or permanganic materials.

The thickness of the area traced by the hysteresis curve depends on the
material. It also represents the energy required to take the material through
the hysteresis cycle.

If we add enough thermal energy, it is hard to keep the atomic dipole mo-
ments aligned. The next figure shows this effect.

At a temperature called the Curie temperature, the material no longer acts
ferromagnetic. It becomes simply paramagnetic. So if we heat up a permanent
magnet, we expect it to lose it’s alignment and therefore to stop being a magnet.
This is what happens to ferromagnetic materials when they are heated due
to volcanism. The domains are destroyed and all the atoms lose alignment.
Whey the material cools, the Earth’s magnetic field acts as an external field
and some of the domains will be aligned with this field. This is how we know
that the Earth’s magnetic field switches polarity. We can see which way the
magnetization vector points in the cooled lava deposits from places like the
Mid-Atlantic Trench.

This is also how old fashioned magnetic tapes and disks work.
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42.1.8 Paramagnetism

We said that if µm > µo we get paramagnetism. But what is paramagnetism?
It comes from the material having a small natural magnetic susceptibility.

0 < χ≪ 1 (42.18)

So in the presence of an external magnetic field, you can force the little magnetic
moments to line up. You are competing with thermal motion as we saw in fer-
romagnetism, so the effect is usually weak. A rule of thumb for paramagnetism
is that

M = C
Bo

T
(42.19)

where C contains the particular material properties of the substance you are
investigating (another thing to look up in tables in data sets), Bo is the applied
field, and T is the temperature. In other words, if it is cool enough, a para-
magnetic material becomes a magnet in the presence of an external magnetic
field. This is a little like polarization of neutral insulators in the presence of an
electric field. For paramagnetic materials, the induced magnetic field is in the
same direction as the external field.

Some examples of paramagnetic materials and their susceptibilities are given
below

Material Susceptibility
Tungsten 6.8× 10−5
Aluminium 2.2× 10−5
Sodium 0.72× 10−5

42.1.9 Diamagnetism.

If µm < µo we said we would have diamagnetism. This is fundamentally quite
different from paramagnetism. It comes from the material having paired elec-
trons that orbit the atom (classical model). The magnetic moments of the
electrons will have equal magnitudes, but opposite directions (a little bit of
quantum mechanics to go with our classical model). When the external field is
applied, one electron’s orbit is enhanced by the field, and the other is diminished
(think qv × B). So there will be a net magnetic moment. If you think about
this for a while, you will realize that the new net magnetic moment is in the
opposite direction of the applied external field! So diamagnetism will always
repel.

There is always some diamagnetism in all mater. We can enhance the ef-
fect using a superconductor. The diamagnetism of the superconductor repeals
the external field entirely! Why does this happen only for superconductors?
Well, that will take more theory to discover (a great topic for our junior level
electrodynamics class). But the phenomena is called the Meissner effect.Meissner effect

demo
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42.2 Back to the Earth

So now we can see that the Earth is a magnet and we know how magnets are
formed. But wait, why is the Earth a magnet? The real answer is that we don’t
know. But we believe that again it is because of current loops. We believe
there is a current of ionized Nickel and Iron in near the center of the Earth.
So the flow of these charged liquid metals will create a magnetic field. This is
a vary large current loop! The evidence for this is that magnetic field seems
proportional to the spin rate of the planet. But this is an area of active research.

It is curious that the magnetic pole and the geographic pole are not in
the same place. The magnetic pole also moves around like a precession. Then,
every couple of hundred thousand years, the polarity of the Earth’s field switches
altogether!

There is still plenty of good research to do in this area.

The location of the magnetic pole explains the declination adjustment you
have to use when using a compass. What you are really doing is accounting for
the difference in pole location.

42.3 Induced currents

We spend most of the last two lectures building a relationship between moving
charge (current) and magnetic fields. But suppose we have moving magneticQuestion 223.42.5

fields. Could a moving magnetic field make a current?

If we think of relative motion, it seems like it should. After all, how do we
know that it is the charge that is moving and not a moving B-field. In fact,
moving B-fields do cause a current. We say that a moving or changing magnetic
field induces a current.

Faraday discovered this effect. He described it as an induced emf. An emf
is something that “pumps” the charges in the wire. It takes them from a lower
to a higher potential so they can form a current. The changing magnetic field
must be “pumping” the charges as it changes!

What is really going on here? Think for a minute what must be happening.
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When we defined the electric potential, we use a capacitor. We found that there
was a field directed from the + charges to the − charges. And in this field,
charges had an amount of potential energy. When a current flows from the +
end of the battery to the − end. there must be an electric field acting on the
charge in the wire! That is what creates the electric potential. So, then, does a
moving magnetic field create an electric field?

The answer is yes! We say that an electric field is induced by a moving
magnetic field. This is really the same as saying that there is an induced emf
for our current loop.

Faraday actually set up his experiment with two coils of wire. One coil was
connected to a battery. We now know this coil will make a magnetic field. As
the current starts flowing the field will form. While it is forming, it will induce
an emf in the second coil. But this is just using an electromagnet instead of a
permanent magnet.

To be able to calculate how much current flows, we will need to investigate
changing magnetic fields. We will do this next lecture with our concept of flux.

Basic Equations
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Induction

Fundamental Concepts

• Conductors moving in magnetic fields separate charge. creating a potential
difference that we call “motional emf.”

• Motional emfs generate currents, even in solid pieces of conductor. These
currents in conductors are called “eddy currents.”

• Magnetic flux is found by integrating the dot product of the magnetic field

and a differential element of area over the area. ΦB =
�
A

−→
B · d−→A

43.1 Motional emf

Last lecture, we studied Faraday’s experiment. He created a magnetic field, and
then used that magnetic field to make a current. But currents are caused by
electric fields! Did Faraday’s magnetic field create an electric field?

To investigate Faraday’s result, let’s see if we can find a way to use charge
motion and a magnetic field to make an electric field. Let’s take a bar of metal
and move it in a magnetic field. The bar has free charges in it (electrons). We
have given them a velocity. So we expect a magnetic force

−→
FB = q−→v ×−→B

The free charges will accelerate together, but the positive stationary charges
can’t move. We have found another way to separate charge. We know that sep-
arated charge creates a potential difference. We often call this induced potential
difference the motional emf because it is created by moving our apparatus.

Let’s take an example to see how it works.

585
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For this example, let’s look at a piece of wire moving in a constant field. To
make the math easy, let’s move the wire with a velocity perpendicular to the
B-field.

As the figure shows, the electrons will feel a force. Using our right hand rule,
we get an upward force for positive charge carriers, but we know the electrons are
negative charge carriers, so the force is downward. We find that the magnitude
of the force is

FB = qvB

The electrons will bunch up at the bottom of the piece of wire, until their
electric force of repulsion forces them to stop. That force is

FE = qE

By separating the charges along the wire so that there is excess positive charge
on one end and excess negative charge on the other end, we now have and E-field
in the wire. We can solve for E when we have reached equilibrium.

ΣF = 0 = −FB + FE

or
qE = qvB

which tells us
E = vB (43.1)

Now, we know that electric fields cause potential differences. The E-field in the
wire will be nearly uniform. Then it looks much like a capacitor with separated
charges. The potential difference will be

∆V =

� −→
E · d−→s

≈ EL
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where L is the length of our wire. So

∆V ≈ vBL (43.2)

This is like a battery. The magnetic field is “pumping” charge. If we con-
nected the two ends somehow with a wire that is not moving, a current will flow
(that is tricky to actually do!). Question

223.43.0.1

Let’s take another example. We wish to make a bar of metal move in a
B-field. To make the rest of the circuit, we allow the bar to slide along the two
long parts of a U-shaped long wire as shown. We will call the two long parts
of the wire “rails” since they look a little like railroad rails. Then we have a
connection between our moving piece of metal, and the rest of the circuit. What
we have is very like the circuit on the right hand side of the last figure.

We will have to apply a force Fpull to move the bar. This is because there is
another force, marked as Fresistive in the figure. This force is one we know, but
might not recognize unless we think about it. We now have a current flowing
through a wire, and the wire is in a magnetic field. So there will be a force

Fresistive = I
−→
L ×−→B

= ILB sin θ

= ILB

pushing to the left. This force resists our pull.
From Ohm’s law, the current in the wire will be

I =
∆V

R

=
vBL

R

so the force is

Fresistive =

�
vBL

R

�
LB

=
vB2L2

R
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Thus we have to push with an equal force

Fpush = Fresistive

to keep the bar moving along the rails. If Fpush < Fresistive then the bar will
have an acceleration, and it will be in the opposite direction from the velocity,
so the bar will slow down.

43.2 Eddy Currents
Question 223.43.1

Pendulum-loop So if we have a conductive loop and part of that loop moves in a magnetic field,
we get a current. I chose to make our apparatus a pendulum.

So as the pendulum swings, through the magnetic field, we get a current. What
if we have a solid sheet of conductor and we move that sheet through the mag-
netic field, will there be a current?Pendulum-plate

Question 223.43.2

The answer is yes. We call this current an eddy current. Let’s see that this must
be true with another experiment.Let’s cut groves in the plate.Question 223.43.3
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The current is broken by the grooves, so there is little opposing magnetic
fieldThis effect due to the eddy currents is often used to slow down machines.Al plate and

strong magnetsRotating blades, and even trains use this effect to provide breaking.
Floating Plate
Demo

43.3 Magnetic flux

Remember long ago we defined the electric flux.

Recall that the electric flux is given by

ΦE =
−→
E · −→A

= EA cos θ

But we now have a magnetic field.
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We define a magnetic flux

ΦB =
−→
B · −→A (43.3)

ΦB = BA cos θ (43.4)

where θ is the angle between
−→
B and

−→
A.
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We found that the electric flux was very useful. We used Gauss’ law to find
fields using the idea of electric flux. It turns out that this magnetic flux is also
a very useful idea. There is a difference, though. With electric fluxes, we had
imaginary areas that the field penetrated. Often when we measure magnetic
flux, we actually have something at the location of our area. We generally want
to know the flux through a wire loop.

Just like with electric flux, we expect the flux to be proportional to the
number of field lines that pass through the area.

43.3.1 Non uniform magnetic fields

So far in this lecture we have only drawn uniform magnetic fields and considered
their flux. But we can easily imagine a non-uniform field. We tackled non-
uniform electric field fluxes. We should take on non-uniform magnetic field
fluxes as well. Suppose we have the situation shown in the following figure.

We have a loop of wire, and the loop is in a flux that changes from left to right.
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To find the flux through such a loop of wire, we can envision a small element

of area, d
−→
A as shown. The flux through this area element is

dΦB =
−→
B · d−→A

We can integrate this to find the total flux

ΦB =

�

A

−→
B · d−→A (43.5)

But what could make such a varying B-field? Consider a long straight wire
again.

We know that the field due to the current-carrying wire will be

B =
µoI

2πr

where r is the distance from the wire and the direction is given by one of our
right hand rules.
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The flux through the green rectangular area is almost constant. The little areaQuestion 223.43.4

Question 223.43.5is given by
dA = dydr

The area is perpendicular to the field, so the angle between B and A is 90 ◦.
Then

dΦB =
µoI

2πr
dydr (1)

and we can integrate this to find the total flux

ΦB =

� r=a

ro

� b

o

µoI

2πr
dydr

=
µoI

2π

� r=a

ro

1

r
dr

� b

o

dy

=
µoIb

2π

� ro+a

ro

1

r
dr

=
µoIb

2π
(ln (ro + a)− ln (ro))

=
µoIb

2π
ln

�
ro + a

ro

�

We can even put in some numbers for this case. Suppose our loop has a
height of b = 0.05m and a width of a = 0.01m and that it is a distance ro = a
away from the current carrying wire and that the current is I = 0.5A. Then

ΦB =

�
4π × 10−7 TmA

�
(0.5A) (0.05m)

2π
ln

�
0.01m+ 0.01m

0.01m

�

= 3. 465 7× 10−9Wb

the unit of magnetic flux is called the weber and it is given by :

Wb = Tm2 =
m2

A

kg

s2
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We know now how to calculate magnetic flux, but you should expect that
we can do something with this flux to simplify problems. And your expectation
would be right. We used electric flux in Gauss’ law. We will use magnetic flux
to find the induced emf. An induced emf can create a current, and this is the
basic idea behind a generator. The law that governs this relationship between
induced emf and magnetic flux is called Faraday’s law after the scientist that
discovered it. We will study this law in our next lecture.

Basic Equations
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Faraday and Lenz

Fundamental Concepts

We talked about an induced electric field created by a magnetic field last
lecture. We want to formalize that relationship in this lecture. Let’s go back toQuestion 223.44.1

Question 223.44.2

Question 223.44.3

our motional emf problem.

We have a sliding bar, and a u-shaped conductor and a magnetic field. The
moving bar makes the current flow because of the normal magnetic force on
the free charges in the bar. But now we know another way to think about this
situation. We can see that there is a magnetic flux through the loop consisting
of the u-shaped conductor and the sliding bar. This flux going through the loop
is changing. The area is getting larger, so the amount of field going through the
loop is increasing. And the motion of the bar was what caused the current to
flow and what changed the area of the loop. So the change in the area of the
loop is tied to the creation of the current. We can say the induced current is due
to the changing loop area in the presence of the magnetic field, or a changing
magnetic flux.

An important thing we learned is that the moving bar feels a resistive force
due to the current and magnetic field. It seems like the magnetic field and

595
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current are resisting any change in our set up. We will see in this lecture that
this is true in general.

It turns out that there is more than one way to cause an induced current.
Any change in the magnetic flux is found to make a current flow. Remember in
class we found that putting a magnet into or pulling the magnet out of a coil
makes a current. In this case, the strength of the magnetic field changes, so the
flux changes. Really any change in magnetic flux makes a current flow.

44.1 Fundamental Concepts in the Lecture

• Changing magnetic flux makes an electric field—which has an associated
potential difference or emf.

• The current caused by the induced emf travels in the direction that creates
a magnetic field with flux opposing the change in the original flux through
the circuit.

• The emf (potential difference) generated by a changing magnetic field is
given by E = −N ∆ΦB

∆t

44.2 Lenz

What we are saying is that if we change the magnetic flux through a loop, we will
get a current. The direction of current flow is not obvious. Lenz experimentally
determined which way it will go. Here is his rule

The current caused by the induced emf travels in the direction
that creates a magnetic field with flux opposing the change in the
original flux through the circuit.

This takes a moment to digest. Let’s take an example

Consider the case shown in the picture. Suppose the B-field gets smaller in
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time. If that is the case, then the induced current will try to keep the same
number of field lines going through the loop. To do this, it will have to add field
lines, because our field that is getting smaller will have fewer and fewer field
lines. So in this case, the induced field B̃ind will be in the same direction as B̃
to try to keep the number of field lines the same.

We find the current using our current-carrying wire right hand rule for mag-
netism. We imagine grabbing the wire such that our fingers curl into the loop
the way B̃ind goes through the loop. Then our thumb is in the direction of the
current. Question 223.44.4

- 223.44.11

44.3 Faraday

In our motional emf problem, the sliding bar in the magnetic field creates a
potential difference, ∆V. It becomes an emf. We can use the symbol E for our
emf.

But then in considering Lenz’s law, it was experimentally found that any
change in flux causes a current. Then any change in flux must create an emf.

In this case the area is getting larger, and so the flux is getting larger. The
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induced current will oppose the change. So the induced magnetic field should
go up through the center of the loop. Imagine sticking your fingers through the
loop out of the page, then grabbing the loop (fingers still out of the page in the
inside of the loop). Anywhere you grab the wire, your thumb is in the induced
current direction.

44.3.1 Faraday’s law of Magnetic Induction

Faraday wrote an equation to describe the emf that was given by changing
a B-field. It combines what we know about magnetic flux and current from
Lenz’s law. Faraday did not know the source of the emf, it is a purely empirical
equation. Here it is

E = −N∆Φ
∆t

The N is the number of turns in the coil (remember he used a coil, not just
one loop). dΦB is the change in the magnetic flux. Our definition of magnetic
flux is

ΦB =

� −→
B · d−→A

but for simple open surfaces we can gain some insight by writing the flux as

ΦB = BA cos θ

Then the induced emf would be given by

E = −N∆Φ
∆t

(44.1)

= −N (B2A2 cos θ2 −B1A1 cos θ1)

∆t
(44.2)

and we see that we get an emf if B, A, or θ change. We can write this as a
differential if we let ∆t get very small.

E = −N dΦB

dt
(44.3)

Suppose we have a simple flux ΦB =
−→
B · −→A, then for this simple case

E = −N d

dt

�−→
B · −→A

�

= −N
�−→
B · d

dt

−→
A +

−→
A · d

dt

−→
B

�
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The first term shows our motional emf case. The area is changing in time.
But the second term shows that if the field changes, we get an emf. This is the
moving magnet in the coil case.

There are some great applications of induced emfs, from another design for
circuit breakers to electric guitar pickups! Question

223.44.12 - Ques-
tion 223.44.17

44.3.2 Return to Lenz’s law

Remember that Lenz’s law says the current caused by the induced emf travels
in the direction that creates a magnetic field with flux opposing the change in
the original flux through the circuit. What if the current went the other way?

If that happened, then we could set up our bar on the rails, and give it
a push to the right. With the current going down instead of up (for positive
charge carriers) then we would have a force on our bar-like segment of wire

FI = BIL sinφ

here sinφ = 1 so

FI = BIL

It will be directed to the right. So the bar would accelerate to the right. That
would increase the size of the loop, increasing the current. That would increase
the force to the right, and our bar would soon zip off at amazing speed. But that
does not happen. It would take ever more energy to make the bar go faster, with
no input energy. So this would violate conservation of energy. Really Lenz’s
law just gives us conservation of energy again.

44.4 Pulling a loop from a magnetic field.

Let’s try a problem. Suppose we have a wire loop. The loop is rectangular, with
side lengths ℓ and x. Further suppose that the loop is in a region with magnetic
field, but that it is on the edge of that field, so that if we pull it to the right, it
will leave the field.
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Let’s see if we can find the induced emf and current.
The Magnetic flux through the loop is changing. We can find an expression

for the flux
ΦB =

−→
B · −→A

or in this case
ΦB = Bℓx

We know the emf from Faraday’s law

E = −N dΦB

dt

then

E = − (1) d

dt
(Bℓx)

The field is not changing strength, and the length ℓ is not changing. But along
the x side, we are losing field. Remember that A in our flux equation is the area
that actually has field and we have less area that has field all the time. We can
see that

E = − (1) d

dt
(Bℓx) = −Bℓ

dx

dt
= −Bℓv

where v is the speed at which we are pulling the wire loop. That is the speed
at which our flux changes.

We can use Ohm’s law to find the current,

I =
∆V

R
=
E
R

or

I =
Bℓv

R

We could ask, how much work does it take to pull the wire out of the field?
This is like our capacitor problem where we pulled a dielectric out of the middle
of the capacitor.
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The net force on the loop is not zero, because the field is no longer uniform.
The right hand side of the loop is outside the field, and the left hand side is not.
Of course, the top and bottom of the loop have opposite forces that balance
each other. So the net force is due to the left hand side of the loop. Recall that

−→
F = I

−→
L ×−→B

We can see that in this case I is upward, and B is into the page. So there is a
force to the left resisting our change flux. We must pull to overcome this force.
The magnitude of this force is

F = IℓB

and we know I so

F =
Bℓv

R
ℓB =

B2ℓ2v

R

Now we need to find the work done.

W =

�
Fdx

or, since our force will be constant until the loop leaves the magnetic field
entirely,

W = F

�
dx

which is not a hard integral to do. But instead of performing the integral, let’s
look at the integrand.

dW = Fdx

if we divide both sides of our equation by dt we have

dW

dt
= F

dx

dt

we know that P = dW/dt and dx
dt = v and so we can write our equation as

P = Fv

=
B2ℓ2v2

R

which is how much power the magnetic field force provides in resisting. We
must provide at least an equal power to move the loop. It will take time

∆t =
∆x

v

to pull the loop a distance ∆x. If we define our coordinates such that xi = 0
then to pull out the loop, we will write this time as

∆t =
x

v
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so the work is

W = P∆t

=
B2ℓ2v2

R

x

v

=
B2ℓ2xv

R

Incidentally, we learned from our pendulum demonstrations that induced
currents can take energy out of a system, creating heat energy. From Ohm’s
law the power lost due to resistive heating would be

P = I2R

=

�
Bℓv

R

�2
R

=
B2ℓ2v2

R

which is just the power we had to provide to make our loop move. So our work
has moved the loop and heated up the wire.

We have created a current in a wire. This is the first step in building a
generator. It cost us work to do this. In the next lecture, we will tackle more
practical design and build generators and transformers. Then we will pause to
think philosophically about what it means that a changing magnetic flux creates
an electric field.

Basic Equations



Chapter 45

Induced Fields

Fundamental Concepts

• Changing the commutator for slip rings makes a motor into a Generators

• Using alternating current, we can build an inductive device that can
change from one voltage to another. This device is called a transformer.

• A more general form of Faraday’s law is
�
E · ds = −dΦB

dt

45.1 Generators
Question 223.45.1

Whether you are just plugging in an appliance, or preparing for an emergency,
you likely would think of a generator as a source of electrical energy. Our studies
so far have strongly hinted on how we would build an electric generator. In this
lecture, we will fill in the details.

603
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We can learn a lot by studying this device as an example. The figure shows
the important parts of the generator (and a light bulb, which is not an important
part of a generator, but just represents some device that will use the electrical
current we make). The generator has at least one magnet. In the figure, there is
one with a north end on the left and a south end on the right. A generator also
has a wire loop. Usually in real generators, there are thousands of turns of wire
forming the loop. In our picture, there is just one. The wire loop is connected to
two metal rings. The rings will turn as the loop turns. Metal contacts (brushes)
that can slip along the rings, but maintain an electrical connection, are placed
on the rings. So as the rings turn, current can still flow through the connected
wires (to the light bulb in this case).Question 223.45.2

This should look familiar. This is the same basic setup as the motor, with
a few exceptions. An important exception is that the commutator has been
replaced by the set of rings. We will call these ring contacts slip rings because
the wires can slip along them while still maintaining electrical contact because
of the brushes. We have a current loop in a (nearly) uniform, constant field.
If I look from the slip ring side of the loop, I have the same geometry we had
before when we considered motors. This time I want to consider doing work to
turn the loop, and find the induced emf in the loop. We start with Faraday’s
law

E = −N dΦB

dt
(45.1)

since in our special case we only have one loop, this is just

E = −dΦB

dt
(45.2)

Here is a the view looking at the cross section of the loop facing toward the slip
rings.
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Let’s consider the flux through the loop. The definition we have for flux is

ΦB = B ·A
= BA cos θ

= BAproj

where θ is the angle between the loop area vector and the magnetic field direc-
tion.

I want to write the flux in terms of the lengths of the wire. When the loop
is standing up straight along the y-direction the projected area is just the area

A = ℓa

Then the projected area is
Aproj = ℓa cos θ

Let’s check to make sure this works. When the loop is standing up straight
along the y-direction θ = 0 ◦, and cos θ = 1 so

A
proj max = ℓa cos θ = ℓa

so this works.
To find the emf generated, we need

E = −dΦB

dt

and only the area is changing. so

E = −dΦB

dt
= −BdAproj

dt
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We realize that θ must change in time. We remember from Dynamics or PH121
that we can use θ = ωt where ω is the angular speed of the rotating loop. Then

Aproj = ℓa cosωt

and

E = −dΦB

dt
= −B d

dt
ℓa cosωt

We recognize that θ changes as the loop turns Since B is not changing, the
change in flux per unit time is just B times the change in area with time.

E = Bℓaω sin (ωt)

Look at what we got! it is a sinusoidal emf. This will make a sinusoidal current!

I =
E
R

=
Bℓaω sin (ωt)

R

for a circuit. Our emf looks like

E = Emax sin (ωt) (45.3)

where

Emax = Bℓaω (45.4)

Here is a plot of the function

t

EMF_max

Of course this sinusoidal emf will create what we call an alternating current.
This is how the current in the outlets in your house is generated.

Of course, our generator only has one coil. Actual generators have multiple
coils.
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Double Armature Generator (Public Domain Image)

and we need a source of work to turn the generator. A water turbine is an
example,

Water Turbine driven Generator (Public Domain Image courtesy U.S. Army Corps of

Engineers)

or for emergencies, you might have a gasoline powered generator, or in a nuclear
reactor you might have a steam driven generator.

45.1.1 DC current from a generator

We can also make a non-alternating current with a generator, but we have to
get tricky to do it. We use the same idea we used to make a motor. We cut
slots in the slip rings, so the current will switch directions every half turn. We
get a kind of poor quality current from this because the emf still varies a lot.
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t

EMF_max

Clever engineers design generators for non-alternating or direct current genera-
tors by overlapping several current loops at different angles. Each loop has it’s
own cut slip rings. The combined currents smooth out the ripples we see in the
previous figure. For semiconductor devices, special circuits are used to make
the current very smooth.

45.1.2 Back emf

Now that we know how a generator works we can see that a motor is really just
a DC generator run backwards. I want to mention that when we talk about
motors, we have to realize that as we send current into the motor coils, there
will be an induced emf that will try to maintain the existing flux as the motor’s
loops turn. This emf will be in the opposite direction of the applied current!
So it reduces the amount of work the motor can do. This is like the resistive
force we encountered when we pulled a loop from a magnetic field last lecture.
This resistive force is called the back emf and must be accounted for in motor
design.

45.1.3 rms voltage

We can realize that we have a slight problem in talking about alternating volt-
ages. The voltage constantly changes. How do we describe what the voltage
is?

We could give the max voltage—the amplitude of our E (t) curve. But the
voltage is at the max only a small percentage of the time. We can’t take the
average. That is zero. And zero really doesn’t describe our voltage well!.

The average doesn’t work because our generators make the emf go negative.
We could fix this by squaring the emf before we average it

E (t) = 0

E2 (t) �= 0

and this could work. But then we have the average voltage squared, and we
really want just the voltage. No problem, let’s take a square root.
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E2 (t)

This has units of volts, is like an average of the emf, but doesn’t cancel out
because E (t) goes negative. Here is the process graphically.

first E (t)

t

emf

now E2 (t)

t

emf^2

and finally
	
E2 (t)

t

emf_rms

What we did is take the square Root of the Mean of the Square of the emf.
We can call this process the root-mean-square process or rms for short. This
is more useful than the mean voltage—which is zero for alternating voltages. It
is a better estimate of the overall potential than the peak voltage value. So we
often use rms voltages to describe sources of alternating current.

We can come up with a convenient way to find the rms emf. Consider that
our alternating emf is given by

E = Emax sin (ωt)

but we squared this
E2 = E2max sin2 (ωt)

and then took an average. Suppose we average sin2 (ωt) over a long time so
that ωt gets large. And we want the case where θmax is large enough that our
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alternating voltage make many cycles. We would have

E2 =
1

∆t

� tf

ti

E2max sin2 (ωt) dt

=
E2max
∆t

� tf

ti

sin2 (ωt) dt

but we have run into the integral of sine squared before. In equation 10.8 we
found that �

many T

sin2
�
k (r2 + r1)

2
− ωt+ φo

�
dt =

1

2

and really it didn’t matter much what the argument of sin2 was so long as we
integrated over many periods. The integral is always 1/2. We can see this is
true in our case by using a trig identity

sin2 (θ) =
1

2
(1− cos (2θ))

E2 =
E2max
∆t

� tf

ti

sin2 (ωt) dt

=
E2max
∆t

� tf

ti

�
1

2
− 1
2
cos 2tω

�
dt

=
E2max
∆t

�� tf

ti

1

2
dt−

� tf

ti

1

2
cos 2tω dt

�

=
E2max
∆t

�
1

2
∆t−

� tf

ti

1

2
cos 2tω dt

�

The second integral over cos (2ωt) will be zero. So we have

E2 =
E2max
∆t

1

2
∆t

=
1

2
E2max

Now we need to take a square root to finish the rms process.

Erms =
�
E2

=

�
1

2
E2max

=
1√
2
Emax

So the rms emf can be found from the max emf by dividing by the square root
of 2.
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This gives a pretty good idea of the nature of the voltage for alternating
current. For example an rms emf value of 120V would have a peak emf of

Emax =
√
2Erms

=
√
2 (120V)

= 169. 71V

The rms value isn’t the peak, it isn’t the average (0) but it gives us a measure
of how much voltage (and risk) we have.

We could find an rms current by using Ohm’s law

∆V = IR

This would be true for
Emax = ImaxR

then we could find

Imax =
Emax
R

then if we divide by
√
2 we have

Imax√
2
=
Emax√
2R

The right hand side is just
Imax√
2
=
Erms

R

so let’s take

Irms =
Imax√
2

then Ohm’s law for alternating currents becomes

Irms =
Erms

R

or
Erms = IrmsR

45.2 Transformers
Question 223.45.3

The power comes into our houses at about 120V . Your iPhone probably requires
3V to 5V. How do we get the voltage we want out of what the power company
delivers? You know the answer is to plug in your phone using a special adaptor.
Lets see how it works.

Let’s consider Faraday’s law again. We know that

E =∆V (t) = −N∆Φ
∆t
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Suppose we use Faraday’s idea and hook two coils up next to each other.

One side we will hook to an alternating emf. We will call this side coil 1. The
other side we will hook a second coil with some resistive load like a light bulb.
We will call this coil 2.The iron core keeps the magnetic field inside, so the flux
through coil 1 ends up going through coil 2. (think of all the little domains in
the iron lining up along the field lines, and enhancing the field lines with their
own induced fields).

The alternating potential from the source will create a change in flux in coil
1.

E1 (t) = −N1
∆Φ1
∆t

If little flux is lost in the iron, then we will retrieve most of the flux in coil 2
and an emf will be induced in the resister (light bulb in our case).

E2 (t) = −N2
∆Φ2
∆t

we just convinced ourselves that

∆Φ1
∆t

≈ ∆Φ2
∆t

so we can solve each equation for the change in flux term, and set them equal.

E1 (t)
N1

= −∆Φ1
∆t

E2 (t)
N2

= −∆Φ2
∆t

so we have
E1 (t)
N1

=
E2 (t)
N2

(45.5)

If we solve for E2 (t) we can find the emf in coil 2.

N2
N1
E1 (t) = E2 (t) (45.6)



45.3. INDUCED ELECTRIC FIELDS 613

You have probably already guessed how we make E2 to be some emf amount we45.4

want. We take, say, our wall current that has a rms value of E1 = 120V. We
pass it through this device we have built. We design the device so that N2

N1
E1

gives just the potential that we want for E2. If we want a lower emf, say 12V,
then we make N2

N1

= 0.1 so

N2
N1
E1 = 0.1 (120V) = 12V (45.7)

This is part of what the wall adaptor does. Usually wall adapters also have
some circuitry to make the alternating current into direct current.

Note that there is a cost to doing this. The power must be the same on both
sides (or a little less on side 2). So

Pav = I1,rmsE1,rms = I2,rmsE2,rms

We can change the emf, but it will effect our current.

This device is called a transformer. Real transformers do lose power. Some
loss is due to the fact that not all the B-field from coil 1 makes it inside coil
2. But real transformers are not too bad with efficiencies ranging from 90% to
99%. Question 223.45.5

45.3 Induced Electric Fields

Consider again a magnetic field and a moving charge. If the field changes, the
flux changes. Say, for example, that the field is increasing in strength.

The charge will move in a circle within the wire. We now understand that this
is because we have induced an emf. But think again about a battery.

The battery makes an electric field inside a wire. Recall this figure
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We must conclude that if we create an emf, we must have created an electric
field.

This is really interesting. We now have a hint at how wireless chargers might
work (we will return to this later). But now let’s ask ourselves, do we need the
wire there for this electric field to happen? Of course, the force on the charge is
the same if there is no wire, so the E-field must be there whether or not there
is a wire.
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In fact, the electric field is there in every place the magnetic field exists so longQuestion 223.45.6

Question 223.45.7as the magnetic field continues to increase.

This is quite a profound statement. We have said that a changing magnetic
field creates an electric field. Before, only charges could create electric fields,
but in this case, the magnetic field is creating the electric field. Of course, we
know that somewhere there are moving charges that are making the magnetic
field, so it is not totally surprising that the fields would be related.

This electric field is just like a field produced by charges in that it exerts a
force

F = qoE

on a charge qo. But the electric field source is now very different.
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45.4 Relationship between induced fields

It would be nice to have a relationship between the changing B-field and the
E-field that is created. It would be good to obtain the most general relationshipQuestion 223.45.8

we can that relates the electric field to the magnetic field. By understanding
this relationship, we can hope to gain insight into how to build things, and into
how the universe works. Let’s start with a thought experiment.

+

I

r
+

I

r

Suppose we have a uniform but time varying magnetic field into the paper.
In this field, we have a conducting ring. If the field strength is increasing, then
the charges in the conducting loop shown will feel an induced emf, and they will
form a current that is tangent to the ring.

Let’s find the work required to move a charge once around the loop. The
amount of potential energy difference is equal to the work done, so

|∆U | = |W |

but in terms of the electric potential this is

∆U = q∆V = qE

so
|W | = |qE|

Now let’s do this another way. Let’s use

W =

�
F · ds

The force making the current move is due to the induced potential difference.
This is just

F = qE

which will not change as we go around the loop. The path will be along the
loop, so

W =

�

loop

Fds
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and since the E-field is uniform in space at any given time as we travel around
the loop,

W = F

�

loop

ds = qE2πr

So we have two expressions for the work. Let’s set them equal to each other

qE = qE2πr

The field is then
E
2πr

= E (45.8)

but

E = −N dΦB

dt
so

E =
−N
2πr

dΦB

dt

=
−1
2πr

dΦB

dt

So if we know how our B-field varies in time, we can find the E-field. Let’s
rewrite this one more time

2πrE = −dΦB

dt

Since the E-field is constant as we go around the loop, we can recognize the
LHS as

2πrE =

� −→
E · d−→s

which should be little surprise, since we found

∆V =

� −→
E · d−→s

to be our basic definition of the electric potential. So

� −→
E · d−→s = −dΦB

dt
(45.9)

This is a more general form of Faraday’s law of induction.
This electric field is fundamentally different than the E-fields we studied

before. It is not a static field. If it were, then

" −→
E ·d−→s would be zero around a

ring of current. Think of conservation of energy. Around a closed loop ∆V = 0
normally. Then

∆V =

"

loop

−→
E · d−→s = 0 no magnetic field
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But since

" −→
E · d−→s �= 0 for our induced E-field, we must recognize that this

field is different from those made by static charges. We call this field that
does not return the charge to the same energy state on traversing the loop a
nonconservative field. It is still just an electric field, but we are gaining energy
from the magnetic field, so ∆V around the loop is not zero.

The equation

"

loop

−→
E · d−→s = −dΦB

dt
(45.10)

is the most general form of Faraday’s equation, but it is hard to use in calculation
for normal circuits where there is no magnetic field or where the fields are
weak. So we won’t use it as we design normal circuits. We will use the idea of
inductance instead. But it plays a large part in the electromagnetic theory of
optics (PH375). We will just get a taste of this here.

45.5 Electromagnetic waves

Question 223.45.9

Let’s return to the idea that a changing magnetic field makes an electric field.

But what about a changing electric field?
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For the electric and magnetic field equations to be symmetric, the changing
electric field must create a magnetic field. There is no requirement that theQuestion

223.45.10universe display such symmetry, but we have found that it usually does. Indeed,
a changing electric field creates a magnetic field.

This foreshadows our final study of light. We learned earlier that light is
an electromagnetic wave. What this means is that light is a wave in both the
electric and magnetic fields.

Maxwell first predicted that such a wave could exist. The electric field of the
wave changes in time like a sinusoid. But this change will produce a magnetic
field that will also change in time. This changing magnetic field recreates the
electric field—which recreates the magnetic field, etc. Thus the electromagnetic
wave is self-sustaining. It can break off from the charges that create it and keep
going forever because the electric field and magnetic field of the wave create
each other. You often see the electromagnetic wave drawn like this:

Where you can see the electric and magnetic fields being created and recreated
to make the wave self sustaining.

This is a direct result of Maxwell’s study of electromagnetic field theory.
Our more complete version of Faraday’s law is one of the fundamental equations
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describing electromagnetic waves known as Maxwell’s Equations.

� −→
E · d−→s = −dΦB

dt

You might guess that the symmetry we have observed would give another similar
equation relating the magnetic field and the electric flux.

� −→
B · d−→s = +dΦE

dt

and we will find that this is true! But we have yet to show that is so. Note that� −→
B · d−→s shows up in Ampere’s law,

� −→
B · d−→s = µoI

so this last equation is not complete, but we are guessing that there is also the
possibility of an induced magnetic field from a changing electric field, so we can
predict that we need to modify Ampere’s law to be

� −→
B · d−→s = µoI +

dΦE

dt

but we will have to show this later.
In the next lecture, we will take a break from this deep theoretical discussion,

and learn how to use induction to make useful circuit devices.
Basic Equations

E = Bℓaω sin (ωt)

Erms =

	
E2 (t)

Irms =
Imax√
2

Emax =
√
2Erms

N2
N1
E1 (t) = E2 (t) (45.11)

� −→
E · d−→s = −dΦB

dt
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Inductors

Fundamental Concepts

• The self inductance L has all the geometric and material properties of a
coil or other inductor an it can be found using L = N dΦB

dI

• The emf induced by an inductor is given by E ≡ −L∆I
∆t

• For a solenoid, the inductance can be found to be L = µon
2V

• The energy stored in the magnetic field is UL = 1
2LI

2 and the energy
density in the magnetic field is uB =

1
2
1

µo
B2

• There is an apparent voltage drop across an inductor of ∆VLapparent
=

−LdI
dt

• There is also a mutual inductance between two inductors given by M12 =
N2Φ12

I1

46.1 Self Inductance
Question 223.46.1

When we put capacitors and resisters in a circuit, we found that the current did
not jump to it’s ultimate current value all at once. There was a time dependence.
But really, even if we just have a resister (and we always have some resistance)
the current does not reach it’s full value instantaneously. Think of our circuits,
they are current loops! So as the current starts to flow, Lenz’s law tells us that
there will be a magnetic field that forms, and an induced emf that will oppose
the flow. The potential drop across the resister in a simple battery-resister
circuit is the potential drop due to the battery emf, minus the induced emf.

621
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We can use this fact to control current in circuits. To see how, we can study
a new case

Let’s take a coil of wire wound around an iron cylindrical core. We start with
a current as shown in the figure above. Using our right hand rule we can find
the direction of the B-field. But we now will allow the current to change. As it
gets larger, we know

E = −N dΦB

dt

and we know that as the current changes, the magnitude of the B-field will
change, so the flux through the coil will change. We will have an induced emf.
We could derive this expression, but I think you can see that the induced emf
is proportional to the rate of change of the current.

E ≡ −L∆I

∆t

You might ask if the number of loops in the coil matters. The answer is—yes.
Does the size and shape of the coil matter—yes. But we will include all these
geometrical effects in the constant L called the inductance. It will hold all the
material properties of the iron cored coil.

E = −N dΦB

dt
≡ −LdI

dt

so for this case

−N dΦB

dt

dt

dI
≡ −L

or

L = N
dΦB

dI

If we start with no current (so no flux), then our change in flux is the current
flux minus zero. We can then say that

L = N
ΦB

I

It might be more useful to write the inductance as

L = −EL

dI
dt
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In designing circuits, we will usually just look up the inductance of the device
we choose, like we looked up the resistance of resisters or the capacitance of the
capacitors we use.

But for our special case of a simple coil, we can calculate the inductance,
because we know the induced emf using Faraday’s law

46.1.1 Inductance of a solenoid1

Question 223.46.2

Let’s extend our inductance calculation for a coil. Really the only easy case we
can do is that of a solenoid (that’s probably a hint for the test). So let’s do it!
We will just fill our solenoid with air instead of iron (if we have iron, we have
to take into account the magnetization, so it is not terribly hard, but this is not
what we want to concentrate on now). If the solenoid has N turns with length
L and we assume that L is much bigger than the radius r of the loops then we
can use our solution for the B-field created by a solenoid

B = µonI

= µo

N

ℓ
I

The flux through each turn is then

ΦB = BA = µo

N

ℓ
IA

where A is the area of one of the solenoid loops. Then we use our equation for
inductance for a coil

L = N
ΦB

I

= N

�
µo

N
ℓ IA

�

I

=

�
µoN

2A
�

ℓ

=

�
µoN

2A
�

ℓ

ℓ

ℓ

=
µoN

2Aℓ

ℓ2

=
µoN

2
V

ℓ2

= µon
2
V

where we used the fact that the volume of the solenoid is V = Aℓ.
Many inductors built for use in electronics are just this, air filled solenoids.

So this really is a somewhat practical solution.

1Think of this like the special case of a capacitor made from two flat large plates, the
parallel plate capacitor. It was somewhat ideal in the way we treated it. Our treatment of
the special case of a coil will likewise be somewhat ideal.
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46.2 Energy in a Magnetic Field
Question 223.46.3

An inductor, like a capacitor, stores energy in it’s field. We would like to know
how much energy an inductor can store. From our previous study of power we
know the power in a circuit will be

P = I∆V

If we just have an inductor, then the power removed from the circuit is

Pcir = I∆V = IE

= I

�
−LdI

dt

�

= −LI dI
dt

As with a resistor, we are taking power from the circuit so the result is negative.
But unlike a resistor, this power is not being dissipated as heat. It is going into
the magnetic field of the inductor. Therefore, we expect the power stored in the
inductor field to be

PL = −Pcir = LI
dI

dt

Power is the time rate of change of energy, so we can write this power delivered
to the inductor as

dUL

dt
= LI

dI

dt

Multiplying by dt gives

dUL = LIdI

To find the total energy stored in the inductor we must integrate over I.

UL =

�
dUL

=

� I

0

LIdI

= L

� I

0

IdI

=
1

2
LI2

Thus,

UL =
1

2
LI2

is the energy stored in the magnetic field of the inductor.
Suppose we have an inductor L = 30.0 × 10−3H. Plotting shows us the

dependence of UL on I.
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We should take a moment to see how our inductor compares to a capacitor
as an energy storage device. The energy stored in the electric field of a capacitor

UL =
1

2
L (I)2

UC =
1

2
C (∆V )2

Notice that Remarkable similarity!

46.2.1 Energy Density in the magnetic field
Question 223.46.4

We found that there was energy stored in the electric field of a capacitor. Is the
energy stored in the inductor really stored in the magnetic field of the inductor?
We believe that this is just the case, the energy, UL, is stored in the field. We
would like to have an expression for the density of the energy in the field.

To see this, let’s start with the inductance of a solenoid.

L = µon
2Aℓ

The magnetic field is given by

B = µonI

then the energy in the field is given by

UB =
1

2
LI2

=
1

2
µon

2AℓI2

If we rearrange this, we can see the solenoid field is found in the expression twice

UB =
1

2
(µonI)Aℓ

µo

µo

nI

=
1

2µo

B2Aℓ
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and the energy density is

uB =
UB

Aℓ

=
1

2

1

µo

B2

Just like our energy density for the electric field, we derived this for a specific
case, a solenoid. But this expression is general. We should compare to the energy
density in the electric field.

uE =
1

2
ǫoE

2

Again, note the similarity!

46.2.2 Oscillations in an LC Circuit

We introduce a new circuit symbol for inductors

It looks like a coil, for obvious reasons. We can place this new circuit element
in a circuit. But what will it do? To investigate this, let’s start with a simple
case, a circuit with a charged capacitor and an inductor and nothing else.

C LC L

Let us make two unrealistic assumptions (we will relax these assumptions later).

Assumption 1: There is no resistance in our LC circuit.

Assumption 2: There is no radiation emitted from the circuit.

Given these two assumptions, there is no mechanism for energy to escape
the circuit. Energy must be conserved. Can we describe the charge on the
capacitor, the current, and the energy as a function of time?Question 223.46.5

It may pay off to recall some details of oscillators.
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Energy of the Simple Harmonic Oscillator

Remember from Dynamics or PH121 that a mass-spring system will oscillate.
The mass has kinetic energy because the mass is moving

K =
1

2
mv2 (46.1)

for our Simple Harmonic Oscillator we know that the position of the mass as a
function of time is given by

x (t) = xmax cos (ωt+ φ)

and the speed as a function of time is

v (t) = −ωxmax sin (ωt+ φ)

then the kinetic energy as a function of time is

K =
1

2
m (−ωxmax sin (ωt+ φ))2

=
1

2
mω2x2max sin

2 (ωt+ φ)

=
1

2
m

k

m
x2max sin

2 (ωt+ φ)

=
1

2
kx2max sin

2 (ωt+ φ)

The spring has potential energy given by

U =
1

2
kx2 (46.2)

For our mechanical oscillator the potential as a function of time is

U =
1

2
kx2max cos

2 (ωt+ φ)

The total energy is given by

E = K + U

=
1

2
kx2max sin

2 (ωt+ φ) +
1

2
kx2max cos

2 (ωt+ φ)

=
1

2
kx2max

�
sin2 (ωt+ φ) + cos2 (ωt+ φ)

�

=
1

2
kx2max
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We can see that the total energy won’t change, and the energy switches
back and forth from kinetic to potential as the mass moves back and forth. If
we plot the kinetic and potential energy at points along the mass’ path we get
something like this.
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Question 223.46.6

One of the important uses of an inductor is to create electrical oscillations.
Having recalled what oscillations look like, we can see that a LC circuit will
have an oscillating current.

Here is our circuit again.

C LC L
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We will start with the switch open the capacitor charged to its maximum
value Qmax. For t > 0 the switch is closed. Recall that the energy stored in the
capacitor is

UC =
Q2

2C

and the energy stored in the inductor is

UL =
1

2
I2L

The total energy (because of our assumptions) is

U = UC + UL

=
Q2

2C
+
1

2
I2L

The change in energy over time must be zero (again because of our assumptions)
so

dU

dt
= 0

=
d

dt

�
Q2

2C
+
1

2
I2L

�

=
Q

C

dQ

dt
+ LI

dI

dt

We recall that

I =
dQ

dt

0 =
Q

C

�
dQ

dt

�
+ LI

dI

dt

0 =
Q

C
(I) + LI

dI

dt

0 =
Q

C
I + LI

d
�

dQ
dt

�

dt

0 =
Q

C
+ L

d2Q

dt2

or
d2Q

dt2
= − Q

LC

This is a differential equation that we recognize from M316. It looks just like
the differential equation for oscillatory motion! We try a solution of the form

Q = A cos (ωt+ φ)
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then
dQ

dt
= −Aω sin (ωt+ φ)

and
d2Q

dt2
= −Aω2 cos (ωt+ φ)

thus

Aω2 cos (ωt+ φ) = − 1

LC
A cos (ωt+ φ)

This is indeed a solution if

ω =
1√
LC

When cos (ωt+ φ) = 1, Q = Qmax, thus

Q = Qmax cos (ωt+ φ)

Now recall,

I =
dQ

dt

=
d

dt
(Qmax cos (ωt+ φ))

= −ωQmax sin (ωt+ φ)

We would like to determine φ. We use the initial conditions t = 0, I = 0 and
Q = Qmax. Then

0 = −ωQmax sin (φ)
This is true for φ = 0. Then

Q = Qmax cos (ωt)

I = −ωQmax sin (ωt)
= −Imax sin (ωt)

We can use the solution for the charge on the capacitor and the current in
the inductor as a function of time to expand our energy equation

U = UC + UL

=
Q2

2C
+
1

2
I2L

=
1

2C
Q2max cos

2 (ωt) +
1

2
LI2max sin

2 (ωt)

This looks a lot like our kinetic and potential energy equation for a mass-spring
system. The energy shifts from the capacitor to the inductor and back like
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energy shifted from kinetic to potential energy for our mass-spring, with the
components out of phase by 90 ◦. By energy conservation, we know that

1

2C
Q2max =

1

2
LI2max

that is, the maximum energy in the capacitor equals the maximum energy in
the inductor. Then the total energy

U =
1

2C
Q2max cos

2 (ωt) +
1

2
LI2max sin

2 (ωt)

=
1

2C
Q2max cos

2 (ωt) +
1

2C
Q2max sin

2 (ωt)

=
Q2max
2C

which must be the case if energy is conserved. We can plot the capacitor and
inductor energies at points in time as the current switches back and forth.
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This is very much like our harmonic oscillator picture. We can see that we have,
indeed made an electronic oscillator.

This type of circuit is a major component of radios which need a local oscil-
latory circuit to operate.

46.2.3 The RLC circuit

As fascinating as the last section was, we know there really is some resistance in
the wire. So the restriction of no resistance needs to be relaxed in our analysis.
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We can use the circuit in the picture to imagine an LRC circuit. At first, we
will keep S2 open and close S1 to charge up the capacitor. Then we will close
S1 and open S2. What will happen?

It is easier to find the current and charge on the capacitor as a function
of time by using energy arguments. The resistor will remove energy from the
circuit by dissipation (getting hot). The circuit has energy

U =
Q2

2C
+
1

2
LI2 (46.3)

so from the work energy theorem,

Wnc = ∆U

the energy lost will be related to a change in the energy in the capacitor and
the inductor. Let’s look at the rate of energy loss again

dU

dt
=

d

dt

�
Q2

2C
+
1

2
LI2
�

(46.4)

=
Q

C

dQ

dt
+ LI

dI

dt

but this must be equal to the loss rate. The power lost will be P = I2R

−I2R = Q

C

dQ

dt
+ LI

dI

dt
(46.5)

This is a differential equation we can solve, let’s first rearrange, remembering
that

I =
dQ

dt

then

−I2R =
Q

C
I + LI

dI

dt

−IR =
Q

C
+ L

dI

dt
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again using I = dQ
dt

+L
d2Q

dt2
+

dQ

dt
R+

Q

C
= 0 (46.6)

This is a good exercise for those of you who have taken math 316. This is just
like the equation governing a damped harmonic oscillator. The solution is

Q = Qmaxe
−Rt
2L cosωdt (46.7)

where the angular frequency, ωd is given by

ωd =

�
1

LC
−
�

R

2L

�2� 1

2

(46.8)

Remember that for a damped harmonic oscillator

x (t) = Ae−
b
2m

t cos (ωt+ φ)

and

ω =

�
k

m
−
�

b

2m

�2� 1

2

The resistance acts like a damping coefficient! Suppose

Qmax = 0.05C
R = 5Ω
L = 50H
C = 0.02F

we have a graph that looks like this.
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t

Q

The gray lines are

±Qmaxe−
Rt
2L (46.9)

They describe how the amplitude changes. We call this the envelope of the
curve.

Let’s look at

ωd =

�
1

LC
−
�

R

2L

�2� 1

2

(46.10)
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If ωd = 0 then

0 =
1

LC
−
�

R

2L

�2

1

LC
=

�
R

2L

�2

2L

�
1

LC
= R

or

R =

�
4L

C
(46.11)

We know that if ωd = 0 there is no oscillation. We will call this the critical
resistance, Rc. When the resistance is R ≥ Rc there will be no oscillation.
These represent the cases of being critically damped (R = Rc) and overdamped
(R > Rc) . If R < Rc we are underdamped, and the circuit will oscillate.

We don’t know how to make electromagnetic waves yet, but we will in a
few lecture. Those waves carry what we call radio signals. To make the waves,
we often use circuits with resisters, capacitors, and inductors to provide the
oscillation. You can guess that if Q on the capacitor oscillates, so does the
current. This oscillating current is what we use to drive the radio antenna.

Now that we have some resistance, we could consider a circuit with just an
inductor and a resistor and a battery.

This is a little harder to deal with than it might appear. Let’s examine the
difficulties in thinking about such a circuit in the next section.

46.3 Return to Non-Conservative Fields

A few decades ago, we could have stopped here in an engineering class in consid-
ering and LRC circuit. But as electrical devices become ever more complicated,
it might be good if we examine circuits with inductors and resistors more care-
fully. A few lectures ago we found that

�
E · ds = −dΦB

dt
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implies a non-conservative electric field. We should take a moment to see what
this means. We should also investigate mutual inductance, which has become a
major engineering technique for wireless power. First let’s consider the following
circuit.[?]

Notice that there is no battery. If the field flux changes, will there be a potential
difference measured by the voltmeters? Let’s use conservation of energy to
analyze the circuit. I can draw in guesses for the currents.

At the junction, we can use conservation of charge to see how the currents
combine or divide. This will allow us to find the voltages.

But recall that "
E · ds = 0

is a statement of conservation of energy. In electronics, we sometimes call this
Kirchhoff’s loop rule. And we learned that this is not true for induced emfs.
So in the middle loop Kirchhoff’s loop rule—conservation of energy—is not true!
Some energy is transferred into or out of the circuit. We now know that is
because of the changing magnetic field,

"
E · ds = E = −dΦB

dt

for the middle loop. In this case, E comes just from the changing external flux.
It does not depend on R1 or on R2.

We can write a conservation of energy equation (per unit charge) for each
loop.

I1Ri − IR1 = 0

−IR1 − IR2 + E = 0

I2Ri − IR2 = 0
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where Ri is the internal resistance of the voltmeters. If there were no E, then
the volt meters would not read anything, but now we see that

|V1| = I1Ri ≈ IR1

|V2| = I2Ri ≈ IR2

This seems crazy. Each volt meter reads a different voltage.
To understand this, remember that our induced field is not a conservative

field. It is providing some energy. As we go around the loop we no longer expect
to get back to our starting voltage. We have gained (or lost) some energy from

the changing magnetic field. And for non-conservative fields,

"
E · ds is path

dependent.
So as crazy as it seems, this is actually what we would find, each volt meter

reads a different voltage.
To try to make this idea of inductance make some sense, let’s take another

strange circuit.

R

E

I

R

E

R

E

I

There is a battery, and resister, and a single loop inductor. When the switch
is thrown, the current will flow as shown. The current will create a magnetic
field that is out of the page in the center of the loop. Since the loop, itself, is
creating this field, let’s call this field a self field.

R

E

I

B

ds

R

E

I

R

E

R

E

I

B

ds

Consider this self-field for a moment. When we studied charge, we found that
charge created an electric field. That electric field could make another charge
accelerate. But the electric field crated by a charge does not make the charge
that created it accelerate. This is an instance of a self-field, an electric self-field.
Now with this background, let’s return to our magnetic self-field.

Let’s take Faraday’s law and apply it to this circuit. Let me choose an area
vector A that is the area of the big loop and positive out of the page. Again,

let’s use conservation of energy (Kirchhoff’s loop law). Let’s find

"
E · ds for

the entire circuit. We can start with the battery. Since there is an electric field

inside the battery we will have a component of

"

bat

E · ds as we cross it. The
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battery field goes from positive to negative. If we go counter-clockwise, our ds
direction traverses this from negative to positive, so the electric field is up and
the ds direction is down, we have

"

bat

E · ds = −Ebat

for this section of the circuit. Suppose we have ideal wires. If the wire has no
resistance, then it takes no work to move the charges through the wire. In this
case, an electron launched by the electric field in the battery just coasts from
the battery to the resister. There is no need to have an acceleration in the ideal
wire. The electric potential won’t change from the battery to the resister. So
there doesn’t need to be a field in this ideal wire part to keep the charges going.
But let’s consider the resister. There is a potential change as we go across it.
And if there is a change in potential, there must be an electric field. So the

resister also has an electric field inside of it. We have a component of

"

R

E · ds
that is equal to ER = IR from this field.

"

R

E · ds = IR

Now we come to the big loop part. Since we have ideal wire, there is no resistance
in this part so there is no voltage drop for this part of the circuit. All the energy
that was given to the electrons by the battery was lost in the resister. They just
coast back to the other terminal of the battery. Since there is no voltage drop
in the big loop,

Ebig loop = 0

there is no electric field in the big loop either. Along the big loop, ds is certainly
not zero. so

Ebig loop =

"

big loop

E · ds = 0

For the total loop we would have
"
E · ds = −Ebatt + IR+ 0 (46.12)

Normally, conservation of energy would tell us that all this must be zero, since
the sum of the energy changes around the loop must be zero if no energy is lost.
But now we know energy is lost in making a magnetic field.

Consider the magnetic flux through the circuit. The magnetic field is made
by the current in the circuit. Note that we arranged the circuit so the battery
and resister are in a part that has very little area, so we can ignore the flux
through that part of the circuit. Most of the flux will go through the big loop
part. The magnetic field is out of the paper inside of the loop. The flux is

ΦB =

"
B · dA (46.13)
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and B and A are in the same direction. ΦB is positive.
Then from Biot-Savart

B =
µoI

4π

"
ds× r̂
r2

(46.14)

Let’s write this as

B = I

�
µo

4π

"
ds× r̂
r2

�
(46.15)

= I (geometry factor)

If the geometry of the situation does not change, then B and I are proportional.
Since B ∝ I, then ΦB ∝ I since the integral in Biot-Savart is the surface integral
of B, and B is everywhere proportional to I. Instead of using Biot-Savart, let’s
just define a constant of proportionality that will contain all the geometric
factors. We could give it the symbol, L. Then

ΦB = LI (46.16)

where L is my geometry factor. But we recognize this geometry factor. It is
just our inductance! This is what inductance is. It is all the geometry factors
that make up our loop that will make the magnetic field if we put a current
through it.

Assuming I don’t change the geometry, then the inductance won’t change
and we have

dΦB

dt
= L

dI

dt
(46.17)

and Faraday’s law gives us

E = −dΦB

dt
= −LdI

dt
(46.18)

Which says that we should not have expected

"
E · ds = 0 for our case as

we traverse the entire circuit. Integrating

"
E · ds around the whole circuit

including the big loop should not bring us back to zero voltage. We have lost
energy in making the field. Instead it gives

"
E · ds = −LdI

dt

We are dealing with non-conservative fields. So we have some energy loss like
we would with a frictional force. It took some energy to make the magnetic
field!

With this insight, we can now make a new statement of conservation of
energy for such a situation. Integrating around the whole circuit gives

"
E · ds = −Ebat + ER
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Which we now realize should give −LdI
dt so

"
E · ds = −Ebat + ER = −L

dI

dt

or more succinctly

−Ebatt + IR = −LdI

dt
Now I can take the RHS to the left and find

Ebatt − IR− L
dI

dt
= 0 (46.19)

which accounts for all of the energy in the situation, so now we see that energy
is conserved. For those of you who go on in your study of electronics. this looks
like a Kirchhoff’s rule with −LdI

dt being a voltage drop across the single loop

inductor. Under most conditions we can just treat −LdI
dt as a voltage drop and

it works fine. Most of the time thinking this way does not cause much of a
problem. But technically it is not right!

We should consider where our magnetic flux came from. The magnetic flux
was created by the current. It is a self-field. The current can’t make a magnetic
flux that would then modify that current. This self-flux won’t make an electric
field in the wire. So there is no electric field in the big loop, so there is no

potential drop in that part of the circuit. It is just that

"
E · ds �= 0 because

our field is not conservative. We had to take some energy to create the magnetic
field.

Now, if you are doing simple circuit design, you can pretend you don’t know
about Faraday’s law and this complication and just treat −LdI

dt as though it
were a voltage drop. But really it is just that going around the loop we should
expect "

E · ds = L
dI

dt

not "
E · ds = 0

The danger is that if you are designing a complicated device that depends on
there being an electric field in the inductor, your device will not work. We have
no external magnetic field, our only magnetic field is the self-field which will
not produce an electric field (or at least will form a very small electric field
compared to the electric fields in the resistor and the battery, due to the small
resistance in the real wire we use to make the big loop). And perhaps just as
important, there is a magnetic field that would not be predicted by just treating
LdI

dt as a voltage drop. This magnetic field could interfear with other parts of
your circuits!

This is very subtile, and I struggle to remember this! Fortunately in most
circuit design it does not matter. We just treat the inductor as though it were
a true voltage drop.
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I can make it even more exasperating by asking what you will see if you
place a voltmeter across the inductor. What I measure is a “voltage drop” of
LdI/dt, so maybe the there is a voltage drop after all! But no, that is not right.
The problem is that in introducing the voltmeter, we have created a new loop.
For this loop, the field from our big loop is an external field. .

R

E

I

B

ds

V

New Loop Area

So the changing magnetic field through this voltmeter loop will produce an emf
that will just match LdI/dt. And there will be an electric field—but it will be in
the internal resistor in the voltmeter. And that is what you will measure!

This may all seem very far fetched. But if you are designing radio commu-
nications you want to have a loss into the magnetic field, because that energy
transferred to the magnetic field becomes your radio signal. This could be im-
portant!Pick it up here

The bottom line is that for non-conservative fields you need to be careful.
If you are just designing simple circuits, you can just treat LdI/dt as though
it were a voltage drop, but you may be badly burned by this if your system
is more complicated, depending on the existence of a real electric field. You
can see that if you are designing complicated sensing devices, you may need to
deeply understand the underlying physics to get them to work. When in doubt,
consult with a really good electrical engineer!

46.3.1 RL Circuits: Solving for the current as a function
of time

The equation we found from Faraday’s law or incorrectly from Kirchhoff’s
rule is

E − IR− L
dI

dt
= 0 (46.20)
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This is a differential equation. We can solve it for the current. To do so, let’s
define a variable

x =
E
R
− I

and then we see that
dx = −dI

Then we can write our differential equation as

E
R
− I − L

R

dI

dt
= 0

x+
L

R

dx

dt
= 0

and so

x = −L

R

dx

dt

You might be able to guess the solution at this point from your M316 experience.
But let’s work it out as a review. We see that our x equation separates into

dx

x
= −R

L
dt

Integration yields � x

xo

dx

x
= −

� t

0

R

L
dt

ln

�
x

xo

�
= −R

L
t

exponentiating both sides gives

�
x

xo

�
= e−

R
L

t

Now we replace x with E
R − I

�
E
R − I
E
R − Io

�
= e−

R
L

t

And because at t = 0, I = 0

�
E
R − I
E
R

�
= e−

R
L

t

rearranging gives

I =
E
R

�
1− e−

Rt
L

�
(46.21)
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or, defining another time constant

τ =
L

R
(46.22)

we have

I =
E
R

�
1− e−

t
τ

�
(46.23)

We can see that

E
R
= Imax (46.24)

comes from Ohm’s law. So just like with our capacitor-resister circuit, we have
a current that grows in time, approaching the maximum value we get after a
time t which is much longer than τ.

0 10 20 30 40 50
0

1

2

3

t

I_max

You might expect that, like for a capacitor, there is an equation for an
inductor who has a maximum current flowing but for which the current source
is shorted (disconnected, and replaced with a resistanceless wire). The equation
is

I = Ioe
− t
τ (46.25)

46.4 Magnetic Field Energy in Circuits

We found that just like with a RC circuit, we should expect there to be energy
stored in a RL circuit.

UL =
1

2
LI2 =

1

2
C (∆V )2

Consider once again the RL circuit shown below.
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Recall that the current in the right-hand loop decays exponentially with time
according to the expression

I = Ioe
− t
τ

where Io = E/R is the initial current in the circuit and τ = L/R is the time
constant. As an example problem, let’s show that all the energy initially stored
in the magnetic field of the inductor appears as internal energy in the resistor
as the current decays to zero.

Recall that energy is delivered to the resister

dU

dt
= P = I2R

where I is the instantaneous current.

dU

dt
= I2R

dU

dt
=

�
Ioe

− t
τ

�2
R

dU

dt
= I2oe

−2 t
τ R

To find the total energy delivered to the resister we integrate

dU = I2oe
−2 t

τ Rdt
�

dU =

� ∞

0

I2oe
−2 t

τ Rdt

U =

� ∞

0

I2oe
−2 t

τ Rdt

U = I2oR

� ∞

0

e−2
t
τ dt

Use your calculator, or an integral table, or Maple, or your very good memory
to recall that �

e−axdx = −1
a
e−ax

If we let

a = −2
τ
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then we can obtain

U = − L

2R
I2oRe−2

t
τ

����
∞

0

U =
−L
2

I2o (0− 1)

U =
1

2
I2oL (46.26)

which is the initial energy stored in the magnetic field. All of the energy
that started in the inductor was delivered to the resistor.

46.5 Mutual Induction

Suppose we have two coils near each other. If either of the coils carries a current,
will there be an induced current in the other coil?

N1 N2



Coil 1 Coil 2

N1 N2



N1 N2



Coil 1 Coil 2

We define Φ21 as the flux through coil 2 due to the current in coil 1. Likewise
if the battery is placed on coil 2 we would have Φ12, the flux through coil 1 due
to the current in coil 2.

We define the mutual inductance

M21 =
N2Φ21

I1
(46.27)

BE CAREFUL! Not all books write the subscripts in the same order!

We can write the flux as

Φ21 =
M21I1
N2
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Then, using Faraday’s law, we find the induced emf in coil 2

E2 = −N2
dΦB

dt

= −N2
d

dt

�
M21I1
N2

�

= −M21
d

dt
(I1)

We state without proof the M12 =M21. Then

E2 = −M
dI1
dt

Example : “Wireless” battery charger

Rechargeable Toothbrush with an inductive charger (Public Domain Image
courtesy Jonas Bergsten)

A rechargeable toothbrush needs a connection that is not affected by water. We
can use induction to form this connection. We need two coils. One coil is the
base, the other the handle. The base carries current I. The base has length l
and area A and NB turns. The handle has NH turns and completely covers the
base solenoid. What is the mutual inductance?

Solution:
The magnetic field in the base solenoid is

"
B·ds = B ℓ = µoNBI

or

B =
µoNBIB

ℓ
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Because the handle surrounds the base, the flux through the handle is the inte-
rior field of the base. The flux is

ΦHB = BA

The mutual inductance is

M =
NHΦHB

IB

=
NHBA

IB

=
NH

�
µoNBIB

ℓ

�
A

IB

= µo

NHNBA

ℓ

Of course the end result is that the coil in the handle of the toothbrush will
have a current much like we saw in the other coil of a transformer. And that
current can charge the toothbrush battery.

46.5.1 Example: Rectangular Loop and a coil

A rectangular loop of N close-packed turns is positioned near a long straight
wire.

I

y

a

b

I

y

a

b

What is the coefficient of mutual inductance M for the loop-wire combination?
The basic equations are

M21 =
N2Φ21

I1
"
B·ds = µoI

"
B·dA = ΦB
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The field from the wire "
B·ds = µoI

Take the path to be a circle surrounding the wire then B is constant along the
path and the direction of B is tangent to the path.

B

"
ds = µoI

B2πr = µoI

or

B =
µoI

2πr

The flux through the rectangular loop is then perpendicular to the plane of the
loop "

B·dA = ΦB

ΦB =

�
Bydr

=

� b+a

a

µoI

2πr
ydr

=
µoIy

2π
ln

b+ a

a

then

M = N
µoy

2π
ln

b+ a

a

Suppose the loop has N = 100 turns, a = 1 cm, b = 8 cm, y = 30 cm, µo =
4π × 10−7 TmA what is the value of the mutual inductance?

M = N
µoy

2π
ln

b+ a

a
=
1. 318 3× 10−3

A
Tmcm =

1. 318 3× 10−5
A2

m2

s2
kg

H =
1

A2
m2

s2
kg

Basic Equations

L = N
dΦB

dI

E ≡ −L∆I

∆t

L = µon
2V
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UL =
1

2
LI2

uB =
1

2

1

µo

B2

Q = Qmax cos (ωt)

= −Imax sin (ωt)

U = UC + UL

=
Q2

2C
+
1

2
I2L

=
1

2C
Q2max cos

2 (ωt) +
1

2
LI2max sin

2 (ωt)

x (t) = Ae−
b
2m

t cos (ωt+ φ)

ω =

�
k

m
−
�

b

2m

�2� 1

2

R =

�
4L

C
(46.28)

∆VL = −L
dI

dt

τ =
L

R

I =
E
R

�
1− e−

t
τ

�

I = Ioe
− t
τ (46.29)

U =
1

2
I2oL

M21 =
N2Φ21

I1



Chapter 47

The Electromagnetic field

We started off our study of electricity and magnetism saying we would consider
the environment made by a charge and how that environment affected a mover
charge. Then we found that moving charges are affected by the environment
created by other moving charges (currents). It is time to consider the overall
environment created by both electric and magnetic fields acting together.

Fundamental Concepts

• The electric and magnetic fields are really different manifestations of the
electromagnetic field. Which is manifest depends on our relative motion.

• The Galilean field transformations are

−→
E ′ =

−→
E charges +

−→
VS′S ×

−→
Benvironment

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S ×

−→
E environment

�

−→
E = E′charges −

−→
VS′S ×

−→
B ′

environment

−→
B =

−→
B ′

magnet +
1

c2

�−→
VS′S ×

−→
E ′

environment

�

• Gauss’ law for magnetic fields is
#
B× dA = 0

47.1 Relative motion and field theory

Long ago in your study of physics we talked about relative motion when we
discussed moving objects and Doppler shift. We considered two reference frames
with a relative velocity vı̂. We called them frame A and frame B

649
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y

x

vx

A
B

y

x

vxy

x

vxy

x

vx

A
B

We need to return to relative motion, considering what happens when there are
fields and charged particles involved. We will need to relabel our diagram to
avoid confusion because now B will represent a magnetic field. So let’s call the
two reference frames S and S′. We will label each axis with a prime in the S′

frame.

Question 223.47.1

Question
223.47.1.5
Question 223.47.2

Question 223.47.3

Now let’s assume we have a magnetic field in the region of space where our
two reference frames exist. Let’s say that the magnetic field is stationary in
frame S. This will be our environment. Let’s also give a charge to the person in
frame S′. This will be our mover charge.
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Is there a force on the charge?
If we are with the person in reference frame S, then we must say yes. The

charge is moving along with frame S′ with a velocity −→v = vı̂ so there will be a
force

−→
F = q−→v ×−→B

= qvı̂×B (−̂a)
= qV B̂

in the $j direction.
Now let’s ride along with the person in frame S′. From this frame, the charge

looks stationary. So v = 0 and

F = q (0)×−→B = 0

Both can’t be true! So which is it? Is there a force on the charge or not?
Consider that the existence of a force is something we can test. A force causes
motion to change in ways we can detect. (the person in frame S′ would feel the
pull on the charge he is holding). So ultimately we can perform the experiment
and see that there really is a force. But where does the force come from?

Let’s consider our fields. We have come to see fields as the source of electric
and magnetic forces. Electric forces come from electric fields which come from
environmental charges. Magnetic forces come from environmental magnetic
fields which come from moving charges.

And here is the difficulty, we are having trouble recognizing when the charge
is moving. We know from our consideration of relative motion that we could
view this situation as frame S′ moving to the right with frame S stationary, or
frame S moving to the left with frame S′ stationary. There is no way to say
that only one of these views is correct. Both are equally valid.

In our case, we are considering that person S sees a moving charge. We have
learned that a moving charge will make both an electric field and a magnetic
field. This is the situation from frame S. But person S′ sees a static charge.
This charge will only make an electric field. We need a way to resolve this
apparent contradiction.
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47.1.1 Galilean transformation

To resolve this difficulty, let’s go back to forces. Here is our case of a constant
magnetic field that is stationary in frame S with a charge in frame S′ again.

We can’t see fields, but we can see acceleration of a particle. Since by Newton’s
second law

F =ma

we will know if there is an acceleration and therefore we will know if there is a
force! So are the forces and accelerations of a charged particle the same in each
frame? Let’s find out.

Remember from Dynamics or PH121 that the speed of a particle transforms
like this

−→v ′ = −→v −−→VS′S (47.1)
−→v = −→v ′ +−→VS′S

where VS′S is the relative speed between the two frames. What this means is
that if we have a particle moving with speed v′ in frame S′ and we observe this

particle in frame S the speed of that particle will seem to be −→v = −→v ′ +−→VS′S.

In our case,
−→
VSS′ = Vxı̂ so

−→v = −→v ′ + Vxı̂.
A quick example might help. Suppose we have a person in the gym running

on a treadmill.
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The treadmill track belt has a relative speed
−→
VS′S = −2 ms ı̂ where the S frame

in this case is the gym room and the S′ frame is the tredmill belt. A person
standing on the treadmill in frame S′ could view themselves as not moving, and
the rest of the room as moving the opposite direction.

The notation VS′S means the speed of the reference frame S′ with respect to
frame S or in our case the speed of the treadmill with respect to the room−→
VS′S = −2 ms ı̂.

Now suppose the person starts running on the treadmill at speed −→v ′ =
1.9 ms ı̂

′ in the tread mill frame S′.

What is his/her speed with respect to the room? It seems obvious that we take
the two speeds and add them.

−→v = 1.9 m
s
ı̂′ − 2 m

s
ı̂ = −0.1 m

s
ı̂

since the i and ı̂′ directions are the same.
The person is going to fall off the end of the treadmill unless they pick up

the pace! This example just used the second equation in our transformation.

−→v = −→v ′ +−→VS′S
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likewise, if we want to know how fast the person is walking with respect to the
treadmill frame, we take the room speed −→v = −0.1 ms ı̂ and subtract from it the

treadmill/room relative speed
−→
V S′S = −2 ms ı̂ to obtain

−→v ′ = −0.1 m
s
ı̂−
�
−2 m

s
ı̂
�
= 1.9

m

s
ı̂ = 1.9

m

s
ı̂′

Armed with the Galilean transform, we can find the acceleration by taking
a derivative

d−→v ′
dt

=
d−→v
dt

− d
−→
VS′S

dt

d−→v
dt

=
d−→v ′
dt

+
d
−→
VS′S

dt

then

−→a ′ = −→a − d
−→
VS′S

dt

−→a = −→a ′ + d
−→
VS′S

dt

but we will only consider constant relative motion1 , so

d
−→
VS′S

dt
= 0

then both equations tell us
−→a ′ = −→a

This was a lot of work, but the end of all this talk about reference frames shows
us that there must be a force

−→
F = m−→a = m−→a ′

in both frame S and S′. The mass is the same in both frames, and so is the
acceleration.

We can gain some insight into finding the mysterious missing force in frame
S′ by considering the net force in the case of both an electric and a magnetic
field −→

Fnet = q
−→
E + q−→v ×−→B

This was first written by Lorentz, so it is called the Lorentz force, and is usually
written as −→

Fnet = q
�−→
E +−→v ×−→B

�

1Accelerating reference frames are treated by General Relatively and are treated with the
notation of contravariant and covariant vectors, which are beyond this course. They are taken
up in a graduate level electricity and magnetism course.
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Using this, let’s consider the view point of each frame.
Going back to our two guys on different frames, In frame S, the person sees

−→
F = q

�
0 +

−→
VS′S ×

−→
B
�
= qVxı̂×B

�
−k̂
�

= qV B̂

and in frame S′ the person sees

−→
F ′ = q

�−→
E ′ + 0×−→B ′

�
= q

−→
E ′

It seems that the only way that
−→
F =

−→
F ′ is that

−→
E ′ �= 0 in the primed frame! So

in frame S′ our person must conclude that there is an external electric field that

produces the force
−→
F ′. In frame S the person is convinced that the magnetic

field,
−→
B , is making the force. In frame S′ the person is convinced that the

electric field
−→
E ′ is making the force. Question 223.47.4

We can find the strength of this electric field by setting the forces equal

−→
F =

−→
F ′

q
−→
VS′S ×

−→
B = q

−→
E ′

so −→
E ′ =

−→
VS′S ×

−→
B

and the direction must be −→
E ′ = VS′SB̂

Question 223.47.5

Question 223.47.6Our interpretation of this result is mind-blowing. It seems that whether we
see a magnetic field or an electric field causing the force depends on our reference
frame! The implication is that the electric and magnetic fields are not really
two different things. They are one field viewed from different reference frames!

Anther way to say what we have found might be that moving magnetic fields
show up as electric fields.

So far we have been talking about external fields only. The field
−→
B in our

case study is created by some outside agent. So the field
−→
E ′ observed in frame

S′ is also an environmental field. But the charge, itself, creates a field. So the

total electric field in frame S′ is the environmental field
−→
E ′ plus the field due

to the charge, itself
−→
E self , or

−→
E ′

tot =
−→
E self +

−→
E ′

environment

=
−→
E self +

−→
VS′S ×

−→
Benvironment

which we usually just write as

−→
E ′ =

−→
E self +

−→
VS′S ×

−→
Benvironment
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We would predict that if we had a charge that is stationary in frame S and
we rode along with frame S′ that we would see a field

−→
E = E′self −

−→
VS′S ×

−→
B ′

environment

Of course,
−→
E self can’t create a force on the charge, because it is a self-field. So

we only need to be concerned with
−→
E self if we have other charges that could

move. We could actually have a group of charges riding along with frame S′. In
that case we would have an additional field E′

charges . We could write this as

−→
E = E′charges in S′ −

−→
VS′S ×

−→
B ′

environment

or just
−→
E = E′charges −

−→
VS′S ×

−→
B ′

environment

What we have developed is important! We have an equation that let’s us
determine the electric field in a frame, given the fields measured in another
frame.

We would expect that a similar thing would happen if we replaced the mag-
netic fields with electric fields. Suppose we have an electric field in the region
of our frames and that this electric field is stationary with respect to frame S′

this time. Will frame S see a magnetic field?Question 223.47.7

To see that this is true, let’s examine the case where we have no external
fields, and we just have a charge moving along with frame S′. Then in frame S′

we have the fields

−→
E ′ =

1

4πǫo

q

r2
r̂

−→
B ′ = 0
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in frame S the electric field is

−→
E =

−→
E ′

charges −
−→
VS′S ×

−→
B ′

environment

=
1

4πǫo

q

r2
r̂+

−→
VS′S × 0

=
1

4πǫo

q

r2
r̂

so −→
E =

−→
E ′ =

1

4πǫo

q

r2
r̂

We see the same electric field due to the point charge being there in both frames.
But in frame S we are expecting the person to see a magnetic field because

to person S the charge is moving. Using the Biot-Savart law

−→
B =

µo

4π

q−→v × r̂
r2

since our charge is moving along with the S′ frame −→v = −→VS′S so

−→
B =

µo

4π

q

r2

�−→
VS′S × r̂

�

but we can rewrite this by rearranging terms

−→
B =

µo

4π

q

r2

�−→
VS′S × r̂

�

=
�−→
VS′S ×

µo

4π

q

r2
r̂
�

which looks vaguely familiar. Let’s multiply top and bottom by ǫo

−→
B =

�−→
VS′S ×

µoǫo
4πǫo

q

r2
r̂

�

=

�−→
VS′S × µoǫo

�
1

4πǫo

q

r2
r̂

��

=
�−→
VS′S × µoǫo

�−→
E ′
��

= µoǫo

�−→
VS′S ×

−→
E ′
�

which is really quite astounding! Our B-fields have apparently always just been
due to moving electric fields after all! Of course, we could have an additional
magnet riding along with frame S′. To allow for that case, let’s include a term−→
B ′

magnet .

−→
Btotal =

−→
B ′

magnets in S′ + µoǫo
�−→
VS′S ×

−→
E ′

environment

�

or just
−→
B =

−→
B ′

magnets + µoǫo
�−→
VS′S ×

−→
E ′

environment

�
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and we would expect that if we worked this problem from the other frame’s
point of view we would likewise find

−→
B ′ =

−→
Bmagnet − µoǫo

�−→
VS′S ×

−→
E environment

�

where the minus sign comes from the relative velocity being in the other direc-

tion. Again
−→
Bmagnet is a self-field. It won’t move the magnet creating it, but

it might be important if we have a second magnet in our experiment. Then−→
Bmagnet would cause a force on this second magnet.

Once again we have found a way to find a field, the magnetic field this time,
in one frame if we know the fields on another frame! We call this sort of equation
a transformation.

We should take a moment to look at the constants µoǫo. Let’s put in their
values

µoǫo =

�
8.85× 10−12 C2

Nm2

��
4π × 10−7 Tm

A

�

= 1. 112 1× 10−17 s
2

m2

This is a very small number, and it may not appear to be interesting. We can
see that the additional magnetic fields due to the movement of the charges can
be quite small unless the electric field is large or the relative speed is large (or
both). So much of the time this additional field due to the moving charge is
negligible. But let’s calculate

1√
µoǫo

=
1��

8.85× 10−12 C2

Nm2

��
4π × 10−7 TmA

�

= 2. 998 6× 108 m
s

= c

This is the speed of light! It even has units of m/ s. This seems an amazing
coincidence—too amazing. And this was one of the clues that Maxwell used to
discover that light is a wave in what we will now call the electromagnetic field
(because they are different aspects of one thing).

We can write the transformation equations for the fields as

−→
E ′ =

−→
E charges +

−→
VS′S ×

−→
Benvironment

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S ×

−→
E environment

�

−→
E = E′charges −

−→
VS′S ×

−→
B ′

environment

−→
B =

−→
B ′

magnet +
1

c2

�−→
VS′S ×

−→
E ′

environment

�

Let’s do a problem. Suppose we have a metal loop moving into an area
where there is a magnetic field as shown. Let’s show that there is a force on
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charges in this loop no matter what frame we consider. First, lets consider the
frame where the magnetic field is stationary and the loop moves.

There should be an upward force on the positive charge because the charge is
moving in a magnetic field. Let’s say that “up” is the ̂ direction and that “to
the right” is the ı̂ direction. Then The Lorentz force is

−→
F = q

�−→
E +−→v ×−→B

�

= q
�−→
E +

−→
VS′S ×

−→
B
�

Now
−→
VS′S means the speed of the reference frame S′ with respect to frame S.

That is +V ı̂. And there is no electric field in frame S, so

−→
F = q

�−→
E +

−→
VS′S ×

−→
B
�

= q
�
0 + V ı̂×B

�
−k̂
��

= q
�
V ı̂×B

�
−k̂
��

= qV B̂

Now suppose we change reference frames so we are riding along with the loop
in frame, S′. In this frame, the loop is not moving, and the magnetic field is
moving by us the opposite direction. We’ll call this the “prime frame.” We
should get the same force if we change frames to ride along with the loop.
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Let’s use our transformations to find the E and B-fields in the new reference
frame. Then

−→
E ′ =

−→
E self-charge +

−→
VS′S ×

−→
Benvironment

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S ×

−→
E environment

�

so in the prime frame we have an electric field
−→
E ′ =

−→
E charges +

−→
VS′S ×

−→
Benvironment

and in particular, we have an external field
−→
E ′

environment =
−→
VS′S ×

−→
Benvironment

(we left off the
−→
E charge because it can’t move the charge that made it, so it is

not part of the force).

Note that
−→
VS′S is the speed of the primed frame as viewed from the un-

primed frame. So
−→
VS′S = +V ı̂

−→
E ′ = V (̂ı)×B

�
−k̂
�

= V B̂

That is our electric field in the primed frame.
The magnetic field in the primed frame is given by

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S ×

−→
E environment

�

but there is no external electric field in the unprimed frame, so

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S × 0

�

=
−→
Bmagnet

where here “magnet” means what ever is making the magnetic field in the
unprimed frame. Something must be there making the field, and it is not our
charge. It could be an electromagnet, or a permanent magnet, we have not been

told. But it is not our charge, so we know
−→
Bmagnet must be there and can act

on our charge. So −→
B ′ =

−→
B

The magnetic field in the primed frame is just the same as the magnetic field
we see in the unprimed frame. Then in the primed frame the Lorentz force is

−→
F ′ = q

�−→
E ′ +−→v ×−→B ′

�

= q
�
V B̂+ 0×−→B

�

= qV B̂

Which is exactly the same force (magnitude and direction) as we got in the
unprimed frame.
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47.2 Field Laws

A “law” in physics is a mathematical statement of a physical principal or theory.
We have been collecting laws for what we will now call the electromagnetic field
theory. Let’s review:

47.2.1 Gauss’ law

We found that the electric flux through an imaginary closed surface that
incloses some charge is

ΦE =

"
E · dA = Qin

ǫo

We called this Gauss’ law.

But consider the situation with a magnet. We can define a magnetic fluxQuestion 223.47.8

just like we defined the electric flux. And now we know they must be related.
Is there a Gauss’ law for magnetism? Let’s consider the magnetic flux.

ΦB =

"
B · dA

This should be proportional to the number of “magnetic charges” inclosed in
the surface.
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Closed Surface

r

We can see that every field line that leaves comes back in. That is how we
defined zero net flux, so

ΦB =

"
B · dA = 0

Which would tell us that there are no free “magnetic charges” or no single
magnetic poles. A single magnetic pole is called a monopole and indeed we
have never discovered one. These two forms of Gauss’ law form the first two of
our electromagnetic field equations.

The differences between them have to do with the fact that magnetic fields
are due to moving charges.

We have a third electromagnetic field law, Ampere’s law. We found Ampere’s
law by integrating around a closed loop with a current penetrating the loop.

"
B · ds = µoIthrough

We also know Faraday’s law

E =
"
E · ds = −dΦB

dt



47.2. FIELD LAWS 663

which told us that changing magnetic fields created an electric field. We have
found that the opposite must be true, that a changing electric field must create
a magnetic field. We express this as

"
B · ds ∝ dΦE

dt

Which gives two expressions for
#
B · ds. But we have yet to show that this

equation is true. That is the subject of our next lecture. If we can accomplish
this, we will have a complete set of field equations that describe how the elec-
tromagnetic field works. In the following lecture we will complete the set of field
equations, and then in the next lecture we will show that we get electromagnetic
waves from these equations.

Basic Equations

Rules for finding fields in different coordinate systems

−→
E ′ =

−→
E charges +

−→
VS′S ×

−→
Benvironment

−→
B ′ =

−→
Bmagnet −

1

c2

�−→
VS′S ×

−→
E environment

�

−→
E = E′charges −

−→
VS′S ×

−→
B ′

environment

−→
B =

−→
B ′

magnet +
1

c2

�−→
VS′S ×

−→
E ′

environment

�

Gauss’ law for magnetic fields

ΦB =

"
B× dA = 0
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Chapter 48

Field Equations and Waves
in the Field

We started this class with a study of waves. We learned about optics, and finally
electromagnetic field theory. In this lecture we will take on a case study that
involves all three. We will have come full circle and in the process, hopefully
understand all three topics a little better.

Fundamental Concepts

• Changing electric fields produce magnetic fields

• A changing electric flux is described as a displacement current Id = εo
dΦE
dt

• The complete version of Ampere’s law is

"
B · dℓ = µo (I + Id)

• Maxwell’s equations give a complete classical picture of electromagnetic
fields

• Maxwell’s equations plus the Lorentz force describe all of electrodynamics.

48.1 Displacement Current

Last time we listed Ampere’s law as one of the basic field equations. But we
did not discuss it at all. That is because we were saving it for our discussion in
this lecture We need to look deeply into Ampere’s law. Here is what we have
for Ampere’s law so far "

B · ds = µoIthrough

665
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To see why we need to consider it further, let’s do a hard problem with Ampere’s
law. Let’s set up a circuit with a battery a switch and a circular plate capacitor
in the wire.

Using this circuit, let’s calculate the magnetic field using Ampere’s law. Here
is a detailed diagram of the capacitor.

P1 P2

I

P1 P2

I

I could find the magnetic field using the Biot-Savart equation, but that would
be hard. I don’t know how to solve the resulting integral. So let’s try Ampere’s
law. Let’s start at P1. We add in an imaginary surface at P1. I will choose a
simple circular surface.

P1 P2

I

We have done this before. If we choose P1 so that it is far from the capacitor,
then we know what the magnetic field will look like.

Right at P1 it will be out of the page. We also know that for a long straight
wire, the field magnitude does not change as we go around the wire, so we can
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write our integral as
"
B · dℓ = B

"
dℓ = B2πr = µoI

so
B2πr = µoI

so the field is

B =
µoI

2πr

which is very familiar, just the equation for a field from a long straight wire.Question 223.48.1

Now Let’s try this at P2. What would we expect? Will the magnetic field
change much as we pass by the capacitor?

P1 P2

I

Again we could use Biot-Savart, but think about what the current does at the
plate. It would be very hard to do the integration!. So again let’s try Ampere’s
law. If we use the same size surface

"
B · dℓ = B

"
dℓ = B2πr

but this is equal to µoIthrough. There is no I going through the capacitor! so

B2πr = 0 (48.1)

and this would give B = 0. But, our wires are not really ideal and infinitely
long. And even if they were, would we really expect the field to be zero if we
just have a small gap in our capacitor? It get’s even worse!

P1
P2

I

S1

S2P1
P2

I

S1

S2

Ampere’s law tells us we need a surface, but it does not say it has to be a circular
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surface. In fact, we could use the strange surface labeled S2 in the figure above.
This is a perfectly good surface to associate with the loop at P1. So this gives
us "

B · dℓ = µoI = 0

at P1! So we have two different results with Ampere’s law for the same point.
This can’t be!Question 223.48.2

Ampere knew this was a problem, but did not find a solution. Maxwell solved
this. He asked himself, what was different inside the capacitor that might be
making a difference. Of course, there is an electric field inside the capacitor!

P1 P2

I

E

R

We know that in the limit that the plates can be considered to be very big the
field is approximately

E =
η

εo
=

Q

πR2εo

but we know that the charge is changing in time once the switch is thrown. We
can find the rate of change of the field, then

dE

dt
=

1

πR2εo

dQ

dt

By definition

I =
dQ

dt

is a current, but what current? It must be the current that is supplying the
charge to the capacitor. That current is what is changing the Q in the capacitor,
and it is the Q separation that is making the field. So the time derivative of the
electric field is

dE

dt
=

I

πR2εo

where I is the current in the wire, and only if the wire current is zero will there
be no change in the electric field.

This gives us an idea. A changing electric field creates a magnetic field.
Suppose this changing electric field created a magnetic field like the current
does? It would as though there were a current with a value

Id = πR2εo
dE

dt
(48.2)
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It doesn’t really cause a current in the capacitor. What really happens is that
the changing electric field is creating a magnetic field. But that magnetic field is
just like the field that a current would create. So we can (somewhat incorrectly)
say that the changing electric field has created something like a current in the
capacitor. But no charge is crossing the capacitor.

Note that in this we have the area of the plate, Aplate = πR2 multiplied
by the time rate of change of the electric field. Also note, that in our approx-
imation for our capacitor, there is only an electric field inside the plates. So,
remembering electric flux,

ΦE =

�
E · dA

our flux though the surface at P2 would be

ΦE = EA

= πR2E

so we can identify
πR2dE = AplatedE = dΦE

as a small amount of electric flux. Then our equivalent current will be

Id = εo
dΦE

dt
(48.3)

Maxwell decided that, since this looked like equivalent to a current, he would
call it a current and include it in Ampere’s law.

"
B · dℓ = µo (I + Id)

= µo

�
I + εo

dΦE

dt

�

but remember it is not really a current. What we have is a changing electric
field that is making a magnetic field as though there were a current Id. We canQuestion 223.48.3

try this on or capacitor problem. We have done our capacitor problem for S1
where we expect dΦE

dt ≈ 0 so our original calculation stands

BS1 =
µoI

2πr

but now we know that if we use S2 we have dΦE
dt �= 0, and we realize that at P2

the current I = 0 so "
B · dℓ = µo

�
0 + εo

dΦE

dt

�

and for our geometry we founddΦE
dt

"
B · dℓ = µo

�
0 + πR2εo

dE

dt

�
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and we calculated dE
dt so we can substitute it in
"
B · dℓ = µo

�
0 + πR2εo

I

πR2εo

�

where we remember that the current I is the current making the electric field—
the current in the wire. Then we have

B2πr = µo (0 + I)

and our field is

B =
µoI

2πr
which is just what we found using S1. Maxwell seems to have saved the day!
There is no dip in the magnetic field magnitude.

There is one more fix we will have to do to Ampere’s law eventually. We
found this form of Ampere’s law with the capacitor empty—not even containing
air. But we could do the same derivation with a dielectric filled capacitor. We
also could have magnetic materials involved.

But what we have done so far is really a momentous result. We have shown
that, indeed, we should have an equation that provides symmetry with Faraday’s
law. We suspected that "

B · ds ∝ dΦE

dt

and we can write the constants of proportionality as
"
B · ds = µoǫo

dΦE

dt

but because we have
#
B · ds also in Ampere’s law, we can combine the two to

yield
"
B · ds = µo (I + Id)

= µo

�
I + εo

dΦE

dt

�

This is the last of our field equations. It is called the Maxwell-Ampere law.
Let’s use this to solve for the magnetic field inside the capacitor. A changing

electric field will make a magnetic field.
Take a surface inside the plates that is a circle of radius r < R. Then

"
B · ds =B2πr

from our modified Ampere’s equation
"
B · ds = µo (I + Id)

= µo

�
I + εo

dΦE

dt

�
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so

B2πr = µo

�
0 + εo

dΦE

dt

�

= πr2µoεo
dE

dt

= πr2µoεo
I

πR2εo

= µo

r2I

R2

so

B = µo

rI

2πR2
(48.4)

We should pause to realize what we have just done. We have shown that,
indeed, a changing electric field can produce a magnetic field. This statement
is a profound look at the way the universe works!

48.2 Maxwell Equations

We have developed a powerful set of understanding equations for electricity and
magnetism. Maxwell summarized our knowledge in a series of four equations

"
E · dA =Qin

εo
Gauss’s law for electric fields

"
B · dA = 0 Gauss’s law for magnetic fields

"
E · ds =− dΦB

dt Faraday’s law
"
B · ds = µoI + εoµo

dΦE
dt Ampere-Maxwell Law

(48.5)

If we have a dielectric, we might see these written as[?]

"
E · dA =Qin

εoκ Gauss’s law for electric fields
"
B · dA =0 Gauss’s law for magnetic fields

"
E · ds =− dΦB

dt Faraday’s law
"
B · ds =µoκm

�
I + εoκ

dΦE
dt

�
Ampere-Maxwell Law

(48.6)

Since we have all had multivariate calculus, we may also see these written
as

∇ ·E = ρ
εo

Gauss’s law for electric fields

∇ ·B = 0 Gauss’s law for magnetic fields
∇×E =− dB

dt Faraday’s law
c2∇×B = J

εo
+ dE

dt Ampere-Maxwell Law

(48.7)
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I’ll let you remember the process to do the translation from

"
B · dA to ∇ ·B.

But we are familiar with all of these equations now. These four equations
are the basis of all of classical electrodynamics. In an electromagnetic problem,
we find the fields using the Maxwell equations to find the fields, and then apply
the fields to find the Lorentz forces

F = qE+ qv×B (48.8)

It turns out that these four equations strongly imply that there can be waves
in the fields. Maxwell took the hint that µoǫo was related to c, the speed of
light and he thought that light might be a wave in the electromagnetic field. We
know about waves. We can describe a wave by looking for a surface of constant
amplitude—a wave crest. We already know from our study of optics that these
waves are what we call light. A point source will cause spherical surfaces of
constant amplitude. A half-wave antenna makes a toroidal shaped wave front.
We will not deal with spherical or worse wave shapes. Unfortunately, many
antennas send out complicated wave patterns that take spherical harmonics to
describe well. That is beyond the math we want to do in this course. We will
stick to simple shapes. But we will see how waves in the electromagnetic field
describe light in our next lecture.



Chapter 49

Waves in the Field

We started this class with a study of waves. We learned about optics, and finally
electromagnetic field theory. In this lecture we will take on a case study that
involves all three. We will have come full circle and in the process, hopefully
understand all three topics a little better.

Fundamental Concepts

• Maxwell’s equation lead directly to the liner wave equation for both the
electric and the magnetic field with the speed of light being the speed of
the waves.

• The magnitude of the E and B fields are related in an electromagnetic
wave by Emax = cBmax

A representation of a plane wave. Remember that the planes are really of
infinite extent. Image is public domain.

673
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Let’s picture our wave front far from the source. No matter what the total
shape, if we look at a small patch of the fields far away, they will look like
the plane wave in the last figure. Since this is a useful and common situation
(except if you use lasers), we will perform some calculations assuming plane
wave geometry.

We will assume we are in empty space, so the charge q and current I will
both be zero. Then our Maxwell Equations become

" −→
E · d−→A = 0 Gauss’s law for electric fields

" −→
B · d−→A = 0 Gauss’s law for magnetic fields

" −→
E · d−→s = −dΦB

dt Faraday’s law
" −→
B · d−→s = εoµo

dΦE
dt Ampere-Maxwell Law

(49.1)

Our goal is to show that these equations tell us that we can have waves
in the field. To do this, we will show that Maxwell’s equations really contain
the linear wave equation within them. As a reminder, here is the linear wave
equationFar Board

∂2y

∂x2
=
1

v2
∂2y

∂t2

it is a second order differential equation where the left side derivatives are take
with respect to position, and the right side derivatives are taken with respect
to time. The quantity, v, is the wave speed. In this form of the equation y is
the displacement of a medium. Our medium will be the electromagnetic field.

49.0.1 Rewriting of Faraday’s law
Skip this

Let’s start with Faraday’s law

" −→
E · d−→s = −dΦB

dt
(49.2)

Given our geometry, we can say the wave is traveling in the x direction with the−→
E field positive in the y direction. From our discussion of displacement currents

we have a strong hint that the
−→
E and

−→
B fields will be perpendicular. So let’s

take the magnetic field as positive in the z direction. So as the light wave moves

from the source along a line we could draw the
−→
E and

−→
B fields something like

this.
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Let’s take a small rectangle of area to find

" −→
E · d−→s

The top and bottom of the rectangle don’t contribute because
−→
E ·d−→s = 0 along

these paths. On the sides, the field is either in the d−→s or it is in the opposite
direction. So " −→

E · d−→s =
"

Eds

or " −→
E · d−→s = −

"
Eds

along the sides. Let’s say we travel counter-clockwise along the loop. Then the
left side will be negative and the right side will be positive.

" −→
E · d−→s =

�

right

Eds−
�

left

Eds

On the left side, we are at a position x away from the axis, and on the right
side we are a position x+∆x away from the axis. Then the field of the left side
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is E (x, t) and the field on the right hand side is approximately

E (x+∆x, t) ≈ E (x, t) +
∂E

∂x
∆x (49.3)

so if our loop is small, then ℓ is small and E won’t change much so we can write
approximately

" −→
E · d−→s =

�

right

Eds−
�

left

Eds (49.4)

≈ E (x+∆x, t) ℓ−E (x, t) ℓ (49.5)

=

�
E (x, t) +

∂E

∂x
∆x

�
ℓ−E (x, t) ℓ

=

�
E (x, t) +

∂E

∂x
∆x

�
ℓ−E (x, t) ℓ

= ℓ
∂E

∂x
∆x (49.6)

So far then, Faraday’s law 1

" −→
E · d−→s = −dΦB

dt

becomes

ℓ
∂E

∂x
∆x = −dΦB

dt
Let’s move on to the right hand side of Faraday’s law. We need to find ΦB so
that we can find the time rate of change of the flux. We can say that B is nearly
constant over such a small area, so

ΦB = B ·A
= BA cos θ

= BA

= Bℓ∆x

where here ∆x means “a small distance” as it did above. Then

dΦB

dt
=

d

dt
(Bℓ∆x)

= ℓ∆x
dB

dt

����
x constant

= ℓ∆x
∂B

∂t

where we have held x constant because we are not changing our small area, so
Faraday’s law " −→

E · d−→s = −dΦB

dt

1We need ds to be very small, much smaller than the wavelength of the wave.
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becomes

ℓ
∂E

∂x
∆x = −ℓ∆x

∂B

∂t
∂E

∂x
= −∂B

∂t
(49.7)

We have made some progress, we have a differential equation relating the fields,
but it is a mixed equation containing both the electric and magnetic fields. We
are only half way there.

49.0.2 Rewriting of the Maxwell-Ampere Law

We have used one field equation so far and that took us part of the way. We
have the Maxwell-Ampere law as well. We can use this to modify our result from
Faraday’s law to find the linear wave equation that we expect. The Maxwell-
Ampere law with no sources (charges or currents) states

" −→
B · d−→s = εoµo

dΦE

dt

This time we must consider the magnetic field path integral

We can do the same thing we did with Faraday’s law with an area, but this
time we will use the area within the magnetic field (shown in the figure above).
Again, let’s start with the left hand side of the equation. We see that the sides

of our area that are parallel to the x-axis do not matter because
−→
B · d−→s = 0

along these sides, but the other two are in the direction (or opposite direction)
of the field. They do contribute to the line integral.

" −→
B · d−→s = B (x, t) ℓ−B (x+∆x, t) ℓ (49.8)

≈ −ℓ∂B
∂x
∆x
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Now for the left hand side, we need the electric flux. For such a small area,
the field is nearly constant so

ΦE ≈ EA cos θ

= EA

= Eℓ∆x

so
∂ΦE

∂t
= ℓ∆x

∂E

∂t
(49.9)

Combining both sides
" −→
B · d−→s = εoµo

dΦE

dt

−ℓ∂B
∂x
∆x = εoµoℓ∆dx

∂E

∂t
∂B

∂x
= −εoµo

∂E

∂t
(49.10)

We now have a second differential equation relating B and E. But it is also a
mixed differential equation.

49.1 Wave equation for plane waves

This leaves us with two equations to work with

∂E

∂x
=− ∂B

∂t
(49.11)

∂B

∂x
= −εoµo

∂E

∂t
(49.12)

Remember that these are all partial derivatives. Taking the derivative of the
first equation with respect to x gives

∂

∂x

∂E

∂x
=

∂

∂x

�
−∂B

∂t

�

∂2E

∂x2
= − ∂

∂x

�
∂

∂t
B

�

∂2E

∂x2
= − ∂

∂t

�
∂B

∂x

�

In the last equation we swapped the order of differentiation for the right hand
side. In parenthesis, we have ∂B/∂x on the right hand side. But we know what
∂B/∂x is from our second equation. We substitute from our second equation
to obtain

∂2E

∂x2
=− ∂

∂t

�
−εoµo

∂E

∂t

�
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∂2E

∂x2
=εoµo

∂2E

∂t2
(49.13)

We can do the same thing, but taking derivatives with respect to time to give

∂2B

∂x2
=εoµo

∂2B

∂t2
(49.14)

You will recognize both of these last equations as being in the form of the
linear wave equation.

∂2y

∂x2
=
1

v2
∂2y

∂t2

This means that both the E field and the B field are governed by the linear
wave equation with the speed of the waves given by

v =
1

√
εoµo

(49.15)

We have studied waves, so we know the solution to this equation is a sine or
cosine function

E = Emax cos (kx− ωt) (49.16)

B = Bmax cos (kx− ωt) (49.17)

with

k =
2π

λ

and
ω = 2πf

then
ω

k
=
2πf
2π
λ

= λf

which is the wave speed.
We can show that the magnitude of E is related to B.
Lets take derivatives of E and B with respect to x and t.

∂E

∂x
= −kEmax sin (kx− ωt)

∂B

∂t
= ωBmax sin (kx− ωt)

then we can use one of our half-way-point equations from above

∂E

∂x
=− ∂B

∂t

and by substitution obtain

−kEmax sin (kx− ωt) = −ωBmax sin (kx− ωt)

−kEmax = −ωBmax



680 CHAPTER 49. WAVES IN THE FIELD

or
Emax
Bmax

=
ω

k
= v

The speed is the speed of light, c, so

Emax
Bmax

= c (49.18)

It is one of the odd things about the universe that speed of electromagnetic
waves is a constant. It does not vary in vacuum, and the in-vacuum value, c is
the maximum speed. It was a combination of Maxwell’s work in predicting c
and the observations confirming the predictions that launched Einstein to form
the Special Theory of Relativity!

Note that the last equation shows why we often only deal with the electric
field wave when we do optics. Since the magnetic field is proportional to the
electric field, we can always find it from the electric field.

49.2 Properties of EM waves
Pick up here

Knowing that the electric and magnetic fields form plane waves, we can inves-
tigate these plane wave solutions to see what they imply.

49.2.1 Energy in an EM wave

The electromagnetic (EM) wave is a wave. Waves transfer energy. It is custom-
ary find a vector that describes the flow of energy in the electromagnetic wave.
This is like the ray vectors we have been drawing for some time, but with the
magnitude of the vector giving the energy flow rate.

The rate of at which energy travels with the EM wave is given the symbol
S and is called the Poynting vector after the person who thought of it. It is

S =
1

µo

E×B (49.19)

Let’s deal with a dumb name first: The Poynting vector. It is named after a
scientist with the last name Poynting. The name is really meaningless. There
is nothing particularly “pointy” about this vector more than any other vector.

Instead of a formal derivation, let’s just see what we get from Poynting’s
equation for a plane wave.

For our plane wave case, E and B are at 90 ◦ angles2 . so

S =
1

µo

EB (49.20)

and S will be perpendicular to both. Notice from our preceding figures that
this is also the direction that the wave travels! That is comforting. That should

2For other fields this might not be true, but it is generally true for light.
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be true for a EM wave. The energy, indeed, goes the way the Poynting vector
points.

Using
E

B
= c

we can write the magnitude of the Poynting vector as

S =
E2

cµo

(49.21)

We could also express this in terms of B only.
You will remember that our eyes don’t track the oscillations of the electro-

magnetic waves. Few detectors (if any) can. For visible light, the frequency is
very high. We usually see a time average. This time average of the Poynting
vector is called the intensity of the wave

I = Save

49.2.2 Intensity of the waves

When we studied waves, we learned that waves have an intensity. The intensity
of electromagnetic waves must relate to the strength of the fields. We can write
it as

I =
EB

2µo

(can you remember where the “1/2” came from?)3 . Again using

E = cB

we can write the intensity as

I =
1

2µoc
E2 (49.22)

We remember that I is proportional to the square of the maximum electric field
strength from our previous consideration of light intensity. But before we only
said that it was proportional. Now we know the constant of proportionality. Of
course we could also write the intensity as

I =
c

2µo

B2 (49.23)

but this is less traditional. We have said already that the intensity, I, is the
magnitude of the average Poynting vector Save.

3This is because the average value of sin2 (ωt) over a period is given by 1

T

� T
0
sin2 (ωt) dt =

ω
2π

� 2π
ω
0

sin2 (ωt) dt = 1

2
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Recall that we know the energy densities in the fields

uE =
1

2
εoE

2

uB =
1

2

B2

µo

again, since
E = cB (49.24)

we can write

uB =
1

2

B2

µo

(49.25)

=
1

2

E2

c2µo

=
1

2
εoE

2

so for a plane electromagnetic wave

uE = uB (49.26)

The total energy in the field is just the sum

u = uE + uB = εoE
2 (49.27)

But when we do the time average to find the intensity, we pick up a factor of a
half

uave =
1

2
εoE

2 (49.28)

Comparing this to our equation for intensity gives

I =
1

2µoc
E2max = Save

and then

Save =
1

ǫoµoc

1

2
ǫoE

2 (49.29)

=
1

ǫoµoc
uave

=
1
1
c2 c

uave

= cuave

If you have already taken your course on thermodynamics you, learned that
we could transfer energy by radiation. This is our radiation! And we see that it
does indeed transfer energy. We learned about this by discussing solar heating
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and by talking about Army weapons that apply energy to crowds.

US Army Active Denial System (ADS).
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but we really use this every day when we microwave something. Microwaves are
electromagnetic waves!

49.2.3 Momentum of light

One of the strangest things is that there is also momentum in the electromag-
netic waves. If the waves are absorbed, the momentum is

p =
U

c
(49.30)

or if the waves are reflected it is

p =
2U

c
(49.31)

(think of balls bouncing off a wall, the change in momentum is always 2mv for
a bounce).

We can think of the light exerting a pressure on the surface. Force is given
by

F = ma

= m
dv

dt

=
dp

dt

then using this force, the pressure is

P =
F

A
=
1

A

dp

dt
(49.32)
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then

P =
F

A
=
1

cA

dU

dt
(49.33)

We found 1
A

dU
dt to be the energy rate per unit area, which is the magnitude of

the Poynting vector, S. So our pressure due to light is

P =
S

c
(49.34)

for perfect absorption. If there is perfect reflection

P =
2S

c
(49.35)

This may seem a little strange. Water or sound waves would exert a pressure
because the water or air particles can strike a surface, exerting a force. But
remember the electromagnetic fields will create forces on the electrons in atoms4 ,
and most of the electrons are bound to the atoms in materials by the Coulomb
force. So there really is a force on the material due to the electromagnetic
wave. Quantum mechanics tells us about electrons being knocked out of shells
into higher energy shells (absorbing photons of light) and re-emitting the light
when the electrons fall back down to lower shells. This is a little like catching a
frisbee, and then throwing it. Momentum is transferred both at the catch and
at the release.

A cool use of this phenomena is called laser levitation

Laser Levation (Skigh Lewis, Larry Baxter, Justin Peatross (BYU), Laser Levitation:

Determination of Particle Reactivity, ACERC Conference Presentation, February 17,

2005)

4Protons too, but the protons are more tightly bound due to the nuclear strong force and
the nuclei are bound in the material. their resonant frequencies are usually not assessable to
visible light, so I will ignore their effect in our treatment. But if you consider x-rays or gamma
rays, they would be important.
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In the picture you are seeing a single small particle that is floating on a laser
beam. the laser beam is directed upward. The force due to gravity would make
the particle fall, but the laser light keeps it up!

49.2.4 Antennas Revisited

We talked about antennas before. Let’s try to put all we have done together
to make a radio wave. First, we know from our analysis that we need changing
fields. Neither static charges, nor constant currents will do. If we think about
this for a minute, we will realize that the charges will accelerate. Fundamentally,
this is the mechanism for making EM waves.

The half wave antenna is simple to understand, so let’s take it as our example.

It is made from two long wires connected to an alternating current source (the
radio transmitter).The charges are separated in the antenna as shown. But the
separation switches as the alternating current changes direction. The charges
accelerate back and forth, like a dipole switching direction. Radio people call
this antenna a simple dipole.

Note the direction of the E and B fields. The Poynting vector is to the
right. The antenna field sets up a situation far from the antenna, itself, where
the changing electric field continually induces a magnetic field and the changing
magnetic field continually induces a changing electric field. The wave becomes
self sustaining! And the energy it carries travels outward.

Below you can see a graph of the sort of toroidal angular dependence of the
dipole antenna emission pattern.
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Angular dependence of S for a dipole scatterer.

From this you can see why we usually stand antennas straight up and down.
Then the transmission travels parallel to the Earth’s surface, where receivers
are more likely to be.

Speaking of receivers, of course the receiver works like a transmitter, only
backwards. The EM waves that hit the receiving antenna accelerate the elec-
trons in the wire of the antenna. The induced current passed through an LRC
circuit who’s resonance frequency allows amplification of just one small band of
frequencies (the one your favorite radio station is using) and then the amplified
signal is sent to a speaker.

49.3 The Electromagnetic Spectrum

Maxwell predicted how fast his field waves would travel by finding the linear
wave equation from the fields and noticing the speed indicated by the result.
We have seen how he did this. The answer is

v =
1√
εoµo

(49.36)

this speed is so special in physics that it get’s its own letter

c = 2.99792× 108 m
s

(49.37)

which is of course the speed of light. In fact, that this was the measured speed
of light was strong evidence leading us to conclude that light was really a type
of these waves. There are a few more types of electromagnetic waves. In the
following chart you can see that visible light is just a small part of what we call
the electromagnetic spectrum.

Electromagnetic Spectrum (Public Domain image courtesy NASA)
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The speed of light is always a constant in vacuum. This is strange. It caused
a lot of problems when it was discovered.

v = fλ (49.38)

or
c = fλ (49.39)

where we can see that for light and electromagnetic waves, knowing the wave-
length is always enough to know the frequency as well (in a vacuum).

As an example of what problems can come, let’s consider a Doppler effect
for light. Remember for sound waves, we had a Doppler effect. We will have
a Doppler effect for electromagnetic waves too. But light does not change it’s
speed relative to a reference frame. This is really weird. The speed of light in a
vacuum is always c—no matter what frame we measure it in.

Einstein’s theory of Special Relativity is required to deal with this constant
speed of light in every reference frame. From Relativity, the Doppler equation
is

f ′ = f

�
1 + v

c�
1− v

c

(49.40)

or, if we let u be the relative velocity between the source and the detector, and
insist that u≪ c

f ′ = f

�
c+ u

c

�
(49.41)

Where of course f ′ is the observed frequency and f is the frequency emitted by
the source. This is usually written as

f ′ = f
�
1± u

c

�
(49.42)

but it is really the same equation5 . Just like with sound, we use the positive
sign when the source and observer are approaching each other.

This means that if things are moving closer to each other the frequency
increases. Think of

λ =
c

f
(49.43)

this means that as a source and emitter approach each other, then the light will
have a shorter wavelength. Think of our chart on the electromagnet spectrum.
This means the light will get bluer. If they move farther apart, the light will
get redder.

This is what gave us the hint that has lead to our cosmological theories like
the big bang. Although this theory is now much more complicated, the facts
are that as we look at far away objects, we see they are all red shifted. That is,

5This equation is only really true for relative speeds u that are much less than the speed
of light. Since is is very hard to make something travel even close to to the speed of light, we
will find it is nearly always true.
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they all show absorption spectra for known elements, but at longer wavelengths
that we expect from laboratory experiments. We interpret this as meaning they
are all going away from us!

49.3.1 Summary

Here is what we have learned so far about the properties of light

1. Electromagnetic waves travel at the speed of light

2. Electromagnetic waves are transverse electric and magnetic waves that are
oriented perpendicular to each other.

3. E = cB

4. Electromagnetic waves carry energy and momentum

49.3.2 Photons

Our understanding of light is not complete yet. If you went on to take PH279
you would find that light still operates much like a particle at times. This should
not be a surprise, since Newton and others explained much of optics (the study
of light) assuming light was a particle.

Einstein and others noticed that for some metals, light would strike the sur-
face and electrons would leave the surface. The energy of a wave is proportional
to the amplitude of the wave. It was expected that if the amplitude of the
electromagnetic wave was increased, the number of electrons leaving the surface
would increase. This proved to be true most of the time. But Hertz and others
decided to try different frequencies of light. It turns out that as you lower the
frequency, all of a sudden no electrons leave no matter how big the amplitude
of the wave. Something was wrong with our wave theory of light. The answer
came from Einstein who used the idea of a “packet” of light to explain this
photoelectric effect. For now, we should know just that the waves of light exist
in quantized packets called photons. The energy of a photon is

E = hf (49.44)

where E is the energy, f is the frequency of the light wave, and h is a constant

h = 6.63× 10−34 J s (49.45)

A beam of light is many, many photons all superimposing. We know how
waves combine using superposition, so it is easy to see that we can get a big
wave from many little waves.

Knowing that light is made from electric and magnetic fields, and that these
fields are vector fields, we should expect some directional quality in light. And
there is such a directional quality that we will study next lecture.



Chapter 50

Polarization

Fundamental Concepts

• The direction of the electric field in a plane wave is called the polarization
direction.

• Natural light is usually a superposition of many waves with random po-
larization directions. This light is called unpolarized light.

• Some materials allow light with one polarization to pass through, while
stopping other polarizations. The polaroid is one such material polaroids.
will have a final intensity that follows the relationship I = Imax cos2 (θ)

• Light reflecting off a surface may be polarized because of the absorption
and re-emission pattern of light interacting with the material atoms.

• Scattered light may be polarized because of anisotropies in the scatterers.

• Birefringent materials have different wave speeds in different directions.
This affects the polarization of light entering these materials.

50.1 Polarization of Light Waves

We said much earlier in our study of light that it was a transverse wave. Last
lecture we saw that we have an electric and magnetic field direction, and that
these directions are perpendicular to each other and the direction of energy flow.
We will now show some implications of this fact. In a course in electromagnetic
theory, we often draw light as in the figure below.

689
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We will continue to ignore the magnetic field (marked in the figure as B). We
will look at the E field an notice that it goes up and down in the figure. But we
could have light in any orientation. If we look directly at an approaching beam
of light we would “see” many different orientations as shown in the next figure.

When light beams have waves with many orientations, we say they are un-
polarized. But suppose we were able to align all the light so that all the waves
in the beam were transverse waves in the same orientation. Say, the one in the
next figure.
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E

Then we would describe the light as linearly polarized. The plane that con-
tains the E-field is known as the polarization plane.

50.1.1 Polarization by removing all but one wave orienta-
tion

One way to make polarized light is to remove all but one orientation of an
unpolarized beam. A material that does this at visible wavelengths is called a
polaroid. It is made of long-chain hydrocarbons that have been treated with
iodine to make them conductive. The molecules are all oriented in one direction
by stretching during the manufacturing process. The molecules have electrons
that can move when light hits them. They can move farther in the long direction
of the molecule, so in this direction the molecules act like little antennas. The
molecules’ electrons are driven into harmonic motion along the length of the
molecule. This takes energy (and therefore, light) out of the beam. Little
electron motion is possible in the short direction of the molecule, so light is
given a preferential orientation. The light is passed if it is perpendicular to the
long direction of the molecules. This direction is called the transmission axis.

We can take two pieces of polaroid material to study polarization.

Unpolarized light is initially polarized by the first piece of polaroid called
the polarizer. The second piece of polaroid then receives the light. This piece
is called the analyzer. If there is an angular difference in the orientation of the
transmission axes of the polarizer and analyzer, there will be a reduction of
light through the system. We expect that if the transmission axes are separated
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by 90 ◦ no light will be seen. If they are separated by 0 ◦, then there will be a
maximum. It is not hard to believe that the intensity will be given by

I = Imax cos
2 (θ) (50.1)

remembering that we must have a squared term because I ∝ E2.

50.1.2 Polarization by reflection

If we look at light reflected off of a desk or table through a piece of polaroid,
we can see that at some angles of orientation, the reflection diminishes or even
disappears! Light is often polarized on reflection. Let’s consider a beam of light
made of just two polarizations. We will define a plane of incidence. This plane
is the plane of the paper or computer screen. This plane is perpendicular to the
reflective or refractive surface in the figure below.

One of our polarizations is defined as parallel to this plane. This direction
is represented by orange (lighter grey in black and white) arrows in the figure.
The other polarization is perpendicular to the plane of incidence (the plane of
the paper). This is represented by the black dots in the figure. These dots are
supposed to look like arrows coming out of the paper.

When the light reaches the interface between n1 and n2 it drives the electrons
in the medium into SHM. The perpendicular polarization finds electrons that
are free to move in the perpendicular direction and re-radiate in that direction.
Even for a dielectric, the electron orbitals change shape and oscillate with the
incoming electromagnetic wave.

The parallel ray is also able to excite SHM, but a electromagnetic analysis
tells us that these little “antennas” will not radiate at an angle 90 ◦ from their
excitation direction. Think of little dipole radiators. We can plot the amplitude
of the electric field as a function of direction around the antenna.
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We see that along the antenna axis, the field amplitude is zero. This means
that the wave really does not go that direction. So in our case, the amount
of polarization in the parallel direction decreases with the angle between the
reflected and refracted rays until at 90 ◦ there is no reflected ray in the parallel
direction.

The incidence angle that creates an angular difference between the refracted
and reflected rays of 90 ◦ is called the Brewster’s angle after its discoverer. At
this angle the reflected beam will be completely linearly polarized.

We can predict this angle. Remember Snell’s law.

n1 sin θ1 = n2 sin θ2

Let’s re-lable the incidence angle θ1 = θb. We take n1 = 1 and n2 = n so

n =
sin θb

sin θ2

Now notice that for Brewster’s angle, we have

θb + 90
◦ + θ2 = 180

◦
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so
θ2 = 90

◦ − θb

so we have

n =
sin θb

sin (90 ◦ − θb)

ah, but we remember that sin (90 ◦ − θ) = cos (θ) so

n =
sin θb

cos θb

but again we remember that

tan θ =
sin θ

cos θ
so

n = tan θb (50.2)

which we can solve for θb.
θb = tan

−1 (n)

This phenomena is why we wear polarizing sunglasses to reduce glare.

50.1.3 Birefringence

Glass is an amorphic solid—that is—it has no crystal structure to speak of. But
some minerals do have definite order. Sometimes the difference in the crystal
structure creates a difference in the speed of propagation of light in the crystal.
This is not to hard to believe. We said before that the reason light slows down in
a substance is because it encounters atoms which absorb and re-emit the light.
If there are more atoms in one direction than another in a crystal, it makes
sense that there could be a different speed in each direction.

Calcite crystals exhibit this phenomena. We can describe what happens by
defining two polarizations. One parallel to the plane of the figure below, and
one perpendicular.



50.1. POLARIZATION OF LIGHT WAVES 695

With a careful setup, we can arrange things so the perpendicular ray is propa-
gated just as we would expect for glass. We call this the O-ray (for ordinary).
The second ray is polarized parallel to the incidence plane. It will have a different
speed, and therefore a different index of refraction. We call it the Extraordinary
ray or E-ray.

If we were to put a light source in a calcite crystal, we would see the O-ray
send out a sphere of light as shown in the figure above. But the E-ray would
send out an ellipse. The speed for the E-ray depends on orientation. There is
one direction where the speeds are equal. This direction is called the optic axis
of the crystal.

If our light entering our calcite crystal is unpolarized, then we will have two
images leaving the other side that are slightly offset because the O-rays and
E-rays both form images.

50.1.4 Optical Stress Analysis

Some materials (notably plastics) become birefringent under stress. A plastic or
other stress birefringent material is molded in the form planned for a building
or other object (usually made to scale). The model is placed under a stress,
and the system is placed between to polaroids. When unstressed, no light is
seen, but under stress, the model changes the polarization state of the light,
and bands of light are seen.
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50.1.5 Polarization due to scattering

It is important to understand that light is also polarized by scattering. It really
takes a bit of electromagnetic theory to describe this. So for a moment, lets
just comment that blue light is scattered more than red light. In fact, the
relative intensity of scattered light goes like 1/λ4. This has nothing to do with
polarization, but it is nice to know.

Now suppose we have long pieces of wire in the air, say, a few microns
long. The pieces of wire would have electrons that could be driven into SHM
when light hits them. If the wires were all oriented in a common direction, we
would expect light to be absorbed if it was polarized in the long direction of
the particles and not absorbed in a direction perpendicular to the orientation
of the particles. This is exactly what happens when long ice particles in the
atmosphere orient in the wind (think of the moment of inertia). We often get
impressive halo’s around the sun due to scattering from ice particles.

Rain drops also have a preferential scattering direction because they are
shaped like oblate spheroids (not “rain drop shape” like we were told in grade
school).

It is also true that small molecules will act like tiny antennas and will scatter
light preferentially in some directions and not in others. This is called Rayleigh
scattering and is very like small dipole antennas.

50.1.6 Optical Activity

Some substances will rotate the polarization of a beam of light. This is called
being optically active. The polarization state of the light exiting the material
depends on the length of the path through the material. Your calculator display
works this way. An electric field changes the optical activity of the liquid crystal.
There are polarizers over the liquid crystal, so sometimes light passes through
the display and sometimes it is black.



50.2. RETROSPECTIVE 697

50.1.7 Laser polarization

One last comment. Lasers are usually polarized. This is because the laser light
is generated in a cavity created by two mirrors. The mirror is tipped so light
approaches it at the Brewster angle. Light with the right polarization (parallel
to the plane of the drawing) is reflected back nearly completely, but light with
the opposite polarization is not reflected at all. This reduces the usual loss in
reflection from a mirror, because in one polarization the light must be reflected
completely.

50.2 Retrospective

We have thought about many things in this class. It has been a class about
science. It has not been a class where we have tried to discover new science, or
practiced the scientific method. This is on purpose, this being an engineering
class designed to teach the principles of physics for use in designing machines.

But we should pause to think, just for a moment, about the philosophy of
science. Is everything in these lectures true? We did not perform experiments
to show every principle we learned. So does it all work?

The answer is—maybe. Experiments have been done to show that the equa-
tions we have learned work at least sometimes. But science is an inductive
process. We can’t prove anything true with science. We can only prove things
false. So what we have studied is what has not been proven false, yet. Of
course, even then, we have taken approximations from time to time, but we
pointed these out along the way. You will know when the approximations will
fail, because we talked about their valid ranges.

It is important to remember that we are not done discovering new things,
and proving old things false. The laws of Newton are approximations that work
at low speeds. Relativity provides mechanical equations for very high speeds
(e.g. the satellite motion involved in the GPS system). But is Relativity correct?
We think it works pretty well, but really we don’t know. We may never know
for sure. But we know it works within the range of things we have tried.

There are physicists today that are working on a fundamentally new model
of the universe. It is called “String Theory” and it would replace most of our
thoughts about how matter is made and how it interacts. The equations would
reduce to the ones we used in class for the conditions we considered. That is
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because the new equations have to match the results of the experiments that
we have already done or they can’t be correct. But the explanations might be
very different.

Often, it is in using physics to build something that we learn about the
limitations of physical theory. You may be part of that process. It is a happy
process because extending our understanding allows us to build new things. But
don’t be surprised if some of the things we learned in this class are different by
the time your children take their engineering physics course. That is what we
should expect of an inductive process.

It is also important to note that revealed truth is not an inductive process.
It is still not static (see article of faith 9), but it can prove something true as
well as prove things false. I hope your FDSCI 101 experience gave you some
insight into doing science as well as learning about science.

Some members view science and revelation as in opposition. But I think they
are complementary. The scientific process allows us to eliminate things that are
not true, allowing us to follow D&C 9:8 in preparation for seeking revelation.
During a recent convocation speech, Elder Scott described using this process as
a nuclear engineer during his engineering career . We can use this combination
in our personal lives as well. I hope you will consider this in your careers and
lives.

I have tried to give at least equal time to conceptual understanding and
mathematical solving. I hope you review and refresh the conceptual under-
standing of the physics of what you build. Most of my industrial career, we
built what we designed very well. We always did our calculations well. But we
did, at times, build the wrong thing because the conceptual basis of the design
was wrong. Such mistakes are difficult to fix. Conceptual understanding is a
guiding principle for a successful design career. I hope this class has contributed
to that conceptual understanding.



Appendix A

Summary of Right Hand
Rules

A.1 PH121 or Dynamics Right Hand Rules

We had two right hand rules on PH121 We didn’t give them numbers back then,
so we will do that now.

A.1.1 Right hand rule #0:

We found that angular velocity had a direction that was given by imagining you
grab the axis of rotation with your right hand so that your fingers seem to curl
the same way the object is rotating. Then your thumb gives the direction of −→ω

You curl the fingers of your right hand (sorry left handed people, you have to
use your right hand for this) in the direction of rotation. Then your thumb
points in the direction of the vector.
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A.1.2 Right hand rule #0.5:

To find the direction of torque, we used the following procedure

1. Put your fingers of your right hand in the direction of r̃

2. Curl them toward F̃

3. The direction of your thumb is the torque direction
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4. The angle θ is the angle between r̃ and F̃

The magnitude of the torque is

τ = rF sin θ

A.2 PH223 Right Hand Rules

We have four more right hand rules this semester having to do with charges and
fields.

A.2.1 Right hand rule #1:

From this rule we get the direction of the force on a moving charged
particle as it travels thorough a magnetic field.

This rule is very like torque. We start with our hand pointing in the direction
of ṽ. Curl your fingers in the direction of B̃. And your thumb will point in the
direction of the force. The magnitude of the force is given by

F = qvB sin θ (A.1)
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A.2.2 Right hand rule #2:

From this rule we get the direction of the force on current carrying wire that is
in a magnetic field.

This rule is very like right hand rule #1 above. We start with our hand
pointing in the direction of I. Curl your fingers in the direction of B̃. And your
thumb will point in the direction of the force. The magnitude of the force is
given by

F = ILB sin θ (A.2)

A.2.3 Right hand rule #3:

From this rule we get the direction of the magnetic field that surrounds
a long current carrying wire.

This rule is quite different. It is reminiscent of the rule for angular velocity,
but there are some major differences as well. The field is a magnitude and a
direction at every point in space. We can envision drawing surfaces of constant
field strength. They will form concentric circles (really cylinders) centered on
the wire. At any one point on the circle the field direction will be along a tan-
gent to the circle. The direction of the vector is given by imaging you grab the
wire with your right hand (don’t really do it). Grab such that your right thumb
is in the direction of the current. Your fingers will naturally curl in the direction
of the field.

A.2.4 Right Hand Rule #4:

From this rule we get the direction of the induced current when a loop
is in a changing magnetic field.

This rule is only used when we have a loop with a changing external magnetic
field. The rule gives the direction of the induced current. The induced magnetic
field will oppose the change in the external field, trying to prevent a change in
the flux. The current direction is found by imagining we stick our right hand
into the loop in the direction of the induced field. Keeping our hand inside the
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loop we grab a side of the loop. The current goes in the direction indicated by
our thumb.

In the figure above, the external field is upward but decreasing. So the induced
field is upward. The current flows because there is an induced emf given by

E = −N∆Φ
∆t

= −N (B2A2 cos θ2 −B1A1 cos θ1)

∆t
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Appendix B

Some Helpful Integrals
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Appendix C

Some Physical Constants

Charge and mass of elementary particles
Proton Mass mp = 1.6726231× 10−27 kg
Neutron Mass mn = 1.6749286× 10−27 kg
Electron Mass me = 9.1093897× 10−31 kg
Electron Charge qe = −1.60217733× 10−19C
Proton Charge qp = 1.60217733× 10−19C
α-particle mass1 mα = 6.64465675(29)× 10−27 kg
α-particle charge qα = 2qe

Fundamental constants
Permittivity of free space ǫo = 8.854187817× 10−12 C2

Nm2

Permeability of free space µo = 4π × 10−7 TmA
Coulomb Constant K = 1

4πǫo
= 8.98755× 109Nm2C−2

Gravitational Constant G = 6.67259× 10−11m3 kg−1 s−2
Speed of light c = 2.99792458× 108ms−1
Avogadro’s Number 6.0221367× 1023mol−1
Fundamental unit of charge qf = 1.60217733× 10−19C

Astronomical numbers
Mass of the Earth2 5.9726× 1024 kg
Mass of the Moon3 0.07342× 1024 kg
Earth-Moon distance (mean)4 384400 km
Mass of the Sun5 1, 988, 500× 1024 kg
Earth-Sun distance6 149.6× 106 kg

1http://physics.nist.gov/cgi-bin/cuu/Value?mal
2http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
3http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
4http://solarsystem.nasa.gov/planets/profile.cfm?Display=Facts&Object=Moon
5http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
6http://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
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Conductivity and resistivity of various metals

Material
Conductivity�
Ω−1m−1

� Resistivity

(Ωm)
Temp. Coeff.�

K−1
�

Aluminum 3.5× 107 2.8× 10−8 3.9× 10−3
Copper 6.0× 107 1.7× 10−8 3.9× 10−3
Gold 4.1× 107 2.4× 10−8 3.4× 10−3
Iron 1.0× 107 9.7× 10−8 5.0× 10−3
Silver 6.2× 107 1.6× 10−8 3.8× 10−3

Tungsten 1.8× 107 5.6× 10−8 4.5× 10−3
Nichrome 6.7× 105 1.5× 10−6 0.4× 10−3
Carbon 2.9× 104 3.5× 10−5 −0.5× 10−3



Bibliography

709


